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What is MPAS?  Model for Prediction Across Scales 

n  MPAS is an unstructured-grid approach to climate 
system modeling. 

n  MPAS supports both quasi-uniform and variable 
resolution meshing of the sphere using quadrilaterals, 
triangles or Voronoi tessellations. 

n  MPAS is a software framework for the rapid prototyping 
of single-components of climate system models 
(atmosphere, ocean, land ice, etc.). 

n  MPAS offers the potential to explore regional-scale 
climate change within the context of global climate 
system modeling. 

n  MPAS is currently structured as a partnership between 
NCAR MMM and LANL COSIM, where we intend to 
distribute our models through open-source, 3rd-party 
facilities (e.g. Sourceforge) 
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MPAS Numerics 
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Ringler, T., J. Thuburn, J. Klemp and W. Skamarock, 2010: A unified approach to energy conservation and 
potential vorticity dynamics on arbitrarily structured C-grids, J. Comp. Physics, 229 3065–3090.  

Thuburn, J., T. Ringler, J. Klemp and W. Skamarock, 2009: Numerical representation of geostrophic modes 
on arbitrarily structured C-grids, J. Comp. Phys, 228 (22), 8321-8335 
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n  The numerical scheme developed by Thuburn et al. 
(2009) and Ringler et al. (2010) conserves mass, 
total energy and potential vorticity on these 
variable-resolution meshes. 

n  May run on grids with four, five, or six sided cells. 

n  C-grid staggering: velocity normals at cell edges 

n  Mass, geopotential, and kinetic energy are defined 
at cell centers.  

n  Vorticity and potential vorticity are defined at cell 
vertices. 

n  Code is “mesh-unaware”.  That is, code is identical 
for Voronoi Tessellation, quad meshes, or any other 
grid configuration. 
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MPAS Component Development Teams 

MPAS-Ocean Team:   
 Todd Ringler, Mark Petersen, Mat Maltrud, Phil Jones, Chris Newman, Bob 
Higdon, Doug Jacobsen, Rob Lowrie, Jonathan Graham, Qingshan Chen 

 
MPAS-Atmosphere Hydrostatic Team:   

 Bill Skamarock, Todd Ringler, Michael Duda, Sara Rauscher, Li Dong, Art 
Mirin, Chris Jeffery 

 
MPAS-Atmosphere Non-Hydrostatic Team:   

 Bill Skamarock, Michael Duda, Laura Fowler and others in NCAR MMM 
 
MPAS-Land Ice Team:   

 Bill Lipscomb, Steve Price, John Burkhart, Xylar Asay-Davis, Lili Ju, Max 
Gunzburger, Mauro Pereg 
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MPAS Development: Benefits of Collaboration 

n  MPAS is a collaborative development between MMM at NCAR, 
COSIM at LANL, and others (e.g. LLNL) 

n  All developers share the same repository. 

n  Each component (atmosphere, ocean, etc) has its own modules 
for core-specific subroutines. 

n  All cores share common framework modules, which include: 
•  i/o and restart modules  
•  time managers 
•  grid initialization 
•  parallelization, boundary updates, and block decomposition 
•  support for registry file that automates variable declaration and input namelists   

n  Improvements and bug-fixes from one core are transferred to 
other cores.  

n  MPAS components designed to be components of coupled 
climate models like CESM. 
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Items Completed in MPAS-Ocean 

n  Choice of isopycnal or z-level vertical grids as namelist option 
n  Global ocean capability with land boundaries and bathymetry 
n  Del2 and del4 horizontal diffusion 
n  High-order horizontal advection for Voronoi tessellations 
n  Nonlinear equation of state (Jackett and McDougall) 
n  High-order vertical advection 
n  Pacanowski and Philander vertical mixing 
n  Implicit vertical mixing 
n  Split-explicit timestepping scheme has been implemented in a 

simplified prototype code and into MPAS-Ocean.  
n  MPAS-Ocean testing on quad meshes: Initial validation using POP 
n  Creation and testing of global uniform density Voronoi Tessellation 

grids, with topography: 120km, 60km, and 30km gridcell meshes. 
n  MPAS-Ocean testing on Voronoi Tessellation meshes: both uniform 

and variable density meshes. 
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Vertical Grid: General formulation accommodates many grids 

n  Z-Level vertical grid: 
•  top layer thickness h evolves freely to account for SSH changes 
•  In lower layers, thickness equation used to compute w, and we set dh/dt=0 
•  density computed from T & S at each timestep 

n  Isopycnal vertical grid: 
•  layer thickness h is prognostic variable for full 3D array 
•  no vertical advection between layers (no remapping at this time) 
•  density is fixed for each layer for all time 

n  z*,    vertical grids, under development 
•  accommodates deviations from the vertical coordinate for SSH, internal gravity 

waves. 
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Split-Explicit Timestepping 

n  Split timestepping used for computational efficiency 

level 1 
level 2 
level 3 
 

level K 

level 1 
level 2 
level 3 
 

level K 

barotropic part 
•  2D: single layer 
•  time step: explicit subcycling 

baroclinic part 
•  3D: multiple layers 
•  one explicit time step 
•  vertical mean = 0 

vertical average 

fast surface gravity waves 

slower internal gravity waves 

full ocean 
(vertical section) 
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Split-Explicit Time Stepping 

n  Baroclinic system (3-D) explicit with long timestep 

 

 

n  Barotropic system (2-D) explicitly subcycled  

n  Tracer, density, pressure update 
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Split-Explicit Time Stepping 

Grid cell size: 80km 40km 20km 10km 
Runge-Kutta 4  300s 150s 75s 38s 
Split Explicit 10,000s 5000s 2000s 1000s 
Ratio 33 33 27 26 

Grid cell size: 80km 40km 20km 10km 
Runge-Kutta 4  420s 940s 2040s 7750s 
Split Explicit 12s 59s 153s 560s 
Speed-up factor 35   16 13 14 
Number procs 16 16 64 128 

Timing tests, using periodic channel domain.  

Maximum allowable timestep, seconds: 

Wall clock time, seconds, to run for ten model days 
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MPAS-Ocean Testing and Validation 

n  Global uniform density Voronoi Tessellation grids (hexagons), with 
topography: 120km, 60km, and 30km gridcell meshes. 

n  Global variable density Voronoi Tessellation grids. 

n  Global quadrilateral grids identical to standard POP grids for direct 
comparison: 3°, 1°, 0.1° gridcell meshes. 

n  Double Gyre wind-driven basin 

n  Periodic channel, wind-driven, idealization of Antarctic Circumpolar 
Current. 

n  Split-explicit time stepping validation: 
•  Test barotropic subcycling with single layer basin with surface waves 

•  Test baroclinic timestep by filtering out barotropic mode in basin domain 

n  Standard Shallow Water Test Case Suite 

Slide 11 
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MPAS-Ocean Testing and Validation: Global runs 

n  Global uniform density Voronoi Tessellation grids (hexagons), with 
topography: 120km, 60km, and 30km gridcell meshes. 
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Kinetic energy after five years for the 30km grid.  These simulations used z-level mode with realistic bathymetry, 
third order horizontal and vertical advection, Richardson-number based implicit vertical mixing, and hyper-diffusion 
and hyper-viscosity in the horizontal.  The ocean was initialized with Levitus mean climatology, and is forced by 
yearly mean NCEP winds.  The top layer includes a restoring tendency for temperature and salinity.   
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MPAS-Ocean Testing and Validation: POP Comparison 

n  Global quadrilateral grids identical to standard POP grids for direct 
comparison: 3°, 1°, 0.1° gridcell meshes.  Shown: 1° after 40 days. 
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n  1 

n  2 

MPAS-Ocean SSH MPAS-Ocean SST 

POP SSH POP SST 
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MPAS-Ocean Testing and Validation 

n  Periodic channel, wind-driven, idealization of Antarctic Circumpolar 
Current. 
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MPAS-Ocean Testing and Validation 

n  Periodic channel, wind-driven, idealization of Antarctic Circumpolar 
Current. 
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MPAS-Ocean Testing and Validation: Variable Resolution 
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total number of cells: 115K 
equatorial and polar resolution: 40 km 
subtropical resolution: 85 km 

local grid resolution 

total number of cells: 115K 
equatorial and polar resolution: 50 km 
subtropical resolution:100 km 
North Atlantic resolution: 30 km 

North Atlantic High Resolution  

local grid resolution 

Control Simulation 
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MPAS-Ocean Testing and Validation: Variable Resolution 

Control Simulation North Atlantic High Resolution  
Top layer thickness, day 1600 Top layer thickness, day 1600 

Kinetic Energy Kinetic Energy 
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MPAS Development: Software Engineering Practices 

n  Goal: A transparent, well-planned and documented design and 
code-writing process. 

n  We use Requirements and Design Documents and Reviews: 
•  R&D document is written and reviewed for each major code improvement. 

•  Code developed on repository branch 

•  Branch reviewed by other team members, compared with R&D Document before 
committing to the trunk. 

n  R&D Documents form a history of code modifications, and first 
draft for the MPAS-Ocean Reference Manual. 
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Conclusions 

n  MPAS-Ocean is a functioning variable-resolution ocean dynamical core. 

n  Major functionality is now in place, including: 
•  Choice of z-level or isopycnal mode 
•  High order vertical and horizontal advection 
•  Split-explicit time stepping, with a speed-up of 14 over fourth-order Runge-Kutta 

n  MPAS-Ocean goals for next 6 months: 
•  Peer-reviewed publications introducing MPAS-ocean 
•  Develop a community of early users to test MPAS-Ocean 
•  Profile performance, scaling, and efficiency improvements 
•  z* and      adaptive vertical grids. 
•  Add additional standard parameterizations, like KPP vertical mixing 

n  MPAS-Ocean goals, longer term: 
•  Coupling to CESM 
•  Parameterization development for variable resolution grids. 
•  Development of sea ice and land ice MPAS components 

!z
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MPAS-Ocean z-level mode initial validation with POP 

n  MPAS-Ocean on quad grid and bathymetry identical to POP 
gx3v2, gx1v3, and 0.1 dipole grids. 

n  Levitus climatological mean initial temperature and salinity 

n  NCEP 1958-2000 annual mean wind stress 

n  No surface forcing or restoring of temperature and salinity 

n  Horizontal mixing: del2, constant coefficient               
viscosity (1.0e3 m2/s) and diffusion (1.0e2 m2/s). 

n  Vertical mixing: constant coefficient viscosity (2.5e-5 m2/s) 
and diffusion (2.5e-5 m2/s). 

n  Jacket & McDougall equation of state    
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Efficiency 

n  Array structure 
•  POP:     TRACER( i, j, k, tracer_index, time_index, iblock)   hor. neighbors in cache   

•  MPAS:      tracers( tracer_index, k, iCell, time_index)        tracers & column in cache 

•  Indirect array references for neighbors in MPAS. 

•  MPAS includes no land cells. 

•  In MPAS, adding tracers and vertical levels will not add much computational time.  

n  We have done no profiling on MPAS-Ocean yet, so large gains 
may be possible. 

n  Major task is to include timesplitting to lengthen baroclinic steps 

n  Assuming longer timestep in split mode, MPAS-Ocean is 
currently 5-10 times slower than POP. 
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Visualization Tools for Unstructured Grids 

n  POP’s structured horizontal grid makes for easy plotting in 
Ferret and Matlab. 

n  MPAS unstructured grids required additional tools to convert 
NetCDF output files to plotable formats 

n  At LANL, we made conversion tools for Paraview .vtk format in: 
•  spherical projection 
•  latitude-longitude projection 
•  combined POP/MPAS output for direct comparison 

n  NCAR staff is creating unstructured visualization tools for NCL.   
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High-Order Vertical Tracer Advection 

n  Vertical tracer advection, 

 requires tracer values at vertical cell edge.     

n  Four methods are available to interpolate tracer values to cell 
interface: 

vertical advection 
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Vertical Mixing 

n  Pacanowski-Philander vertical mixing 
•  Based on Richardson Number, so viscosity and tracer diffusion increase 

with vertical shear and weaker stratification. 

n  Implicit vertical mixing 
•  Allows mixing to occur stably at fast timescales without constraining the 

model time step. 

•  Operator splitting used on explicit and implicit tendency terms in the 
momentum and tracer equations. 

•  Implicit solve is conducted after explicit time step. 

 

solve explicitly solve implicitly 

new provisional value 
from explicit solve 
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How do POP and MPAS-Ocean differ in these tests? 

n  Time stepping and time splitting 
•  POP:  Barotropic/Baroclinic implicit/explicit splitting, leap-frog timestep 

                60 minute timestep for 1o grid 

•  MPAS-Ocean: no splitting, explicit 4th-order Runga-Kutta timestep 

                1 minute timestep for 1o grid 

n  Grid:    
POP uses a B-grid:  

Velocities on corners 
y 

x 

velocity point 

tracer pt 

MPAS uses a C-grid:  
Velocities on edges 
y 

x 

velocity tracer pt 
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POP/MPAS-Ocean Comparison, 1o grid, 165 days 

n  1 

n  2 

mpas SSH mpas SST 

POP SSH POP SST 


