MODELING LAND-ICE/OCEAN INTERACTIONS IN THE COMMUNITY EARTH SYSTEM MODEL (CESM) Xylar Asay-Davis

OUTLINE

- Challenges of Land-ice / Ocean Coupling
- Boundary Layer Physics
- Immersed Boundary Method
- Partial Cells Method
- New Ocean Model Grid

Challenging Physics:

0

• Many length scales

Challenging Physics:

- Many length scales
- Many time scales

Pollard and DeConto 2009

Challenging Physics:

- Many length scales
- Many time scales
- Many processes

Challenging Numerics:

- Moving boundaries
- Anisotropic grids $(\Delta x \gg \Delta z)$
- Under-resolved physics

BOUNDARY LAYER PHYSICS

- *Very few* observations under ice shelves:
- So, using boundary layer theory validated under
 sea ice (McPhee 2008)
- Includes stabilizing effect of stratification, very important for rapid melting

BOUNDARY LAYER PHYSICS

- Requires:
 far field ocean temp., velocity, salinity
 - interior ice temperature
- Gives at interface:
 - heat flux
 - salt flux
 - momentum flux
 - mass flux

BOUNDARY LAYER PHYSICS

- 2 coeffs. are calibrated using measurements under Ronne Ice Shelf (Jenkins et al. 2010)
 - Surface roughness
 - Molec. transport coeff.
- More calibration data expected in coming years (Fimbul, Larsen C and George VI Ice Shelves)

Jenkins et al. 2010

IMMERSED BOUNDARY METHOD

- Handle complex, moving boundaries on fixed grids
- Fictitious flow (interior to solid surface) in many fluid dynamics applications

Mittal: Pressure near Swimmer

IMMERSED BOUNDARY METHOD

- Handle complex, moving boundaries on fixed grids
- Fictitious flow (interior to solid surface) in many fluid dynamics applications
- Not feasible in POP ocean model (very anisotropic, barotropic/baroclinic splitting, etc.)

IMMERSED BOUNDARY METHOD

- Handle complex, moving boundaries on fixed grids
- Include only ghost points adjacent to boundary (not full fictitious flow)
- Extrapolate fluid values from image points to ghost points using boundary conditions (mass, heat and salt fluxes)

- Interface by partial cells, like bathymetry
- No ghost cells / fictitious flow
- Based on Losch 2008: static ice shelves in MITgcm

- Interface by partial cells, like bathymetry
- No ghost cells / fictitious flow
- Based on Losch 2008: static ice shelves in MITgcm
- Salt/heat from melting/ freezing mixes into both partial cell and next cell below (reduces noise)

• Pros:

- Static interface tested with other ocean models
- Similar to bathymetry
- Same boundary conditions as IBM

• Pros:

- Static interface tested with other ocean models
- Similar to bathymetry
- Same boundary conditions as IBM

• Cons:

- Tested only for static ice shelves
- Stair-step geometry can lead to noisy fields

"Wetting" and "drying" of cells:

 Tracers in new "wetted" cells conservatively distributed *from* neighboring cell(s)

"Wetting" and "drying" of cells:

- Tracers in new "wetted" cells conservatively distributed *from* neighboring cell(s)
- Tracers in old "dried" cells conservatively distributed *to* neighbor(s)

NEW OCEAN MODEL GRID

- Working with Mat Maltrud at LANL
- Existing POP grid: No cavities under ice shelves

NEW OCEAN MODEL GRID

- Working with Mat Maltrud at LANL
- Existing POP grid: No cavities under ice shelves
- New POP grid: Ice shelves replace by open ocean
- Bathymetry from RTOPO-1 data set (Timmermann et al. 2010)

NEW OCEAN MODEL GRID

Ocean speed (cm/s) at 15 m depth after 1-month

- Mat Maltrud's spin-up simulation with new grid
- Next step: include static ice shelves on this grid

- Ongoing implementing both Immersed Boundary Method (without fictitious flow) and Partial Cells Method in POP
- New POP grid that will be able to handle Antarctic ice shelves
- Next steps: tests of ocean dynamics under static ice shelves with both idealized and realistic geometries