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Introduction and Purpose

The goals of our research are:

1.

To investigate the effect of rising water temperatures on the stability of
oceanic hydrate accumulations and to determine the conditions under which
methane release may occur

To identify geochemical effects within the water column that control the fate
of hydrate-derived methane

To estimate the global quantity of hydrate-originating carbon that could reach
the atmosphere

To examine, quantitatively, the possibility of hydrate-related climate
feedbacks



Global Organic Carbon Distribution &
Gas Hydrates

Enormous amount of organic matter trapped in
arctic systems

Hydrates store huge amounts of methane

Huge deposits in permafrost and in the oceans
(oceans >> permafrost)

Hydrate carbon significant on a global scale, and
over long times (Archer, 2007; 2009)

Recent studies suggest 3000 — 5000 Gt (Archer,
2009; Wallman, 2011)

Much hydrate is deep and low-saturation
Continental margins are the key




Global Organic Carbon Distribution &
Gas Hydrates

from NOAA/IBCAO (http://www.ngdc.noaa.gov/)

* Enormous amount of organic matter trapped in Qi / ,1,
arctic systems \

» Hydrates store huge amounts of methane

» Huge deposits in permafrost and in the oceans
(oceans >> permafrost)

» Hydrate carbon significant on a global scale, and
over long times (Archer, 2007; 2009)

» Recent studies suggest 3000 — 5000 Gt (Archer,
2009; Wallman, 2011)

* Much hydrate is deep and low-saturation
» Continental margins are the key

» The arctic is warming

» Methane plumes are appearing near the edge of e

the GHSZ in regions undergoing measured R
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Oceanic Gas Hydrates: Dissociation

Temperature

Climate change alters ocean
temperature (and geothermal
gradient)

Decreases hydrate
stability region

Methane release to
ocean by hydrate
dissociation

Geothermal
Gradient

Depth
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Oceanic Gas Hydrates: Dissociation

) change in ocean bottom termperature (degrees C)
Climate change alters ocean " GCSM AT scenario, realization 2
temperature (and geothermal

gradient)

Decreases hydrate
stability region

Methane release to
ocean by hydrate
dissociation

What happens between
(1) and (2)?

What is the fate of the
methane?




Outline

Atmosphere
CAM

1) Sub-seafloor
* Hydrate dissociation
* Fluid transport

2) Ocean water column
e Methane transport
e Geochemistry and biology

3) Atmosphere and global climate
e Atmospheric chemistry?
 Positive feedbacks?
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Outline

Land
CLM
1) Sub-seafloor
» Hydrate dissociation
* Fluid transport =
CICE
2) Ocean water column

 Methane transport
 Geochemistry and biology

3) Atmosphere and global climate
« Atmospheric chemistry?
 Positive feedbacks?

TOUGH+HYDRATE

(module)




The Numerical Model

TOUGH+HYDRATE code (Moridis et al., 2008):
*Describes fully coupled non-isothermal hydrate dissociation/formation, CH, flow, and phase
behavior in porous media
*Descendent of the TOUGH family of codes (YMP, oil & gas, CO, sequestration, hydrology)

*Validated by 1) analytical solutions, 2) gas production from permafrost deposits in the field,
3) dissociation and thermal behavior in lab experiments

Components Phases Latest hydration P-T relationships
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Hydrate Stability/Dissociation

* Previous work?! 234 studied Class 4 (disperse) deposits, S;,[1= 0.03-0.10, 1 °C to 5 °C
warming

 Provided view of GHSZ extent, localized dissociation estimates, localized fluxes, sensitivity

1D columns?2 and 2D continental slope deposits!4

Multiple scenarios tested2:34: I e o
o Deep Ocean, 1000 m: Stab|e ............................................ 320 ..................... EE
H m s
« GoM, 570 m: unstable? My 3
e Arctic shelf, 320 m: unstable R o e — L £
E ; 0 s
- Barents Sea, 390 m: unstable T RS
L e
* Releases are sustained, but not explosive!? 5 - g
: 4 L2
» Constrained by thermal effects and sediment 3 : 3
transport properties3+4 " =
. o . RN HEE AN S Y 1°C /100 yr 0.1
e Sea level rise (10m) not mitigating® T Ny e 3.cit00yr i3
: . E— yr ::
« Results can be generated for any B LA AL AL AL T
z/T/geological location via linkable subroutines Time vn)

2Reagan, M.T. and G.J. Moridis, oceanic gas hydrate instability and dissociation under climate change scenarios, Geophys. Res. Lett., 34, L22709,
doi: 10.1029/2007GL031671, 2007.

SReagan, M.T. and G.J. Moridis, The dynamic response of oceanic hydrate deposits to ocean temperature change, J. Geophys. Res. Oceans, 113,
C12023, doi:10.1029/2008JC004938, 2008.

4Reagan, M.T., Moridis, G.J., Elliott, S.M., and Maltrud, M., “Contributions of Oceanic Gas Hydrate Dissociation to the Formation of Arctic Ocean
Methane Plumes,” J. Geophys. Res. Oceans, 2011JC007189, in press.



Integration: Basin-Scale Assessments

» 1D sediment column; thermal, chemical, hydrostatic equilibrium, fine

discretization: dz=10cm—-1m Ts,Ps

*k<1mD, ¢=0.45 - 0.55, consolidated sediments
» Hydrate exists from z = -1 m to Tg(2), Pg(2)
*S,[1=0.01-0.10 (~0.03%-3 %vol)
* Okhotsk: T,=0°C -2°C
* Arctic: T,=0.5°C-1°C
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*AT =1, 3,5, 7°C/100 yr, or AT = 1(2)
« 100 yr warming, then T, = constant
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» Simulate CH, flux vs. t at each location

. TB 3 PB

* Fluxes a function of depth, T, AT

» Perform 1-D release simulations on 40-min grid,

(ETOPQ2) at 25 m depth increments

* Integrate total methane release/flux over bathymetry T,

« Estimate basin-scale CH, emission

v Z='400m



Integration: Sea of Okhotsk

VeH, total (Mol)

Integrated cumulative release (V) and net flux (Q)

Net cumulative CH,
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 Adjust for 80% BSR occurrence (Ludmann & Wong, 2003)
* Instability confined to a narrow band near the top of the GHSZ
« 240 Tg released in the first century, fluxes < 5 Tg/yr



Latitude (N)

Integration: Sea of Okhotsk

Depth contours, coloring suggesting areas of potential
destabilization (reds) vs. low-flux areas (blues)
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» The Okhotsk basin contains
extensive hydrate deposits and
high methane
concentrations(Obzhirov; KOMEX)

» Hydrates and free gas imaged
(Ludmann & Wong, 2003;
Wallmann et al., 2006)

* T+H: ~ 96 Tg (x 80) after 30 yr
release (t = 83 yr)

* Previous estimate™ 94.4 Tg (by t =
30 yr)

* Only 0.1%-1% of the estimated
Okhotsk methane reservoir

 Continued release may increase
Veng 9%

“Elliott et al., 2010



VeH, total (MO)

Integration: Arctic Ocean

Cumulative release (V¢y,) VS. depth

Net cumulative CH, _
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« Instability confined to a narrow band near the top of the GHSZ
*Up to 6,400 Tg CH, att = 100 yr



Integration: Arctic Ocean

Cumulative release (V) and net flux (Q)

2.0 4 — 10+
- 9_
8_
?_
i o
1.5
i _ 5]
:g“ % AT=+5C
4_
0 i £
!-a ?—.
Z 1.0 e
B 1 = N
>U z
o
i 2]
0.5
i AT=+1°C
0-0 _I T T T T T 1 _I T T T T I T T T T [ T T T T | T T T T I T T T T I T T '| T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (yr)

Time (yr)
« Instability confined to a narrow band near the top of the GHSZ

» Scenarios: +5°C, +3°C, warm (1°C - 5°C as f(z2)), cold (1°C - 3°C as f(2))
 Short-term: 1600 - 3200 Tg CH, @ 30 yr (previous assumption: 240 Tmol)
* 60 — 120 Tg/yr peak fluxes




Integration: Arctic Ocean

J e Depth contours, coloring suggesting areas of potential
destabilization (reds) vs. low-flux areas (blues)
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Outline

Atmosphere
CAM

1) Sub-seafloor
* Hydrate dissociation
* Fluid transport

2) Ocean water column
e Methane transport
e Geochemistry and biology

3) Atmosphere and global climate
e Atmospheric chemistry?
 Positive feedbacks?
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Outline

Land
CLM

1) Sub-seafloor
* Hydrate dissociation

* Fluid transport =

CICE

2) Ocean water column

* Methane transport
» Geochemistry and biology

3) Atmosphere and global climate
« Atmospheric chemistry?
 Positive feedbacks?
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Coupled Ocean Modeling & Biochemistry

CH, Surface Concentration (nanomolar)

* POP extended to consider methane
biogeochemistry in the water column>®

» A newly generated background methane
cycle creates a baseline for methane
release calculations®

 Localized methane releases from hydrates
inserted into POP® (fully dissolved®*)

CH,4 Surface Saturation Ratio
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SElliott, S.M., Maltrud, M., Reagan, M.T., Moridis, G.J., Cameron-Smith, P.J.,
“Geochemistry of Clathrate-Derived Methane in Arctic Ocean Waters,”
Geophys. Res. Lett., 37, L12607, 2010.

6Elliott, S.M., Maltrud, M., Reagan, M.T., Moridis, G.J., Cameron-Smith, P.J.,
“Marine Methane Cycle Simulations for the Period of Early Global Warming,” J.
Geophys. Res. Biog., 116, G01010, 2010. B

= ~
Ry * N
& 4 &"ﬁ ) " 1.2
1.9
-5 1.07
- 1.05
1us
¥ .01
. nea
oy ;] = 1 . 0.97
= i 0.95
¥ 0.83
a Fd 091
=~ 08
= 08
. — _,."5"——* (# 4
- 0z
- = )
% 2y - =
£ e=- s
. 4 £ 4
LI~ g o < b .
s
- 3 (! — ) =
- M- P S ~ Bl \ < )
- &



t=30yr:

Coupled Ocean Modeling & Biochemistry
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Coupled Ocean Modeling & Biochemistry
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Outline

Atmosphere
CAM

1) Sub-seafloor
* Hydrate dissociation
* Fluid transport

2) Ocean water column
e Methane transport
e Geochemistry and biology

3) Atmosphere and global climate
e Atmospheric chemistry?
 Positive feedbacks?
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Outline

Atmosphere
CAM

1) Sub-seafloor
 Hydrate dissociation
 Fluid transport

2) Ocean water column
 Methane transport
» Geochemistry and biology

3) Atmosphere and global climate
e Atmospheric chemistry?
 Positive feedbacks?
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Diff_CH4

Mean B.13209E-7

Q0

Increase in global CH, concentration

CHA concentration mol/mol Percent_DIff CH4 concentration mol/mol

Max 1.05908E-5 Min 7.3605E-7 Mean 36.7066 Max 439.847 Min 31.4342

Q0

(b)

lon lon
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(a) Difference in surface CH, concentration
relative to control
(b) Percent Difference in CH, concentration

relative to Control
(c) Difference in surface CH,, zonal mean
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Significant Increases in Ozone

percent DI ©3 (O3 concentration mol/mol
Mean 9.70512 Max 20.1048 Min 6.68195 rercent DIf_03 (O3 concentration mol/mol

Mean 6.39341 Max 14.1486 Min -0.513892

lev

(a) Percent difference in surface ozone
relative to control

(b) Percent difference in atmospheric
ozone (zonal mean)

(c) Percent difference in surface ozone
(zonal mean)
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Conclusions /\| ‘.ﬁ‘

Shallow hydrates can release significant methane rapidly, with significant
methane fluxes regulated by coupled thermo-hydrological processes

Methane is relevant to ocean (and atmospheric!) chemistry, not just as a
contributor to total atmospheric CO,

1-D models averaged over depth/temperature/area can estimate basin-scale
release potential

The vast majority of deep hydrates are stable, in the short term, but the methane
release potential is still large

Limited instability/release can feed biochemical/chemical changes in the ocean
and atmosphere, before climate effects are considered

Resource limitations overturn assumptions about methane oxidation

New coupled seafloor-ocean-atmosphere calculations under way (with plume
physics, extended biochemistry, higher resolution) leading to a coupled global
model... and better estimates

http://lesdtools.lbl.gov/info/hydrate-publications/climate/
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