

### Basin-Scale Assessment of Gas Hydrate Dissociation in Response to Climate Change

Understanding Subsurface, Ocean, and Atmospheric Processes to Assess the Consequences

> Matthew T. Reagan, George J. Moridis, Lawrence Berkeley National Laboratory

> > Scott Elliott, Mathew Maltrud, Los Alamos National Laboratory

Philip J. Cameron-Smith Lawrence Livermore National Laboratory

Research funded by the Office of Biological and Environmental Research as part of the Climate and Earth System Modeling Program, and the Fossil Energy program through the National Energy Technology Laboratory

### **Introduction and Purpose**

#### The goals of our research are:

- To investigate the effect of rising water temperatures on the stability of oceanic hydrate accumulations and to determine the conditions under which methane release may occur
- 2. To identify geochemical effects within the water column that control the fate of hydrate-derived methane
- 3. To estimate the global quantity of hydrate-originating carbon that could reach the atmosphere
- To examine, quantitatively, the possibility of hydrate-related climate feedbacks

#### Global Organic Carbon Distribution & Gas Hydrates

- Enormous amount of organic matter trapped in arctic systems
- Hydrates store huge amounts of methane
- Huge deposits in permafrost and in the oceans (oceans >> permafrost)
- Hydrate carbon significant on a global scale, and over long times (Archer, 2007; 2009)
- Recent studies suggest 3000 5000 Gt (Archer, 2009; Wallman, 2011)
- Much hydrate is deep and low-saturation
- Continental margins are the key



### Global Organic Carbon Distribution & Gas Hydrates

- Enormous amount of organic matter trapped in arctic systems
- Hydrates store huge amounts of methane
- Huge deposits in permafrost and in the oceans (oceans >> permafrost)
- Hydrate carbon significant on a global scale, and over long times (Archer, 2007; 2009)
- Recent studies suggest 3000 5000 Gt (Archer, 2009; Wallman, 2011)
- Much hydrate is deep and low-saturation
- Continental margins are the key
- The arctic is warming
- Methane plumes are appearing near the edge of the GHSZ in regions undergoing measured ocean warming (Westbrook et al., 2009)
- Simulations of shallow hydrates subjected to warming show plumes forming at the landward GHSZ limit<sup>1</sup>

<sup>1</sup>Reagan, M.T. and Moridis, G.J., "Large-Scale Simulation of Oceanic Gas Hydrate Dissociation in Response to Climate Change," *Geophysical Research Letters*, 36, L23612, 2009.



from NOAA/IBCAO (http://www.ngdc.noaa.gov/)

### **Oceanic Gas Hydrates: Dissociation**

Climate change alters ocean temperature (and geothermal gradient)

Decreases hydrate stability region

Methane release to ocean by hydrate dissociation



### **Oceanic Gas Hydrates: Dissociation**

Climate change alters ocean temperature (and geothermal gradient)

Decreases hydrate stability region

Methane release to ocean by hydrate dissociation

What happens between (1) and (2)?

What is the fate of the methane?



### **Oceanic Gas Hydrates: Dissociation**

Climate change alters ocean temperature (and geothermal gradient)

Decreases hydrate stability region

Methane release to ocean by hydrate dissociation

What happens between (1) and (2)?

What is the fate of the methane?







## **The Numerical Model**

#### TOUGH+HYDRATE code (Moridis et al., 2008):

Describes fully coupled non-isothermal hydrate dissociation/formation, CH<sub>4</sub> flow, and phase behavior in porous media
Descendent of the TOUGH family of codes (YMP, oil & gas, CO<sub>2</sub> sequestration, hydrology)

Validated by 1) analytical solutions, 2) gas production from permafrost deposits in the field,
3) dissociation and thermal behavior in lab experiments



# **Hydrate Stability/Dissociation**

- Previous work<sup>1,2,3,4</sup> studied Class 4 (disperse) deposits,  $S_H \square = 0.03 0.10$ , 1 °C to 5 °C warming
- Provided view of GHSZ extent, localized dissociation estimates, localized fluxes, sensitivity

320 m

570 m

°C / 100 yr

3 °C / 100 yr °C / 100 yr

80

60

Time (yr)

Methane flux at seafloor (mol/yr/m<sup>2</sup>

-0.1

100

 1D columns<sup>2,3</sup> and 2D continental slope deposits<sup>1,4</sup> Multiple scenarios tested<sup>1,2,3,4</sup>: Deep ocean, 1000 m: stable 0.1<u>⊣</u> • GoM, 570 m: unstable? 7-6lethane flux at seafloor (m<sup>3</sup>/yr/m<sup>2</sup>) Arctic shelf, 320 m: unstable Barents Sea, 390 m: unstable Releases are sustained, but not explosive<sup>1,2</sup> 0.01<del>\_]</del> Constrained by thermal effects and sediment transport properties<sup>3,4</sup> Sea level rise (10m) not mitigating<sup>3</sup> 0.001 Results can be generated for any 20

z/T/geological location via linkable subroutines



<sup>3</sup>Reagan, M.T. and G.J. Moridis, The dynamic response of oceanic hydrate deposits to ocean temperature change, J. Geophys. Res. Oceans, **113**, C12023, doi:10.1029/2008JC004938, 2008.

<sup>4</sup>Reagan, M.T., Moridis, G.J., Elliott, S.M., and Maltrud, M., "Contributions of Oceanic Gas Hydrate Dissociation to the Formation of Arctic Ocean Methane Plumes," J. Geophys. Res. Oceans, 2011JC007189, in press.

### **Integration: Basin-Scale Assessments**



• Estimate basin-scale CH<sub>4</sub> emission

### **Integration: Sea of Okhotsk**



- Adjust for 80% BSR occurrence (Ludmann & Wong, 2003)
- Instability confined to a narrow band near the top of the GHSZ
- 240 Tg released in the first century, fluxes < 5 Tg/yr</li>

### **Integration: Sea of Okhotsk**



- The Okhotsk basin contains extensive hydrate deposits and high methane concentrations(Obzhirov; KOMEX)
- Hydrates and free gas imaged (Ludmann & Wong, 2003; Wallmann et al., 2006)
- T+H: ~ 96 Tg (± 80) after 30 yr release (t = 83 yr)
- Previous estimate<sup>\*</sup>: 94.4 Tg (by t = 30 yr)
- Only 0.1%-1% of the estimated Okhotsk methane reservoir
- Continued release may increase V<sub>CH4</sub> 5×

<sup>\*</sup>Elliott et al., 2010

#### **Integration: Arctic Ocean**

Cumulative release ( $V_{CH4}$ ) vs. depth



Instability confined to a narrow band near the top of the GHSZ

• Up to 6,400 Tg CH<sub>4</sub> at *t* = 100 yr

### **Integration: Arctic Ocean**



- Scenarios: +5°C, +3°C, warm (1°C 5°C as f(z)), cold (1°C 3°C as f(z))
- Short-term: 1600 3200 Tg CH<sub>4</sub> @ 30 yr (previous assumption: 240 Tmol)
- 60 120 Tg/yr peak fluxes

### **Integration: Arctic Ocean**







# **Coupled Ocean Modeling & Biochemistry**

- POP extended to consider methane biogeochemistry in the water column<sup>5,6</sup>
- A newly generated background methane cycle creates a baseline for methane release calculations<sup>6</sup>
- Localized methane releases from hydrates inserted into POP<sup>6</sup> (fully dissolved<sup>\*</sup>)

\*Plume physics forthcoming



<sup>5</sup>Elliott, S.M., Maltrud, M., Reagan, M.T., Moridis, G.J., Cameron-Smith, P.J., "Geochemistry of Clathrate-Derived Methane in Arctic Ocean Waters," Geophys. Res. Lett., 37, L12607, 2010. <sup>6</sup>Elliott, S.M., Maltrud, M., Reagan, M.T., Moridis, G.J., Cameron-Smith, P.J.,

"Marine Methane Cycle Simulations for the Period of Early Global Warming," J. Geophys. Res. Biog., 116, G01010, 2010.



CH<sub>4</sub> Surface Concentration (nanomolar)

1.5

CH₄ Surface Saturation Ratio



CH<sub>4</sub> 150m Concentration (nanomolar) with O<sub>2</sub> contours



#### **Coupled Ocean Modeling & Biochemistry**

*t* = 30 yr:



#### **Coupled Ocean Modeling & Biochemistry**

*t* = 30 yr:



-0.17





#### **Increase in global CH**<sub>4</sub> concentration



### **Significant Increases in Ozone**



# Conclusions



- Shallow hydrates can release significant methane rapidly, with significant methane fluxes regulated by coupled thermo-hydrological processes
- Methane is relevant to ocean (and atmospheric!) chemistry, not just as a contributor to total atmospheric CO<sub>2</sub>
- 1-D models averaged over depth/temperature/area can estimate basin-scale release potential
- The vast majority of deep hydrates are stable, in the short term, but the methane release potential is still large
- Limited instability/release can feed biochemical/chemical changes in the ocean and atmosphere, before climate effects are considered
- Resource limitations overturn assumptions about methane oxidation
- New coupled seafloor-ocean-atmosphere calculations under way (with plume physics, extended biochemistry, higher resolution) leading to a coupled global model... and better estimates

#### http://esdtools.lbl.gov/info/hydrate-publications/climate/