Impact of afforestation with Loblolly Pines in the Southeastern US on regional and global climate

Lisa N. Murphy

Climate and Earth System Modeling Principal Investigators' Meeting September 19, 2011

Collaborators: William J. Riley and William D. Collins

One Billion Ton biomass target

- Large land conversion to perennial crops if market for bioenergy emerges.
- Acres harvested under DOE/USDA land use change scenario:

	Perennials
Moderate crop yield increase:	35 million acres
High crop yield increase:	55 million acres

 USDA/DOE assumes woody feedstock comes from additional forests planted on marginal agricultural land and pasture land.

Land Cover Change

- LCC impacts the energy, radiation and hydrological budgets at regional to global scales.
- LCC due to expansion of biofuels may have nontrivial effects on climate through biophysical feedbacks.

Growing perennial grasses (Miscanthus) instead of annual crops (maize) caused regional cooling of up to 1°C due to higher LAI, ET and rooting depth (Georgescu et al., 2009; Georgescu et al., 2011).

Growing sugar cane crops on agricultural land cooled temperatures by almost 1°C due to enhanced ET and higher albedo (Loarie et al., 2011).

Loblolly Pine (Pinus taeda)

 83% of the 45 million acres of plantation forest in the southern US are Loblolly pine (*Pinus taeda L.*; 75%) and Slash pine (*Pinus ellioti*; 25%) (Smith et al., 2002; Zhang and Polyakov, 2010).

 Native Loblolly Pines are the prime candidate for plantation bioenergy in the Southeast US (Kline and Coleman, 2010).

Motivation

- CLM4 has a single plant functional type (PFT) that represents temperate needleleaf evergreen trees (NET), which has a flat seasonal LAI with almost no difference between winter and summer values.
- LP has a relatively rapid 18-month needle turnover rate for evergreen species that yields a seasonallyvarying leaf area index (LAI).

Fig 5 from McCarthy et al. (2007)

Methodology

- We examine the biogeophysical effects of biofuel feedstock production on regional and hemispheric climate under a plausible 21st century deployment scenario in the Southeastern United States (SUS).
 - Land area between 30-40°N and 70-100°W
- To represent Loblolly pine in CLM4 we optimized PFT physiology parameters to minimize observed versus predicted differences in energy fluxes.
- We use observations from the AmeriFlux Duke Forest Loblolly site (Stoy et al., 2006; Novick et al., 2009).
- Representing the seasonal changes in photosynthesis and stomatal conductance is critical for modeling energy fluxes of ecosystems (Xu and Baldocchi, 2003).

Improved daytime energy fluxes

- We altered two parameters that influence photosynthesis:
 - FInr fraction of leaf N in Rubisco enzyme
 - Mp slope of conductance to photosynthesis relationship
- We ran a 36-member ensemble (gray) varying each parameter 6 times [(flnr = 0.05-0.1), (mp = 5-10)]
- Observations in red
- Default NET (blue): flnr = 0.05, mp = 6
- Lobiolly pine (green): flnr = 0.05, mp = 10

Experimental design

	Name	LAI	LCC
1.	PD Loblolly (old LAI)	Default NET LAI	Replaced NET in SE US with Loblolly Pine.
2.	PD Loblolly	Duke Forest Loblolly LAI	Same as 1.
3.	Future Loblolly	Same as 2.	Same as 1. In addition we converted C ₄ grasslands to Loblolly Pines in the SE US.
4.	CTL	Default LAI	PD land cover (NET in SE US).

- We use prescribed SSTs and no CN cycling ("f_2000" compset)
- All simulations are integrated for 60 years with static land cover. Averages and statistical significance are calculated using the last 40 years of simulation.

Results: JJA Heat fluxes

Results: DJF Heat fluxes

Results: 2m Air Temperature

of 0.25°C

between

40-70°N.

JJA PD Loblolly (old LAI) - CTL PD Lobiolly (old LAI) - CTL TREFHT TREEHT JJA DJF90N 90N 60N 60N 30N 30N 0 30S 30S 60S 60S • DJF cooling C 90S 909 180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180-0.5 0.0 0.5 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180-0.5 0.0 0.5 0 PD Loblolly - CTL PD Loblolly - CTL TREFHT TREEHT DJF J.IA 90N 90N 60N 60N 30N 30N 0 30S 30S 60S 60S 90S 90S 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180-0.5 0.0 0.5 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180-0.5 0.0 0.5 Future Loblolly - CTL Future Loblolly - CTL DJF TREFHT TREFHT JJA 90N 90N 60N 60N 30N 30N 0 305 30S 60S 60S 90S 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180-0.5 0.0 0.5 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180-0.5 0.0 0.5

Results: Circulation changes

- Aleutian low is weakened during DJF.
- Eddy kinetic energy averaged longitudinally shows increase in Northern Hemisphere suggesting northward shift in storm tracks.

Results: Global precipitation anomaly

Results: Atmospheric divergence

- Southern Hemisphere changes may result from the vorticity transport set up by perturbed large-scale divergence [Chase et al., 2000].
- Transport of vorticity by the divergent field is an effective transport mechanism, especially for tropical-extratropical teleconnections [Sardeshmukh and Hoskins, 1987].

Conclusions

- Our new optimized Loblolly PFT decreases sensible heat flux and increases latent heat flux compared to the NET PFT.
- Local cooling over the SUS is largest in summer.
- Remote cooling is largest in winter between 40-70°N.
- Weakening of the Aleutian low may alter storm tracks in the Northern Hemisphere.
- Perturbations in atmospheric divergent field may lead to teleconnections in the Southern Hemisphere due to vorticity advection.

References and Pictures

- Chase T.N., Pielke Sr. R.A., Kittel T.G.F., Nemani R.R., and S.W. Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dynamics, 16, 93-105.
- Georgescu M., Lobell D.B., and C.B. Field, 2009: Potential impact of US biofuels on regional climate. Geophys. Res. Lett., 36:L21806.
- Georgescu M., Lobell D.B., and C.B. Field, 2011: Direct climate effects of perennial bioenergy crops in the United States. PNAS, 108 (11), 4307-4312.
- Kline K.L. and M.D. Coleman, 2010: Woody energy crops in the southeastern United States: Two centuries of practitioner experience. Biomass and Bioenergy, 34 (12), 1655-1666.
- Loarie S.R., Lobell D.B., Asner G.P., Mu Q. and C.B.. Field, 2011: Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Climate Change. DOI:10.1038/NCLIMATE1067.
- McCarthy H.R., Oren R., Finzi A.C., Ellsworth D.S., Kim H.-S., Johnsen K.H., and B. Millar, 2007: Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology, 13, 2479-2497.
- Sardeshmukh P.D. and B.J. Hoskins, 1987: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228-1251.
- Slide 3: http://agronomyday.cropsci.illinois.edu/2005/Tour_D/Fuel/
- Slide 3: http://sites.google.com/site/sugarcanepm/pre-harvest-burning
- Slide 4: Connor, K.F., ed. 2006. Gen. Tech. Rep. SRS-92, USDA
- Stoy, P., G.G. Katul, M.B.S. Siqueira, J.Y Juang, K.A. Novick, H.R. McCarthy, A.C. Oishi, J.M. Uebelherr, H-S Kim, and R. Oren, 2006, Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern U.S., *Global Change Biology*, 12, 121: 10.1111.
- Novičk, K., R. Oren, P. Stoy, M. Siqueira, and G.G. Katul, 2009, Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual fluxes, *Agricultural and Forest Meteorology*, 149, 1491-1504.