Surface and Groundwater Interactions and Their Impacts on Simulated Water and Energy Budgets Under Droughts

> Maoyi Huang and L. Ruby Leung Pacific Northwest National Laboratory Xu Liang University of Pittsburgh

DOE Climate and Earth System Modeling PI Meeting

19-22 September 2011, Grand Hyatt Washington

Pacific Northwest NATIONAL LABORATORY

Motivation

AR4 models predicted warmer and dryer conditions in the subtropical regions, leading to mega droughts in the future due to global warming

Surface - groundwater interactions may play important roles at different stages of droughts through modifications of root zone soil moisture and plant physiological responses and feedbacks in the climate system

Approach

- Improve hydrological simulations for arid conditions to account for:
 - Hydraulic redistribution in the soil-root system
 - Plant capacitance, carbon assimilation, plants growth
 - Surface water and groundwater interactions
- Implement selected parameterizations of the Variable Infiltration capability (VIC) model and new developments into the Community Land Model (CLM)
- Use offline and coupled simulations to evaluate model and perform numerical experiments to investigate the role of vegetation, surface, and subsurface processes on mega drought

Merging of CLM4 and VIC

Dynamic representation of surface and groundwater interactions

Implementation of VICGROUND in CLM4

Testing at NACP flux tower sites

Pacific Northwest

Numerical experiments

Scenarios	Control	Transient	Dry
CLM4	Atmos: Observed	Atmos: 0.5 prcp	Atmos: 0.5 prcp
CLM4VIC	Initial: Spinup	Initial: Control	Initial: Spinup
CLM4VICGRND	Par: Default	Par: Default	Par: Default
CLM4VICGRNDD	Par: Deep roots	Par: Deep roots	Par: Deep roots

- CLM4 parameters from default input datasets
- VIC parameters were fixed across sites
 - VIC curve shape parameter: b = 0.1
 - Maximum baseflow: $D_{smax} = 2 \text{ mm/day}$
 - ARNO baseflow curve shape parameters: $D_s = 0.05$, $W_s = 0.5$

9

Proudly Operated by Battelle Since 1965

Evolution of soil moisture profiles Duke Forest, Deciduous Broadleaf

Evolution of soil moisture profiles Tonzi Ranch, Woody Savannas

Conclusion

- In energy limited sites, different hydrologic parameterizations produce similar surface fluxes, but their response under droughts varies significantly
- In water limited sites, different hydrologic parameterizations produce different surface fluxes as well as their response to droughts
- Subsurface parameterizations and root profiles can produce distinct surface flux response to droughts
- Under prolonged droughts, surface and deep subsurface hydrologic processes could become decoupled:
 - A deep rooting profile can increase the resilience of forest ecosystems, by tapping water from deep soil layers
 - The groundwater aquifer in CLM4 helps maintain soil moisture within the lower root zone and reduces model sensitivity to drought

Acknowledgement

DOE: Investigation of the Magnitudes and Probabilities of Abrupt Climate Transitions (IMPACTS)

