

On the influence of shrub height and expansion on boreal climate

C Bonfils, T Phillips, D Lawrence, P Cameron-Smith, W Riley, Z Subin

CESM 2011 PI meeting September 19-22, 2011 Grand Hyatt, Washington DC bonfils2@llnl.gov

IMPACTs / Boreal team

Rapid changes in arctic vegetation are expected in response to the pronounced warming climate

Tundra-to-forest conversion

from Swann et al., iLEAPS-GEWEX

 Expanding evergreen forest amplify warming through an albedo feedback (Bonan et al. 1992, Foley et al. 1994, Levis et al. 1999)

 Expanding deciduous forest cause an additional evapotranspiration-induced GHG feedback (Swann et al. 2010)

Widespread tundra-to-forest conversion mainly predicted by equilibrium vegetation models; unlikely to occur in the current century (Chapin et al. 2005)

In contrast, there is no experiment on the possible tundra-to-shrub conversion

Empirical evidences documenting the increase in deciduous shrub abundance and size

- photographs, transect studies, satellite indices, and local testimonies, etc...
- Up to 1.2% decade⁻¹ since 1950 in Northern Alaska (Sturm et al. 2001)
- Already present in most tundra areas, ready to grow under more favorable conditions (field studies, warming treatments, past climate)
- Promote their own development by favoring snow accumulation and soil microbial activity (Sturm et al. 2005)
- Tall shrub predicted in low shrub region by plant dynamics model under a 2°C warming (Epstein et al. 2007)

Dominance of *Betula nana* inside the fertilized greenhouse (Bret-Harte et al 2002)

Expected feedbacks

- ➡ Feedbacks: albedo; ET
- ➡ Shrub height can affect their timing

Questions

- What are the biophysically-induced effects of shrub expansion on boreal climate?
- Are they sensitive to the height of shrubs?
- What are the effects on permafrost?

Sturm and Douglas, 2003

Experimental design with CESM1 (1.9°x2.5°)

	short shrubs replace bare ground (S)	tall shrubs replace bare ground (T)	Objective
1xCO2 fixed ocean (FO)	(S-CTL) ^{FO}	(T-CTL) ^{FO}	Effect of adding shrubs
1xCO2 interactive ocean (IO)	(S-CTL) ^{IO}	(T-CTL) ^{IO}	Added effect from indirect ocean / sea-ice feedbacks
2xCO2 interactive ocean (IO)	(S2×CO2-CTL) ^{IO}	(T2×C02-CTL) ^{IO}	Added effect from 2xCO2

Changes occur north of 60°N

Seasonal evolution of the vegetation protruding above the snow (calculated over land; N of 60°N)

Effect of adding shrubs (FO) Added effect from IO

Added effect from 2xCO2

Seasonal evolution of the vegetation protruding above the snow (calculated over land; N of 60°N)

Seasonal evolution of the vegetation protruding above the snow (calculated over land; N of 60°N)

Exposed vegetation impacts the seasonal evolution of albedo

Exposed vegetation impacts the seasonal evolution of albedo

This affects the energy balance when the sun returns

Effect of adding shrubs (FO)

Added effect from IO

Added effect from 2xCO2

and

occurs

later,

June

With short shrubs, both albedo and ET feedbacks are weaker and delayed

With short shrubs, both albedo and ET feedbacks are weaker and delayed

With short shrubs, both albedo and ET feedbacks are weaker and delayed

In consequence, the surface warming is more important in the tall shrub case

Effect of adding shrubs (FO)

Added effect from IO

Added effect from 2xCO2

Permafrost vulnerability (annual cycle of T)

• The active layer thickness (ALT) deepens with the invasion of shrubs and further when the ocean is active. The below-freezing season shortens.

• Shrub expansion + 2xCO2: the refreezing of the soil only occurs in the top meter of soil. Below: soil no longer refreezes, formation of taliks, accumulation of soil heat content

Shrub expansion leads to substantial atmospheric heating through two feedbacks (albedo and ET)

➡ The strength and timing of these feedbacks are sensitive to shrub height

➡ They impact, in turn, the strength of the indirect sea-ice/ocean feedbacks contributing to additional regional warming

➡ Finally, tall shrubs invasion systematically warm the soil, deepen the active layer, and destabilize the permafrost more substantially than short shrubs

