Microphysics Complexity and Simulations of Deep Convection

Kwinten Van Weverberg¹, Andy Vogelmann¹, Hugh Morrison², Jason Milbrandt³

Climate and Earth System Modeling PI Meeting Washington DC, 19-22 September 2011

¹ Brookhaven National Laboratory, Upton, NY
² National Center for Atmospheric Research, Boulder, CO
³ Environment Canada, Montreal, CA

Diagnostic precipitation

Large grid spacing (> 4 km):

Convection parameterization required

Large grid spacing (> 4 km):

Convection parameterization required

Small grid spacing (< 4 km):

- Explicit vertical transport of convective mass and heat
- Increased importance of <u>microphysics</u> parameterization

 \rightarrow Sensitivity of simulations to microphysics complexity

 \rightarrow Sensitivity of simulations to microphysics complexity

• Number and treatment of ice categories

 \rightarrow Sensitivity of simulations to microphysics complexity

• Number and treatment of ice categories

 \rightarrow Sensitivity of simulations to microphysics complexity

- Number and treatment of ice categories
- Number of predicted moments

 \rightarrow Sensitivity of simulations to microphysics complexity

- Number and treatment of ice categories
- Number of predicted moments

 \rightarrow Why difference between equally complex models?

• Morrison versus Milbrandt 2-Moment schemes

Methods

WRF 2-D idealized squall line simulations

- Large number of sensitivity experiments
- 1 km grid spacing
- Idealized setup (no radiation or BL processes)
- Sensitivity of <u>surface precipitation</u> to microphysics complexity

Precipitation extremes sensitive to *#***predicted moments**

Precipitation extremes sensitive to <u># predicted moments</u>

Precipitation extremes sensitive to <u># predicted moments</u>

Precipitation extremes sensitive to *#***predicted moments**

Precipitation extremes sensitive to <u>nature of precipitating ice</u> → graupel, hail or both

Number of ice categories

Precipitation extremes sensitive to nature of precipitating ice

Number of ice categories

Precipitation extremes sensitive to <u># ice categories</u>, but....

Precipitation extremes sensitive to $\frac{\# \text{ ice categories}}{\Rightarrow}$ also to unphysical thresholds

Differences Morrison - Milbrandt

Morrison et al. (2009) versus Milbrandt and Yau (2005)

→ Equally complex schemes, yet <u>large</u> differences

Differences Morrison - Milbrandt

Differences Morrison - Milbrandt

• Precipitation extremes: number <u>moments</u> of *all* hydrometeors, nature of <u>precipitating ice</u> and raindrop <u>breakup</u>

Size sorting, drop sizes and evaporation determine extremes

- Precipitation extremes: number <u>moments</u> of all hydrometeors, nature of <u>precipitating ice</u> and raindrop <u>breakup</u> Size sorting, drop sizes and evaporation determine extremes
- Uncertainty due to unphysical threshold with more ice categories Better physical treatment needed of graupel-to-hail conversion

- Precipitation extremes: number <u>moments</u> of all hydrometeors, nature of <u>precipitating ice</u> and raindrop <u>breakup</u> Size sorting, drop sizes and evaporation determine extremes
- Uncertainty due to unphysical threshold with more ice categories Better physical treatment needed of graupel-to-hail conversion
- Difference Morrison-Milbrandt: <u>Breakup</u> and <u>graupel sublimation</u> Need for observations of rain-drop size-distribution profiles Need for focus on conversion term formulations

- Precipitation extremes: number <u>moments</u> of all hydrometeors, nature of <u>precipitating ice</u> and raindrop <u>breakup</u> Size sorting, drop sizes and evaporation determine extremes
- Uncertainty due to unphysical threshold with more ice categories Better physical treatment needed of graupel-to-hail conversion
- Difference Morrison-Milbrandt: <u>Breakup</u> and <u>graupel sublimation</u> Need for observations of rain-drop size-distribution profiles Need for focus on conversion term formulations
- Next, bring in Atmospheric Radiation Measurement observations: Midlatitude Continental Convective Clouds Experiment (MC³E), NEXRAD, Disdrometers