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What Level of Complexity is Needed? 

Large grid spacing (> 4 km): 
• Convection parameterization required 
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Prognostic 
precipitation 

Large grid spacing (> 4 km): 
• Convection parameterization required 

Small grid spacing (< 4 km): 
• Explicit vertical transport of convective mass and heat 
• Increased importance of microphysics parameterization 
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 Why difference between equally complex models? 
• Morrison versus Milbrandt 2-Moment schemes 



Methods 

WRF 2-D idealized squall line simulations 
• Large number of sensitivity experiments 
• 1 km grid spacing 
• Idealized setup (no radiation or BL processes) 
• Sensitivity of surface precipitation to microphysics 

complexity 



Number of predicted moments 

Precipitation extremes sensitive to # predicted moments 
  - large drops: faster fallout and less evaporation 
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Precipitation extremes sensitive to # predicted moments 
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Number of ice categories 

Precipitation extremes sensitive to nature of precipitating ice 
  graupel, hail or both 
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Number of ice categories 

Precipitation extremes sensitive to nature of precipitating ice 
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Number of ice categories 

Precipitation extremes sensitive to # ice categories, but…. 
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Number of ice categories 

Precipitation extremes sensitive to # ice categories, but … 
   also to unphysical thresholds 
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Differences Morrison - Milbrandt 

 Equally complex schemes, yet 
   large differences 

Morrison et al. (2009)    versus     Milbrandt and Yau (2005) 
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Differences Morrison - Milbrandt 

Peak precipitation: drop breakup 
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Differences Morrison - Milbrandt 

•  Morrison: Large return of graupel to vapor  
   Low Precipitation Efficiency 
•  Milbrandt: No return of graupel to vapor   
   High Precipitation Efficiency 

Peak precipitation: drop breakup 

Mean precipitation: graupel sublimation 
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Conclusions – What complexity is needed? 

• Precipitation extremes: number moments of all hydrometeors, 
nature of precipitating ice and raindrop breakup 

Size sorting, drop sizes and evaporation determine extremes 



• Precipitation extremes: number moments of all hydrometeors, 
nature of precipitating ice and raindrop breakup 

Size sorting, drop sizes and evaporation determine extremes 

• Uncertainty due to unphysical threshold with more ice categories 
Better physical treatment needed of graupel-to-hail conversion 

Conclusions – What complexity is needed? 



• Precipitation extremes: number moments of all hydrometeors, 
nature of precipitating ice and raindrop breakup 

Size sorting, drop sizes and evaporation determine extremes 

• Uncertainty due to unphysical threshold with more ice categories 
Better physical treatment needed of graupel-to-hail conversion 

• Difference Morrison-Milbrandt: Breakup and graupel sublimation 
Need for observations of rain-drop size-distribution profiles 
Need for focus on conversion term formulations 

Conclusions – What complexity is needed? 



• Precipitation extremes: number moments of all hydrometeors, 
nature of precipitating ice and raindrop breakup 

Size sorting, drop sizes and evaporation determine extremes 

• Uncertainty due to unphysical threshold with more ice categories 
Better physical treatment needed of graupel-to-hail conversion 

• Difference Morrison-Milbrandt: Breakup and graupel sublimation 
Need for observations of rain-drop size-distribution profiles 
Need for focus on conversion term formulations 

• Next, bring in Atmospheric Radiation Measurement observations: 
Midlatitude Continental Convective Clouds Experiment (MC3E), 
NEXRAD, Disdrometers 

Conclusions – What complexity is needed? 
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