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Outline 

• CAM-SE:   
– CAM with HOMME’s Spectral Element dynamical core 

• Latest scalability results 
• CAM4 and CAM5 AMIP results  



CAM-SE in CESM  
Status 

• CESM includes CAM4 F2000 configurations at 1° 
and 1/8° resolutions 

• Currently running CAM5 AMIP and fully coupled 
simulations (not quite out-of-the-box) 

• Locally conserves mass, tracer mass and energy 
– Change in energy ~0.002 W/m^2 without fixer 

• Latest CAM trunk includes support for variable 
resolution meshes 
 



Spectral Element Method 

• Spectral Elements:  A Continuous Galerkin Finite 
Element Method  
– Uses finite element grids made of quadrilateral elements 
– Galerkin formulation, with a Gauss-Lobatto quadrature 

based inner-product 
– Basis/test functions: degree d polynomials within each 

element, continuous across elements 



Galerkin FE Approach Ideal for  
Modern Architectures 

• Galerkin formulation of the equations leads to a 2 step 
solution procedure: 
– Step 1:   All computations local to each element and on a tensor-product grid.  

Structured data with simple access patterns and arithmetically intensive 
operations:  Extremely efficient  on modern CPUs or GPUs 

– Step 2:  Apply inverse mass matrix (projection operator).   

• All inter-element communication is embedded in Step 2, 
providing a clean decoupling of computation & 
communication.   
– Only a single routine has to be optimized for parallel computation.  
– Gordon Bell Awards:  2000 (best performance, NEK5000), 2001 (honorable 

mention, HOMME) , 2003 (best performance, SPECFEM3D) 

 



CAM4 Scalability,  
ANL Intrepid  ¼° (28km) 

• Compare CAM with SE, FV and EUL (global spectral) dycores 
• CAM-SE achieves near perfect scalability to 1 element per core (86,000 

cores).  Peak performance:  12.2 SYPD.   
• Atmosphere only times.  Full CESM runs ~50% slower because of other 

components 
 



CAM-SE Scalability 
Intrepid and JaguarPF   1/8° degree (14km)  

• Excellent scaling to near full machine on both LCFs: 
• Intrepid (4 cores/node):   Excellent scalability, peak performance at 115K cores, 3 

elements per core, 2.8 SYPD.         
• JaguarPF (12 cores/node):  Good scalability, peak performance at 172,800 cores 

(2 elements per core), 6.8 SYPD.    
 



CAM4 1/8° (14km) Simulations 

• CAM-SE 1/8°  runs quickly and efficiently including I/O 
• Excellent tropical cyclone activity  
• Excellent KE spectra, with well captured -5/3 regime 
• CAM4 climate suffers from physics resolution sensitivity issues.     

 

1/8° required to capture the 
-5/3 regime assocated with 
mesoscale variability 

Tropical cyclone activity at 1/8° resolution.  Precipitable 
water animation from two months (Dec, Jan) of a 1 year 
simulation.   



CAM4 1° AMIP Simulations 

• K. Taylor diagram RMSE and Bias 
from CAM AMWG diagnostics 

• CAM4-SE Simulation (Evans et al. 
under review JOC) 
 

RMSE Bias 

CAM 3.5 1.000 1.000 

CAM4 SE 0.920 0.839 

CAM4 FV 0.937 0.905 

• 500mb geopotential height skill 
score (30-90N)  DJF 

• Mean square error from uncond. 
bias, cond. bias and phase error 

• Source:  Rich Neale (NCAR) 
 
 



Sea Level Pressure 
NCEP CAM4-SE 1° CAM4-FV 1° 

CAM has too strong of an 
Icelandic low, in both SE 
and FV 
 
Icelandic low intensifies 
under mesh refinement, 
but is much improved with 
CAM5 physics  
 

CAM4-SE 1/4° CAM5-SE 1° 



Future Plans  

• Support CSSEF project goal of developing a global 
high-resolution CESM, calibrated and with quantified 
uncertainty.   

• Developing CAM-SE configurations with CAM5 
physics with variable resolution: 1° global, 
transitioning to 1/8° over ARM sites, for efficient 
calibration of the global 1/8° model. 

 



Spectral Element Method 

• High-order (4th) discretization 
• Mimetic/compatible numerics: 

– Discretization preserves adjoint properties of 
div, grad and curl operators 

– Discrete versions (element level) of Stokes 
and Divergence theorem 

– Result: excellent local conservation, even for 
equations not written in conservation form:  
mass, energy, 2D PV. 

• All properties preserved on fully 
unstructured grids 



Zonal Mean Zonal Wind (DJF) 
ECMWF CAM4-SE 1° CAM4-FV 1° 

CAM does a good job 
capturing the southern (JJA) 
and northern hemisphere 
(DJF) polar jets.  FV northern 
hemisphere jet is too strong 



Zonal Mean Zonal Wind (DJF) 
CAM4-SE 0.25° CAM5-SE 1° 

CAM-SE retains good polar jets at high resolution and with CAM5 
physics 



Zonal Mean Temperature 
NCEP CAM4-SE 1° CAM4-FV 1° 

CAM has a long 
standing 200mb 
cold bias at the 
poles (both SE and 
FV) 



Zonal Mean Temperature 
CAM4-SE  0.25° CAM5-SE 1° 

Result is insensitive to increasing resolution (left) or CAM5 physics 
(right) 



Surface Wind Stress (ocean) 
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CAM4-SE 1° CAM4-FV 1° 

CAM wind stress is 
too strong (SE 
stronger than FV) 



Surface Wind Stress (ocean) 
CAM4-SE 0.25° CAM5-SE 1° 

Strengthens further under mesh refinement (CAM4) 
Slight improvement in CAM5 



Tropical Precipitation Rate 
CAM4-SE 1° CAM4-FV 1° 

Large biases in both 
SE and FV 



Tropical Precipitation Rate 
CAM4-SE 0.25° 

CAM5-SE 1° 
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