Time Scale Invariance of the Low-Cloud Albedo Feedback in CMIP3

Neil Gordon & Stephen Klein

Program on Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory

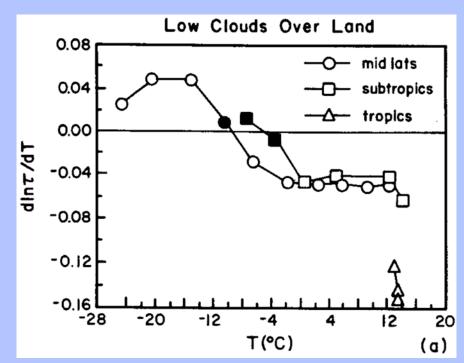
CESM PI Meeting Washington, DC September 19, 2011

and Intercomparison

Background

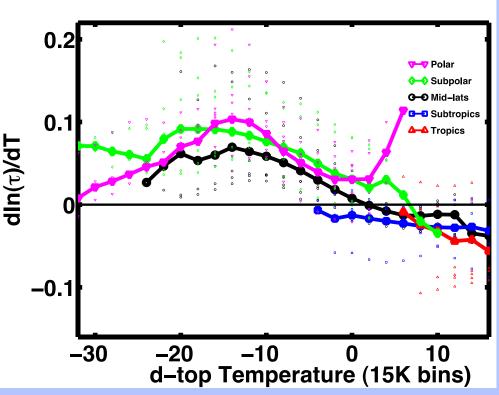
- Cloud feedbacks are a large source of variability in model projections of future climate
- Previous work using satellite (*Tselioudis et al.*, 1992) and in-situ (*Somerville and Remer*, 1984) observations of clouds suggest clouds in the extratropics get brighter as they warm (adiabatic increase in cloud liquid water)
- However, there is also indication that optical thickness for clouds in the tropics and subtropics decrease as they warm (*Tselioudis et al.*, 1994; *Chang and Coakley*, 2007)
- Optical depth feedbacks may not be large, but regional variability may be important

Big Questions

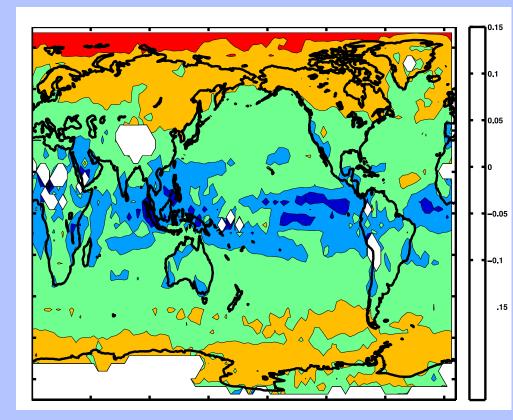

- Can climate models replicate the observed relationships between optical thickness and temperature?
- Can models help us understand how and why clouds change as the climate warms?
- Can information on the way cloud feedbacks operate in our current climate provide information on how they will affect climate change?

CMIP Data

- Daily-mean output from 7 models for control run and 2xCO₂ run (5 years each)
- Cloud optical thickness from ISCCP simulator (clisccp)
- Derive cloud-top temperature from atmospheric temperature on model levels
- Analyze all clouds below 680mb, with clearsky above


Previous Research

• The relationship between cloud-top temperature and cloud optical thickness for low clouds, sorted in 15K bins of cloud-top temperature (from Tselioudis et al., 1992)


Optical Depth Feedback in CMIP3

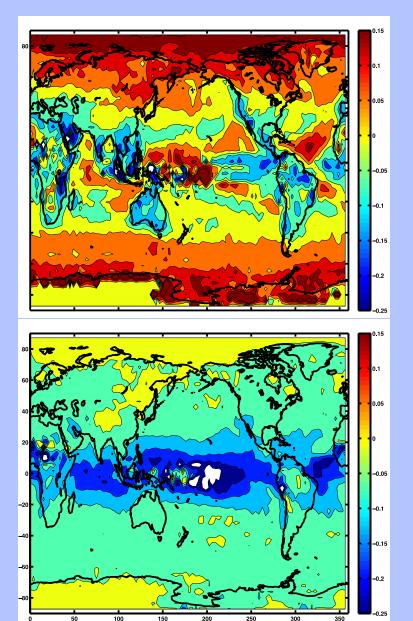
 The relationship between optical depth and cloud-top temperature for low clouds in 7 models (individual dots) and the multi-model average (solid line) in the control climate

Optical Depth Feedback

 Now, we calculate the regression for each location; positive relation in extratropics with negative in tropics

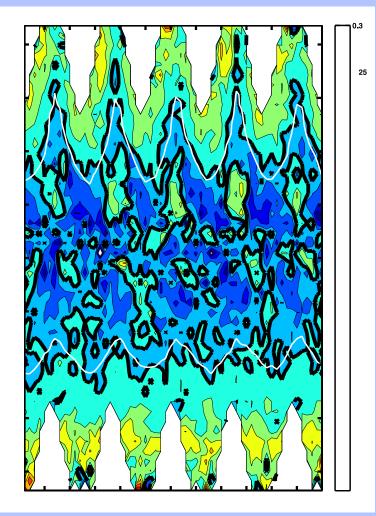
Source of Feedback

• By using the following equation


$$\tau = \frac{3}{2} \frac{LWC * \Delta z}{r_e}$$

we can derive what portion of the feedback comes from changes in liquid water content and cloud physical thickness (r_e not an output from any model)

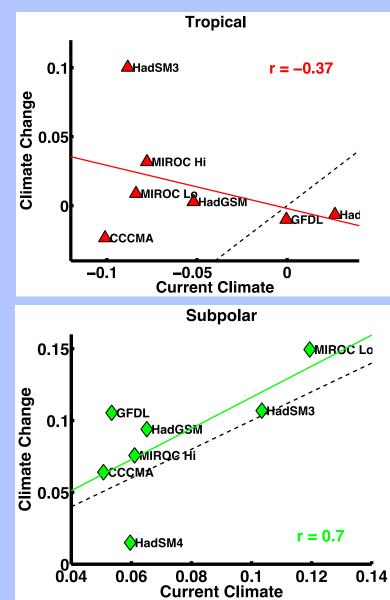
Source of Feedback


Change in cloud liquid water

 Change in cloud physical thickness

Temperature Dependence of Feedback

- What is the significance of the switch from negative to positive optical depth feedback
- Local dln(tau)/dT as a function of latitude and time; solid dark line is zero feedback, white line is cloud temperature contour of 0 degrees C


Timescale Invariance of Feedback

- Do feedbacks in the control climate compare to climate change feedbacks?
- Take difference in optical depth between 2xCO₂ and control climate for each grid box, then divide by cloud-top temperature change
- Next we compare the feedback calculated for the control climate to that for climate change, separately for each region

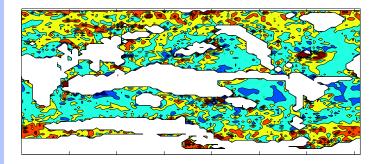
Time Invariance of Feedback

• Tropics (0-15°)

• Sub-polar (55-70°)

Conclusions

- The optical depth feedback for low clouds in models is similar to that from satellite and in situ observations
- Feedback is driven by different mechanisms in different regions; increase in cloud liquid in the extra tropics, while changes in physical thickness contribute in the tropics
- Control climate feedback is good proxy for climate change response in models only for some regions


Thank You!

 This work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Dynamical Partitioning

- For each grid box, we calculate joint histograms of 500-mb vertical velocity and surface pressure
- The mean τ and cloud-top temperature is calculated for each bin in the joint histogram, for the control and 2xCO₂ runs
- The change in optical depth is then calculated for each histogram bin; a mean for the grid box is a weighted mean of all the bins

Climate Change dln(τ)/dT

- Calculation of dln(τ)/dT using partitioning of vertical velocity and surface pressure
- Naïve calculation of dln(τ)/dT using change in optical depth from control to 2xCO₂ climate