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Introduction: During shallow water antisubmarine 
warfare missions, environmental uncertainty signifi-
cantly impacts Fleet asset performance. Oceanographic 
sensor availability, acoustic sensor coverage, and opera-
tional time limitations put constraints on efforts to 
observe large ocean areas. To address these challenges, 
NRL researchers have advanced and incorporated 
applied research technologies developed under several 
disciplines, to implement an adaptive sensor placement 
capability that, under certain assumptions, minimizes 
the uncertainty in forecasted information. The technol-
ogies incorporated include ocean data quality control, 
rapidly nested oceanographic modeling, data assimila-
tion, ensemble representation of uncertainty, acoustic 
performance modeling, and Ensemble Transform 
Kalman Filter (ETKF) adaptive sampling.

Techniques: The relocatable Navy Coastal Ocean 
Model (NCOM) is currently being implemented 
and tested at the Naval Oceanographic Office (NAV-
OCEANO) to provide high-resolution local mesoscale 
ocean forecasts to support Fleet oceanographic and 
acoustic operations. Observations from local sensors 
including gliders and Fleet measurements are assimi-
lated into NCOM using the NRL Coupled Ocean Data 
Assimilation (NCODA) system. Surface forcing is 
provided by the Coupled Ocean/Atmosphere Mesoscale 
Prediction System (COAMPS®) or the Navy’s 
Operational Global Atmospheric Prediction System 
(NOGAPS), and the boundary conditions are pro-
vided by a global run of NCOM available at the NAV-
OCEANO. Multiple sources of error in the modeling 
process need to be considered, including errors associ-
ated with the initialization and boundary conditions of 
models, numerical approximations, modeling strate-
gies, atmospheric forcing, impact of under-sampling in 
the assimilation process, and unresolved scales. There 
are multiple approaches to address these problems. 
This work focused on the application of Monte Carlo 
methods to producing ensemble based error estimates 
along with the predicted state variables. Monte Carlo 
methods have the advantage of simplicity in their 
formulation and have been used extensively by the 
meteorological community. The atmospheric Ensemble 
Transform (ET) approach1 was adapted for ocean 
mesoscale applications and provides a self-calibrated 

ensemble generation technique, such that at each ini-
tialization time, the magnitudes of the ensemble spread 
are re-set to match the best estimate available of the 
analysis error variance field. Uncertainty in the atmo-
spheric forcing of the ocean is accounted for by forcing 
each ocean ensemble member with atmospheric fore-
casts that are smoothly but randomly shifted in time.

The sample covariance of the ensemble of forecasts 
provides a 4-dimensional estimate of how the covari-
ance of the error of the ensemble mean would evolve 
through time if no additional observations were taken. 
To predict how targeted observations would reduce 
the forecast error variance, the Ensemble Transform 
Kalman Filter2,3 was applied to the ET ensemble. The 
ETKF rapidly evaluates the reduction in forecast error 
variance due to very large numbers of future feasible 
sensor deployments. The particular sensor deployment 
that, according to the ETKF, reduces forecast error vari-
ance more than any other proposed sensor deployment 
is deemed “optimal.” 

The acoustic properties of the ocean state are the 
most critical to Fleet operations. To create measures of 
forecast error directly related to these acoustic proper-
ties, each ensemble member is processed using the 
Navy Standard Parabolic Equation (NSPE) acoustic 
propagation model for multiple bearings at each grid 
point to compute transmission loss. Integrated acoustic 
coverage4,5 is then computed to provide a wide area 
assessment of the uncertainty (due to the ocean model 
variability) of the acoustic performance over the area. 
Methods are then used to predict optimal sensor sam-
pling to reduce uncertainty in areas where it is high. 
This guidance is provided to the sensor operators in 
a variety of formats, including waypoints for existing 
sensors, or sensor placement plans for each sensor to 
be deployed. Once the data is collected, it is fed back 
into the adaptive sampling system and the process is 
continued.

Demonstration: The adaptive sampling techniques 
described above were demonstrated during the Valiant 
Shield 07 (VS07) Fleet exercise in the eastern Pacific 
Ocean around Guam in the summer of 2007. Ensem-
bles of oceanography (temperature, salinity, and sound 
speed) and acoustic coverage were provided daily for 
analysis. Variance of forecast temperature and acous-
tic performance over the ensemble were used as cost 
functions (Figs. 4 and 5) to drive the sensor placement 
algorithms for optimization of measurements for the 
purposes of reducing the error in the ocean predictions 
given all candidate sensor paths (Fig. 6). 

This planning tool, currently being transitioned 
to NAVOCEANO, enables the Navy to employ assets 
in a way that reduces uncertainty in acoustic predic-
tions, allowing the operational planner to maximize 
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the desired effect. This exciting effort has many appli-
cations beyond adaptive sampling, in that it provides 
estimates of the environmental uncertainty. This work 
also resulted in improvements to various capabilities, 
including the NSPE, which impacts many Navy appli-
cations.

[Sponsored by ONR and SPAWAR Rapid Transi-
tion Program]
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FIGURE 4
Example of variance of sound velocity at the surface over the ensemble with bathym-
etry contours for the exercise area. Areas of greatest model uncertainty are shown in 
red.

FIGURE 5
Example of acoustic coverage variance at a receiver depth of 100 m, over the 
ensemble for the exercise area, showing the areas of greatest acoustic performance 
uncertainty (red).
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FIGURE 6
Example of a scenario used to reduce model error in an area of high model uncertainty 
(red box). The colors in the figure show the relative impact of observations in reducing the 
predicted error at August 9 and 12, 2007.  Between these two days, gliders were steered to-
ward locations with high predicted impact in reducing the model error. Data was assimilated 
into the model and the impact of observations became smaller as the model forecast became 
more accurate in the area of interest.
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