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FOREWORD

The Washington Sea Grant monograph series., Books in Re-
cruitment Fishery Qceanography, was established in 1988 with publica-
tion of Michael Sinclair’s Marine Populations: An Essay on Population
Regulation and Speciation. The series, of which this is the second vol-
ume, is intended to communicate current thinking and findings in the
field and to accelerate the synthesis of ideas.

Recruitment fishery oceanography is concerned with the effects
of environmental variability on recruitment in populations of marine or-
ganisms, especially those of commercial importance. Such studies deal
with the factors that determine the continuing productivity of living re-
sources under environmental and fishing stress. They revolve around the
intriguing scientific question of how population size in marine organisms
is controlled.

The interactions of the control processes are complex but are
slowly being disentangled. A short-term goal of this series is to improve
the predictions of the level of catch that fish populations can sustain, so
that fisheries can be managed beneficially. In the longer run, these studies
also will lead 1o a better understanding of the consequences that natural or
man-induced changes in climate have for marine organisms and their hu-
man predators.

Warren S. Wooster

Institute for Marine Studies
University of Washington

i
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PREFACE

The field of ecology is particularly concerned with understand-
ing the distribution of organisms in space and time. Theoretical ecology
has often addressed how organisms should be distributed, based on ab-
stract principles, while field ecology (here defined as observation- or
data-oriented study) has generally addressed the issue of how organisms
are distributed. Applied ecology is more concerned with predicting the
consequences of perturbations (such as harvesting) on distribution and
abundance. Unfortunately, there has been too little communication and
interaction among these arcas of ecology (Fretwell 1972, preface; Pielou
1981). In this study 1 address an interconnecting set of problems that
bridges these three areas of theoretical, field, and applied ecology-

As Sinclair (1988) observes, fishery research was near the
mainstream of ecology through the 1920s, but the two disciplines have
since separated, with very little interchange of ideas or data in recent
years. Ecologists are nowadays justifiably hesitant to research the fishery
literature, which is voluminous, full of jargon, often trivial, and very
“gray’’ by academic standards. Yet population ecologists rarely have ac-
cess to studies on the extensive time and space scales typical of fishery
research. In turn, fishery biologists are faced with Fretwell’s (1972,
p. xiii) dilemma: their field requires multidisciplinary specialization such
that they must become “jack of all trades, master of none’’ and perhaps
suffer a low prestige among their more specialized counterparts in aca-
demia.

One solution is to bring ecologists and fishery biologists to-
gether occasionally in a workshop environment wherein both groups can
gain a better understanding of the problems and opportunities offered by
the respective disciplines. One such workshop (May 1984) was rather
successful in this regard.

Another solution, which 1 attempt here, is to borrow an estab-
lished concept from academic ecology and apply it to a major problem in
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fisheries. This approach has the advantage not only of demonstrating to
the academic ecologist the strength and value of the large fishery data
bases but also, at the same time, of suggesting to the fishery biologist the
benefits that can arise from knowledge of mainstream field and theoreti-
cal ecology.

Unexpectedly, the theory of density-dependent habitat selec-
tion, which I have borrowed from academic ecology, is being returned
with some modifications or at least interpretations that should be of con-
siderable interest to the lenders. The ‘‘basin model,”’ which I developed
initially for the purpose of understanding the dynamics of exploited popu-
lations, provides a synthesis that should be useful to field ecologists as
well as to theoretical ecologists. It presents a holistic view of the popula-
tion dynamics determining abundance, productivity, movement, and dis-
tribution as a function of habitat or environment, and casts the model in a
way that allows easy geographic visualization of entire populations. Real-
izing that this is a lot to promise, I can only invite ecologists io consider
this ‘‘basin model”’ of dynamic biogeography and judge whether that
promise is fulfilled.

As a fishery biologist, I feel more secure in promising my own
field a new and useful tool. Indeed, the potential utility of a tool should be
easier to assess in a field that is concerned primarily with application.
Yet, even in the well-developed applied science of fishery ecology and
management science, the utility of research is often not well understood.

WHY DO FISHERY RESEARCH?

The question *‘Why do fishery research?’’ is a reasonable one.
It is seldom asked seriously, however, and serious answers are even rarer.
Perhaps the main reason is that the answer seems to be obvious: Fishery
research provides knowledge that enables resources to be used to greater
societal benefit through increased yield or value, or perhaps for a predic-
tive capability which decreases risk. Unfortunately, this answer is not
fully consistent with actual practice (MacCall 1986).

It is a reasonable assumption that more knowledge or informa-
tion should allow a closer approach to optimum utilization of a resource.
Still, the resource itself has limits to the benefits it can provide. Thus, the
value of relevant information is also limited and must conform to the rule
of diminishing returns. Initial information on a resource is valuable in
establishing reasonable expectations by management, whereas additional
information serves mainly to refine the approach to optimum utilization.
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It is arguable whether there is a limit to information in the way
that there is a limit to the benefits or value of a fishery. Certainly, there is
a limit to information on future environmental conditions that may deter-
mine major resource fluctuations. In any case, accumulation of useful in-
formation also conforms to the rule of diminishing returns as a function of
cost.

The relationship between the cost of information ard its benefit
in an ideal fishery is instructive (Figure P.1). The net value of a fishery is
benefit less cost. Optimality consists of maximizing that value when ben-
efit and cost are appropriately measured. Because of the rule of diminish-
ing returns described above, the maximum net value achievable from a
fishery must occur at relatively low levels of information. Such a man-
agement regime would be characterized as low-expectation, low-cost,
and robust or self-limiting (low risk). For example, the fleet would be
limited to a size that is able to harvest a quantity well short of the esti-
mated maximum sustainable yield. Costs associated with quota determi-
nations, monitoring, and enforcement would be avoided.

Ideal management is somewhat of a fiction but serves mainly to
contrast with actual management (Figure P.1). Performance of actual
management has been variable, but most often fishery value has been dis-
sipated by excess fleet capacity (so-called overcapitalization) and excess
fishing pressure, placing the fishery on the descending limb of the pro-
duction curve {i.e., increased fishing intensity leads to decreased average
yield). Importantly, this dissipation occurs in spite of substantial knowl-
edge about its causes and cures.

Information costs can be evaluated in terms of fishery econom-
ics: research is in effect a form of capital investment, and monitoring in-
curs an operating cost. From this viewpoint, actual management tends to
overinvest (or overcapitalize) in information, and this habit has been a
further source of dissipation of total fishery value.

It is easy to see the forces that cause this problem. Managers,
rescarchers, and the various interest groups that vie for allocations of the
resource all agree on the need for more information to support their indi-
vidual interests or arguments. The cost of the research is seldom a consid-
eration; usually it is not borne directly by the fishery or by the interest
group requesting or benefiting from it, but rather by government agen-
cies. Private interest groups may add to this total expenditure by hiring
consultants to arm them with new information. Furthermore, such expen-
ditures are often matched by the cost of government or opposing interest
groups’ responses to such efforts.



DYNAMIC GEOGRAPHY

4 /| MacCall

NOILYIWHOANI O1 LI NCILYWHOANI O1 LININ z =

o §%
b 1)
= 3
-3 it o
& g8z
o o 2 &3
- 4 >_ 253
o — L Fiw
3 26 23%
__________ x BE EES
i -5 P
________ 4 S @ 353
S - m m W ,m m
w2
u w S=E {53
S > - - Rl
- i ! Es g
Lo = [ =4 « 8 M. s
> n 9@ > EFS
o i § o T8
- =9 = $B¢
—“ ._:r,,m m M _“ W» W B
= e - = 252
S | 8= = £33
TR - s
=TT
o o mmm
ANTVA HO 1509 ANTVA HO 150D &g 8



Preface | MacCall | 35

WHAT SHOULD WE DO?

Contrary to first impressions, the solution is not simply to
spend less on monitoring and research. Present fishery management insti-
tutions have locked themselves into policies and operating procedures
that require intensive research and monitoring efforts. For example, in the
United States most implementations of the Magnuson Fishery Manage-
ment and Conservation Act have required annual setting of harvest limits,
quotas, or allocations. These determinations require timely informaticn
on the status of the resource, harvests, and concerns of relevant interest
groups. Given the existing management frameworks, substantial reduc-
tion of investment in information would incur a high risk of further de-
clines in fishery value due to subsequent misinformed or uninformed
management decisions.

The model in Figure P.1 suggests that there are two courses of
action that promise to improve the cost-effectiveness of research, moni-
toring, and management. The first, and less likely of the two, is to change
management toward a *‘low-information’’ system. The potential value
realizable from low-information management is critically dependent on
establishing the appropriate management expectations and institutions.
Such institutions would be substantially different from those governing
most fisheries in the United States and elsewhere, and most likely they
would be perceived to be nondemocratic, or at least nonegalitarian, re-
quiring severe limitation on the freedom of new participants to enter the
fishery. Unless it were enforced by property rights, this closure would be
politically fragile because the fishery would be very profitable to those
participants who are able 1o gain access.

The second course of action seeks to change the shape or posi-
tion of the cost and benefit curves in Figure P.1. Good management
requires that routine fishery monitoring and research be conducted
efficiently, or cost-effectively. Although there usually is room for im-
provement, | will assume that the cost of information has already been
made as low as possible. This leaves the problem of shifting the benefit
curve while remaining under the constraint of existing management insti-
tutions, tools, and policies. The opportunity to open up new management
possibilities within the existing management philosophy occurs rarely.
Here I introduce one such opportunity, based on principles of biogeog-
raphy, and 1 invite the fishery biolagist to explore and consider those
possibilities.
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1

POPULATION THEORY OF DENSITY-DEPENDENT
HABITAT SELECTION

Considerable ecological literature, both observational and theo-
retical, has treated the subject of habitat selection and habitat distribution.
Most of the observational literature examines how individuals apportion
their time among habitats, or would be expected to apportion it, or how
apparently sympatric species are differentially distributed among local
habitats.

1.1 BACKGROUND

Perhaps due to the short-term nature of most field studies, little
observational work has been done regarding the influence of intraspecific
population density on habitat selection. In those studies where abundance
has varied sufficiently, it is commeon to observe differential utilization of
habitats depending on overall population size. The term *‘density-depen-
dent habitat selection’” (DDHS) refers to this special category of habitat
selection, in which population size and local density are important factors
influencing choice of habitat and hence relative distribution of the popula-
tion among habitats,

There also is a large body of theoretical literature that generi-
cally has been called population dynamic models in heterogeneous envi-
ronments (reviewed by Levin 1976, 1986). These models and simulations
include interacting elements of habitat variability in space and time,
population growth, habitat selection, movement, and diffusion, many of
which bear some tangential relationship to the present study. I refer to this
literature at various places in the following discussions but will not at-
tempt a coherent review. Rosenzweig's (1985) review focuses on habitat
selection and is quite useful in the present context, particularly as it re-
lates to DDHS and larger-scale population behavior.
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1.1.1 Historical Development

The theory of DDHS has developed along two separate lines.
The first is biogeographic, documenting relationships among habitat dis-
tribution, local density, and overall population abundance. Much of the
early work was done by European ornithologists, e.g., Svardson {1949),
Kluyver and Tinbergen (1954), and Glas (1960), who observed differen-
tial relationships between changes in local densities and changes in popu-
lation abundance. One of the most commonly observed phenomena asso-
ciated with DDHS is expansion and contraction of population range or
differential utilization of marginal habitat with changes in population
abundance (Table 1.1). This line of investigation is now being rejuve-
nated by modern biogeographers such as Brown (1984).

TABLE 1.1 Examples of species showing differential utilization of habitats or
expansion-contraction of range with changes in abundance.

CATEGORY EXAMPLE REFERENCE
Fish Anchovy Kramer and Ahlstrom (1968)
Sardine Kondo (1980), Murphy ([977)
Minnow Fraser and Sisc (1980)
Birds Canary Mayr (1926)
Duck, gull Svardson (1949)
Titmouse Kluyver and Tinbergen (1954}
Chaffinch Glas (1960}
Blackbird Lenington (1980)
Insects Aphid Whitham (1980)
Bee Thomson {1978)
Reptiles Anolis lizard Schoener and Schoener (1980)
Small mammals Lemming (2 spp) Pitelka {(1973)
Snowshoe harc Wolff (1980)
Large mammals Baleen whale Allen (1972)
Elephant scal Bodkin et al. {1985}
Man Knight (1924), Gordon (1954)

The second line of investigation seeks to explore or explain
DDHS by behavioral models, often accompanied by mathematical or
graphical representations of the governing principles. These behavioral
theories of DDHS have developed as numerous independent treatments in
ecology, most of which address very localized geographic scales. One of
the earliest was Morisita’s (1952, 1971) theory of ‘‘environmental den-
sity."’ Morisita’s treatment did not gain wide acceptance, perhaps due to
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an apparent, though not substantive, lack of generality. The Fretwell-
Lucas theory (e.g., Fretwell and Lucas 1970, Fretwell 1972, Whitham
1980, Rosenzweig 1981, Morris 1987) is the most general treatment. The
Verner-Orians theory (e.g., Verner 1964, Orians 1969, Downhower and
Armitage 1971, Lenington 1980) is more fully developed in terms of evo-
lutionary theory. Although this theory has been rather narrowly restricted
to polygynous mating systems, in many ways it can be considered to be a
special case of the Fretwell-Lucas theory.

Beckmann (1957) developed a similar economic-geographic
mode] of human demography based on analogies to physical principles
such as energy potential and fluid dynamics. It is the most mathematically
complete treatment, and the only one that has attempted tc describe phe-
nomena at the population level. Again, Beckmann’s model failed to gain
significant recognition in ecological circles, perhaps because social and
economic concepts used in human demography did not at the time have
immediately obvious equivalents in population ecology .

It seems appropriate to note the independent development of
concepts akin to DDHS in the field of economics, extending back to the
work of David Ricardo, who pioneered the concepts of diminishing re-
turns and economic rents in the early nineteenth century. Knight (1924},
exploring these ideas in relation to social welfare, treated the “‘marginal
value theorem,’’ which was independently discovered in the biological
context of optimal foraging some forty years later by Charnov (1976).
Again, Gordon’s (1953, 1954) analysis of fishermen’s choices among al-
ternative fishing grounds produced habitat utilization diagrams nearly
identical to those of Fretwell.

Cross references among the various treatments of DDHS are
exceedingly rare, even in review articles such as those by Davies (1978),
Partridge (1978), and Garson et al. (1981) (but see Parker [1984] and
Vehrencamp and Bradbury [1984] for possible exceptions). This lack is
especially surprising, given that the Fretwell-Lucas and Verner-Orians
theories both first appeared and are well known in ornithological
contexts. These reviewers, and hence many ecologists, may not have re-
cognized fully the unifying principles of DDHS underlying the various
models.

1.1.2 Fretweil-Lucas Theory of DDHS

The Fretwell-Lucas theory postulates multiple discrete habitats
that may be ordered in terms of a basic ‘‘suitability”’ (a vaguely defined
term which will be treated later). As the density of individuals increases
in a habitat, realized suitability decreases from the basic level (defined as
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the suitability at zero density), due to density-dependent effects (Figure
1.1). In the *‘ideal free distribution’" all individuals are capable of choos-
ing the most suitable habitat, and are free to occupy that habitat regardless
of prior occupants. Initially individuals occupy habitats with the highest
basic suitability, but as realized suitability of these habitats declines due
to increasing population density, other previously less suitable unoccu-
pied habitats become equally attractive and are colonized. As a conse-
quence of this process, the ideal free distribution is characterized by equal
realized suitability in all occupied habitats: no individual has a better hab-
itat to which it can go.

Figure 1.1 Habitat suitabil-
ity, as realized per capita
growth rate (r*) versus local
population density (V),
based on the ‘‘constant
slope’” logistic model. A
and B are two example hab-
itat types with respective
basic svitability » and carry-
ing capacity X; 1,2, and 3
are realized per capita
growth rates at respectively
larger total population sizes;
solid dots indicate habitat
population densities accord-
ing to the ideal free distribu-
tion. Modified from

N Fretwell (1972, Fig. 31).

-
»

PER CAPITA GROWTH RATE
@
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This population behavior can also be described by the game
theory of the evolutionarily stable strategy (ESS) pioneered by Maynard
Smith (1982). Pulliam and Caraco (1984) point out that when no individ-
val in an n-person game can increase its fitness by moving, we have a
““Nash equilibrium.”’ If all individuals possess equal fitness as a result,
we have the ideal free distribution, which is also an ESS.

Many interesting variants of the ideal free distribution arise
when complications are added. For example, territoriality may prevent an
individual from occupying the most suitable habitat because it is already
occupied. In this case, the individual is forced to occupy a less suitable
habitat, resulting in Fretwell’s (1972) *“ideal despotic distribution.”’

Few atternpts have been made to investigate population growth
dynamics associated specifically with DDHS. As mentioned previously,
Beckmann's (1957) model, which did treat the subject, was not widely
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familiar to ecologists. Brown (1969) recognized that differential occupa-
tion of good and poor reproductive habitats should influence population
productivity curves. He graphically examined productivity of various dis-
tributions of birds between two habitats but had no criterion for assuming
a particular distribution, as was subsequently developed by Fretwell and
Lucas (1970) and Orians (1969). Prior to Brown’s model, population pro-
ductivity had been assumed to decrease if territoriality forced some indi-
viduals to reproduce in poor habitat. Brown correctly concluded that this
behavior could actually increase total productivity over the case in which
all individuals were allowed to crowd into the best habitat with conse-
quent decreased per capita reproductive success in that habitat.

1.1.3 Habitat Suitability

The concept of *‘suitability’” is not well defined in previous de-
velopment of the theory of density-dependent habitat selection. Fretwell
(1972) equated habitat ‘‘goodness’® with habitat suitability, and pro-
ceeded to say that **the goodness of each occupied habitat is related to the
average potential contribution from that habitat to the gene pool of
succeeding generations of the species.”” Suitability is the measure of that
goodness, being *“thought of as the average success rate in the context of
evolution (and/or ‘adaptedness’) of adults resident in the habitat.”
Fretwell’s wording suggests an intuitive concept akin to Fisher's (1958)
more formally developed *‘reproductive value,’’ which offers a basis for
a more rigorous definition of habitat suitability.

Many recent interpretations of Fretwell’s theory substitute **fit-
ness’’ for the original concept of suitability, often with no reference to the
original term. In a recent review of theoretical aspects of habitat selec-
tion, Rosenzweig (1985) assumes that “‘individual organisms select par-
ticular habitats because they thereby enhance their fitness.”” In reviews of
the Fretwell and Lucas model, Pulliam and Caraco (1984) and Y.omnicki
(1987) use the term *‘fitness’” exclusively, without any reference to the
original concept of *‘suitability.”” In “‘fitness’” we again have a vaguely
defined term that is akin to reproductive value. As there has been a heated
and not clearly resolved debate over the relationship between reproduc-
tive value and fitness (for an entry, see Stenseth 1984), I am reluctant to
enter into the controversy.

Goodman (1982) has shown that an optimal life history is
equivalent, under specific constraints, to maximization of reproductive
value at all ages. Habitat selection adds another level of complexity to
this already difficult problem: Beyond optimizing the choice of life table
schedules within a demographically or environmentally imposed fitness
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set (Levins 1968), the individual organism must choose among alterna-
tive fitness sets corresponding to available habitats and population densi-
ties. Until recently the Fretwell and Lucas model was cast implicitly in
terms of identical individuals, but Harper (1982) and Lomnicki (1987)
have extended the concept of the ideal free distribution to include differ-
ences in fitness among individuals.

Thus, in principle, true habitat suitabilities should be closely
related, if not equivalent, to marginal changes in Fisher’s reproductive
value due to habitat and the population density therein. Moreover, if large
numbers of organisms (whether or not they differ individually) select hab-
itats according to similar rules, these marginal changes in reproductive
value should be manifested as marginal changes in the intrinsic rate of
increase of the local population.

From a practical viewpoint, habitat selection often involves lit-
tle more than selecting one of the better immediately available habitats.
When viewed as a process, rather than in terms of the ultimate distribu-
tion of individuals (a state), optimality does not have to be considered
explicitly. The process of iteratively selecting better available habitats
will “‘track’” optimality without necessarily ever achieving that ephem-
eral state (cf. Roughgarden 1974). Of course, as Fretwell noted, *‘the
stimuli directly influencing the choice of habitat may be no more than
correlated with habitat goodness.’’ Insofar as behavioral responses to
such stimuli tend to optimize an organism’s life history, natural selection
should favor those responses however indirect the actual stimuli may be.
The result may be a very imprecise, but nonetheless beneficial, set of
behaviors regarding choice of habitat.

The remainder of this discussion will mostly treat an idealized
organism with the simple population dynamics represented by the logistic
growth model. This model has the convenient properties that age struc-
ture is immaterial and that degradation of habitat suitability is lincar with
local density. Importantly, habitat suitability is instantaneously man-
ifested as a per capita growth rate, providing a convenient analog for re-
productive value. After exploring the case of the locally logistic growth
model, I extend this habitat selection model to include some alternative
and perhaps more realistic nonlinear growth models.

1.2 POPULATION MODEL OF HABITAT SELECTION

Most previous models of density-dependent habitat selection
have been confined to portrayal of discrete habitats (e.g., Fretwell and
Lucas 1970, Rosenzweig 1981). A discrete formulation is often appropri-
ate to terrestrial organisms, and is useful in simulation models such as
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those in Chapter 2. But as Levin (1986) points out, a continuous formula-
tion is more amenable to analytic treatment, and on biological grounds
may be preferable for modeling aquatic systems. Thus, extension of the
DDHS model to a formulation of continuous habitat lays the groundwork
for considering the dynamics and geographic behavior of entire fish popu-
lations.

This extension consists of three steps. First, I describe local
population growth rates as functions of local basic habitat suitability and
population density under the equal-suitability constraint of an ideal free
distribution. Second, 1 portray habitat suitabilities as a continuum over
the potential geographic range of the population. Finally, I add the dy-
namics of movement among habitats, thereby providing a mechanism by
which the ideal free distribution can be approached.

1.2.1 Local Dynamics

The logistic model describes the local population growth rate in
habitat k by the differential equation
(a.n % = n,N(1-8,N,)
where r, is the basic habitat suitability, and b, is a coefficient of the den-
sity-dependent decrement in per capita growth rate. For the present dis-
cussion, ] assume unit area, so that density and abundance (N} are locally
equivalent. Thus, the realized per capita growth rate, denoted r*, is deter-
mined by basic habitat suitability and declines linearly with local popula-
tion density (Figure 1.1),

(1.2) iy = L T
' ' N, dr

While the coefficient of density dependence may well vary
among habitats, this complexity prevents easy visualization of the geo-
graphic model being developed. 1 consider a simpler model for the re-
mainder of the immediate discussion: b is taken as constant among all
habitats, leading to a family of parallel per capita growth curves as shown
in Figure 1.1(see Appendix).

According to the ideal free distribution, individuals distribute
themselves among available habitats so that all individuals experience the
same realized suitability (viz. marginal reproductive value); r* is constant
for all occupied habitats but varies with total population size. Thus, if the
ideal free distribution holds, the geographic pattern of population density
will follow and in effect will *‘map’” the geographic pattern of basic habi-
tat suitability. This map is scaled according to the coefficient of density
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dependence, b, which relates population density to the difference be-
tween basic suitability for the location and the uniform realized suitability
for the entire population. Areas of high basic habitat suitability will ex-
hibit a correspondingly high local density of individuals, whereas areas of
lower basic habitat suitability exhibit a lower density of individuals. In
this context, it is apparent that Morisita’s concept of ‘‘environmental den-
sity”” is virtually identical to Fretwell’s “‘suitability,”’ except that they are
expressed in different units. Also note that if b varies among habitats,
population densities would provide a distorted map of basic suitabilities.

1.2.2 Continuous Habitat

A long tradition of plant biogeography has developed an exten-
sive knowledge of plant distributions. In a review of 135 species’ distri-
butions, Austin (1972) found that 95 percent of them showed densities
that were higher toward the center than toward the edges of the distribu-
tion and 73 percent were unimodal. The distributions of animals have not
been reviewed as extensively, but Brown (1984) concurs that animal den-
sities commonly follow a similar geographic pattern. The plant ecologists
have tended to hypothesize a Gaussian normal physiological response to
gradients of controlling environmental factors. However, Westman
(1980) found that of 40 factors examined in a Gaussian factor analysis of
a community of 40 species of coastal sage scrub, no single factor was able
to explain more than about 30 percent of the variance of the best fiiting 25
species. He concluded that distributions of abundances must have a multi-
factor basis.

Brown (1984} further argues that the abundance and distribu-
tion of a species is determined by many physical and biotic variables, and
that many of these variables are serially correlated in space and time. The
statistical properties of these additive random variables creates a continu-
ous habitat that supports an approximately Gaussian spatial distribution of
abundance. Brown seems satisfied to conclude that abundances will be
higher where conditions are more favorable, but avoids discussion of
mechanisms that determine abundance as a function of habitat suitability;
he does not address the possible role of density dependence in this hy-
pothesis, except to imply that it is potentiaily one of the factors.

In the present model, where density-dependent reduction of
habitat suitability plays an active role, the multifactor Gaussian habitat
mode! works well. The basic suitability of habitats may be determined by
combinations of density-independent factors, as well as by physiological
response curves, and the most favorable combinations of these factors
occurs near the center of the species’ range. Importantly, the factors de-
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termining suitability may be quite different at opposite ends of the spe-
cies’ range, but the net suitabilities themselves may nonetheless be simi-
lar.

In recent years the idea of density dependence has become con-
troversial in ecological circles, and indeed, there are many possible alter-
native mechanisms that may determine population abundance and distri-
bution. However, the sustainability of fishery harvests gives support to
the existence of strong compensatory mechanisms in fish; and very few
mechanisms other than direct density-dependent influences on growth,
fecundity, and survivorship can provide this amount of compensation.
Also, density-dependent compensatory mechanisms have been fairly well
identified for many harvested fish populations. These mechanisms, such
as cannibalism (also see Chapter 3) and population size or density-depen-
dent growth and fecundity, have been reviewed by Garrod and Knights
(1979) and by Goodyear (1980).

1.2.3 Basin Model

If habitat suitability or per capita growth rate is depicted graphi-
cally as increasing downward, habitats can be described as a continuous
geographic suitability topography having the appearance of an irregular
basin (Figure 1.2), whose shape may also vary over time. According to
the ideal free distribution, the population will fill this basin as if it were a
liquid under the influence of gravity (this analogy is equivalent to Beck-
mann’s ‘‘potential’’).

(=)

PER CAPITA GROWTH RATE

LOCATION

Figure 1.2 Transect through a continuous geographic fitness topography. A and B are the
habitat types, and 1, 2, and 3 correspond to the total population sizes in Figure 1.1. Real-
ized suitability (per capita population growth rate), shown by the dashed line, is equal in
all occupied habitats due to the ideal free distribution. A population size of carrying ca-
pacity (K) is reached when growth rate becomes zero.
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+ The free surface of the liquid will be approximately level,
corresponding to the uniform realized suitability, r*, resulting from the
ideal free distribution.

« The ‘‘shoreline’” corresponds to habitats whose basic suita-
bility is exactly equal to r*, establishing the range of the population.

+ The depth of the liquid at any location is proportional to the
density-dependent reduction in realized suitability at that location, and is
proportional to local density.

* The total volume of liquid in the basin is thereby functionally
related to total population size.

Insofar as densities tend to be highest toward the center of an
organism’s range, the deepest area of the basin (i.e., greatest basic suita-
bility) will be central, and the topography will become progressively shal-
lower toward the periphery. Parsons (1982) warns that ecologically mar-
ginal habitat tends to be correlated with geographically peripheral habitat
but may occur in more central areas as well. Interior marginal habitat
appears as peaks or ridges within the basin topography.

In this model *‘carrying capacity”’ (K} corresponds to the popu-
lation size that fills the basin to a level producing zero growth rate of the
population (r* = 0). As in the usual logistic model, overall abundance is
limited by density dependence. However, here the carrying capacity is
determined by the integrated total quantity of habitat at all levels of suita-
bility better than the margin at population size K (i.e., ryg, = 0, where
h(X) denotes marginal habitat at carrying capacity). As the population
grows or declines toward K, the limitation is more gradual than in the
corresponding logistic population model, and is related to the slope of the
sides of the basin in the vicinity of /(K). Indeed, a logistic population
model would result from the special case of a constant-slope local logistic
model and a habitat suitability basin that is flat bottomed with vertical
walls.

This ““basin model’” of biogeography is consistent with Mayr
(1963, 1970), who observes that the influence of density-dependent fac-
tors logically should be the greatest at the center of a population. Both
Mayr and Levins (1968) agree that density-independent factors accord-
ingly should prevail at the edges of the population. This property is
shown by the basin model, but the location of the edges for a given popu-
lation can now be seen to be determined in part by the interaction of habi-
tat selection and density dependence in other areas: the range of the popu-
lation will necessarily expand and contract with changes in overall
abundance (recall Table 1.1). The ideal free distribution and constant rate
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of density dependence in this basin model produce the somewhat surpris-
ing prediction that a single additional individual would have the same
effect wherever it is added to the population, i.e., despite the local rela-
tive importance of density-dependent versus density-independent factors.

1.2.4 Movement

While the previous section describes the ideal spatial distribu-
tion at equilibrium, a complete model should include the dynamics lead-
ing to that equilibrium. Previous models of DDHS have assumed that in-
dividuals are highly mobile, are able to assess the suitabilities of all
potential habitats, and simply make the best selection from among them.
While this assumption is perhaps reasonable at the community level, es-
pecially for birds, it is insufficient to describe the community dynamics of
less mobile species, or population-level dynamics of most species.

The following dynamics require that habitat be sufficiently fine-
grained that individuals are able to respond to large-scale gradients of
habitat suitability that tend to be detectable at the scale of their short-term
ambits. There are a multitude of possible models that portray these dy-
namics, and this has been an active area of theoretical ecology, as can be
seen in the extensive review by Okubo (1980). Nearly all of the compo-
nents of the following model have appeared in the literature. The treat-
ment offered here differs from previous migration and diffusion models in
that the equilibrium spatial distribution of abundance must approach an
ideal free distribution. This distribution arises from movements of indi-
vidual organisms in response to gradients in realized habitat suitability
(described by the model given in the previous section), and/or from dif-
ferential population growth among habitats.

The movement model treated here is relatively continuous in its
behavior. An important class of alternative models would be those that
are nonlinear or perhaps discontinuous, where movement is minimal be-
low a threshold level of density or suitability but very active above that
threshold. This type of ‘‘irruptive”” movement was envisioned by Brown
(1957) in his theory of ‘‘centrifugal speciation’’ and has been discussed in
the context of small mammals by Lidicker (1962, 1975). Some mathe-
matical models of this type of movement may be found in Okubo (1980)
but are not pursued here.

Change in abundance (AN) at a particular location is given by
the general model
(1.3 AN =G-H+D+{(-E),
where G is the in situ population growth (births less natural deaths), H is
harvest, D is diffusion into or out of the location, and / and E are immi-
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gration and emigration. The partitioning of movement into diffusion and
immigration-emigration corresponds to a vectorial partitioning of individ-
ual movement into variance and mean directional movement terms, re-
spectively. Immigration and emigration are oriented to gradients in quali-
ties of local habitat. Diffusion arises from random movements, and
resultant net movement is oriented only to gradients of population den-
sity, independent of habitat suitability.

In theoretical models, Equation (1.3) is often expressed as a
partial differential equation. Here the equation will relate to a one-dimen-
sional continuous habitat, with the understanding that similar equations
can be written which simultaneously describe dynamics including a sec-
ond or third orthogonal spatial dimension. The components of Equation
(1.3) are discussed separately.

Population growth (G} is given by the *‘constant slope’’ logistic
model described previously (Equations 1.1 and 1.2). Harvest (H) is repre-
sented by a per capita death rate (F), giving
(1.4) % = r’*N — FN .

(In the following equations, the habitat subscript (%) is omitted for sim-
plicity.)

Diffusion, immigration, and emigration are often modeled by
analogy to the molecular advection-diffusion equation

2
8 _ g oS _ 88

(1.5) a7 P ax

where x denotes location along a continuum, S is the concentration of a
substance, % is a coefficient of diffusivity, and u is an advective velocity.
As Okubo (1980} warns, ‘‘the direct importation of a diffusion equation
that applies strictly to such microscopic phenomena as the diffusion of
molecular solutes to problems involving macroscopic diffusions, espe-
cially animal diffusion, is dangerous.”” However, equations similar to the
form of (1.5) have been developed from plausible biological assumptions
by Gumey and Nisbet (1975, 1976), Okubo (1980), Shigesada et al.
(1979), and Skellam (1951).

The form of equation required by the present abstract model is
arbitrary: simplicity and clarity are the main requirements. By assuming
that the rate of migratory flow (x) is proportional to the gradient in real-
ized habitat suitability (8r*/ax), [ obtain the equation

—1 ar* oN

aN PN
(1.6) -7 77V waw
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where V is a constant determining the rate of population flow per unit
gradient in realized habitat suitability, and is a biological analog of vis-
cosity; i.e., the higher the viscosity, the lower the rate of flow in response
to gradients in realized habitat suitability. Note that this use of the term
““viscosity’’ is different from some recent ecological usages {(e.g., Pol-
lock 1983) in which viscosity and diffusivity are nearly synonymous.
Here it is worthwhile distinguishing between rate of movement oriented
to gradients in habitat suitability (viscosity) and rate of movement ori-
ented to gradients in population density (diffusivity).

The complete model is obtained by combining Equations (1.4)
and (1.6):

aN N —1 or* oN

(1.7} Et—_r*N—FN+r?‘3’&r—2—V ol
where r* = r(1 — bN). Note that r* influences both the rate of popula-
tion growth and migratory flow. This is a theoretically desirable property
of such a model, as the evolutionarily appropriate reward for responding
to a habitat suitability gradient should be increased reproductive value.

Equation (1.7) is a convenient abstract summary of the forces in
the basin model. Importantly, the basin model can be implemented in
many other ways, including more realistic dynamics and processes. Some
alternative forms, including nonlinear growth models and territoriality
will be considered later in this chapter. Simulations more closely resem-
bling fish life histories with a diffusive meroplanktonic larval phase will
be considered in Chapter 2.

1.3 BEHAVIOR OF THE POPULATION MODEL

This model is capable of rather complicated behavior, espe-
cially with regard to transients and spatial-temporal variability in the to-
pography of basic habitat suitability (r;). Its primary purpose is to com-
bine the dynamics of population growth with geographic considerations
of habitat and population distribution or movement. For example, a major
climatic change such as the eastern Pacific oceanic warming called El
Nifio is associated with species displacements as well as severely im-
pacted reproductive rates (Caviedes 1975). The basin model might por-
tray such a change as a shifted and raised basin (Figure 1.3), where the
population moves to the most suitable habitat under the changed environ-
ment, and at the same time shifts from a condition of population growth
to one of decline. Again, rapid temporal or.intense spatial variability in
the habitat basin topography may be realistic for some populations. The
basin model remains a potentially useful tool for describing these cases,
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but its behavior becomes difficult to generalize. This discussion will ex-
amine some of the most straightforward properties of the model, focusing
on equilibrium and near-equilibrium behavior.

Q

PER CAPITA GROWTH RATE
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Figure 1.3 Idealized population response to a climatic shift. The preshift habitat suitabil-
ity basin (r} is more favorable than the postshift {r') basin. The population moves inre-
sponse to the shift, maintaining an ideal free distribution, but changes from a condition of
growth to one of decline. The peripherally isolated segment of the habitat basin at the left
is viable under preshift conditions, but it is not viable after the shift and could experience
local extinction or catastrophic selection,

1.3.1 Expansion and Contraction

One of the most important features of the basin model is its
ability to account for changes in the range of the population as a function
of overall abundance and large-scale changes in density-independent fac-
tors. As described previously, the range or location of the **shoreline’ is
determined by the basin topography and the volume of *‘liquid’’ that cor-
responds to the total population abundance.

It is the expansion and contraction of this shoreline, with resid-
ual outlying pools in peripheral depressions of the basin topography (Fig-
ure 1.3), that Brown (1957) envisioned as providing the conditions for
“‘centrifugal speciation.”” This theory envisioned speciation in isolated
pockets of abundance left after population cycles of geographic expansion
and contraction which are *‘the sequelae of inevitable density fluctuations
affecting all or part of the species at one time.”” Brown lamented the Jack
of formal or theoretical explanations for these expansions and contrac-
tions but felt secure with the strong empirical evidence for their existence.



Population Theory | MacCall 1 21

Lewis (1962), carrying the idea somewhat further, postulated
that peripheral isolated segments of the population may undergo “‘catas-
trophic selection’” whereby adverse conditions eliminate all individuals
except for a very few with rare deviant phenotypes which may act as
founders of new species. This basin model accommodates this mecha-
nism quite naturally: Conditions leading to an overall decline in popula-
tion abundance and isolated peripheral segments are also likely to pro-
duce submarginal conditions (r, < 0) in some of those peripheral
locations, so that the occupying population segments tend toward extinc-
tion (Figure 1.3) and experience catastrophic selection. Moreover, this
basin model suggests that individuals in these peripheral habitats are
likely to have been subject to forces toward centrifugal speciation prior to
the catastrophe, so that there may well have been presclection toward
those deviant phenotypes that survive the catastrophe.

Bearing in mind that the local density-dependent decline in re-
alized habitat suitability formally is the product of the local density and
the coefficient of density dependence (b in the above equations), this mo-
del also predicts expansion and contraction of the range if there were
changes in the assumed uniform coefficient of density dependence. The
volume of *‘liquid’’ is the integral of the product &N over the population;
that volume is proportional not only to N but to b as well. Again, if b were
to change among local habitats, distortion would result.

A simple simulation of expansion and contraction due to
change in & is shown in Figure 1.4. The simulated population has access
to four habitats, which it occupies according to the ideal free distribution.
At the normal rate of density dependence, three of the habitats are occu-
pied. However, if the rate of density dependence is doubled, all four habi-
tats become occupied. Similarly, a reduction in the rate of density depen-
dence leads to contraction into the two best habitats. As expected, the
carrying capacity or population size at equilibrium is also affected by
these changes, so that the expanded population will tend to decline and
the contracted population will tend to grow. Surprisingly, the relative
equilibrium (i.e., at 7* = 0) distribution of abundances among the four
habitats is the same; the population tends toward this distribution inde-
pendently of the mean rate of density dependence.

1.3.2 Effects of Diffusion

Local equilibrium is described by aN/ar = 0. If we assume that
the population exhibits an ideal free distribution, the advection (immigra-
tion, emigration) term must equal zero since 7* is the same everywhere.
Also assuming that the population is at carrying capacity (i.e., growth
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Figure 1.4 Expansion and contraction of the range due to a change in the rate of density
dependence. The population is distributed among four habitats. The ideal free distribution
is shown by the dots (abundances are given in parentheses, sum is 180). X indicates fotal
abundance at equilibrium (carrying capacity).

equilibrium), r* equals zero, and therefore population growth must be
zero everywhere. However, the diffusion term cannot equal zero every-
where, since population density is not uniform (the departure from unifor-
mity is dictated by the habitat basin topography). Thus, diffusion is in-
compatible with assumption of an ideal free distribution. Of course, an
ideal free distribution can be approached closely if either the coefficient
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of diffusivity or the viscosity is relatively small; in either of these cases,
tendencies for movement oriented to the gradient in realized suitability
are much stronger than simple diffusive forces.

A general stable solution requires that overatl population abun-
dance be at equilibrium; excess growth in some areas must be balanced by
deficits in other areas. Diffusion results in a component of movement to-
ward a more uniform distribution of population density. Therefore, diffu-
sion will result in a tendency for individuals to flow from the central areas
of high density toward the periphery or other marginal habitat where den-
sity is low. For the geographic distribution to be at equilibrium (aN/9r =
0 everywhere), there must be a counterbalancing inward-directed ten-
dency resulting from oriented response to the suitability gradient, so that
the diffusion and migration terms approximately balance (any difference
is accounted for by in situ population growth, positive or negative).

Y

PER CAPITA GROWTH RATE

LOCATION

Figure 1.5 Transect through a simple habitat topography demonstrating the effect of dif-
fusion on distribution and realized per capita growth rate at equilibrium.

Thus, the equilibrium surface of the “*liquid’’ filling the habitat
basin is depressed near the center and raised toward the edges (Figure
1.5). This distribution requires that 7* > 0 in areas of high abundance and
r* << 0 in areas of marginal habitat. Accordingly, there will tend to be
excess productivity near the center and net loss near the edges; this condi-
tion is maintained by an equilibrium flow of individuals from areas of
high population density toward the edges and other marginal habitat. The
flow will be maximal at the boundaries between areas of productivity and
areas of loss, where r* = 0 (the difference between net production and
net loss on respective sides is maximal at this point). Pulliam (1988) ex-
plores this phenomenon of ‘*‘sources and sinks’’ in a more general con-
text.
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The phenomenon of a peripherally directed gene flow was de-
scribed by Mayr (1963, 1970), who felt it produced conditions allowing
speciation at the periphery. Interestingly, Mayr does not use the term
“centrifugal speciation,”” and he apparently does not recognize Brown’s
(1957) paper. Mayr’s gene flow hypothesis does not require as large an
environmental perturbation as does Brown’s mechanism of expansion and
contraction. However, Mayr does not describe a clear mechanism by
which this gene flow is produced. Gadgil’s (1971) simulations indicated
that dispersal could play a role in generating such a flow, but his use ofa
constant r-variable K logistic model prevented examination of the impor-
tant marginal (r, = 0) and submarginal (r, < 0) habitats that occur at the
periphery (see Appendix).

This basin model supplements Gadgil’s analysis in this regard:
it presents a mechanism by which a peripheral flow of individuals or
genes is generated, it represents the marginal nature of peripheral habitat,
and it shows how peripheral segments of the population can become con-
nected or disconnected as a function of population abundance and spatial
and temporal changes in the geographic suitability topography. Signifi-
cantly, it provides a description of population dynamics that simultane-
ously accommodates the alternative mechanisms of centrifugal speciation
proposed by Brown and Mayr, as well as the concept of catastrophic se-
lection proposed by Lewis.

From the standpoint of evolution, the equilibrium flow arising
from diffusive forces causes individuals to move toward areas of lower
realized growth rate or reproductive value (r*), indicating that random
dispersal may be maladaptive. But oriented and random movements
(i.e., mean directed movement and variance components) may be insep-
arable at the behavioral level of the individual organism. Also, dispersal
may have benefits not included in this model. For example, Hamilton and
May (1977) showed that dispersal may allow opportunistic colonization
of unpredictable habitats. The advantage of this strategy is related to the
frequency of such opportunities, and it may be selected for despite other-
wise maladaptive consequences. Hamilton and May's unpredictable habi-
tats could be portrayed in this basin model as a highly irregular suitability
topography with local depressions (i.e., favorable habitat) forming un-
predictably. High diffusivity would speed (or, in the case of intervening
ridges where r, < r,,, even enable) colonization of these ephemeral
habitats. However, the benefit of diffusivity would be realized mainly in
peripheral or marginal habitats where densities are low and these habitats
would otherwise not be reached.

Presence of an equilibrium internal flow of individuals toward
marginal habitats, especially toward the periphery, suggests that gene



Population Theory | MacCall 7 25

flow may not be isotropic. The spread of traits arising near the center of
population abundance will be aided by this flow, whereas the spread of
traits arising in marginal habitats will be hindered,; the latter will tend to
be confined to the marginal habitats. An extreme case might consist of a
population separated into two habitat basins, thinly connected across an
intervening permanent ridge of poor habitat (Figure 1.6). The two popu-
lation segments would appear to be connected, but the net flow of individ-
vals toward the ridge from both sides could intensify the genetic isolation
of the two basins by impeding flow of genes from the ridge toward the
opposite centers. Also, the individuals near the ridge experience net re-
productive deficits, further reducing the probability of genes crossing the
intervening ridge.
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Figure 1.6 Transect through a two-basin habitat topography showing increased potential
for genetic isolation due to equilibrium internal flow of individuals arising from diffusion.

1.3.3 Effects of Viscosity

Viscosity is inversely related to the rate of population flow to-
ward more suitable habitat in the presence of a suitability gradient. Low-
viscosity and high-viscosity populations exhibit very different responses
to changes in the shape and level of the geographic suitability basin. The
former ‘‘track’’ changes in suitability mainly through relatively rapid
population movement, whereas the latter respond more through differen-
tial in situ rates of population growth or decline. Recognizing that most
populations will be intermediate, the behavior of the model is easiest to
examine at the extremes of viscosity. Diffusivity will be assumed to be
negligible for the remainder of this discussion of viscosity effects.

Low viscosity results in maintenance of the ideal free distribu-
tion, where r* is the same everywhere. The geographic distribution of
abundance is determined by the current habitat suitability topography and
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by the total population size. The latter can be described as a function of
*. The logistic model of local dynamics (Equations 1.3 and 1.4) gives
(1.8) ¥ =r—bN.

Here it is desirable to express population growth rate as a function of
density, so that the quantity of habitat &, (4,), is explicit:

k
(1.9 ry = rh_j"‘:’

where coefficient b has been redefined appropriately. The total abundance
in habitat % is obtained by solving for N,
N, = Ay(r,—r*)/b ifr, > r*

N,

1.10) ]
= 0 otherwise,

and total population abundance (N,,) is obtained by integrating local
abundance over all habitats occupied at realized suitability level r*(¥,,):

g

(1.11) N (r*) = “Ah(rh—r*),fb] dh .

h

All habitats are assumed to be accessible. The quantity of habi-
tat corresponding to each value of basic suitability can be described in
functional form by

(1.12) a, = g(r)

which provides a convenient summary of the distribution of habitat. This
relationship, or alternatively the cumulative amount of habitat more suit-
able than r,, can be termed a Aypsogram by analogy to its use in geodesy,
where it summarizes the distribution of altitudes or depths for a physical
topography. The shape of the hypsogram depends on the shape of the
basin topography. Because the area of extensive marginal habitat in-
creases approximately with the square of the radial distance, the quantity
or area of marginal habitat often will increase as basic habitat suitability
declines from the most favorable level. An analytic solution to the inte-
gral in Equation (1.11) can be obtained if the hypsogram is in the form of
a power function:

(1.13) A, = o(rg=ri) -

where p > 0, c is a constant of proportionality, and r, denotes the basic
suitability of the very best habitat. As a mathematical convenience, Equa-
tion (1.13) can be expressed as a pair of parametric equations where yis a
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parameter that relates to the order of habitats from best (central) to worst
(peripheral):

(1.14) r(y) =rg—ryt  m>0;

(1.15) A =a" n>0,

where p = n/m, ¢ = ar,~?, and the set of all habitats, &, is described by a
corresponding set of values of y. Note that Equation (1.15) has a conve-
nient geometric interpretation, in that the area of habitat increases as a
power function of the distance from the center. As we proceed toward
more peripheral habitats, suitabilities may decline at an accelerating (m >
1) or at a decelerating (m < 1) pace. Equation (1.11) can now be rewrit-
ten as an integral over y,
[

(1.16) Nl = 1AW o) =71 b)ay
’1

or
fl

(17 N () = [ [a"(rg=r,y"=r*)/b]dy

“1
The lower limit of integration, /,, corresponds to the best habitat, ry,
which is given by y = 0; hence /; = 0. The upper limit of integration, /,,
corresponds to the value of y at the extensive margin of the population.
From Equation (1.14) and the assumption of an ideal free distribution,
r(l,) = r*, or

m
(1.18) =1, -l

which has the solution
I Iim
(1.19) l, = {“ ]
Ty

Since functions A(y) and r(y) are power functions, Equation
(1.17) is easily integrated. First, separating the function into two inte-
grals,

! L

2
(1.20) N (T = g (’0_’*)Jy"dy — 7, jym”dy :
{

i

performing the integrations,
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*
wy 9 (rﬁ_r) ho wa _ " b menel
N‘l{_‘ll(r) b{("*{‘l) a y (m+n+l) 0 y )
and letting & = (n + 1)/m, [ obtain
o _ @ 1 B 1 —b i 1+¢
(1.2 N (") = b(n o Baloraa l)rl (ro=r*)

This equation also allows carrying capacity (K) to be calculated by substi-
tution of r* = O

ar ¥ T+¢
(1.22) K=_'( 1 _ ! )_0 ‘
b\n+1 m4+n+1/\n

Moreover, Equation (1.21) can be solved for r* as a function of
N> giving

Lid 1+4¢
brl Nmt

(123) r*(Ntol) = rD - 1 1
a e
(n+1 m+n+ l)

Equation (1.23) is similar in form to Equation (1.8), which described the
local per capita growth rate, except that in Equation (1.23) abundance is
raised to a power. Thus, Equation (1.23) can be rewritten in condensed
form as

(1.24) (Ng) =1y — N 0 <8<

where b' is a new constant defined in terms of the old constants a, b, r ,
m,andn,and® = 1 + ¢ = m/{m + n + 1). Note that the constraints of
m > 0 and n > O (see Equations 1.14 and 1.15) require that 0 < 6<1.

Equation (1.24) is a generalization of the logistic modet that has
been investigated extensively by Gilpin et al. (1976), Pella and Tomlin-
son (1969), and Richards (1959), among others. The shapes of population
growth curves corresponding to various values of 8 are shown in Figure
1.7. As shown in the previous literature on the generalized logistic
model, maximum population growth rate occurs at a total population size
{(Nop) which is

(1.25) Ny, = K(1+8)°

1/6

At the maximum value of 8 = 1, overall population growth
remains logistic, and maximum population growth rate (or equivalently,
maximum equilibrium yield) occurs at N, = 0.5K. This value of 8
would be approached only as m approaches infinity. Examination of
Equations (1.14) and (1.15) shows that for the constant slope local logis-
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Figure 1.7 Comparison of productivity curves for limiting values of @ in the generalized
logistic growth model (Equation 1.23). For comparison, maximum net productivity is the
same for both curves.

tic model, the limiting case of m — o would correspond to a flat-bot-
tomed, vertical-sided habitat basin topography. Such a case might corre-
spond to a small island or lake with relatively uniform internal habitat
characteristics sharply bounded by extremely unfavorable external habi-
tat.
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In most cases a substantial range of basic habitat suitabilities
will be available for occupation, in which case DDHS will shift peak
population growth to a population size less than 0.5K, despite the fact that
local maximum productivity occurs at one-half the local saturation den-
sity everywhere in the range. In this model, population size giving maxi-
mum population growth rate cannot fall below K/e, where e is the base of
the natural logarithm (this limit corresponds to 8 = 0, see Gilpin et al.
1976). As Gilpin notes, ‘“The case of 8 << 1 could correspond to a situa-
tion of resource heterogenecity in which the first individuals [viz. low
population sizel exhaust the quality resources.”’ This corresponds (o the
present model behavior but also demonstrates that a population growth
curve is not determined solely by the nature of local density dependence
experienced by the individual organisms. If a population exhibits DDHS,
the topography of habitat suitability may strongly influence the shape of
its population growth curve.

As defined previously, high viscosity refers to the case in which
changes in abundance due to oriented movement are small compared with
those due to local reproduction and mortality. Viscosity becomes particu-
larly important when there is a change in abundance relative to local car-
rying capacity, perhaps due to a change in the habitat basin level or shape
(i.e., a change in the environment), or perhaps due to removal of individ-
uals by predators or by harvesters. Because r, and local carrying capacity
are proportional in this constant-slope logistic model, variability in r, is
equivalent to variability in local carrying capacity. As is discussed later,
viscosity also is an important consideration in harvested populations.

If we ignore movement, local dynamics of the constant slope
model should be consistent with the simple mode! studied by May (1973).
When the local carrying capacity, K, is subject to random variability,
May found that both the mode and the mean population size were below
the mean carrying capacity of a habitat wherein a population grows ac-
cording to a constant-slope logistic model with stochastic variability in r,.
This suggests that the mean surface of the viscous population *‘liquid™
inhabiting the habitat basin again will be slightly depressed in the center.
However, this is an average distribution rather than an equilibrium distri-
bution; in contrast to the diffusive case, there would not necessarily be an
accompanying production of excess individuals near the center nor an ex-
tension into submarginal habitat, and a strong peripheral flow would not
be generated.

[f the temporal variability in habitat suitability were very strong
but relatively local, the basin topography might appear as very irregular,
with bumps and depressions continuously appearing and disappearing.
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Population movements in response to continual changes in suitability gra-
dients would tend to be indistinguishable from diffusive movement.
Many real populations may be faced with this problem of coarse spatial
and temporal grain, and such populations would be continually approach-
ing but would never attain an ideal free distribution wherein abundance
accurately maps the geography of habitat suitabilities.

The presence of viscous population movement also suggests
that productivity curves of dN,/dt versus N, should exhibit hysteresis:
population productivity curves exibited by growing populations would
not be retraced by declining populations. Growing populations would
tend to be centrally distributed, and the surface of the *‘liquid’’ would be
domed near the center. In contrast, declining populations would show a
depressed surface near the center, and at the same levels of abundance the
population would be more peripherally distributed as the range contracts.
To the extent that the habitat distribution of a viscous population tends to
remain the same, the overall shape of the productivity curve would not be
modified as much as in the low-viscosity case examined previously.

1.4 EXTENSIONS OF THE MODEL

The basin model provides ample room for modifications and
extensions. For example, one possibly more realistic representation of
population dynamics will be examined in Chapter 2, which treats optimal
harvesting strategies for an organism (e.g., fish) with diffusive mero-
planktonic larvae. Extension to age-structured populations and compli-
cated life histories is feasible but is beyond the scope of this presentation.
In the present class of models, the most useful and revealing modifica-
tions involve alternative local population growth models. Maintaining the
analogy of realized per capita growth rate and reproductive value, alterna-
tive growth models are equivalent to alternative relationships between
density and changes in habitat suitability.

1.4.1 Other Growth Models

A major theoretical and conceptual benefit of the constant-slope
logistic model used above is the graphical equivalence among the density-
dependent decrease in realized suitability, density itself, and the depth of
the ‘‘liquid’’ in the basin. Other linear and nonlinear growth models lack
this graphic convenience, but their behaviors can be visualized with re-
spect to the constant-slope logistic case.

There are two general requirements of variable-habitat growth
models used in the present context. The first requirement is that the model
must be able to portray realistic dynamics in submarginal habitats, in
which r, < 0, and r* < 0 even at very low densities. The second require-
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ment is that for any habitat, including submarginal habitat, realized suita-
bility must decline monotonically with increasing density (i.e., dr¥/dN <
0). The latter requirement rules out behavioral effects that might reduce
per capita growth rates at low densities, such as have been suggested by
Allee et al. (1949), and which were shown by Fretwell (1972) to produce
seemingly erratic changes in habitat distributions.

Two of the most popular variable-habitat logistic models have
been the “‘fixed r-variable K,”’ and *‘fixed K-variable r,”” families (see
Appendix, Figure A.1). They have severe shortcomings in the context of
DDHS; these problems are reviewed in detail in the Appendix and are
summarized here. Because both families fail to meet the requirements re-
garding submarginal habitats, they are of little use in the present context.

Moreover, even within the realm of r > 0, these two models
produce questionable patterns of habitat selection. The popular “*fixed r-
variable K, family does not generate differential occupation of habitat:
relative habitat distribution remains the same at all population sizes, and
all habitats are equally suitable at low population size or density; the
population behaves logistically, as do the local habitats. The “‘fixed K-
variable r,”’ family allows reasonable variation in habitat suitability at
low population size, but differential selection of habitats disappears as
density approaches K, and apparent order of habitat suitabilities is in-
verted if K is exceeded (densities in habitats with low r, exceed densities
in habitats with high r,). While the latter model has been used mainly to
describe temporal variability and has been justified only by its mathemati-
cal convenience, it nonetheless appears to have potential use for approxi-
mating growth of some territorial species such as Morisita’s (1952, 1971)
ant lions.

Two families of logistic models that potentially are useful are
those that pass through a fixed point in either of the quadrants (r <0, N >
0) or (r > 0, N < 0), respectively termed the SQFP (second quadrant
fixed point) and FQFP (fourth quadrant fixed point) models, as shown in
the Appendix, Figure A.2. These models require some restriction on the
range of basic habitat suitabilities in order to preserve the required nega-
tive slope, but within these restrictions submarginal habitats can be por-
trayed. Notably, Schoener’s (1973) time- and energy-based logistic
model corresponds to the SQFP family. The SQFP model also seems to
provide a fair approximation to Whitham's (1980) fitness curves for
aphids on leaves of various sizes. Historical changes in distribution of
anchovy spawning off southern California are consistent with assuming
that reproductive success follows the FQFP model (Chapter 3).
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There are substantial differences between the ideal free distri-
butions resulting from the SQFP and FQFP logistic models (given the
same suitability basin topography). The FQFP model produces relatively
little range expansion as population size increases, with most of the in-
creased abundance being accounted for by nearly proportional increases
in already-occupied habitats (the intensive margin). The SQFP model
produces the opposite behavior: much of the increase in abundance is ac-
counted for by range expansion (the extensive margin), and densities ap-
proach similar levels over broad regions of central habitat as carrying ca-
pacity is approached.

Because the factors determining basic habitat suitability in dif-
ferent parts of the range are likely to be different, the per capita rate of
decline in habitat suitability, b, may also vary. Up to this point, [ have
tried to avoid this complication. However, unless the nature of local vari-
ability in & can be described and modeled, little can be done to examine
the consequences. Brown’s (1984) hypothesis that factors are serially
correlated in space would require that the rate of density dependence be
similar in extended contiguous portions of the range. This restriction
seems to be sufficient to maintain an orderly population response in the
context of the basin model; ideally, distortion should be very coarse
grained, allowing most of the properties of the model to be retained, at
least qualitatively.

As with variable-habitat logistic models, there is an even
greater variety of possible variable-habitat nonlinear growth models. For-
tunately, they fall into two broad categories, each with characteristic be-
havior. The per capita growth rate may be convex with respect to density,
as is often the case for birds and large mammals which show most of their
compensatory capacity at abundance levels near carrying capacity
(Fowler 1981, Murray 1979). Alternatively, the relationship may be con-
cave, as is the case with many smaller organisms such as insects and
fishes which exhibit most of their compensatory capacity at low levels of
abundance (Cushing 1971, 1973, Fowler 1981, Garred and Knights
1979, Stubbs 1977). One possible family of nonlinear growth curves is
that in which each habitat is characterized by a basic suitability, r,, and
the slope of the per capita growth rate curve is a nonlinear function only
of density (Figure 1.8):

(1.26) o= = f(Ny/Ay)
This model is analogous to the linear constant-slope logistic model (top of

Figure 1.8) in that all habitats have the same dr*/dN for a given density.
The concave growth rate curves typical of small organisms such
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Figure 1.8 Families of linear and nonlinear *‘constant slope’” habitat suitability curves.
Solid dots indicate habitat population densities according to the ideal free distribution:
top, linear family; middie, concave family typical of small animals; bortom, convex fam-
ily, typical of large animals.
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as insects and fishes are shown in the middle of Figure 1.8. While chang-
ing range to some extent, these populations would show relatively large
changes in density in habitats that are already occupied (the intensive
margin). Because species with concave curves favor changes mainly in
the intensive margin, where the bulk of the population resides, the popu-
lation productivity curve will be approximately congruent with the local
productivity curve.

The convex growth rate curves typical of large organisms is
shown at the bottom of Figure 1.8. For these types of animals, changes in
total population size are expected to be associated with changes in range
(the extensive margin), while densities in already-occupied habitats
would change relatively little. As these species favor large changes in the
extensive margin, their population productivity curves are skewed rela-
tive to the productivity curves characteristic of local habitats. While a
sensitive response allows these populations to regulate their abundance at
a level near carrying capacity (Fowler 1981), differential occupation of
habitats provides a potentia) resilience to severe depletion that is not ap-
parent from traditional single population growth curves.

Note that the ideal free distributions associated with this family
of nonlinear models are nearly indistinguishable from those associated
with the SQFP and FQFP logistic models for convex and concave nonlin-
ear models, respectively (Figure 1.9). While DDHS theory suggests the
possibility of inferring the shape of the local suitability (or population
growth) curves as a function of density (e.g., Whitham 1980), in most
cases it may not be feasible to do more than discriminate between con-
verging (convex) versus diverging (concave) families of curves (also see
Morris 1987).

Changes in the shape of population growth curves due to den-
sity-dependent habitat selection can be important to resource manage-
ment. Pella and Tomlinson (1969) examined some of the consequences of
skewed growth curves on sustainable fishery harvests. An example of di-
rect application involves management of marine mammals in the United
States under the Marine Mammal Protection Act, which specifies that ma-
rine mammals must be managed for optimum sustainable population
(OSP).

The term optimum sustainable population has been defined
operationally to be a population size falling between the level of maxi-
mum net productivity (MNPL) and maximum population size, or carrying
capacity, K (Gehringer 1976). Consequently, much research has been di-
rected toward understanding the relationship between MNPL. and K for
these organisms (see Fowler 1981).
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Figure 1.9 Comparison of nonlinear and nearly equivalent linear families of habitat suita-
bility curves. See Appendix for explanation of FQFP and SQFP models.
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Nearly all of the previously considered mechanisms influencing
the shape of marine mammal growth curves have indicated that MNPL
should occur at a relatively high abundance, approaching X, and well
above the logistic MNPL of 0.5K. The convexity of these per capita
population growth curves suggests that DDHS may be a mechanism that
can produce estimates of MNPL that are lower than those arising from
usnal homogeneous population models. The extent of this change cannot
be assessed without extensive historical information, especially on
changes in historical geographic ranges or distributions.

Fretwell (1972) discusses the relation of his DDHS model to
several types of territoriality. One possible consequence of territonality
is simply to produce convex suitability curves (bottom of Figure 1.8). In
this case suitability declines rapidly at high densities, but an ideal free
distribution is possible.

A more interesting effect of territoriality is the case in which
behavior prevents attainment of an ideal free distribution, so that occupi-
ers of good territories (high r,) are able to maintain r* > 0 at all popula-
tion sizes. Fretwell examined the effect of this ‘*ideal despotic distribu-
tion’’ in relation to several hypotheses about the nature of territoriality.
O’Connor (1985) compares predictions from Brown’s (1969) rigid terri-
toriality with those of Fretwell and Lucas (1970) or Fretwell (1972),
where territorial compression is possible.

In the context of the basin model, rigid territoriality might be
represented as a limit to the number of individuals that can occupy a given
habitat (the dashed line in Figure 1.10). Within that limit, individuals ar¢
free to occupy the best available habitats. The amount of decline in real-
ized suitability is accordingly limited, so the good habitats continue to
produce more offspring than are needed for replacement (r* > 0). A
population that fills the basin to the level r* = G (which is experienced
only at the margins) will be producing offspring in excess of replacement,
so the population will still be growing. These excess individuals must
choose either to occupy submarginal habitat or to forgo reproduction.

Presumably this choice will be based ultimately on comparative
reproductive value. Thus, submarginal habitats would be utilized either to
the point where excess production in the good habitats is balanced by
insufficient reproduction in the poor habitats or to the point where being a
“floater”’ confers a higher reproductive value, whichever solution occurs
at the lower level of abundance. The ideal free (or despotic) distribution
requires that the reproductive value of a floater be equivalent to the repro-
ductive value conferred by possessing the poorest occupied habitat. As in
other cases of convex per capita growth curves (this is an extreme), the
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Figure 1.10 Basin model applied to a territorial species. The dashed line indicates the
limiting density dug to territoriality and approximately follows the basin topography. The
shaded region is the maximuam occupied habitat at carrying capacity (no net population:
growth), with preduction of floaters.

severe limit on utilization of the intensive margin requires that population
growth be accommodated almost entirely by utilization of the extensive
margin, i.e., expansion of the range.

1.4.2 Fish Stock-Recruitment Models

Fish stock-recruitment models attempt to describe the quantity
of offspring (recruitment) that is produced by various levels of parental
(stock) abundance. The two stock-recruitment models that appear most
frequently in fishery studies are the Ricker (1954) model and the Beverton
and Holt (1957) model. Some comparisons of the two models are given
by Cushing (1973) and Ricker (1975).

As a simplification, suitability of spawning habitat can be mea-
sured by the expected number of recruits produced per spawner. By
focusing only on immediate reproductive success, this assumes that there
are no trade-offs between spawning and survival or future fecundity. An
ideal free distribution therefore is the geographic distribution of spawners
that results in all spawners expecting to achicve the same reproductive
success. Thus stock recruitment models can be examined in terms of the
Fretwell-Lucas model and the basin model.

The Ricker model is often written in the form
(1.27 R = aSexp(—bS),

where R is recruitment and S is parental spawning stock. If, according to
the ideal free distribution, the quantity (R/S) is equal among all occupied
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habitats, then the quantity Ln(R/S) also must be equal. Equation (1.27) is
equivalent to

(1.28) Ln(R/S) = Ln(a) — bS .

where density-independent factors such as environmental effects on
spawner fecundity and density-independent sources of offspring mortality
are included in Ln{a}, and density-dependent sources of mortality and re-
duced fecundity are included in the term bS. If density-dependent effects
on fecundity are ignored and spawner abundance is measured in terms of
eggs released, the two terms correspond to exponential coefficients of
density-independent and density-dependent mortality, with Ln(R/S) being
the coefficient of total mortality. This gives the simple distribution rule,
Z*=Zh+bSh ith{Z*,

(1.29) -0 otherwise,

where Z* and Z, represent total and density-independent coefficients of
mortality, respectively (Figure 1.11),

8.5

10

10.5

Baverton
and Holt

SPAWNER SUCCESS [-in{R/S)]

1M

LOCAL SPAWNER DENSITY

Figure 1.11 Comparison of habitat suitability curves for the Ricker and Beverton-Holt
stock-recruitment relationships. Density dependence is scaled so that spawning success is
the same for the two models at a density of 1.0 in the middle habitat.
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Assuming that the value of b is independent of habitat, the
Ricker stock-recruitment model is equivalent to the constant-slope logis-
tic model described previously, and variability in & would produce similar
distortions. In any case, we would expect to see substantial expansion and
contraction of range with changes in spawner abundance. Murphy (1977)
noted that this population behavior is characteristic of clupeoid fishes (an-
chovies, sardines, and herring), contributing to their susceptibility to
overfishing (cf. Figures 1.12-1.16).

The basin model predicts that such populations will tend to con-
tract toward the most favorable habitat as they are fished down. More-
over, catch per nominal fishing effort, which is potentially an index of
abundance in the fished area (i.e., the depth of the “‘liquid’” at the center
of the population), will not decline as fast as the total abundance, which is
the volume of the ‘‘liquid’’ in the basin. Thus, the basin model accounts
for one mechanism leading to the most pernicious fishery problem, that of
a stock-dependent rather than a constant catchability coefficient (the prob-
ability that a unit of fishing effort will capture an arbitrary single fish in
the stock, increases as the stock becomes smaller).

Pelagic fishes, such as the clupeoids, exhibit very high mobtlity
and hence low viscosity. Because of the similar linear properties of the
Ricker model, the relationship between the local stock-recruitment rela-
tionship and the population stock-recruitment relationship can be derived
by analogy to the logistic case in Equations (1.8) through (1.24). The
result is the population stock-recruitment model,

(1.30) R = aS exp(—- bs")

the quantity 6 being defined as it was in Equation (1.24). The population
stock-recruitment relationship is altered by habitat selection, so that the
descending limb characteristic of the Ricker model tends to be eliminated
(Figure 1.17); at high abundances, productivity at the center of the re-
source may be on the descending limb of the local stock-recruitment
curve, but increasing productivity from marginal habitats tends to offset
that decline. In the presence of random year-to-year variability in stock
and recruitment data, the modified stock-recruitment relationship might
be indistinguishable from the asymptotic Beverton-Holt relationship (see
below).
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Figure 1.12 Geographic distribution of northern anchovy (Engraulis mordax) larvae at
low population size. Abundance of central subpopulation (California and northern Baja
California) was ca. 20,000 tons in 1952. Units are numbers per 10 m2, and shading scale
is logarithmic. From Kramer and Ahlstrom (1968).
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'Figure 1.13 Geographic distribution of northern anchovy (Engraulis mordax) larvae at
high population size. Abundance of central subpopulation (California and northern Baja
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is logarithmic. From Kramer and Ahlstrom {1968).
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Figure 1,14 Geographic distribution of Peruvian anchoveta (Engraulis ringens) eggs at
high population size (abundances are from IMARPE cruise 6708, September 1967). Mod-
ified from Santander et al. (1982).
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Figure 1.15 Geographic distribution of Peruvian anchoveta (Engraulis ringens) eggs at
low population size (abundances are from IMARPE Eureka cruise 42, September 1975}
Modified from Santander et al. (1982).
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Figure 1.16 Geographic distribution of Japanese sardine {Sardinaps melanosticta)
catches at high and low population sizes. Catches were 2.7 million tons in 1936, 1.8
miltion tons in 1940, tess than 0.1 mitlion tons in 1960, and 1.4 million tons in 1977.
Redrawn from Sharp (1980).
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Figure 1.17 Population stock-recruitment relationships arising from local Ricker dynam-
ics and density-dependent habitat selection.

The power function bS* in Equation (1.30) describes the rela-
tionship between the depth (density dependence) and volume (stock size)
in a basin model based on a Ricker stock-recruitment relationship. As-
suming that most of the fishing occurs in the area of highest density, the
relationship between the catch per unit of nominal fishing effort (CPUE)
and the stock abundance should follow approximately the same power
function. MacCall (1576) estimated such a power function for the rela-
tionship between overall CPUE and abundance in the Pacific sarding fish-
ery off California, and obtained 6 values of 0.3-0.4, which are consistent
with but not proof of this geographical theory.

Csirke (1980) developed an unusual form of the Ricker model
for the Peruvian anchoveta, in which the abundance in the density-inde-
pendent term (S) is based on virtual population analysis, while CPUE is
substituted for abundance in the density-dependent term. His rationale is
that the total production of eggs is best represented by the total spawning
population size, while the intensity of density-dependent effects is best
measured by CPUE, which reflects the relative crowding of the fish.
Csirke’s model,

(1.31) r = aSexp(—bl),

where U, a catch-per-unit-effort index of density, is entirely consistent
with the basin model. Not only is Csirke’s model much less demanding in
information than the basin model, but the use of CPUE potentially is
more responsive to short-term variability in population distribution.
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The Beverton-Holr model often appears in the form
5
~aS+b’

which describes a hyperbola with an asymptote of & — 1/g as § becomes
large. Unfortunately, this parametrization does not allow clear separation
of density-dependent and density-independent influences. A more usefui
form is an equation developed by Beverton and Holt (1957, p.48) as an
intermediate step in solving the differential equation

(1.33) 53‘}.":— — _N(Z+bN),

(1.32)

where Z is the density-independent mortality rate. The solution of this
differential equation leads to Equation (1.32) and describes the rate of
decline of a cohort of larvae (with abundance N) where the individuals
interact adversely. I have reparametrized this intermediate equation (see
Beverton and Holt for its derivation):

exp(ZhI)— IJ + exp(th) |

where f is fecundity per unit of spawner abundance (§,), Z, is the density-
independent mortality rate in habitat A, and ¢ is the duration over which
density-dependent mortality acts. The rate of density dependence, b, de-
scribes the mortality rate of larvae per unit of larval density, showing why
fecundity must be be considered explicitly. Equation (1.34) is difficult to
work with, but the quantity Z,¢ is usually enough greater than 1 {in light
of typical larval mortality rates) to aliow the approximation exp(Z,t) — |
= exp(Z,t). This allows an approximate solution of Equation (1.34) in
terms of recruits (R) per spawned egg (fS), which is the quantity that
should be equal among habitats according to the ideal free distribution.
Equation (1.34) is easier to solve in terms of fS/R, which is the reciprocal
of spawning success,

R =
(1.34) {fﬁl
Zh

1S, £5,b
(1.35) — == explZ, ¢t [—+ 1
v = on(z)[ 52
which must be equal among habitats giving the distribution rule
15,6 ]
(1.36) ZF = Z,r + Ln[—-z-;— +1].

Thus, the Beverton-Holt model assumnes that habitat suitability
declines approximately as the logarithm of spawner abundance (Figure
1.11). This approximate solution is in the family of concave nonlinear
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“‘constant slope’’ suitability curves described by Equation (1.26). Ac-
cordingly, the habitat distribution of spawners would follow the pattern of
relatively little expansion and contraction of range but rather large
changes in density of spawners in the best habitats. The shape of the Be-
verton-Holt curve will not be affected strongly by habitat selection be-
cause changes in abundance would be associated primarily with changes
in intensive rather than extensive marginal use of habitats.

The existence of well-defined spawning seasons for many spe-
cies of fish (Cushing 1969) suggests that temporal changes in suitability
of spawning habitat would conform to a lowering of the suitability basin,
followed by a raising. Peak spawning presumably would be near the pe-
riod when the basin reaches its lowest {most favorable) level. In the case
of multiple-batch sequential spawners such as the anchovy (Hunter and
Goldberg 1980, Hunter and Leong 1981), active spawning may span the
favorable period. But for single-batch spawners, optimal timing of
spawning would require a careful match to the time of maximum habitat
suitability.

The problem of optimal timing of single-batch spawning be-
comes much more interesting as complications are added. What is the
optimal strategy if the optimum time cannot be anticipated accurately?
How is the optimum strategy altered if larger, early-spawned larvae have
a competitive advantage over (or even cannibalize) younger larvae? Or,
in the case of salmon and herring, what if the later-spawning individuals
suffer less risk of their eggs being rendered inviable by the activity of
subsequent spawners? And particularly, how do these strategies and their
interactions with demographic effects of exploitation affect the stock-re-
cruitment relationship? Parker (1985) and Parker and Courtney (1983)
have examined some aspects of this problem from the sociobiological
standpoint of *‘evolutionarily stable strategies’’ (Maynard Smith 1982).
Their work suggests that the temporal evolutionarily stable strategy, or
ESS, for larval competition and risk aversion appears to be to reproduce
earlier than the anticipated time of best environmental conditions.

Density dependence complicates the problem of temporal op-
timization (Williams and Nichols 1984), and this aspect of the problem is
especially open to investigation. However, it seems reasonable to conjec-
ture that the optimal *‘lead time”’ may be density dependent, being larger
at higher population densities. In the present geographic model, an ESS
might be for spawning to be earlier in the central densely occupied habi-
tats and to be somewhat closer to the time of maximum environmental
suitability in peripheral habitats. However, if the greater lead time in the
central habitat causes the effective suitability of that habitat to be less, the
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ideal free distribution would require further redistribution of spawners to-
ward the peripheral habitats.

In the case of salmon and herring, an appropriate density-de-
pendent ‘‘lag time’* would be expected, once again with a peripheral re-
distribution of spawners. Because fisheries often exploit particular tempo-
ral and geographic subsets of fish populations (e.g., early spawners and
central spawning areas), stock-recruitment curves could be distorted fur-
ther by differential exploitation patterns.

As a final technical note, these timing problems are not likely to
be solved by a ‘‘pure ESS’’ that dictates a single optimal time of spawn-
ing: there would probably be another time at which a small number of
spawners could be more succesful; i.e., this strategy could be invaded by
a rare alternative strategy (Maynard Smith 1982). The solutions are more
likely to take the form of a “‘mixed ESS’’ that is a distribution of spawn-
ing times and locations, each with a specificd probability. As Parker
(1984) notes, at equilibrium under a mixed ESS, each component strategy
must do equally well, which once again is consistent with the principles
of habitat selection under an ideal free distribution.

1.5 DISCUSSION

The basin model might be termed ‘‘ambiticus’” in that it at-
tempts to include a wide variety of phenomena in a single framework.
This quality incurs two particular dangers. The first is that few actual
populations may fit such a generalized model. However, the model
should not be dismissed unless some attempt has been made to recognize
and incorporate the peculiarities of individual cases; the model provides
ample room for modification. An example of such a modification, involv-
ing a diffusive meroplanktonic larval stage, is developed in Chapter 2.
The second, and more difficult problem is the danger of circular reason-
ing, which accompanies all models utilizing optimality as a governing
principle in attempting to describe real phenomena.

The assumptions of the basin model are exceedingly ditficult to
validate (see Chapter 3). This is especially the case when we allow that
the idealized population and habitat behavior in the model may not be
reflected by the ‘‘imperfect’’ behavior of real populations. As the logistic
model has been a seriously oversimplified but nonetheless useful descrip-
tion of some aspects of population dynamics (Kingsland 1982), the basin
model may similarly prove useful. The question may not be whether but
how well the basin model describes population behavior, and then
whether the description is good enough to be useful. Of course, the crite-
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ria for *“good enough’” depend on the application. An alternative to direct
validation of the assumptions may be to test predictions (viz. hypotheses)
made by the model about population behavior, especially under novel
conditions. Fortunately, the model is rich in this respect.



2

GEOGRAPHICALLY OPTIMAL HARVESTING

Although geographic controls on harvesting are among the old-
est forms of resource management, the problem of geographically opti-
mum strategies has seldom been addressed. In the past, geographic con-
trols often have been the result of social or economic considerations, with
or without a biological rationalization; examples range from private own-
ership of habitat to prohibition of harvesting in polluted areas. Instances
where geographic controls have been biologically motivated have tended
toward establishment of protected areas or refuges, especially during vul-
nerable stages in the life histories of intensely exploited or overexploited
species. For example, salmon usually are protected from commercial har-
vest while in their spawning streams.

Here I attempt to apply the preceding geographical population
model to the classical exploitation problem of maximizing sustainable
harvest. So-called maximum sustainable yield, or MSY, is a simple and
convenient objective in theoretical investigations, but good management
will seldom wish to choose such a narrow objective. More complicated
definitions of optimality will want to consider the amount harvested and
the fishing effort required to obtain it. Rather than simply open or close
areas to exploitation, managers may consider a variety of options that
arise from controlling the geographic deployment of fishing effort. How
much harvesting pressure should be allowed in various portions of the
range of the resource? And more generally, does geographic control of
harvesting produce unique benefits? What are the relationships between
resource and habitat characteristics and optimal geographic patterns of
harvesting?

The basin model also allows consideration of a further set of
conservation and management issues that arise from geographic consider-
ations. Environmental impact analyses often attempt to evaluate the con-
sequences of habitat changes at a specific location. Existing ecological
theory has provided little help, in part because of the lack of appropriate
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geographical population models. On the other hand, managers occasion-
ally consider or attempt habitat improvements such as artificial reefs, in
some cases as a mitigative measure for anticipated habitat damages in
another location. More traditionally, managers also may create refuges,
as described above. Yet there have been few guidelines for evaluating or
optimizing the siting of such habitat impacts or improvements.

Many of these issues are addressed easily by the basin model
developed in the preceding chapter. However, the simple population dy-
namics portrayed by the logistic model may not form a satisfactory basis
for generalizations. In order to address a more realistic life history, 1 sub-
sequently explore simulations incorporating basin model concepts along
with traditional fishery modeling components.

2.1 THE BASIN MODEL REVISITED

The key issue in sustainability as well as optimal geography of
harvests is the mechanism by which harvested removals are replaced by
the population. At low viscosity, movement of individuals is rapid with
respect to growth and harvesting rates, so that harvests have a roughly
equivalent effect on the population wherever they are taken. Immediate
replacement is by immigration, and the lost biomass is replaced by pro-
ductivity wherever it occurs in the population.

High-viscosity logistic populations are assumed to replace
losses due to harvesting mainly by in situ population growth, with immi-
gration proceeding at a negligible rate. Thus, there is little interaction
among harvests in various locations. Accordingly, in the case of high vis-
cosity, maximum sustainable yield is obtained by maximizing local sus-
tainable yields at every location. Since this model assumes locally logistic
growth, optimal harvesting must hold the abundance at one-half its carry-
ing capacity or saturation level (i.e., at 0.5K,) at every location (Figures
2.1 and 2.2). Coincidentally, optimum total population size is one-half
the total carrying capacity. For each location, the optimum rate of harvest
(F,) is equal to one-half the rate of increase corresponding to the local
value of basic suitability (r,), and the central, most productive areas are
therefore harvested more intensely than the marginal or peripheral areas.
But because optimum abundance {N,)} is highest in habitats with the high-
est realized rate of increase (r,,*), productivity is effectively proportional
to the square of abundance, and the amount of harvest taken from these
most productive central areas is disproportionately large. Also, note that
any slight suitability-oriented population movement will slowly erode the
edges of the distribution, relative to the optimum in Figure 2.2, as indi-
viduals move toward better habitat and abandon peripheral margins.
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Figure 2.1 Local logistic
population productivity
curves for the example habi-
tats shown in Figures 1.1
and 1.2
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Figure 2.2 Comparison of geographic density distributions maximizing total productivity
for low-viscosity and high-viscosity logistic populations.

For the same habitat topography and local density dependence,
maximum harvest from a highly viscous population would greatly exceed
that from a nonviscous population. This can be seen from the comparison
of optimal density distributions for high-viscosity and low-viscosity
populations in Figure 2.2. In this figure, the high-viscosity optimum den-
sity coincides with the low-viscosity optimum density in only two loca-
tions. At all other locations, local productivity of the low-viscosity popu-
lation is less than the local potential maximum. In the high-viscosity case,
optimal harvesting produced maximal harvests at every location.
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Practical examples of high-viscosity resources might include
plant species such as timber forests where replacement is dependent on
natural propagation. Also, benthic invertebrates such as crabs or clams
would fall in this category. Many territorial animal species tend to exhibit
high viscosity but do not necessarily conform to the ideal free distribu-
tion, Optimal harvesting from an ideal despotic distribution may require
quite different harvesting strategics due to differences in relative utiliza-
tion of intensive and extensive marginal habitat. Also, the mechanism by
which harvests are replaced may be important to the strategy of optimal
harvesting. For example, replacement by nonterritorial ‘‘floaters,”’ which
have been produced elsewhere (low viscosity, short delay}, produces dif-
ferent harvesting properties than does replacement by in situ reproduction
by territory halders (high viscosity, long delay).

2.2 ASIMULATED RESOURCE

The rest of this chapter treats simulated populations that are
variations of a standard fishery model. The model is driven by a determi-
nistic stock-recruitment relationship and includes a dispersive larval
phase, so that recruitment is not restricted to the site of parental spawning
(this is a major difference from the logistic model in Chapter 1). The sim-
ulations allow comparisons of alternative behaviors, on the part of both
the fish and the fishermen.

2.2.1 Life History
The simulated annual life cycle consists of five phases:
1. Spawning, which obeys a constant-slope Ricker model (see
Chapters 1 and 3).
2. Recruitment, after dispersion from the site of spawning, to

the adult population.

3. Natural mortality, which is a constant fraction independent
of age or location.

4. Harvesting, as a location-specific instantaneous removal of
individuals.

5. Adult movement, which may be oriented to the suitability of
adjacent habitats.

The movement phase completes the annual cycle, and the simu-
lation begins the next year with spawning. The order of events in the cy-
cle is arbitrary, and experimentation has shown that alternative orders of
events (e.g., movement after recrnitment but before harvesting) do not
produce substantially different population behaviors or results. Also,
some of the components could be combined to produce a somewhat more
realistic model. For example, natura! mortality and harvesting could be
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represented as a continuous process involving simuitaneously competing
risks of death, as is standard in fishery models that use the Baranov catch
equation. However, such a representation requires iterative solutions to
the equations, slowing the computations, and yet produces results that are
nearly indistinguishable from the simpler model.

Many previous models and simulations of habitat selection
have successfully used a discrete formulation of simple two-habitat mod-
els {e.g., Rosenzweig 1981), and Bryant (1973) went so far as to con-
clude that two-habitat models are sufficient for most generalizations,
However, models with larger numbers of discrete habitats may possess
important emergent properties (e.g., Hamilton and May 1977, Hassell
1980, Starfield et al. 1981), and certainly provide a more recognizable
link to habitat or pepulation geography in the real world. Yet, use of too
many habitats incurs a severe computational burden while returning little
additional insight.

The geography of these simulated populations and their habitats
is one-dimensional, consisting of a series of 19 contiguous sites, or
*‘cells.”” I chose this formulation because it provided a recognizable habi-
tat distribution, it could accommodate a variety of movement dynamics,
and computation was feasible. In keeping with the basin model, the most
favorable habitats are at the center of the series. Each cell has attributes
such as abundance, harvesting rate, and habitat suitability. 1 implemented
the model on a 16-bit personal computer, using the vector-oriented lan-
guage APL. Details of the individual components of the simulation model
are discussed in greater detail below.

2.2.2 Spawning and the Habitat Basin

The stock-recruitment relationship is modeled as a set of habi-
tat-specific Ricker cuives (Equation 1.27). The density-dependent param-
eter {b) is constant for all habitats, while the density-independent parame-
ter (a;) is habitat-specific. Habitat suitability is measured in terms of
reproductive success, i.e., as Ln(R/S), which declines linearly with local
abundance (Equation 1.28), allowing graphical representation similar to
that developed in Chapter 1. The habitat basin is shown in Figure 2.3,
where density-independent habitat suitability, Ln(a,), ranges from — 2.5
at the edges (cells 1 and 19) to 1.5 in the three center cells (%, 10, and 11),
The basin is symmetrical and has a very smooth topography. The stock-
recruitment relationships for each cell are shown in Figure 2.4. Spawners
in the central cells are much more productive than those in the peripheral
cells for comparable local abundances. Note that only cells 6 through 14
potentially produce offspring in excess of the amount needed to replace
the annual loss of parents due to natural mortality (see below). The real-
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ized suitability corresponding to replacement is shown in Figure 2.3 as a
horizontal line intersecting the basin between cells 5 and 6 and between
cells 14 and 15.

-3 Figure 2.3 Habitat basin
used in the simulations. Be-
2] low the horizontal line, den-

sity-independent conditions
allow recruitment to equal
or exceed replacement
fevels.
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Figure 2.4 Stock-recruitment curves corresponding to the habitats in the simulated suita-
bility basin. Arrows indicate location of maximum surplus recruitment.
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2.2.3 Larval Dispersal, Recruitment, and Natural Mortality

After spawning, eggs and larvae disperse before settling in the
various cells as recruitment. Two patterns of dispersion are considered
here (Figure 2.5). The first pattern has no mean drift or advection, so that
larvae settle symmetrically around the source to a maximum distance of
four cells on each side. The second pattern includes a two-cell mean drift,
so that the same relative dispersion pattern occurs but the entire pattern is
advected two cells to the right. Importantly, larvae that drift outside the
19-cell range are lost. If habitat suitability were measured on the basis of
larvae that eventually settle rather than simply those that are produced,
the basin in Figure 2.3 would show increasing slopes toward the edges
and would be asymmetrical in the case of two-cell mean drift.

Source

Larval Dispersion

|
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-
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S | | | ,
o |
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RELATIVE LOCATION OF RECRUITMENT

Figure 2.5 Patterns of meroplanktonic dispersal. Upper pattern is diffusive with no net
drift. Lower pattern is identical except for a two-cell advective (drift) component.

After dispersal, the arriving offspring (recruitment) are added
to each cell’s abundance and contribute to the parental abundance in the
next spawning. Abundances in all cells are then reduced by a natural mor-
tality of 25 percent. Thus, the replacement line in Figure 2.4 has a slope
of 0.25 recruits/spawner. Note that there is no age structure, but the mean
life span of a recruit would be four ‘‘years’’ in the absence of fishing.
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2.2.4 Harvesting

Harvest consists of subtracting a fraction (H,, not to exceed
unity) of a cell’s abundance; the actual fractions depend on the harvesting
rule being investigated. Fishing intensity in cell & (F),) is defined as

2.1 F, = —Lo(1-H,).

Thus, F is analogous to an instantaneous fishing mortality rate (Ricker
1975), and individuals are subject to competing risk of capture by inde-
pendent sources of fishing mortality. For the purposes of these simula-
tions, F is referred to as “‘fishing effort,”” and represents a quantity of
fishing activity that can be moved from cell to cell in the way individual
vessels in a fleet distribute themselves in time and area. Fishing intensity
or effort is cell-specific, allowing various geographic harvesting strate-
gies to be investigated. In each simulation, the total amount of fishing
effort is held fixed and is allocated among the cells according to the har-
vesting strategy.

Two particular harvesting strategies are investigated here. The
first is a free distribution of fishing effort, representing the distribution of
fishing activity in the absence of geographic restrictions. Fishermen are
assumed to seek out the locations producing the highest catch rates, hence
the locations with the highest abundances. However, their fishing activity
reduces the abundance in those locations in the following year, abun-
dance being the sum of the survivors and new recruits. Thus, unregulated
fishing is assumed to result in an ideal free distribution of fishing effort
whereby abundance or catch per effort (immediately prior to the harvest,
when fishermen choose fishing locations) is the same in all exploited cells
and is lower in any unexploited cells (Gordon 1953; cf. discussion of
DDHS in Chapter 1).

In contrast, optimal harvesting strategies dictate the geographic
distribution of the fishing effort in order to maximize the total quantity of
harvest. Many other definitions of optimality could be considered, but
maximum sustainable yield from a fixed total quantity of effort provides
the clearest comparisons for these simulations. In most cases the optimal
geographic distribution of effort cannot be determined analytically; it re-
quires a numerical search. Unfortunately, a change in the effort assigned
to any one cell generates changes in the harvest taken from many cells,
because the fixed total amount of effort requires offsetting changes in ef-
fort elsewhere, and because the recruitment arriving in adjacent cells also
is altered. For each distribution of fishing effort, the model was allowed
to run for 60 simulated years to insure that a steady state had been
reached; damped oscillations often lasted for 40 or more simulated years.
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2.2.5 Movement

Two contrasting cases are examined. The first is an immobile
population, such as clams, whose adults are incapable of movement once
the larvae settle out of the water column as recruitment. The second case
exhibits viscous movement with habitat selection. Viscous movement is
generated by an algorithm called DDHS, which simulates density-depen-
dent habitat selection (Table 2.1). Movement is oriented to the difference
in realized suitabilities between adjacent cells, and the quantity moved is
proportional to that difference, except that not more than half a cell’s
abundance is allowed to move in a particular direction in a single itera-
tion. Movement with reduced viscosities is simulated by sequentially ap-
plying the DDHS movement algorithm several times.

TABLE 2.1 Movement algorithm DDHS, simulating density-dependent habitat

selection. The example basin topography is flat with suitability of 1.0, density
dependence is —0.4/N, and viscosity scaling factor is 1.25.

CELL
1 2 3 4 5

Abundance {¥}) 0.5 1.5 2.5 0.5 1.0
Suitability (S, = 1 —0.4N,) 08 ¢.4 0.0 0.8 0.6
Difference or gradient in suitability?

Dy = S0 —8) -04 -04 0.8 -0.2
Determine total flux across cell

boundarics (Mtot, ;, ), based on

suitability gradient and arbitrary

constant scaling factor related to

viscosity? (Mtot = 1.25D) -0.5 -0.5 1.0 -0,25
Flux across left boundary of cclt i

(ML; = max{Mrot,_, ;,—0.3N)). 00 -05 -05 1.0 ~0.25
Flux across right boundary of cell

(MR; = min(Mtot; ;. ,0.5N)) —~0.5 =05 1.0 —-0.25 0.0
Net change in abundance in cell f

(ML, —MR)) +0.5 0.0 -~1.5 +1.25 =025
Abundances (¥;) after this single

application of the DDHS algorithm 1.0 1.5 1.0 1.75 0.75
Eventual equilibrium abundances 1.2 1.2 1.2 1.2 1.2

NOTES

a. Negative means more suitable to the left, positive means more suitable to the right.
b. Negative means move to the left, positive means move to the right.

¢. Limit flux in any direction to one-half of originating cell contents.
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2.3 IMMOBILE ORGANISMS

It is often revealing to examine behavior of extreme cases of a
model. Because the extreme of viscosity is the case of immobility, I first
consider an organism that is incapable of movement in the adult (repro-
ductive) life stage. Most species of plants would be included in this case.
Fishery examples might include molluscs such as clams, some crusta-
ceans, and some reef fishes. The planktonic larval stage disperses recruit-
ment among the habitats according to the geographic distribution of pa-
rental spawning and the patterns of larval transport. I assume that
transport is also diffusive and may or may not provide a net directional or
advective movement of offspring relative to the parental location (see de-
scription above); these two cases provide an important contrast.

2.3.1 No Net Advection of Offspring

The distribution of abundance in the unharvested state can be
represented by a basin diagram as was developed in Chapter 1 (Figure
2.6). Because the population does not show DDHS, and because the lar-
val stage is diffusive, the population extends symmetrically into the sub-
marginal peripheral habitats. The central habitats produce an excess of
offspring (the realized suitability is below the replacement line), which
compensates for insufficient peripheral production.

-3 Figure 2.6 Basin diagram
of an immobile population
where offspring are subject

to diffusion but no net drift.
Local optimum abundances

-2

r-1- correspond to MSY levels
= shown in Figure 2.4.
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The geographic distribution of abundance under free harvesting
is shown in Figure 2.7. As described previously, free harvesting is as-
sumed to produce a characteristically flat abundance profile over the
harvested range. The production curve associated with free harvesting is
very nearly symmetrical (Figure 2.8). Maximum sutainable yield is 3.97
and occurs at an F, of 1.46; the resource cannot sustain harvesting above
an F ., of 3.20.
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8 Figure 2.7 Distribution of
- 0 an immobile population {no
net drift of offspring) under
6 free harvesting. Illustrated
levels of fishing mortality
wos are F = 0,1, and 3.
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Figure 2.8 Production curves for an immobile population (no net drift). The upper curve
results from geographic optimization, and the lower curve corresponds to a free distribu-
tion of effort. The amows indicate locations of £y ; policies.

Optimal harvesting is in this case similar to that of the basin
model with a viscous logistic population and can be determined analyti-
cally. Maximum productivity should be obtained when the abundance is
optimal at each location. At maximum surplus production (the maximum
difference between recruitment and replacement) from each cell, the
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slope of the stock recruitment curve is equal to the slope of the replace-
ment line. Diffusive loss of potential recruits to habitats outside cells 1
and 19 must be included in this calculation. The optimum spawning abun-
dances are shown in Figure 2.4. In peripheral cells 1-5 and 15-19, re-
cruitment cannot exceed replacement and optimum spawner abundance is
zero: all peripheral individuals are harvested. An iterative search for the
optimal geographic harvesting strategy confirmed the above solution,
where MSY is 5.16, or about 30 percent larger than MSY obtained from a
free effort distribution.

The production curve for geographically optimal allocations of
limited effort is shown in Figure 2.8. In agreement with the above solu-
tion, this production curve is asymptotic to a yield of 5.16 as F becomes
very large. However, the curve lies above that for free effort at all levels
of F greater than | and is indistinguishable for lower levels of harvesting
intensity. The benefits of geographic optimization increase as total £ in-
creases, and are particularly great relative to an unregulated and overex-
ploited (F > 2) resource.

A comparison of geographic distributions of fishing effort
shows that under free harvesting (Figure 2.9), effort remains concentrated
at the center of the resource, and at higher intensities there is little expan-
sion of the fishing range. Under geographically optimal harvesting (Fig-
ure 2.10), the distribution of effort is central initially, but with increasing
total F, fishing intensity soon becomes limited in the central locations,
where abundance is not allowed to fall below the optimal level. Excess
effort is shunted toward the periphery, particularly to marginal and sub-
marginal locations with the highest abundances. In these locations the
catch per effort is the highest, given the constraint that the impact on re-
source productivity must be negligible.

10 Figure 2.9 Free distribu-
. tions of fishing effort for an
0.6 - immobile population (no net
’ drift of offspring). 1llus-
. trated levels of fishing mor-
T 0.6 tality are ¥ = 1,2, and 3.
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Figure 2.10 Optimized dis-
tributions of fishing effort
for an immobile population
(no net drift of offspring).
Illustrated levels of fishing
mortality are & = 1, 2, 3,
4, and unlimited.
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2.3.2 The Influence of Advection

The population in this simulation differs from the previous case
only in that the distribution of recruitment locations is shifted two cells to
the right (Figure 2.5). This simulation mimics a population spawning in
the presence of a weak mean flow, so that relatively more recruits settle
downstream of their parents. For an unfished resource, the resulting dis-
tribution of abundance is very similar in shape to that in the absence of
advection (Figure 2.11), but the distribution is shifted about 2.5 cells
downstream. The corresponding basin diagram (Figure 2.12) shows a
very lopsided distribution of abundance in the habitat basin, with nearly
half the population inhabiting habitat with submarginal realized suitabili-
ties. This example shows the danger in naively assuming that the distribu-
tion of a population necessarily maps the distribution of favorable habitat,
especially if the organism is not very mobile.

8 Figure 2.11 Comparison of
i No Drift distributions of unfished im-
Two-Cell Dritt mobile populations without
6 - net drift of offspring and

with two-cell net drift,
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-3 Figure 2.12 Basin diagram
of an immobile population
where offspring are subject
to diffusion and a two-cell
net drift.
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Free harvesting again produces a nearly symmetrical produc-
tion curve (Figure 2.13), although one somewhat less productive than in
the previous case. Maximum sustainable yield is 2.99, occurring at an
F,, of 1.36, and F,, is 2.77. Geographic optimization again increases
productivity, especially at higher total fishing intensitics. The MSY of
4.76 is 59 percent higher than that obtained from unregulated free har-
vesting. The geographically optimum distributions of fishing effort are
quite different from the previous symmetrical case, with the distribution
of fishing effort being shifted downstream progressively with increasing
total fishing intensity (Figure 2.14). As in the case of unregulated fishing
effort, low levels of geographically optimized effort tend to be distributed
similarly to abundance. At all fishing intensities, optimization results in
the productive upstream segment of the population being conserved. Ex-
cess effort again is shunted into those unproductive downstream areas
with the highest abundance.

There is little to be gained from attempting to optimize the geo-
graphic distribution of fishing effort if fishing intensity is at or below that
producing MSY. However, substantial gains are possible for overex-
ploited (F > F)4y) resources. Given a change to the optimum geographic
distribution of effort, how soon are the benefits realized? Three simulated
time trajectories of annual catches are shown in Figure 2.15. In the
slightly overexploited case of F = 1.5 (cf. Figure 2.13), there is a brief
““windfall’* as harvests are taken from previously lightly exploited areas,
and the yield quickly converges to the new equilibrium. In more severely
overexploited cases, this *‘windfall”* does not appear—actually, the brief
increased catch from new fishing areas is offset by the decreased catches
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Figure 2.13 Production curves for an immobile population (two-cell net drift). The upper
curve results from geographic optimization, and the lower curve corresponds to a free
distribution of effort. The arrows indicate locations of Fy | policies.
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from heavily restricted areas. Because of the new source of catchable
fish, the transitional loss of catch appears to be smaller than those losses
typically resulting from common changes in fishery regulations, such as
changes in mesh size. As is normal for depleted resources, the rate of
recovery is slower the greater the initial depletion. Whether the relative
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trajectories would be different for an age-structured model has not been
investigated; presumably, similar ‘‘windfalls™ would occur, but recover-
ies would be delayed by the time for individuals to grow from recruits to
harvestable and/or reproductive size.
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Figure 2.15 Catch trajectories following a change from free effort distributions to geo-
graphically optimized effort distributions utitizing the same total fishing effort. Locations
on the related production curves are shown in Figure 2.13.

2.3.3 F,, Harvesting Policies

Results of the simulations are compared in Table 2.2. Because
MSY is not realizable at finite total fishing effort under the optimized
strategics, another comparison is useful. Gulland and Boerema (1973) de-
scribe a popular management criterion, whereby fishing effort should not
exceed the intensity at which the marginal yield from additional effort
produces 10 percent of the marginal yield near zero effort (i.¢., where the
slope of the production curve is 0.1 the slope at the origin). This so-called
F, , policy provides a particularly useful rule of thumb for managing har-
vests that follow asymptotic yield curves similar to those generated by
geographically optimized harvesting.
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TABLE 2.2 Simuiation results for immobile populations.

GEOGRAPHIC EFFORT DISTRIBUTION FREE OPTIMAL
Case: no net drift

Pre-exploitation abundance 48.7 48.7
Maximum sustainable yield 3.97 5.16
(Fysy) (1.46) (=)
(Frax) (3.20) (=)
Yicld at Fg, 3.89 4.60
(Fo.1) (1.24) (1.82)

Case: two-cell net drift

Pre-exploitation abundance 39.7 39.7
Maximum sustainable yield 2.99 4.76
(Frsy) (1.36) (=)
(Fryax) (2.77) (=)
Yield at Fy, 292 3.93
(Fo.1) (1.09) (1.96)

The F, , harvesting levels for the production curves in Figures
2.8 and 2.13 also are summarized in Table 2.2. Because the slopes at the
origin are the same whether or not harvesting is geographically opti-
mized, F, , values can be compared directly in each case. In the case of
no advection, geographic optimization provides about 18 percent more
yield at F,, ;, while allowing 47 percent more effort to be deployed. The
case of two-cell advection shows even larger gains from geographic op-
timization under an F, | management policy: yicld increases by 35 per-
cent, and allowable effort increases by 80 percent. Of course, in actual
practice the desirability of these changes would have to be evaluated on
the basis of more realistic management objectives.

2.3.4 Geographic Reproductive Value

The preceding simulations also provide a basis for determining
location-specific impacts on the resources from modification of habitat.
Individuals in various parts of the range make different contributions to
following generations; this is especially apparent in the case of advection,
where larvae from downstream spawning are washed out of the system.
The simulations provide a basis for quantifying this phenomenon and for
evaluating the importance of particular locations to the population.

By analogy to Fisher’s (1958) concept of age-specific reproduc-
tive value, we can define a guantity called the geographic reproductive
value. This quantity is the long-term equilibrium number of individuals in
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the population that are produced by an individual at a given location, and
is expressed as a ratio where 1.0 signifies exact replacement.

In the present simulation model, 1 estimate geographic repro-
ductive value by constructing a two-population model in which the dy-
namics of the two populations (called A and B) are identical in every re-
spect, except that their location-specific abundances can be traced
separately. At equilibrium of an all-A population, [ introduce a very small
quantity of type B to the location being evaluated (and subtract an equal
amount from the local type A abundance). The simulation is then run vntil
the geographic distribution and abundance of type B reach equilibrium.
The geographic reproductive value of an individual at that location is the
ratio of the final total abundance of type B to the quantity of type B that
was introduced initially. Note that if the dynamics of the two populations
is allowed to differ, equilibrium usually is not reached, and this ratio
changes due to compelitive exclusion of one or the other type in this sim-
ple model.

The geographic reproductive values corresponding to an un-
harvested resource with and without two-cell advection are shown in Fig-
ure 2.16. The traditional model, which assumes geographical homo-
geneity, would produce estimated geographic reproductive values of
unity at every location. However, in the present model case of no advec-
tion, individuals in the three center cells have values of about 1.5, while
values in the edge cells decline to zero. The contrast is even greater for
the case of two-cell advection, where upstream individuals (those in cells
7 and 8) have geographic reproductive values of 9.5, but individuals at
the center of abundance have geographic reproductive values approaching
zero! This contrast of geographic reproductive values for upstream and
downstream locations suggests that populations whose meroplanktonic
larvae experience advective conditions may be under very strong selec-
tion pressure to develop behavioral or other mechanisms to counter the
effects of that advective flow.

The importance of a particular habitat to the population, here
termed habitar value, can be assessed as the product of the fraction of
total abundance and the geographic reproductive values of individuals in
that habitat. Summation of these products over all habitats must be equal
to unity if the population is in equilibrium. In the simulated immobile
population with no net advection of larvae, the central habitats account
for about 45 percent of the total abundance, but they account for nearly 70
percent of the total habitat value (Figure 2.17).
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The relationship is very different for the case of two-cell advec-
tion (Figure 2.18). Here, the habitat value peaks sharply in cell 9; this
single cell accounts for 35 percent of the total habitat value despite its
containing less than § percent of the total abundance. Actions impacting
habitats at the center of abundance would have surprisingly little effect on
the population, while impacts located on the sparsely populated upstream
segment of the population could have substantial effects.

While consideration of geographic reproductive value and habi-
tat value has obvious implications for traditional environmental impact
analyses, these concepts are equally useful for evaluating potential effec-
tiveness of positive actions such as creation of artificial reefs and other
kinds of artificial habitat. For maximum effectiveness such a habitat en-
hancement might be located so as to balance its value as a fishing location
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versus its value for enhancing the rest of the population by virtue of its
habitat value. Comparison of Figures 2.17 and 2.18 shows that the pat-
tern, distance, and direction of the advection of larvae can be a major
consideration, particularly if the adults are immobile. In some cases these
two objectives may be complementary, and in others they may be mutu-
ally exclusive.

Actual fishery cases illustrating these population behaviors are
difficult to find, as typically free harvesting distributions tend to obscure
the population geography (cf. Figure 2.7). One potential example is the
clam fishery in Narragansett Bay, Rhode Island (Michael Prager, Old
Dominion University, personal communication). Clams (species un-
known) exist throughout the bay, but fishing is usually prohibited in the
upstream portion of the bay due to contamination. This downstream fish-
ery maintained consistently high yields for many years. When the up-
stream beds finally were declared safe and were opened to fishing, there
was a brief bonanza, but overall production declined subsequently. When
the upstream beds were once again closed, the fishery returned to its pre-
vious pattern of a productive downstream harvest.

2.4 MOBILE ORGANISMS WITH HABITAT SELECTION:
INTERMEDIATE VISCOSITY

The case of very low viscosity, with rapid redistribution and
mixing of the population, will not be treated. For a population with a
simple life history and geographic structure, such as has been treated in
the simulations, dynamics would be similar to the low-viscosity basin
model with logistic dynamics as described in Chapter 1. To the extent that
all locations of recruitment are equivalent, larval drift would be immate-
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rial to a highly mobile species. Of course, drift (or lack thereof) may be
important to survival through early, less mobile life stages (Parrish et al.
1981), in which case effects of drift would be included directly in defin-
ing the topography of the suitability basin. Also, in real cases mobile
populations may nonetheless be defined by drift patterns, and correspond-
ing life histories that are adapted to completing the reproductive cycle can
be quite complicated (Sinclair 1988).

The following set of simulations treats the case of intermediate
viscosity for the simple life history in the model. The fishery simulations
incorporate four calls to the movement algorithm DDHS described in
Table 2.1. This intermediate case may correspond to a variety of demer-
sal fishes, such as flatfishes, which are mobile but are not energetic swim-
mers. Although this intermediate case seems to bridge the two extremes,
it presents problems that do not necessarily occur for highly mobile or
immobile organisms. In particular, the simulations suggest a tendency to-
ward presence of unstable or neutral geographic configurations as well as
toward multiple equilibria: fishermen can go to the fish or, alternatively,
fishermen can harvest a **hole’” in the population and let the fish come to
them.

Corresponding “‘optimal’’ geographic distributions of fishing
effort must be examined as to whether they are local optima, and as to
whether they are reasonable or are artifacts of the mathematics used in the
model. In the latter case, constraints may be placed on the model and on
the nature of allowable solutions. Exploratory investigations showed that
models incorporating adult diffusion rather than habitat selection are es-
pecially prone to multiple solutions. These multiple solutions are sensi-
tive to the model specifications, and despite their popularity in the theo-
retical literature, models incorporating diffusion do not seem to provide
any useful insights in the present context.

2.4.1 No Net Advection of Offspring

Again, with no net advection, the distribution of abundance is
symmetrical. As would be expected from density-dependent habitat se-
lection, the surface of the population in the basin diagram becomes flatter
with increasing numbers of calls to the DDHS algorithm (Figure 2.19), as
habitat selection counters the diffusive distribution of recruitment. The
unfished population size could be interpreted as a carrying capacity that is
determined by interaction of the basin topography, movement behavior of
adults, and the drift or dispersal of the larvae. In this case of diffusion but
no net advection of offspring, carrying capacity declines with increasing
intensity of habitat selection (Figure 2.20).
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Although peripheral individuals occupy better habitat due to
movement, elimination of the depression at the center of the population
surface (Figure 2.19) results in decreased production of offspring. The
extent of this decrease can be seen in Figure 2.4, where the right limb of
the stock-recrnitment curve for cells 9, 10, and 11 descends for adult den-
sities exceeding 5. Also, habitat selection results in decreased utilization
of peripheral, marginal habitat as places in which to live.

The following simulation employs four calls to the DDHS algo-
rithm. Unconstrained harvesting policies (not illustrated) tend to exploit
cells 9 and 11 heavily, while the relative intensity of fishing in cell 10 is
lower for total F below 1.6 and higher for total F above that level. Appar-
ently for free effort distributions with low total effort, the steep suitability
gradients produced between cells 8 and 9 and between 11 and 12 result in
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a high influx of fish similar to the ‘‘overshoot™ shown in cell 4 of the
example in Table 2.1. This pattern is an artifact of the model and is unsta-
ble in the vicinity of F = 1.6, as shown by the shaded area in Figure
2.21.
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Figure 2.21 Production curves for viscous populations with no net drift of offspring. The
upper curve results from geographic optimization, and the lower curve corresponds to a
free distribution of effort. The arrows indicate locations of F ; policies.

In the search for geographically optimum patterns of effort, 1
constrain the three center cells to have the same level of fishing effort. Up
to the MSY level, both free and optimized effort distributions concentrate
on the central three cells. At higher levels of total effort, the geographi-
cally optimized policy shunts all excess effort peripherally to cells 1-4
and 1619, where almost no fish are harvested. Cells 58 and 12—15 are
left unharvested, in contrast with the optimum under the case of no mobil-
ity. This peripheral shunting is logically equivalent to the usual manage-
ment practices, which maintain effort at Fy,gy by shortened seasons, inef-
ficiencies, etc. Because fish in peripheral habitats tend to move toward
the central favorable habitat, those fish potentially will reproduce in pro-
gressively better habitats. Fishing effort deployed in cells 5-8 and 12-15
would produce a low catch per effort due to the jow abundance, while it
would remove fish that would have improved their reproductive output
substantially in the next season.
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The ascending limb of the production curves for the free and
optimized fisheries are nearly identical, but the right limb of the produc-
tien curve for the geographically optimized fishery simply continues hori-
zontally at the MSY level due to the shunting of excess effort (Figure
2.21). Because the ascending slopes are nearly identical, F, , harvest poi-
icies are virtually identical for free and geographically optimized fishing
(Table 2.3). Of course, the production curve for the free effort distribu-
tion descends at higher levels of effort. Both production curves are higher
(more productive), skewed, and more resilient (able to sustain higher
levels of F) than in the corresponding previous cases of no mobility.
These differences are consistent with the properties that in Chapter 1 were
predicted to arise from density-dependent habitat selection.

TABLE 2.3 Simulation results for mobile populations, with density-dependent habitat
selection.

GEQGRAPHIC EFFORT DISTRIBUTION FREE QOPTIMAL
Case: no net drift

Pre-exploitation abundance 454 454
Maximum sustainable yield 4.79 4.79
(Fusy) (1.66) (ca.1.4)
Frgax) (3.79 (=)
Yield at 7y ;) 4.61 4.61
(Fg 1} (1.23) (1.22)

Case: two-cell net drift

Pre-exploitation abundance 43.8 438

Maximum sustainable yield 378 4.74

(Fusy) {large, =)
incetl 11)

{Fpax) (large) (=)

Yield at Fy 3.18 4.47

(Fo.p) (1.33} (1.77)

2.4.2 Influence of Advection

Again, advection of larvae results in the population being
shifted relative to the habitat basin, but the amount of shift is reduced as
mobility increases (Figure 2.22). An increased number of calls to the
movement algorithm can be interpreted equivalently as decreased viscos-
ity. Using this interpretation, the basin diagram (Figure 2.23) shows the
tendency for the simulated population to flow like a viscous liquid toward
the central favorable habitat.
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In contrast to the case of no net advection, equilibrium unfished
abundances, or carrying capacities, initially increase as the intensity of
habitat selection increases, or equivalently, as viscosity decreases (Figure
2.20). But as number of calls to the DDHS algorithm exceeds about 8,
carrying capacity declines asymptotically. Although net advection of lar-
vae lowers the carrying capacity for populations of relatively immobile
individuals, advection may enhance carrying capacity slightly for more
mobile populations. While it is premature to generalize, these simulations
suggest that carrying capacity can vary unexpectedly with interactions be-
tween movement behavior and the environment, especially if conditions
vary over time.

Again, four applications of the movement algorithm are used in
the following fishery simulations. An unregulated fishery concentrates
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nearly all of its effort in cell 11. This is the location of highest abundance
(Figure 2.22), and also is a location of very high influx of centrally mi-
grating individuals that were recruited downstream. There are several
poorly defined segments of the production curve similar to that shown in
Figure 2.21, so the curve cannot be drawn clearly and Fy; policies are
also unclear. The geographically optimized fishery produces a 25 percent
larger MSY (Table 2.3), and the production curve again becomes
asymptotic.

The optimum pattern of effort varies with fishing intensity (Fig-
ure 2.24). At all levels of effort, fishing is prohibited in upstream cells
1-9 and is very limited in cell 10. At low levels of effort, fishing is dis-
tributed evenly over the remainder of the population, again with a ten-
dency to deploy additional effort farther downstream. Between a total F
of 2 and 3, where the production curve has already flattened out, there is a
large change in the optimum geographic distribution of effort: the fishery
breaks into two segments, a central fishery in cells 12 and 13 and a down-
stream fishery in cells 15-19. Cell 14 is not fished.
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This pattern seems to be analogous to the central and peripheral
segments encountered in the previous case of no net advection. However,
unlike the previous case, where the peripheral fishery caught very little,
the downstream segment of this fishery produces 11-15 percent of the
total yield.

2.5 DISCUSSION

The preceding simulations allow some tentative generaliza-
tions. The problem of geographically specific population dynamics re-
sults in computationaily intensive models. The length of the simulations
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can be shortened considerably if an initial state is specified and a ten- or
twenty-year time horizon is considered. Equilibrium solutions, such as
were examined here, required between sixty and one hundred simulated
years. Additional geographic structure, such as a more realistic two-di-
mensional suitability topography, will slow the execution of the simula-
tions while requiring more time to reach equilibrium. The appropriate
amount of simulated detail remains to be determined for a real resource,
and available biological and oceanographic information may prove to be a
limiting constraint.

Also, consideration of variability in patterns of drift and disper-
sal may require extensive computation. These simulations suggest that
net drift may be very important to population dynamics and to optimal
harvesting patterns. There are very few resources for which some direc-
tional drift does not occur. That drift, and the behavioral mechanisms by
which the population counters it, should be examined carefully and incor-
porated into the simulations. For example, the mean pattern may not in-
clude infrequent but important events, such as reversals in current flow
which episodically repopulate the upstream regions of the habitat. Waples
(1986) shows how EI Niio conditions may provide such upstream
repopulations off southern California.

[n view of our limited understanding of fish movements and of
the mechanisms and stimuli involved (see Chapter 3), it may be appropni-
ate to investigate various hypothetical models in a search for robust man-
agement policies. Again, experience with this simple simulation model
suggests that simulations involving fish movement may tend to be some-
what *“ill behaved.”’ These simulated systems often possess multiple
steady states, and solutions may depend on initial conditions as well as
details of the mathematical algorithms used in the simulations; care must
be taken in their construction and interpretation.

2.5.1 Fishery Management

It is unlikely that any of the very simple model populations and
habitats portrayed in these simulations would correspond closely enough
to a real fishery to be directly useful to management. If geographic op-
timization is considered for an actual fishery, an appropriately detailed
model should be constructed. Yet, these simple simulations provide use-
ful indications of which resources and fisheries would be good candidates
for geographic optimization.

It is easiest to begin with those cases where geographic op-
timization is least likely to be worthwhile. Highly mobile organisms that
move and mix throughout the range of the population on time scales of
less than a year simply do not “‘stay put’”’ long enough; local harvesting



78 1 MacCall / DYNAMIC GEOGRAPHY

constraints have little effect. On the other hand, geographic contraction of
the population coincident with decreased abundance may increase the risk
of rapid overfishing by an unregulated flect.

Also, in the traditionally ideal but practically rare case where
the fishing fleet’s potential effort is well matched to the production curve
(e.g., where fleet capacity is at or below an F,, level of fishing effort),
geographic regulations are unnecessary. But if the fleet’s potential ex-
ceeds Fygy, or if management wants to maximize participation in the
fishery, geographic optimization may be worthwhile. Geographic alloca-
tion of fishing effort should not be considered to be just another form of
enforced inefficiency (e.g., shortened fishing seasons) unless its result is
simply to occupy a position of lower fishing intensity on a production
curve equivalent to that of an unregulated fishery. Geographic optimiza-
tion is most likely to be useful where the exploited stage of the organism
is not very mobile. Also, these simulations suggest that geographic op-
timization may be appropriate if the planktonic offspring of the exploited
organism experience a directional drift that is not completely compen-
sated by juvenile or adult movements. Geographic fishing strategies may
be especially appropriate to optimizing transboundary fisheries, where
criteria for optimality may vary considerably on opposite sides of the jur-
isdictional boundary.

2.5.2 Habitat Evaluation and Impact Assessment

One of the large unanswered questions in environmental man-
agement is, “*What effects does habitat loss or habitat modification have
on natural populations and their harvests?’” Conventional fishery models,
with their assumption of homogeneous populations, have not provided
answers. This model’s coupling of population dynamics with the geo-
graphic distribution of habitat suitabilities is a promising approach, but
the mode! demands much more information and is far more difficult to
implement than the usual fishery models. Indeed, full development of a
geographic model is not appropriate for routine decisions, but guidelines
for such decisions are indicated.

The viscosity of the resource is an important consideration in
evaluating impacts. Impacts may be relatively local for highly viscous or
immobile species, whereas for mobile species impacts may be borne by
the entire population. Chronic impacts such as entrainment mortality of
larvae by power plants, or reduced fecundity due to exposure to contami-
nants, would be locally contained for a viscous species. Even though the
area of impact may be very local, much of the population of a mobile
species may be exposed; total impact depends on the fraction of the popu-
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lation in the vicinity of the contaminant source and the rate of geographi-
cal mixing of individuals, In the case of impacts located near the edgeofa
population, contraction of population range with reduced abundance may
provide a feedback mechanism by which progressively smaller fractions
of the population are impacted, and a new equilibrium may be reached.
Losses may be unexpectedly large for impacts located near the center of a
population. There, mixing rates and the fraction of the population ex-
posed are highest. Furthermore, a progressively greater fraction of the
population is exposed to the impact as abundance decreases (cf. fishery
collapse due to stock contraction).

In summary, some key considerations are raised by the previ-
ous simulations:

« Is the population viscous, or is it highly mobile so that it
mixes on short time scales and approaches homogeneity? A viscous or
immobile population potentially allows more specific answers to ques-
tions of local as well as population-level environmental impact. On the
other hand, high mobility allows impacts to be diffused throughout the
population, and simpler models may be used.

» How diffusive is recruitment? Is recruitment subject to net di-
rectional movement or drift from the place of spawning? If the resource is
viscous, larval transport may cause the distribution of the adult popula-
tion to reflect poorly the relative importance of habitats. Evaluation re-
quires complicated models and geographically detailed oceanographic
and biological knowledge. Impacts on upstream segments of the popula-
tion may be deleterious to the population and harvest despite a relatively
low abundance of impacted individuals. In choosing sites of refuges or
artificial habitats, resource managers may wish to consider benefits from
reproductive enhancement of the stock (improved habitat value) as well
as more traditional concerns of changes in benefits from direct harvest,
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APPLICATION OF THE BASIN MODEL

Stock expansion and contraction with large changes in abun-
dance seems to be characteristic of clupeoid fishes (sardines and ancho-
vies). Understanding the dynamics of this phenomencn is an important
step in understanding how fisheries affect clupeoid resources.

From the viewpoint of the study of ecology, density-dependent
habitat selection has seldom been the basis for field studies on a large
geographic scale. In collecting fishery data, field observations are often
made on the scale of an entire population spanning thousands of square
kilometers. Owing to the extensive data on anchovy larvae collected by
the surveys of the California Cooperative Oceanic Fisheries Investiga-
tions (CalCOFI) over the past 35 years, and because of the unusually
large dynamic range of abundance and geographic distribution exhibited
by these larvae, the CalCOFI surveys provide an excellent opportunity to
examine and apply the theory of density-dependent habitat selection de-
veloped in the preceding chapters.

This investigation consists of three segments. First, I examine
the mechanisms that may be associated with habitat selection by spawn-
ing anchovies, with emphasis on those that cause a density-dependent de-
cline in the suitability of spawning habitat. Second, 1 examine the geo-
graphic distribution of spawning and subsequent egg mortality rates with
respect to the ideal free distribution. Finally, [ use the CalCOFI time se-
ries of larva abundances as the basis for mapping the spawning anchovy’s
apparent habitat suitability basin.

3.1 THE NORTHERN ANCHOVY

Abundances of anchovy (Engraulis mordax) eggs and larvae
(Figure 3.1) have been monitored systematically since 1951 by CalCOFI.
The total abundance of larvae, which provides a rough index of adult
spawning biomass (MacCall 1980a, Smith 1972), has varied 30-fold
since observations began (Figure 3.2). More recently, Lo (1985) esti-
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mated an index of daily production of anchovy eggs which provides a
better relative measure of spawner abundance because it reduces post-
spawmning sources of variability. Lo’s index varies 1,000-fold over the
same period (Figure 3.2). This extreme variability in presumptive abun-
dance has been a source of concern in management of the anchovy fishery
{MacCall et al. 1983). The changes in anchovy larva abundance have
been accompanied by large changes in their geographic range as well as
by changes in density at commonly occupied locations (Figures 1.12 and
1.13).

Figure 3.1 Anchovy eggs and larvae: top, egg, stage VII; middle, newly hatched larva,
2.5 mm; bottom, larva, 9.6 mm. Egg from Moser and Ahlstrom (1985), larvae from
Kramer and Ahlstrom (1968).

The northern anchovy is a common schooling fish off the west
coast of North America, ranging from the Queen Charlotte [slands, Can-
ada, to the southern tip of the Baja California peninsula, Mexico (Miller
and Lea 1972). The population is divided into southern, central, and
northern subpopulations which show some genetic differences (Vrooman
et al. 1981). The subject of this study is the central subpopulation, which
nominally ranges from Punta Baja, in Baja California, to San Francisco,
California (Figure 3.3). The actual boundaries are probably clinal and/or
overlapping, and move north and south with changes in ocean climate
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Figure 3.2 Indexes of the spawning biomass of the central stock of northern anchovy (log
scale). Larval census indexes are from Stauffer and Charter (1982), and historical egg
production indexes are from Lo (1985); both indexes have been standardized to a series
mean of 1.0.

(MacCall et al. 1983). The fish do not make large seasonal migrations,
and although tag returns show the potential for movements spanning the
range of the subpopulation (Haugen et al. 1969), consistent geographic
patterns of size at age indicate that longshore mixing is limited (Parrish et

al. 1985).
The northern anchovy attains a maximum length of about 160

mm (SL) and a maximum age of six years; fish older than four years ar¢
very rare. The main spawning period is January through May, although
some spawning occurs year-round. A large fraction of the one-year-old
fish spawn in warm years, whereas spawning may be delayed to age two
in very cold years (Methot 1986). Anchovies spawn approximately
weekly during active spawning, and twenty or more batches may be pro-
duced by a fish in a season (Hunter and Leong 1981). The size of a batch
of eggs is roughly proportional to body weight, but larger and older fish
have a longer spawning season and produce a disproportionaiely large
number of batches (Parrish et al. 1986). Hunter and Leong observed that
stored fat in an average (16.4 g) female could support only about thirteen
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Figure 3.3 Northern an-
chovy subpopulations
and their spawning sca-
sons. From Smith and
Lasker (1978).

batches of eggs, so a substantial amount of egg production must be sup-
ported by energy gained during the spawning season. Thus, there can be
substantial demographic and environmental influences on the calibration
of egg or larval production to parental spawning stock in any particular

s€ason.

Anchovies are omnivorous, feeding predominantly on zoo-
plankton (especially copepods and euphausiids) and to a much lesser ex-
tent on phytoplankton (Loukashkin 1970). Although the northern an-
chovy is primarily a filter feeder, it also may be a particulate or sclective
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feeder, depending on the size of the available food (CalCOF] 1967).
When presented with a mixture of large and small food items, anchovies
tend to adopt the feeding mode that resuits in the highest caloric intake
(O’Connell 1972). They also consume their own eggs and larvae (Hunter
and Kimbrell 1980).

Copepod eggs and nauplii are the commonest food items con-
sumed by anchovy larvae (Arthur 1976). Unarmored dinoflagellates may
also be an important larval food source, especially for first-feeding an-
chovy larvae. Adult anchovies frequently use these food sources as well,
but the relative quantities present in adult stomachs (Loukashkin 1970)
argue against their being a major source of adult forage.

To an anchovy larva, food edibility is determined by prey size,
but nutrition is governed by species. Lasker (1978, 1981) has hypothe-
sized that dense local concentrations of edible food items are required for
successful first feeding, and that recruitment strength may be influenced
strongly by formation and destruction of these microhabitats. Consistent
with this hypothesis, Peterman and Bradford (1987) found a significant
statistical relationship between larval anchovy mortality rate and fre-
quency of calm periods with low wind speed during the spawning season,
conditions that would favor formation and maintenance of larval feeding
microhabitats.

3.2 MECHANISMS OF DENSITY DEPENDENCE

Density-dependent influences on larval growth and mortality
rates can arise from two broad categories of interaction: larva-larva inter-
actions, and adult-larva interactions (termed stock dependence by Cush-
ing and Harris 1973). Larva-larva interactions are not likely to play an
important role in survival of larval anchovies, as typical densities of
fewer than one larva per liter are too low for larvae to encounter ¢ach
other very often (or for their feeding ranges to overlap). Based on relative
abundances, larval fishes are rare to very rare in plankton assemblages in
the California Current, and nearly all of their significant interactions are
likely to be with other zooplankton, whether they be prey, competitors, or
predators (McGowan and Miller 1980).

3.2.1 Cannibalism

In contrast, there are ample opportunities for adult anchovies to
interact with their eggs and larvae, directly and indirectly. Hunter and
Kimbrell (1980) compared counts of anchovy eggs in stomachs with the
rate they were being produced by the gonads. Based on their data, Mac-
Call (1980b) concluded that cannibalism by the northern anchovy ac-
counts for approximately 28 percent of the total egg mortality rate; the
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instantaneous rate of cannibalism (F.) was estimated to be 0.11/day.
Alheit (1987), supplementing the analysis of Santander et al. (1983}, has
determined that the rate of egg cannibalism by the Peruvian anchoveta,
Engraulis ringens, may be about twice that seen in California (.= 0.23/
day), but cannibalism accounted for only 22 percent of the total egg mor-
tality rate due to much higher predation rates from other species. Both of
these estimates suggest that cannibalism by adult anchovies is a signifi-
cant source of egg mortality.

Adult anchovies also consume larvae, so cannibalism continues
to be a source of larval mortality. Unfortunately, small larvae are digested
very quickly in anchovy stomachs, preventing a similar direct assessment
of mortality rates for larvae (Hunter and Kimbrell 1980).

These estimates of F_ allow evaluation of the significance of
cannibalism to the stock-recruitment relationship of the anchovy. The
Ricker curve (Equation 1.27) has a maximum when the density-depen-
dent argument ( — bS) has a value of unity (Ricker 1975). The component
may be expressed as the integral of density (stock) dependent mortality
coefficients (F,) from time of spawning (t;) to time of recruitment (tg), so
maximum recruitment occurs when

@.1) [Fowa =1

If this integral exceeds unity, recruitment will decline due to density-de-
pendent effects, providing a convenient rule of thumb for evaluating the
level of density dependence. In the above two cases, the integral of egg
cannibalism rates from spawning to the time of hatching (ca. 3 days in
California, 2 days in Peru) results in arguments of 0.27 and 0.46, respec-
tively. Cannibalism of the egg stage alone accounts for a substantial frac-
tion of the reference level of density-dependent mortality.

3.2.2 Random Encounter Model

MacCall (1980b) developed an independent argument based on
a random filtering model. The specific rate of filter feeding cannibalism
should be approximately

(3.2) F, = Npv/V,

where N is the number of adult fish, v is the average volume of water
filtered per fish per unit time, p is the fraction of the time spent filtering,
and V is the habitat volume. The volume of water filtered per fish is de-
pendent on the size of the anchovy, but it is surprisingly large. Leong and
O’Connell (1969) measured filtration rates in liters per minute (Figure
3.4).
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Figure 3.4 Adult anchovy showing filtering behavior.

The total egg mortality rate is
dE

(3.3) = = ~E(M+F),

where M is the mortality rate from other sources. After substituting Equa-
tion (3.2) for F, and integrating, the number of eggs surviving the period
of incubation to time of hatching (E,) is

3.4 E, = E,exp(—-M-Nvp/V)1, ,

where E, is the initial number of eggs spawned, and ¢, is the incubation
time from spawning to hatching. If the initial number of eggs spawned is
proportional to the measure of abundance in the density-dependent term,
this is a standard Ricker model.

As stated previously for the Ricker model, E, reaches a maxi-
mum when the exponent of density-dependent mortality equals unity, in
this case when Nvpt,/V = 1, or when Nvpt,= V. That is, the effective
fecundity (measured as eggs hatched) is maximal when the local popula-
tion filters a volume of water equivalent to the habitat volume exactly
once during the length of time it takes the eggs to hatch. Note that the
local density of fish producing maximum recruitment is independent of
natural mortality, although the value of the maximum is not.

This somewhat surprising relationship provides a useful exten-
sion of the previous rule of thumb (Equation 3.1) for evaluating impor-
tance of density-dependent effects. Density-dependent effects (on the egg
stage alone) are important if density of anchovies (N/V) approaches
1/vpt,. If N/V exceeds this level, E, decreases despite further increases in
N. In the case of the Peruvian anchoveta, this reference density is approx-
imately 200 tons per square mile (Table 3.1). In California the reference
density is approximately 250 tons per square mile, which is remarkably
similar to the value calculated for Peru despite large differences in the
individual parameters.
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TABLE 3.1 Reference anchovy densities.

PERU CALIFORNIA

Mean fish weight (grams) 6.7a 14.6b
Filtration rate (liters per minute)} 1.64¢ 2.54¢
Time to hatching (days) 2d 3.15¢
Total volumne filtered per fish

if P = 1 (liters) 4,700 11,500
Number of fish per ton 150,000 68,500
Volume filtered per ton (liters) 0.7x 107 0.8 x 109
Habitat depth (meters} 40 60f
Habitat volume per square mile (liters) 1.4 x (pn 2.0x 101
Fish density at maximum £, {tons

per square mile) 200 250

Source notes:
a Johunnesson and Vilchez (198()).
b Six-year mean from Bindman (1986, Table 4).
¢ Leong and O'Connell (1969).
d Santander et al. (1983).
e Lo (1985).
f Interpreted from Mais (1974, Figure 12).

Of course, these estimated reference densities may not be very
accurate, Likely values of p are certainly less than 1, affecting the refer-
ence densities inversely. Also, the assumption of independent random fil-
tering is unrealistic for a schooling fish. However, anchovy schools orient
their movement to local concentrations of food, thereby increasing their
feeding efficiency. Koslow (1979) has shown that anchovy schools thor-
oughly remove all edible material from their paths.

On the other hand, incidence of eggs in anchovy stomachs
seems to be higher than can be accounted for by the random filtering
model (Hunter and Kimbrell 1980). Also, the effect of cannibalism on
recruitment must include the larval stage. Hunter and Kimbrell report a
17 mm larva in one of the stomachs they examined, which indicates that
larvae remain susceptible to cannibalism for at least one month after
hatching. Although particulate feeding (which takes larvae) and filter
feeding (which takes eggs) are mutually exclusive feeding modes for indi-
vidual fish, Koslow’s observations on anchovy schools indicate that both
feeding modes co-occur within schools. As these various considerations
seem to offset each other, I propose that the above reference densities be
accepted as first approximations.
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Judging by these criteria, observed densities of anchovies indi-
cate that cannibalism is almost certainly an important density-dependent
mechanism. Average Peruvian anchoveta densities encountered in hydro-
acoustic surveys reported by Johanneson and Vilchez (1980) exceeded
600 tons per square mile in the years 1973, 1976, and 1978. Moreover, in
these years anchoveta abundance was a fraction of its historical levels.
Johanneson and Vilchez also report local densities as high as 2,000 tons
per square mile. Average anchovy densities in California are much lower.
The peak abundance observed in 1975 corresponded to an average density
of 235 tons per square mile in the center of the distribution, although
many local densities were two to three times that level (S. J. Crooke,
Cruise Report 75-A-1, California Department of Fish and Game, 220
Golden Shore, Suite 50, Long Beach, CA 90802).

The above calculations contain another useful implication: typi-
cal anchovy densities should result in any given parcel of water being
filtered every few days. This rate of grazing is sufficient to cause food
abundance to respond inversely to anchovy density. While it is unlikely
that anchovies can detect egg and larval mortality rates, it is likely that
anchovies respond to food levels. The latter behavior may be sufficient to
generate an appropriate pattern of habitat selection which relates indi-
rectly to cgg and larval mortality rates. Moreover, if spawning is pro-
longed under good feeding conditions (sec previous reference to Hunter
and Leong 1981), habitat selection for optimum feeding conditions has an
even more direct payoff.

3.3 THE IDEAL FREE DISTRIBUTION

One of the primary assumptions of Fretwell’s (1972) *‘ideal
free distribution’” is that individuals distribute themselves such that all
occupied habitats are equally *‘suitable,’” suitability being determined by
both density-independent and density-dependent influences. Given rapid
temporal variability in habitat quality, limited sensory capacity, and lim-
ited and delayed physical movement, individuals may at best only ap-
proximate an ideal free distribution.

The extent to which an ideal free distribution is achieved is sel-
dom open to investigation because of difficulty in defining and measuring
“‘suitability.”” The geographic distribution of anchovy spawning may al-
low a partial test of conformity to the ideal free distribution.

3.3.1 Egg Mortality Rate

In Chapter 1, 1 refined Fretwell’s concept of **suitability’” to be
the marginal component of reproductive value conferred by selection of a
habitat. Fecundity (m, in life table notation) is an important component in
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calculation of reproductive value. If fecundity is measured in terms of
offspring surviving to a nominal first age of census, the mortality rates of
eggs and larvae from spawning to that age will have a large effect on
reproductive value. From the preceding discussion, cannibalism appears
to be an important component of these mortality rates and may be the
major mechanism of density dependence. Also, the conditions governing
egg mortality are in place at the time of spawning and potentially can be
evaluated by the spawners (albeit indirectly, such as in the above forage-
seeking hypothesis).

For the purpose of this investigation, I examine the hypothesis
that egg mortality rate is the ultimate factor in selection of spawning habi-
tat by the anchovy, even though immediate cues such as food abundance
may govern fish behavior. If the hypothesis is valid, the ideal free distri-
bution would predict a tendency toward similar egg mortality rates in all
occupied habitats. Of course, effective fecundity as production of hatched
eggs, which includes effects of feeding conditions, would be a better
measure of habitat suitability, if it could be measured in the field. Also,
other density-dependent behaviors and density-independent spawning be-
haviors (e.g., location-seeking behaviors favoring reduced larval drift, or
simple temperature preferences, see Lasker et al. 1981) could cause devi-
ations from an ideal free distribution based on egg mortality rates.

3.3.2 Apparent Egg Mortality Rate

Anchovy egg mortality rate was estimated from 1980 to 1985 as
part of the ‘‘egg production method’” of estimating adult anchovy abun-
dance off California (Bindman 1986, Lasker 1985). Typically, anchovy
egg abundance is sampled quantitatively at about 1,000 stations covering
the range of the anchovy central population. Sampled eggs are preserved
and are categorized by stage of embryonic development, allowing precise
determination of ages. Mortality rates are then estimated by regression of
abundance on age.

Picquelle and Hewitt (1983) give details of a survey conducted
in February of 1982. The 1982 survey showed two separate anchovy egg
concentrations, one off southern California and one off northern Baja
California. Eggs occurred in lower abundance in the waters surrounding
these two groups.

When the three regions are considered separately, abundances-
at-age show very different apparent mortality rates (Table 3.2). The two
high-density regions show similarly high apparent mortality rates (esti-
mated by linear regression of log-transformed abundances-at-age), while
the low-density region shows a much lower apparent mortality rate. The
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TABLE 3.2 Anchovy cgg abundance in three geographic regions, with estimated
appareni mortality rates.

1 2 3
Northern
Southern Baja Surrounding
California California walers TOTAL
Mean density,
day 1 eggs
(eggs/0.05 m? 27.9 15.1 3.3 10.3
Fraction of total
pepulation 0.42 0.39 0.19 1.00
Eggs-at-age
Day-1 1,058 955 615 2,628
Day-2 459 881 710 2,050
Day-3 370 333 500 1,203
Tatal 1,887 2,169 1,825 5,881
Apparent mortality
coefficient (per day) —0.526 —0.527 —0.104 -0.391
{Standard error) (©.179 (0.258) (0.143) (0.082)

statistical confidence limits on these mortality rate estimates are very
wide (only 1 degree of freedom, and large standard error) and would not
support rejection of a null hypothesis that ‘‘mortality rates in the three
regions are identical.’’

However, the pattern of apparent mortality rates is inconsistent
with the hypothesis of density-dependent habitat selection and the ideal
free distribution. If the true mortality rates in the three regions are differ-
ent in the directions suggested by the estimates in Table 3.2, most of the
spawning activity appears to be occurring in areas of unfavorable egg
mortality, while apparently more favorable peripheral habitat is underutil-
ized.

Alternatively, the abundances-at-age in the three regions may
be influenced by oceanic transport and diffusion. There may be a net ex-
port of eggs from the high-density regions and a net import of eggs to the
low-density region. These immigration/emigration effects could account
for the differences in apparent mortality rates among regions. The ques-
tion then arises, '‘Are probable rates of transport and diffusion high
enough 1o account for a substantial exchange of anchovy eggs among re-
gions?”’
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3.3.3 Simulation of Transport and Diffusion

Power (1986) developed a mode! of transport and diffusion for
the coastal waters off California and northern Baja California. This trans-
port modet divides the area into rectangular cells (ca. 20 nautical miles on
a side), whose comers correspond to standard CalCOFI stations (Figure
3.5). He has calculated long-term mean geostrophic flow across cell
faces, and also has estimated wind-driven Ekman transport across those
faces. In addition, he has included an eddy diffusivity coefficient based
on reinterpretation of data from Okubo (1971). Details of the model are
given in Power’s (1986) paper.

36°N

30°N

258*°N 1 L 1 L L J 1 1
127°W 120°W 114°W

Figure 3.5 Cell diagram for the transport simulation. Modified from Power (1986).

Initial cell concentrations of anchovy eggs were based on den-
sity of day-1 eggs observed in the 1982 survey (Table 3.3). Power’s
transport model simulated advection and diffusion of eggs during a subse-
quent elapsed time of one -and two days. For purposes of the simulation,
the eggs were not subject to mortality; Ekman and geostrophic fiow pat-



92 1 MacCall 1 DYNAMIC GEOGRAPHY

terns were based on average conditions for the month of March. Results
of the simulation show a net export of eggs from the high-density regions
to the low-density region (Table 3.4). Notably, region 2 appears to lose
eggs more rapidly than region 1. This is consistent with the much longer
edge length of region 2 (24 cell faces) as compared with region 1 (12 cell
faces, with one wholly interior cell). Also, region 2 is in an area of somne-
what higher transport velocities.

TABLE 3.3 Initial concentrations of anchovy eggs input to the diffusion imulation
(values in numberi.05 m2). Location key is CalCOFE line and station corresponding to
the northeast corner of the cell. Shaded vatues correspond to regions in Figure 3.5,

STATION: 45 40 35 30 25
Line:

83.3 0 3 667

85.0 i

86.7 0.400

88.3 0.545

90.0 B.111

91.7 4.900

93.3 0

95 4 0,80

96.7 0

98.3 0

100.0 0 T iy S

1017 .. R '

.

106.7 U 0.200 Y 0 S

TABLE 3.4 Simulated changes in egg population distribution due to transport (no
mortahty).

REGION
TIME 1 2 3 TOTAL
0 0.42214 (.39055 0.18731 1.0
1 0.41379 0.34374 0.24247 1.0

2 (140433 0.30487 {1.29080 1.0
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3.3.4 Mortality Rates Corrected for Transport

The simulation shows a substantial transport of eggs among egg
density regions. If immigration and emigration are expressed in terms
similar to exponential coefficients of mortality, the two factors may be
combined in a simple manner to describe changes in abundance-at-age for
a given region:

(3.5) N(t) = Nyexp[-(Z+E)1] ,

where N(¢) is abundance at time ¢, N; is initial abundance, Z is an expo-
nential mortality coefficient, and E is an exponential coefficient of change
due to transport, i.e., immigration and emigration.

The egg abundances-at-age in Table 3.2 allow estimation of
combined coefficients (which previously have been referred to as **appar-
ent’’ mortality rates) from change in relative abundance over unit time:

B N(t+1)
(3.6) (Z+E) = Ln[ NG ] .
The simulation results similarly allow estimation of the immigration/emi-
gration coefficient:

_ pi+ 1)
@7 E - B0 ] '
where p(#) is the fraction of the total population in the region at time .
Note that units of abundance cancel in both Equations (3.6) and (3.7),
allowing a measure of relative abundance to be used in Equation (3.7).
The mortality coefficient, Z, is then estimated by subtraction:
(3.8) Z=(Z+E)-E.
Results are given in Table 3.5.

3.3.5 Discussion

The transport-corrected daily mortality coefficients are much
more similar than the apparent mortality coefficients calculated from raw
abundances-at-age. In particular, the mortality coefficient for low-density
region 3 (—0.324/day) is quite close to the grand mean estimate
(—0.391/day). These results suggest that much of the difference in appar-
ent mortality rates among regions is accounted for by transport. The cur-
rent velocities and eddy diffusion coefficient used in the simulation were
nominal and reasonable, and are only rough estimates of true mean
values. Moreover, transport patterns and intensities for any given time,
such as February 1982, will differ substantially from the long-term mean.
While confidence limits for these transport parameters are not available,
the magnitude of their effect suggests that transport could easily account
for the entire difference among apparent mortality rates.
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TABLE 3.5 Transport-corrected monality coefficients.

REGION
1 2 3 TOTAL
Daily apparent mortality coefficient
{from egg abundance-at-age)
Age 0-1 —0.835 —0.081 +0.144 —0.248
Ape |-2 -0.216 -0.973 —0.351 —0.533
Mean —-0.526 —0.527 -0.104 -0.391

Daily immigration ( + )/emigration (—)
coefficient (from simulation)

Age 0-1 -0.020 -0.127 +0.258 0.0
Age 1-2 —-0.023 -0.120 +0.182 0.0
Mean —-0.022 —0.124 +0.220 0.0
Corrected daily mertality coefficient

estimate

Age (-1 —0.815 +0.046 —0.114 —0.248
Age 1-2 ~(.193 —(.853 -0.533 —0.533
Mean —0.504 —0.404 -0.324 -0.391

As discussed earlier, it is probable that density-dependent de-
terioration of habitat suitability (measured as egg mortality rate) is not
fully recognized by the fish, leading to an imperfect approximation of an
ideal free distribution. In particular, anchovies may select habitats on the
basis of food abundance, and density-independent factors such as water
temperature clearly are associated with anchovy distributions in some
years (Lasker et al. 1981). If habitat selection is based on density-inde-
pendent cues, or on indirect density-dependent cues, it seems likely that
egg mortality rates would tend to be higher in the densely occupied habi-
tats, violating the ideal free distribution in a fairly consistent manner. The
deviation of the estimated egg mortality rates from the hypothesized ideal
free distribution is consistent with this supposition.

Finally, a better tentative measure of suitability would be “‘ef-
fective’’ fecundity, as production of hatched eggs. This measure would
include effects of feeding conditions on egg production as well as on sub-
sequent egg mortality. However, batch fecundities and spawning rates
have been measurable only at the population level, and would be nearly
impossible to measure in the field with enough precision to compare dif-
ferences on a local scale.
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3.4 MAPPING THE HABITAT BASIN

The changes in relative geographic distribution of anchovy lar-
vae that accompanied the large historical changes in abundance (Figure
1.12) provide the basis for constructing a geographic map of apparent
habitat suitability. This analysis consists of first developing a model for
local density-dependent changes in habitat suitability and then using the
assumption of an ideal free distribution to constrain the predicted distribu-
tion of anchovy larvae among habitats. Finally, I estimate the parameters
of the model on the basis of larval abundance data from CalCOFI surveys
and examine their statistical properties and relationships to oceanographic
factors.

3.4.1 Variable-Habitat Ricker Models

Variable-habitat Ricker models can be developed in a manner
analogous to the variable-habitat logistic models discussed in Chapter 1
and in the Appendix. In the logistic model the realized per capita growth
rate, r*, declines linearly with density. In the Ricker model, the realized
spawning success, defined as the logarithm of the ratio of recruits to
spawner abundance, declines linearly with spawner abundance.

As in Equations (3.2) and (3.3}, the rate of decline of the abun-
dance of individuals in a cohort is given by the differential equation

th = _Nh(Mh+ChSh) .

G2 @

where N, is abundance of offspring in habitat 4 at time ¢, M, is the mor-
tality rate in habitat 4 from causes independent of adult abundance, and ¢,
is a coefficient of mortality rate per unit of adult abundance (§). For a
cohort of offspring, this differential equation has the solution

(3.10) N, = N, exp[-(Mﬁ%Sh)(' —‘o)] '

where N, is abundance of offspring in habitat # at an initial time #,, and is
proportional to local adult abundance (S,) at that time. By interpreting ¢,
as time of spawning, this proportionality is the spawning fecundity,
which, as described previously, contains habitat-specific and density-de-
pendent components. The true form of density-dependent fecundity is not
known, but an exponential decline with density appears to be reasonable
and will be assumed. In support of this assumption, Tsukayama and Al-
varez (1980) found that the fraction of Peruvian anchoveta that are mature
declines exponentially with total adult abundance if ocean temperatures
are warm (when food is scarce). During cold years, when food tends te be
abundant, the fraction mature is independent of abundance. Recruitment
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occurs at a nominally specified age T = £ — 1y (e.g., one year), and the
abundance of offspring surviving to recruitment (R, = Ny, ) is given by

(.11 R, = NOkeXp[_(Mh+ChSh)] ,

where coefficients M, and c; have been redefined to include habitat-de-
pendent and density-dependent fecundity effects as well as the fixed value
of 7. Also, the equation is redefined as pertaining to a cohort that was
spawned in habitat / at a particular time. Whether or not all individuals
remain in that habitat afterward, I assume that members of the cohort
share similar growth and mortality rates as they drift as a loose group.
Moreover, the largest part of the cohort’s mortality is suffered in the few
weeks following its creation, during which time it remains in the approxi-
mate vicinity of habitat 4.

It is unlikely that offspring experience similar mortality rates at
all ages. The parametrization of Equation (3.11) allows for variation in
mortality rates-at-age, and requires only that those mortality rates remain
linear in S, and independent of N. A transformation of Equation (3.11)
allows the Ricker model to be expressed as a linear combination of den-
sity-dependent and density-independent components similar to the logis-
tic model in Chapter 1:

(3.12) ~Ln(R,/S,) = 2, = M, + ¢S, .

The Ricker model is usually applied to entire reproducing popu-
lations or to arbitrary large aggregations called ‘‘stocks.’” In this applica-
tion to the CalCOFI data, the Ricker model is assumed to describe the
stock-recruitment relationship for very local habitats, corresponding to
CalCOFI stations (Figure 3.6), and the parameters reflect parental fecun-
dities and mortality rates experienced by offspring spawned in each habi-
tat. For a particular habitat (CalCOFI station, j) and time of spawning
(year, i),

313 Zt.. =M + M. + c,Af. .

where Z;; is equlvalent to Z, in Equation (3.12) for offspring spawned at
time { in habnat j(i.e., h = ij), and A; is similarly equivalent to §,,. The
density-independent mortality coefﬁcnent has been divided into two addi-
tive components describing density-independent time (M;) and habitat
(M) effects, respectively. Interaction between these time and habitat
components is ignored.
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Figure 3.6 CalCOFI stations used in the analysis.

I assume that spawning adults distribute themselves among
habitats according to an ideal free distribution whereby the spawning suc-
cess (Z;) is the same for all occupied habitats. While 1 treat spawning
success as a coefficient of mortality, it also includes habitat and density
effects on fecundity. For simplicity, I assume that effects on fecundity
can be approximated by the mortality model and can be subsumed into
that model. Thus, use of spawning success as a measure of habitat suita-
bility and as the basis for an ideal free distribution is equivalent to assum-
ing that individual spawners have sought out the best habitats and there-
fore have distributed themselves so that the expectation of reproductive
success (recruits per spawner) is equal everywhere. Thus, for all habitats

at time i, [ assume
(3.14) z, = zy,

which describes the ideal free distribution.

Two forms of variable-habitat Ricker model can be described
corresponding to the ‘‘constant r’’ and ‘‘constant slope’’ forms of the
logistic model described in Chapter 1 and in the Appendix. Assuming an
ideal free distribution (Equation 3.14), the analog of the ‘“‘constant r'’
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logistic model is a constant value of M for all j,
(3.15) Zg =M +M+ CJAU' , *‘constant M’

and the analog of the *‘constant slope™” logistic model is a constant value
of c for all f and j,

(3.16) Z, =M + M+ Ay “‘constant ¢”’

These two models are shown in Figure 3.7.

slope c;j Figure 3.7 Three variable-
a8 { habitat Ricker models.
A ; Solid dots indicate habitat
- distributi di th
e istribution according to the
("4 ideal free distribution.
L
l—
5 =" — - —z}
<
-
o
g Constant Z,
0
B.

Constant ¢

Generalized

SPAWNER DENSITY INDEX (a”)
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For purposes of predicting the abundance of adults in various
habitats, Equations (3.15) and (3.16) can be solved for A, given the
constraint of Equation (3.14):

Z5-M -M

3.7 A:‘j =— ‘“constant M’
i
Z¥_M. M.
A =4+ 1

3.18) 4 c “‘constant ¢

Ag:OifZ;*<Mi+Mj.

In practice, adult abundance has not been measured in absolute
terms; however, Lo’s (1985) index varies proportionally to A;;. Denoting

this index by a;;, we have

(3.19) a; = KA.,
where £ is an assumed constant of proportionality, the value of which is

unknown. If & is constant for all times and habitats, Equations (3.17) and
(3.18) become

ZF_M —M
(3.20) a; = k% **constant M’
i
and
Z?‘—MI.-MJ.
aij = k 1] LR )
(3.2 ¢ constant ¢

i

a; OifZ;"<Mj+Mj.

However, if £ varies, its effect is indistinguishable from variation in the
coefficient of density dependence, ¢ or ¢;. The consequences of this un-
certainty will be addressed later in the discussion.

Also, actual values of the mortality ceefficients M and Z are not
known, but only the difference Z* — M, — M, is of importance to the
model. For this reason the time-specific component of total mortality, M,,
may be subsumed into Z*; the value of M, has no effect on the habitat
distribution (although it does affect resulting recruitment). Furthermore,
it is not necessary to know the values of Z to predict values of a;: by
choosing a value of k = 1 in Equations (3.20) and (3.21), Z is expressed
directly in units of ;. The *“‘constant M”" model, which assumes that all
M, are equal, now gives the simple model
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(3.22) Qg = — > *‘constant M’

where parameters Z* and c¢; have been redefined in appropriate units re-
lating to the nominal measure of a;. The *‘constant ¢’” model also can be
simplified by rescaling, giving

a, = Z} — M,

(3.23) —0if Z* < M *‘constant ¢’
i i

a..
4

where Z* and M; are in units of nominal adult abundance a, . Both of
these modcls consnst of a mmple partitioning of predicted adult abundance
into a time effect (Z;*, which is actually a population size effect) and a
location effect (M; ur c) In the “constant M’ model, the interaction is
multiplicative, whlle in the ‘‘constant ¢”* model the interaction is addi-
tive.

These two models are rather restrictive. The *‘constant M’ mo-
del is similar to the ‘‘constant r** logistic model and is unable to portray
submarginal habitat or expansion and contraction of the population range
(see Appendix). On the other hand, there has been a greater increase of
density in the center of the anchovy’s spawning habitat {note the logarith-
mic shading scale in Figure 1.12) than can be accounted for by the ‘*con-
stant ¢’’ model.

By adding another parameter to the simplified ‘‘constant M’
model, [ obtain a more general model analogous to the *‘fourth quadrant
fixed point’” logistic model described in the Appendix:

z;
a4, = — — o
v C,
(3.24) - *‘generalized’”
=0if - < o

C.
7

This *‘generalized’’ model (bottom of Figure 3.7) closely resembles the
“‘constant M’ model, except that the relationship has been translated
(i.e., the origin of the coordinate system is shifted) by a factor of —a.
Note that the scaling of M, and ¢; is defined by the value of a, as the
equation must predict appropriate values of a;.

It is easily seen from Equations (3.22) and (3.24) that the “‘con-
stant M’’ model is a special case of the ‘‘generalized’” model wherein o
= 0. It is much less apparent from the equations, but somewhat more so
from Figure 3.7, that the *‘constant ¢’’ model approaches being a limiting
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case of the “*generalized”’ model, where a is very large. As o becomes
large, the suitability lines for individual habitats in the ‘‘generalized’
model become more nearly parallel, progressively approaching the pat-
tern of the “‘constant ¢”’ model. The appropriate slope is obtained by the
units of M, and ¢; so that the *‘focal point™ at —a can be placed at any
distance from the origin. Thus, if a is estimated to be large with respect to
the mean value of A, the best fit tends toward the ‘‘constant c”’ model,
and if estimated « is small, the fit tends toward the *‘constant M°’ model.

3.4.2 Data and Parameter Estimation

Among the many physical and biological oceanographic vari-
ables that have been monitored routinely by CalCOFI surveys has been
the abundance of anchovy larvae by size category per unit of sea surface
area. The CalCOFI program has conducted plankton sampling at standard
stations (Figure 3.6), and much attention has been given to standardiza-
tion of the sampling operation (see Kramer et al. 1972 for details). The
“central subpopulation”” of the northern anchovy is considered to range
from San Francisco southward to Punta Baja, Baja California (Figure
3.3). Accordingly, this study uses observations from CalCOFI lines 60 to
110 (Figure 3.6).

In order to reduce the effects of drift, I restricted counts of an-
chovy larvae to individuals less than 8 mm in length. The corresponding
ages of these larvae would range from four days {newly hatched) to about
two weeks, with the modal age being about one week (Methot and
Kramer 1979). In choosing to use larvae smaller than 8 mm, several oper-
ational trade-offs were considered. Smaller larvae, being younger, will
tend to be nearer the original spawning location and, in that respect, are
more representative of the adult spawning distribution. As shown in the
preceding larval drift model, transport can be substantial, and over days
or weeks the initial distribution will tend to be * ‘smeared.”’

On the other hand, problems with random variability become
severe if the nomina) measure of abundance 1s restricted to smaller larvae.
Eggs and early larvae are very patchy in distribution, whereas diffusion
reduces the patchiness of older larvae (Hewiit 1982). Also, sizes of
counts increase as larger larvae are included, increasing effective sample
size. Eggs and the smallest larvae are subject to additional variability, as
significant fractions can be lost from the net by extrusion through the
meshes (Lo 1983).

This study assumes that local larval abundance reflects local
adult abundance. A correction is needed to preserve this relationship
among years. Mortality rates of eggs and larvae have been shown to in-
crease with increased overall larval abundance so that standing stock of
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larvae is not proportional to the initial rate of production, and therefore is
not proportional to changes in adult abundance among years (Hewitt
1982, Lo 1985). Accordingly, I developed scaling factors for each year
based on estimated aduit abundance for that year. The estimates of adult
abundance are described by MacCall and Methot {1983) and are the an-
chovy abundance estimates used in the Northern Anchovy Fishery Man-
agement Plan (MacCall et al. 1983). These abundance estimates are
based on Lo's (1985) estimates of historical anchovy egg production and
have been modified by constraints from changes in observed age compo-
sition. The yearly scaling factors were developed from the ratio of esti-
mated adult abundance to a regionally stratified census of larvae smaller
than 8 mm. The regions and months (January through April) are the same
as those used by Lo (1985). The yearly scaling factors were adjusted for a
1954 value of 1.0, so that adult abundance was expressed in terms of
1954 larval equivalents. Thus, nominal adult abundance is given by

(3.25) a; = nHs,

where n; is the count of larvae smaller than 8 mm from sample if (year /,
station j), Hy; is the “‘standard haul factor’” adjusted for fraction of the
catch sorted, being a multiplier which converts the larva count to esti-
mated abundance beneath 10 m? sea surface area (Kramer et al. 1972),
and s; is a year-specific scaling factor which converts the abundance of
larvae to an index of adult abundance in units of 1954 larval abundance
equivalents. Cruises and yearly scaling factors are given in Table 3.6.

Parameters of the ‘‘generalized’’ model (Equation 3.24) were
estimated by the method of maximum likelihood. The assumed probabil-
ity density function is based on the observed count of larvae (n;) in the
sample and is a continuous approximation to the distribution of discrete
larva counts. Cassie {1968) reviews the statistical distributions of plank-
ton samples, and concludes that *‘for practical purposes the log-normal
does as well as any.”” Accordingly, I assume that Iarval abundances are
distributed log-normally about predicted abundances (Figure 3.8). Rear-
rangement of Equation (3.25) gives the predicted count of larvae in sam-
ple i:

(3.26) n, = b
' U Hl.j 5,

where 4, is given by the *‘generalized”’ model (Equation 3.24). For pur-
poses of parameter estimation, o is added to both sides of Equation
(3.24), giving

(3.27) a, +a = Z¥’ ¢ .
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Figure 3.8 Log-normal approximation te the probability distribution of discrete larva
counts. The mode and variance are functionally specified by the estimated year and station
parameters,

TABLE 3.6 CalCOFI cruises and scaling factors used in parameter estimation.

ABUNDANCE
SCALING
JANUARY FEBRUARY MARCH APRIL FACTOR
1954 . ] ® [ 1.000
1955 . L L] L 1.153
1956 . . . [ 2.032
1457 L] ® . * 1.452
1958 » [} [ ] ® 3.434
1959 L . ® . 2.014
1960 L ® * ] 3,468
1961 » . 3.033
1962 . ® 1.476
1963 L] L 2.102
1964 [ . 5.378
1965 ° » 3.122
1966 . . L 6.270
1969 L . L 2.518
1972 . [ ] . 6.996
975 [ [ 5.611
1978 L] L . 4.130
1979 . [ ) . 16.411
1980 [ [ ] [ ] 4.750
1981 . * . 2.730

1982 [ L . - 3.654
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Equation (3.27) is the ‘‘generalized”’ model translated by «, which
makes the problem of estimation equivalent to that of the ‘‘constant M™’
model.
The probability density function is
1+0.5 3

1 1 o /
(3.233)P("ﬁz"):aa._\;ﬁj ! . e"pi{l‘“[(”"ﬁ’s*“)f (ay+a)]/ “:,g} dl
YT,
1=123,...
and
N 2
(3.28b) P(n‘l" =0)=0’3U_¢'%_J; CXPE{L“ [(IHUSE“““)f" (“fj*“)]/ “"u} ’

where the standard error o(ay) is defined in terms of log-transformed
values of (4; + o),
(3.29) “aﬁ = 0, + 0, Ln(aij+ a) .
This parametrization of the standard error as a function of the predicted
abundance provides additional flexibility in the description of the proba-
bility density function, partially compensating for the arbitrary assump-
tion of a log-normal distribution.

The likelihood function (@) is calculated under log-transfor-
mation (maximization of the sum of the logarithms of the terms is equiva-
lent to maximization of the product of the terms):

(3.30) £®) = SLn[P(n;=1)|l0

where 8 denotes the vector of estimated parameters (ay; o; a; Z;*,1 = 1,
2,3, a0 =1,2,3,...), and the sum is taken over the number of
sample observations. The maximum of #{(8) was determined by IMSL
subroutine ZXCGR, a conjugate gradient method requiring only first de-
rivatives of & with respect to estimated parameters.

Estimation of parameter values requires at least one nonzero
observation (n; > 0) at each station j. Otherwise, all of the probabilities
for that statlon are given by Equation (3.28b), which is maximized by
estimating an infinitely unsuitable habitat. Thus, the data were screened
to include only stations with at least one nonzero observation. Also, sta-
tion and year parameters always appear in the form of a ratio, Z*/c;; this
ratio is unaffected if all Z* and ¢; values are multiplied by a constant. In
order to establish a fixed scale for these parameter estimates, the 1954
value of Z* was arbitrarily fixed at 1.0, reducing the number of estimated
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parameters by one. The 1954 abundance was the lowest in the time series,
so estimates of Z* are unlikely to fall much below 1.0; importantly, neg-
ative values of Z* cannot be allowed (for comparison, see the constraints
on the constant-r and FQFP logistic models in the Appendix). In order to
maintain the property of Z.* and ¢; being positive numbers throughout the
iterative maximization of the likelihood function, these parameters were
passed to subroutine ZXCGR in the form of log-transformed values.

The iterative maximization of the likelihood function was very
slow. The slowness was due to several reasons: (1) there were many ob-
servations; (2) the gradients of &(0) with respect to the estimated parame-
ters are small (i.e., the response surface is **flat™); (3) there is a large
covariance among estimated parameter values, particularly with respect
to a; and (4) gradient methods tend to be slow.

Consequently, parameter estimation was divided into three
stages. In the first stage a smaller data set involving selected stations was
the basis for estimating all parameters. In the second stage this small data
set was resampled using a jackknife procedure to estimate bias and stan-
dard errors of estimated parameters. In the third stage a larger data set
including many more stations was used to estimate the parameters, but
parameters gy, @, and o were held constant at the values determined in
the first stage.

3.4.3 Resuits

A subset of the observations was chosen based on the well-sam-
pled stations of CalCOFI lines 80, 90, and 100, giving 23 stations (Figure
3.6). A total of 1,312 observations were made at these stations on 63
cruises extending over the 21 survey years from 1954 to 1982 (Table
3.6). These data form the basis for estimating 46 parameter values (Table
3.7). Details of the statistics and parameter estimates are given by Mac-
Call (1983). The model and estimated parameters provide a statistically
significant reduction in the unexplained sum of squares, as shown by an
F-test(Fg = 5.43,Fg 1 = 1.59;d.f. = 45, 1,266). Of course, given this
many degrees of freedom. a significant F-statistic is relatively easy to
obtain.

Maximum likelihood estimates very often provide biased esti-
mates of parameter values. The jackknife procedure is one way of esti-
mating the magnitude of probable bias, and approximate standard errors
can be obtained in the same analysis. The grouped jackknife estimate of
bias and standard error are described by Miller (1974). This 23-station
subset of the observations was divided temporally into five groups for
purposes of calculating jackknife statistics. Information on suitability of
peripheral stations (c;) is obtained only in years of high population size,
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TABLE 3.7 Parameter estimates based on subset of 23 stations.

MAXIMUM
PARAMETER LIKELIHOOD JACKKNIFE
NAME ESTIMATE Estimate Standard error
oy 3.922 3.939 0.0373
) -0.282 -0.276 0.0137
o 5.879 6.157 1.5803
Ln Z (year)
1954 {defined as 0.0)
19535 0.373 0.391 (.0343
1956 —1.259 -1.289 0.0221
1957 0.729 0.726 0.0312
1958 2.911 2.926 0.0691
1959 —0.346 —0.256 0.1236
1960 1.846 1.765 0.0892
1961 0.634 0.769 0.1502
1962 2.400 2.589 0.1754
1963 2.235 2,526 0.1441
1964 2.850 2.838 0.0923
1965 3.755 3.845 0.1161
1966 4.407 4,383 0.1134
1969 3.411 3.429 0.0625
1972 1.441 1.393 0.1054
1975 3.644 3.461 0. 1404
1978 1.863 |.848 0.0791
1979 3.834 3.858 0.1543
1980 2.842 2,167 0.0869
1981 2.309 2.168 0.1095
1982 2.775 2,718 0.1692

or Z*, requiring that the groups be balanced. The years (excluding refer-
ence year 1954) were ranked by their estimated values of Z*. Five sub-
sets of four years each were defined by choosing years of rank R, R + 5,
R + 10,and R + 15, where R = 1, 2, 3, 4, 5. This selection procedure
assures that each subset contains a roughly equal representation of the
range of population size effects (Z;*). The five subsets were of roughly
equivalent sample size (Table 3.8).

Jackknife estimates of standard errors are given in Table 3.7.
Standard errors of parameters oy, &, and « are relatively small, support-
ing their treatment as given constants in the third stage of parameter esti-
mation. Also note that the estimate of « is significantly different from
zero (a distance of 3.9 standard errors, Student’s 4y : P < 0.01), allow-
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TABLE 3.7 Continued.

MAXIMUM
PARAMETER LIKELIHOOD JACKKNIFE
NAME FESTIMATE Estimate Standard error
— Ln ¢ (line-station)
80— 51 2.734 2.666 0.3907
80- 60 0.335 0.451 1.1149
80- 70 —1.194 —-0.926 1.0769
80- 80 -3.51 —3.575 1.0803
80— 90 —5.551 —5.539 0.6497
30-100 —5.824 —5.952 0.9053
90— 30 4.824 4.612 0.2692
90- 37 5.395 5.375 0.0638
90— 45 4.820 4.808 0.2404
90— 55 2.765 2.905 0.5830
90- 60 2.209 2.317 0.3451
- 70 —1.001 —0.809 0.9348
90— 80 —2.318 —2.182 0.8274
90- 90 -2.979 —-2.791 1.0203
90-100 —2.902 -2.930 0.5017
100- 30 4,172 4.092 0.2872
100— 40 3.295 3.227 0.3021
100— 50 1.247 1.127 1.0297
100~ 60 —1.431 —-1.327 0.8894
100— 70 —3.699 -13.651 1.1393
100~ 80 —3.664 —~3.728 0.4666
100— 90 —8.485 —8.625 0.5885
100-100 —-5.413 —-5.437 0.4685

ing rejection of the null hypothesis that the observations may have arisen
from a ‘‘constant M’ (i.e., & = 0) model lacking expansion and contrac-
tion of range. Standard errors for the year parameters, Z*, are relatively
small, but some of those for station parameters (c;), especially on the per-
iphery, are quite large (Figure 3.9).

The third stage of parameter estimation uses 4,948 observations
from 97 stations extending from CalCOFI line 60 to line 110. Parameters
oy, 0, and o were held fixed at the maximum likelihood values estimated
in stage 1. The station values from the 117 estimated parameter values
(see MacCall 1983 for numerical values) are plotted as geographic con-
tours in Figure 3.10. Standard errors were not estimated, but relative
values developed in the previous stage of estimation (Figure 3.9) provide
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TABLE 3.8 Subsets of observations, 19551982, used for jackknife estimation.

SAMPLE WEIGHTING
GROUP YEARS DELETED SIZE* FACTOR
1 1956, 1962, 1969, 1972 1,044 0.9786
2 1959, 1960, 1975, 1982 1,047 0.9814
] 1955, 1965, 1978, 1980 1,087 1.0189
4 1961, 1963, 1964, 1979 1,110 1.0403
5 1957, 1958, 1966, 1981 1,046 0.9805
* Sample size with no deletions: 1,312,
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Figure 3.9 Estimated habitat parameters (L ¢;) and standard errors for the subset of 23
stations. Values are plotted as increasing downward so that the plots depict transects
through the habitat suitability basin.
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Figure 3.10 Approximate spawning habitat suitability contours for the central subpopula-
tion of northern anchovy, showing the nominal edge (see text) of the larva distribution at
various spawning biomasses (in tons). The dashed line is the nominal edge of the latva
distribution at an estimated population carrying capacity of about two million tons.

an approximate guide. Standard errors for year parameters should de-
crease due to the increase in sample size, while standard errors for many
of the added stations are probably larger because those stations tend to
have somewhat fewer occupations than the 23 stations used in the previ-
ous stage.

3.4.4 Errors

The anchovy habitat model is based almost entirely on egg and
larva information. Even the scaling factors given in Table 3.6 are them-
selves derived from this source. Yet [ have attempted to make a variety of
inferences about the adult population and its habitat from this single
source of information. It is appropriate to consider sources and types of
error in this analysis and their effects upon the inferences that are made.

The best understood type of error is that associated with sam-
pling the larvae, a topic that has been discussed by Cassie (1968), Hewitt
(1982), Lo (1985}, and many others. Anchovy eggs are contagiously dis-
tributed at spawning, but the ¢ggs and larvae disperse progressively with
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time until the onset of schooling behavior. The log-normal probability
density function advocated by Cassie (1968) adequately addresses sam-
pling variability. As usual, a portion of the error variability in the esti-
mated parameter values is due to this source. However, in this analysis
there are several other types of error about which much less 1s known.

Misspecification of the model is probably a major source of er-
ror but cannot be fully evaluated because the “‘true’” model specification
is unknown. The simple linear relationship between habitat suitability
(measured as spawning success) and spawner or larval density may not
adequately describe the true relationship, and almost certainly misre-
presents the behavioral mechanisms governing habitat selection. The
model used here must be considered a low-level approximation. There is
no certainty that the Ricker model is itself a correct description of the
stock-recruitment relationship. Indeed, the largely multiplicative rather
than additive pattern of changes in abundance at central and peripheral
locations more closely resembles that expected from an ideal free distri-
bution under a Beverton and Holt stock-recruitment model (see Figure
1.11). In any case, there are enough other causes for an apparently multi-
plicative model (see below) that it is unlikely that the stock-recruitment
model could be inferred reliably from these data.

Another type of model misspecification is the assumption of a
constant or invariant basin topography. The true topography almost cer-
tainly varies within and among years. Further error may arise from vis-
cosity properties of the spawning anchovy population (Chapter 1) com-
bined with dispersive recruitment due to meroplanktonic eggs and larvae
(Chapter 2): the population may not be near an ideal free distribution even
though it may continually be attempting to approach that state. Also, to
the extent that anchovies distribute themselves with respect to physical
stimuli that are not affected by fish density, expansion and contraction of
range will be weakly associated with estimated Z*, and again the best fit
to the distribution of larval abundances should tend toward the multiplica-
tive “‘constant M’ model.

The errors arising from these sources should tend to be spatially
correlated, providing a potential tool for their analysis. For example,
principal components analysis or factor analysis could help identify geo-
graphical regions for which anomalously high or low larval abundances
covary consistently. A very complicated maximum likelihood model
could attempt to account for spatial correlation directly, although the
model would be difficult to fit as well as specify.

Diffusion of the larvae away from the locations at which they
were spawned is another source of error falling into this general category
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of spatial misspecification. The current strengths estimated by Power
(1986) suggest that movements of 30 to 60 km may easily occur during
the average one-week period between spawning and capture of the larvae
by the CalCOFI sampler. Diffusion should tend to result in an apparently
multiplicative model.

Further sources of error {e.g., variable fecundity and mortality
rates) involve violation of the assumed proportionality between larval
abundance and abundance of spawning aduits. Similarly, variability in
the location-specific slopes or coefficients of density dependence (c)) re-
sults in changes in the geographic distribution of larval abundance, which
is independent of total abundance. Actual suitability curves are less con-
strained than the ‘' generalized’’ model with its constant value of .

There are several likely sources of variability in fecundity. The
scaling factors in Table 3.6 attempt to remove only the variability in the
standing crop of small larvae arising from changes in mortality rates of
eggs and larvae. Anchovy surveys conducted from 1980 to 1985 have
shown a moderate range of daily population fecundity measured as eggs
produced per day per gram of adults (Bindman 1986). The coefficient of
variation has been about 18 percent, and the highest value has been
slightly less than twice the smallest value. However, these fecundities
reflect the approximate peak of spawning and do not necessarnily represent
variability in the average fecundity over the four-month period used in
this study. In fact, there are several reasons to suspect that average fecun-
dity is more variable, including large age-dependent changes in spawning
duration and potential influence of the current feeding rate discussed in
the biological description at the beginning of the chapter.

Much less is known about variability in the coefficient of den-
sity dependence or, what 1s more important to this model, variability in
the strength of the mechanism of “*perceived’’ density dependence (i.c.,
the presumably density-related stimuli which are perceived by the fish
and which influence their choices of spawning habitat). As was shown in
the first chapter, an increase in the coefficient of perceived density depen-
dence will cause an expansion of range and a decrease in local densities
within the range: the peripheral areas become more attractive if suitability
decreases in the central area due to the increased coefficient of density
dependence (Figure 1.4), except in the special case of the “constant M
model. The extent of bias from this source is unknown, but all model fits
should be biased toward the multiplicative **constant M’" model.

Decreased food abundance is likely to result in increased can-
nibalism due to increased time spent feeding by the adults, but it also may
result in switching 1o the alternative feeding mode. The response of food



112 1 MacCall | DYNAMIC GEOGRAPHY

levels to foraging intensity by the anchovy could conceivably lead to a
relationship between ¢; and M; similar to that given by the fitted model:
The zero-density intercept, or density-independent component of habitat
suitability (M) should vary with the amount of food provided by that hab-
itat if no adults were present, and the slope, or per capita coefficient, of
perceived density dependence (c;) may tend to be steeper for habitats with
low initial food levels because relatively larger amounts of time must be
spent feeding.

3.4.5 Interpretation of the Estimated Parameters

The relatively small estimated value of parameter a results in a
model that closely resembles the ‘‘constant M*’ model. That is, changes

5

ESTIMATED YEAR EFFECT (in Z;*)

«58

-2 | | | | | |
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Figure 3.11 Log-log relationship between estimated year effect (Z;*) and anchovy abun-
dance (spawning biomass, B,).
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in larval density at stations of high suitability account for most of the
change in total abundance, while expansion and contraction of range ac-
count for a small portion of the change.

The local stock-recruitment model used in this analysis (Equa-
tions 3.12, 3.13) assumes that egg and larval mortality rates increase line-
arly with local density of adults, and accordingly with density of spawned
eggs. Because of differential occupation of habitats with changes in total
population size, the linearity does not necessarily hold for total popula-
tion size. However, the slope of a log-log plot of estimated yearly Z*
values against estimated anchovy spawning biomasses (Figure 3.11) ap-
pears to be very close to 1.0, indicating approximate proportionality of
change. This indicates that the small value of o results in a model suffi-
ciently close to the ‘‘constant M’ form that differential occupation of
habitat would be expected to have little effect on the stock-recruitment
relationship. However, more direct investigations of anchovy egg and lar-
val mortality rates do show a curvature (Hewitt 1982, Lo 1985) in the
relationship between larval mortality rates and spawning biomass. The
slope of a log-log GM functional regression (Ricker 1973) of Lo’s esti-
mated mortality cocfficients on egg production rate is 0.257, indicating a
strongly curved relationship between the untransformed variates.

The difference between the basin model and the above empiri-
cally estimated mortality rate-biomass relationships is consistent with the
discussion of suspected biases toward a ‘‘constant M ** model fit. While
the concept of the geographic model has clear bearing on the theory of
population dynamics, these comparative results suggest that the fitted
model may be of limited value for inferring particular models of popula-
tion dynamics.

Despite the relatively small estimated value of &, the modet
predicts a substantial expansion and contraction of range with changes in
total abundance. Habitat corresponding to the nominal edge of the range
(€odge) is Given by solution of Equation (3.24) fora; = 0:

"

Z

(3.31a) Cogge = —
o

or, after log-transformation,
(3.31b) Ln(cedse) = Ln(Z}) - La(a) -

Note that the nominat edge of the spawning area is a very imprecise and
biased predictor of the edge in any actual year. The edge condition that a;;
= 0 indicates that the probability of observing no larvae slightly exceeds
0.5. (The cumulative probability to the mode of the log-normal distribu-
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tion is 0.5; the nominal edge of the population is defined by the mode
occurring at zero larvae, but the integral in Equation (3.28b) extends to
0.5 larvae.) Consequently, the expected value for the observed number of
larvae is always greater than zero and is consistent with the fact that lar-
vae sporadically occur well beyond the nominal edge of spawning habitat
as defined here. Further imprecision in this description of the edge of the
population arises from many of the sources of error discussed earlier, par-
ticularly changes in the true basin topography, in fecundity, and in the
coefficients of density dependence.

Log-log regression of Z* on spawning biomass (Figure 3.11)
gives the estimated relationship

(3.32) Ln(Z?) - 1.056Ln(B;) — 4.24 ,

where spawning biomass in year i (B,) is in units of thousand tons. Using
these estimated regression parameters and the estimated value of a =
5.879, the nominal edge of the range of anchovy spawning habitat can be
expressed as a function of spawning biomass:

(3.33) Ln(c adge) = 1.056Ln(B) — 6.01 .
The quantity of habitat of various suitabilities is conveniently
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Figure 3.12 Hypsogram relating suitability (Ln ¢;) and quantity of spawning habitat. Re-
lationship between spawning biomass and area within the nominal edge of the occupied
range (see text for definition) is based on the regression in Figure 3.13.
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summarized by a hypsogram. Each open-ocean CalCOFI station was as-
sumed to represent a habitat area of 40 nmi by 40 nmi, or 5,500 km?.
Inshore stations were assigned an arbitrary area of one-half this amount;
stations 90.55 and 90.60 were assigned two-thirds; and station 82.47 was
assigned one-quarter of the area of an open-ocean station (cf. Figure 3.6).
The resulting hypsogram (Figure 3.12) shows the area inhabited by
spawning anchovy to increase almost linearly with the logarithm of
spawning biomass.

At the estimated unfished equilibrium spawning biomass of 1.9
million tons (MacCall and Methot 1983) spawning would extend over
about 250,000 km?. At very large spawning biomasses the estimated
amount of marginal habitat appears to decline sharply. The precision of
this portion of the hypsogram is very low, as presence of larvae in these
marginal habitats is subject to high random variability, and stations were
included for estimation only if there was at least one positive larval occur-
rence. Therefore, there is likely to be more marginal habitat than is shown
by the hypsogram, as many equally suitable peripheral stations may have
been excluded from estimation by random effects.

At spawning biomasses below about 1,000 tons, spawning
should tend to contract into a few most favorable locations, and density-
dependent effects would become negligible. This final contraction of a
declining population is typified by the behavior of the Pacific sardine
(Sardinops sagax caerulea) when its population fell below 10,000 tons in
the 1960s and 1970s (MacCall 1979, Mais 1974). At this tow abundance
most of the sardine population seems to have consisted of a few large
schools occupying consistent locations in or near southern California’s
larger estuaries such as San Diego Bay.

3.4.6 Relationship of Basin Topography to Oceanographic
Variables

Three oceanographic variables have been monitored routinely
at CalCOFI stations: small plankton volume (milliliters of small plankton
per 1000 m? filtered by the net; methods are described by Kramer et al.
1972), and temperature and salinity at a nominal depth of 10 m. I bave
calculated means of these observations for the same 4,948 station occupa-
tions used in the basin model fitting. The geographic patterns of these
variables can be compared with the topography of estimated anchovy
spawning habitat parameters in Figure 3.10. No single oceanographic
factor correlates well over the entire range of anchovy spawning habitat.
Habitat suitabilities perceived by the anchovy are very likely to be deter-
mined by a mix of factors whose relative importance varies among loca-
tions and conditions, a mix that probably differs most at opposite ends of
the population’s range (Brown 1984).
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Small plankton volume increases nearly tenfold from south to
north (Figure 3.13). The only region where small plankion volame ap-
pears to correlate with the spawning basin is in the southern end of the
study area. Off northern Baja California mean plankton volume is very
high inshore and declines sharply to low values offshore. The spawning
habitat basin appears to be similarly constricted inshore in that area.

SAN N
FRANCISCO .

*1500 .
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30°
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Figure 3.13 Mean small plankton volumes (milliliters per 1,000 m?) for the samples used
in the analysis.

Mean 10 m temperature (Figure 3.14) shows a similar pattern
off northern Baja California, suggesting a relatively narrow inshore band
of upwelling which supports the increased plankton abundance. Mean
temperature isotherms in the northern part of the Southern California
Bight appear to correspond to the inshore topography of spawning habi-
tat, as Lasker et al. (1981) have shown more directly. The pattern of
mean 10 m salinity (Figure 3.15) shows a similarity to the spawning habi-
tat topography off Central California, where it indicates upwelling of rel-
atively more saline underlying water. Salinity shows no correspondence
elsewhere.
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Figure 3.14 Mean temperatures (degrees Celsius) at a depth of 10 m for the samples used
in the analysis.

Each physical variable, therefore, appears to correspond to
some portion of the spawning habitat basin topography. However, these
correspondences are of little more than heuristic vatue; inference of cau-
sal or even statistical relationships is inappropriate.

Oceanographic factors other than those discussed above may
also be related to real or perceived suitability of anchovy spawning habi-
tat. Lasker (1978, 1981) maintains that vertical stability of the water col-
umn is necessary for the formation of strata of larval fish forage suffi-
ciently dense that first-feeding larvae are able to avoid starvation. The
waters of the Southern California Bight tend to be more stable than sur-
rounding waters due to lower wind speeds and a stronger thermocline
(Husby and Nelson 1982).

Another somewhat related factor that is thought to influence an-
chovy reproductive success is the likelihood of adverse transport of the
planktonic larvac (Parrish et al. 1981). Off California there is risk of
wind-driven Ekman transport away from shore, and southwestward trans-
port by the California Current. The water circulation in the Southern Cali-
fornia Bight is often gyral, and the probability of retaming planktonic
larvae is higher than in the areas to the north and south. This retention is
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Figure 3.15 Mean salinities (parts per thousand) at a depth of 10 m for the samples used

in the analysis.
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Figure 3.16 Anchovy cgg distribution in 1982: left, initial distribution; right, distribution

after 30 days of simulated transport.



Muodel Application | MacCall 1 119

demonstrated by simulating 30 days of transport using Power’s (1986)
model, given the initial egg distribution in 1982 from Table 3.3 (Figure
3.16). Marginal spawning habitats outside the Southern California Bight
are progressively more subject to adverse transport, whereas the highest
retention of eggs and larvae coincides almost exactly with the most favor-
able habitat in the estimated basin topography (Figure 3.12).

Parrish et al. (1983) compare oceanographic factors and pelagic
fish spawning areas in four major eastern boundary currents and conclude
that *‘spawning grounds tend to lie in coastal indentations where wind-
induced transport and turbulence are reduced and continental shelf width
tends to be greater. The spawning grounds of the largest populations tend
to be located downstream (equatorward) of upwelling centers.’” The esti-
mated anchovy spawning basin clearly shows these characteristics and is
congruent with the habitat features described by Parrish.



4

SUMMARY AND CONCLUSION

Fishery modeling has been slow to develop a functional or
quantitative awareness of population geography (but see Sinclair 1988).
Once a “‘unit stock’” has been defined, geography is often ignored except
with regard to management options involving area closures. Indeed,
geography has not been easy to incorporate into useful, practical models
of population dynamics.

Ecologists have long considered geographic aspects of popula-
tion dynamics, but the more successful models have been applicable at
local scales corresponding to habitats or communities, Few field studies
at the population level have been attempted, partly because of the time
and expense of large-scale population studies spanning periods long
enough to observe substantial variability in abundance. In this respect,
observational data obtained from monitoring of exploited populations
provide rare opportunities for ecological investigation of relationships be-
tween population geography and dynamics.

The **basin model’’ describes a potential interrelationship be-
tween geography, movement, and growth dynamics at the population
level. Although it presents a grossly simplified and abstract view of popu-
lation behavior, the model conveys a strong intuitive image which allows
a holistic grasp of an entire suite of important considerations: abundance,
distribution and geographic structure, movement, and population growth.
While the model can be cast easily in mathematical terms, allowing quan-
titative prediction and rigorous examination of its properties, it also can
be understood without resort to mathematics.

The analogy of populations to a viscous liquid flowing under
the influence of gravity in a physical basin allows dynamics of population
movement and habitat selection to be visualized in terms of common ex-
perience. Not only does the ideal free distribution arise naturally in this
analogy, but it is achieved in a way that reflects underlying biological
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behavior as well: individual organisms, like molecules of a viscous lig-
uid, need only move in response to local gradients. The dynamics of
population growth are reflected in a tendency for the volume of liquid to
increase or decrease so that the surface of the liquid seeks a level corre-
sponding to neutral suitability, or zero growth, at which time the volume
of liquid corresponds to the carrying capacity of the basin. Thus, the car-
rying capacity is established indirectly, being the population size that fills
the basin to the neutral reference level. Changes in carrying capacity arise
mainly from changes in the density-independent factors which dictate the
basin’s shape and level with respect to the neutral level of zero growth,
but they also can arise from changes in the intensity of density depen-
dence,

Clearly, not all biclogical populations will conform to this
model. It may be best suited to marine fish populations, but with minor
modifications it can be extended easily to a much wider range of organ-
isms, including plants as well as animals.

The basin model is best suited to populations with a clear
central-peripheral density gradient, which Rabinowitz {1981} associated
with wide geographic range and broad habitat specificity. Similarly, it is
best suited to populations inhabiting relatively continuous habitats, al-
though a model incorporating fine-scale structure or grain of habitat varia-
bility could be elaborated. The basin model allows a flexible representa-
tion of habitat suitability, and it may be possible to reconcile the model
with alternative ecological theories that do not invoke density depen-
dence. Nearly all theories of population dynamics must account for a
population’s range, and this basin representation of habitat suitability
may be especially useful for this purpose (cf. Brown 1984).

The model is easily extended to specific cases, but as the habitat
model becomes more detailed, perhaps including temporal as well as spa-
tial variability, so must the representation of movement dynamics. As
shown in the population simulations explored in Chapter 2, the basin
model can easily incorporate complicated or detailed models that include
behavioral as well as physical mechanisms of dispersal and/or movement.
Portrayal of the interaction of population density and habitat suitability
need niot be restricted to logistic models. Simple resource-based models
such as Schoener's (1973) and Getz’s {(1984) per capita approaches are
attractive in that they potentially account for the actual mechanisms deter-
mining habitat suitability.

The phenomenon of biological invasions has long received at-
tention from theoretical as well as descriptive viewpoints (e.g., Mooney
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and Drake 1986). The geographic pattern of an invasion over time would
seem (o provide an ideal set of observations on which to develop a basin
model of the invader’s habitat. Moreover, the rate of spread would pro-
vide useful inferences about movement dynamics, information that is of-
ten difficuit to obtain for established populations.

Beginning with Fisher (1937), a series of theoretical investiga-
tions of traveling frontal waves from logistically growing diffusive popu-
lations (see review by Okubo 1980) has evolved. These often difficult
mathematical investigations have focused on various specifications of
movement dynamics, and usually have assumed homogeneous habitat.
Consideration of gradients in habitat quality, as portrayed in the basin
model, would make these frontal wave problems even more difficult
mathematically, but it could add a needed element of realism which
would relate directly to the study of real biological invasions and range
expansions.

Further possibilities include multispecies basin models, involv-
ing competition and/or predation. The logistic model of population dy-
namics is the basis for a variety of well-established simple multispecies
models, and extension of the basin model in this direction should be
straightforward. Models of population genetics involving competing al-
leles could be developed along similar lines: Fisher’s oniginal frontal
wave model (1937) portrayed the spread of advantageous genes within a
population. Competing alleles could result in alternative geographic fit-
ness basins (e.g., sickle-cell anemia as an extreme case), setting up con-
ditions for maintaining heterozygosity or clinal variations in gene fre-
quencies. The basin model also can generate conditions favoring
increased homozygosity, for example, the representation of conditions
leading to centrifugal speciation discussed in section 1.3.1.

An aspect of the model most needing further investigation is its
behavior in view of imperfect orientation and movement of individuals.
Not only is it reasonable to expect the orientation of individuals to be
imperfect but, as discussed in section 1.3.2, there is theoretical reason to
believe that there are selection pressures that run counter to perfection of
orientation; peripheral habitats are more extensively colonized if orienta-
tion is imperfect, and it is these peripheral habitats which are conducive
to speciation (see sections 1.2.4 and 1.3). The preceding treatment of
movement has assumed that imperfect orientation confers a diffusive
component to population behavior, but other behavioral models could
lead to different results. There also may be a relationship between selec-
tive values of oriented versus diffusive movement and the temporal and
geographic grain of basin variability; spatial variability should favor dif-



Discussion | MacCall 1 123

fusive movement, whereas temporal variability would favor oriented
movement.

While it is easy to think of theoretical extensions of the basin
model, it is much more difficult to envision ways of testing or validating
the basin model. Direct measures of habitat suitability remain elusive,
especially as linked to reproductive success in the basin model. Indirect
validation, by means of consistently successful predictions, may be more
likely.

Aside from the biological invasions mentioned above, natural
fluctuations in abundance tend to be confounded by the large-scale spatial
coherence of environmental conditions. Thus, widespread areas including
both central and peripheral segments of populations may benefit from im-
proved climate, making it difficult to separate abiotic from biotic factors
in range expansions.

Once again, observations of exploited populations may provide
answers not available from the unexploited populations studied by most
ecologists: Exploitation reduces the abundance of a population *‘artifi-
cially,”” while the habitat quality presumably remains otherwise un-
changed. Decreases in exploited populations (especially fish) are often
associated with range contractions despite the fact that formerly occupied
habitat remains available and otherwise as attractive as it was prior to
exploitation.

Of course, explanations based on other effects of exploitation
must be considered: for example, exploitation also decreases the average
life span and could result in range contraction due to reduced time over
which diffusion acts from a central nursery area. Nonetheless, the world’s
fisheries contain many cases of parallel populations in various states of
exploitation, and they provide many opportunities for examining the pre-
dictions arising from the basin model.

The basin model has particular promise for management of
some exploited populations, and for conservation of depleted populations
where critical habitat is often an issue. A current problem in conservation
biology is that of optimal design of preserves: whether many small pre-
serves or a single large preserve is more likely to succeed in preventing
extinction {Goodman 1987).

Without entering into that debate, it would seem that the basin
model provides some useful insights. Are the preserves to be near the
center or toward the periphery of the original range? Clearly, preserves
near the center should be superior. If preserves must be created near the
periphery of the original range due to loss of central habitat, it might be
advantageous to site those preserves at diametrically opposed locations.
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Not only would this help to preserve independence of environmental fluc-
tuations among the sites but it would also utilize any tendency toward
negative correlation between changes in habitat suitability at opposite
ends of the range. This negative correlation is most easily seen in a north-
south orientation, where climatic (e.g., temperature) deterioration at one
end of the range would tend to be accompanied by amelioration at the
other end of the range.

The model’s utility for fishery management is most direct for
relatively immobile organisms. For example, Stevenson (1986) com-
mented on the difficulties in managing the Atlantic surf clam (Spisula
solidissima) fishery: **Currently a vessel can only fish one day every two
weeks. . .. Obviously fishermen would prefer some other system.’’ She
goes on to say that it has taken strong enforcement to prevent extensive
“‘cheating’’ by fishermen. MacCall (1986) suggested that the surf clam
fishery on the U.S. Atlantic coast might benefit from a geographic man-
agement strategy which completely closes the center of the range but al-
lows unlimited harvesting toward the edges (or downstream). Besides
resembling the optimal effort distributions in Figure 2.10, this strategy
might have benefits of easier and less costly enforcement. An inadvertent
application of this type of management may have occurred in Narragan-
sett Bay, where pollution afforded protection to what may be the up-
stream productive segment of the clam population (see section 2.3.4).

The basin model may also provide some guidance in evaluating
the utility and placement of artificial habitat. I must warn that our techno-
logical ability to create artificial habitat is still very questionable, espe-
cially in the case of fragile habitats such as wetlands. Yet other examples
such as artificial reefs often have been successful. With continuing human
population growth and encroachment of urban centers on habitats such as
wetlands, we may expect increasing pressure to attempt mitigation of
habitat loss by creating ‘‘equivalent’” artificial habitat in less economi-
cally desirable areas. Again, the basin model may provide guidance in
choosing sites for these attempts.

The fact that the basin model offers practical advice to the field
biologist and resource manager as well as insight to the theoretician is
evidence that it bridges the major realms of biological science. Whether
that bridge is useful can only be judged by the traffic it bears.



APPENDIX
SPECIFICATION OF LocisTic MODELS

The logistic model has long been a favorite tool of biomathe-
matical modeling, theory, and resource management. Kingsland (1982)
gives a detailed review of its early historical development, The logistic
model is concise, mathematically tractable, and often a good first approx-
imation for more complicated density-dependent models; Lotka (1925)
showed that it is equivalent to a truncated Taylor series expansion of the
general population growth model dN(#)/dt = fIN(1)].

Recent investigations in theoretical ecology have allowed pa-
rameters in the logistic model to vary in order to simulate the effects of
habitat variability in space or time. Of these two forms of variable-habitat
logistic models, variability in time has received the most attention during
the past decade, mainly due to the arcane but well-developed mathemat-
ics of diffusion equations and stochastic calculus. Treatment of spatially
varying logistic models has lacked a unifying methodology and has not
yet developed a coherent body of literature.

In both temporally and spatially varying cases, results of analy-
ses have been influenced profoundly by the form or parametrization of the
logistic model employed. This problem has received scattered comment
in the literature on temporally varying logistic models but has been over-
looked in the literature on spatially varying models. Here I examine some
of the difficulties encountered by various forms of variable-habitat logis-
tic models, and argue that the conventional » and X parametrization has
been of serious disutility.

LOGISTIC MODEL

The logistic model assumes that the per capita growth rate of
the population, r*(N), declines linearly with increasing abundance or
density, N. Thus, (dN/dr)/N = r*, and in the conventional notation of r
and K
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(A1) r*(N) = r[l — (N/K)|,

where r is the **intrinsic rate of increase,”” being the per capita population
growth rate at vanishingly small density, and X is the ‘‘carrying capac-
ity,”” being the asymptotic abundance toward which the population grows
or declines (i.e., an attracting point). When this form of logistic model is
used to describe average dynamics of an entire population, parameters »
and K are necessarily positive and the slope of 7*(&) is appropriately neg-
ative.

As the model itself is an abstraction, potential mechanisms un-
derlying the linear density dependence of the logistic model are seldom
considered explicitly. A useful exception is offered by Schoener (1973),
who develops a linear model from energetic considerations. Schoener
postulates that ‘‘reproductive rate per individual beyond maintenance and
replacement is proportional to the net energy harvested by the individual
minus that energy needed for maintenance and replacement.”” Schoener
also assumes that the rate of energy input may vary among habitats but is
not reduced by direct impact of foraging. Given the energy supplied by a
particular habitat, energy input to an organism is influenced only by the
fraction of activity time spent feeding, which decreases with increasing
population density due to time-consuming interactions with other individ-
uals. Schoener gives a long list of assumptions illustrating the numerous
restrictions needed to justify even such a simple growth equation.

In the present general discussion there seems little to be gained
from further exploring specific mechanisms to support an abstract model.
However, it is worthwhile to examine interpretations of the parameters r
and K in Equation (A.!) and how they can be extended from population
parameters to habitat-specific parameters.

The most popular form of the variable-habitat logistic model
has been that with fixed r and habitat-specific variable K (Figure A.1). I
suspect that, to some extent, this popularity has been due to misleading
semantics. The term “*intrinsic’” rate of increase connotes an innate prop-
erty of the species, independent of the vagaries of habitat.

Kiester and Barakat (1974) noted that there are two divergent
views of the nature of . The first, exemplified by MacArthur and Wilson
(1967), assumes that r is a genetically determined (i.¢., truly intrinsic}
constant, being the maximum growth rate in an ‘‘ideal’” environment. As
a corollary, this view requires that variations in carrying capacity reflect
density-dependent effects on population productivity (e.g.. in their
words, ‘‘the efficiency of resource utilization’’), because of the assumed
constant nature of r. The alternative view, held by Birch (1948) and elab-
orated by Enright (1976), has been that maximum r must relate to a de-
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fined set of physical conditions, i.c., a defined habitat, and these condi-
tions vary over space and time.

From the point of view of variable-habitat logistic models, the
interpretation of MacArthur and Wilson is untenable; clearly, some habi-
tats are more favorable (viz. higher r) than others when density is arbitrar-
ily low. Enright further argued that variations in carrying capacity are
necessarily determined by variations in both density-dependent and den-
sity-independent factors. It is the sum of these two contributions to per
capita growth rate that is important, so that a decrease in density-indepen-
dent factors requires a complementary increase in density-dependent fac-
tors (hence increased density) to restore the nominal equilibrium that un-
derlies the concept of carrying capacity. Enright’s argument requires a
positive covariance between r and K. The density-independent factors
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which contribute to a change in r at low density will, at carrying capacity,
have to be compensated by a change in density-dependent factors, espe-
cially density itself (viz. K).

VARIABLE-HABITAT LOGISTIC MODELS

Being linear in N, a logistic model for a particular habitat or
time is fully specified by two parameters. In modeling habitat variability
it is convenient to hold one of the parameters constant while varying the
other. Most commonly, the function r*(N) is constrained to pass through
a specified point, (r*,N), usually either (r,0), where r is assumed to be
constant, or (0,X), where X is assumed to be constant (see Figure A.1).

Rarely are other fixed points used. Schoener’s (1973) logistic
model has a fixed point at a population density where all time wouild be
spent on intraspecific interactions; at this population density r* is less
than zero, placing the fixed point in the second quadrant (Figure A.2).
Accordingly, this model will be called a ‘‘second quadrant fixed point™’
(SQFP) model. It is also conceivable that the fixed point could be placed
in the fourth quadrant (r* > 0, N < 0), given the appropriate constraint
on the sign of the slope. The latter model is shown in Figure A.2, and wiil
be called the ‘‘fourth quadrant fixed point”’ (FQFP) model. While the

*(N) Figure A.2 Generalized
A variable-habitat logistic
A models: A, second quadrant
Second quadrant fixed point {SQFP) model;
fixed point B, fourth quadrant fixed
point (FQFP) model.
<> N
T T e
B
Fourth quadrant
fixed point
= N
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fixed point conceivably could be placed in the first quadrant (r* > 0, N >
0), a strong argument against this model is its negative covariance be-

tween r and K,
The one alternative to the fixed point parametrization is a fixed

slope model, which is also a special case of Schoener’s (1973) model
wherein loss of time due to intraspecific interactions is negligible. The
constant-slope model may be written

(A.2) r*(N) = r—bN,

where b represents a constant per capita decrease in realized per capita
growth rate, and r has the same interpretation as before (Figure A.1).
Algebraic solution of Equation (A.2) for r*(K) = O gives K = r/b, which
has the proper covariance, as discussed previously. In this model, carry-
ing capacity is not a direct measure of some quality of the habitat, but
rather is the abundance which causes r* to be zero due to density effects
on the realized growth rate. Indeed, much of the historical discussion of
the significance of » and K is of questionable relevance to the constant-
slope form of the variable-habitat logistic model because of this coupling
of rand X.

EVALUATION OF ALTERNATIVE FORMS

Empirical curves of per capita growth rate or fitness versus
population density for various species would provide a useful basis for
comparison. For example, Whitham (1980) measured per capita repro-
ductive success of aphids as related to leaf size (habitat quality} and num-
ber of aphid galls per leaf (population density). He equated reproductive
success to fitness, and the resulting curves are well approximated by a
constant-slope logistic model, and are even better approximated by a
SQFP logistic model. Another example is provided by the variable-habi-
tat anchovy spawning model in Chapter 3, which corresponds to the
FQFP model.

Lacking other empirical evidence for **biological realism,”” it is
useful to review and compare theoretical and mathematical properties of
the three common forms of variable-habitat logistic model (Table A.1).
The most popular form has been that with fixed r and variable X (Figure
A. D). The failings of this model, in particular its requirement that all hab-
itats be equally advantageous at low density, were discussed previously.

The alternative fixed point model of constant K and variable r
(Figure A.1) appears mainly in the literature on temporally varying habi-
tats (Table A.1). No justification other than mathematical convenience is
usually offered, but the mode! could be used as an approximation for the
dynamics of some territorial species (Morisita {1952, 1971] found ant
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TABLE A.1 Comparison of simple variable habitat logistic models.

CONSTANT r CONSTANT X CONSTANT SLOPE
Per capita r—rN;/K; ri—rNJK ¥~ DN,
growth rate b= riK;
(r*
Examples
tttme varying Gadgil 1971(t,s) Levins 1969(2) May 1973()
s:spatially varying  Rosenzweig Tuckwell 1974(r) Kiester and
wunspecified 1971(u) Barakat 1974{t)
Fretwell 1972(1) Feldman and
Kiester and Roughgarden
Barakat 1975(r)
1974(1) Slatkin 1978(7)
Roughgarden
1974(s)
Feldman and
Roughgarden
1975(t)
Boyce and Daley
1980(r)
Evaluation
N=0 All habits equal Well behaved Well behaved
N=K Well behaved All habits equatl Well behaved
N>K ‘Well behaved Inverted ranking Well behaved
of growth rates
r<0 Inappropriate Paositive slope Well behaved
to model (X is repelling)
K<0 Positive slope Inappropriate Well behaved
(K is repelling) to model
Density- No differential Well behaved only  Well behaved
dependent suitability ifr > 0and
habitat selection (constant habitat N <K
distribution); suitabilities are
unable to model reversed if ¥ >
submarginal K;
habitat differentizal

suitability
disappears near
K;

unable to model
submarginal
habitat
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lions to behave in this way), and also as a special case of Schoener’s
(1973) model. The constant-K model behaves very poorly in the case of N
> K. While K remains an attracting point, the order of habitat quality is
inverted: that with the highest r gives the lowest r*(#). This artifact has
not affected most temporally varying models of this form, since their dy-
namics do not allow the value of X (o be crossed by the trajectory of N(1)
for a given set of initial conditions. It could easily prove to be a problem
in spatially varying models that allow N to be determined by additional
dynamics such as immigration from surrounding habitats.

Submarginal Habitats

As noted earlier, r and K are necessarily positive when used to
describe average dynamics of an entire population. However, when the
logistic model is used to describe dynamics in a local habitat (time or
space), there is no biological reason that r and X must always be positive.
It is easy to conceive submarginal conditions in which Jocal abundance
would decline even at N near zero (i.e., r < 0). A realistic linear model
still requires that the slope of 7*(N) be negative, so that the per capita rate
of increase (although already negative) further declines with increasing
population density. Carrying capacity still corresponds to the population
size or density at which r* would be zero, but a negative K would indicate
that this condition cannot be met by an actual population in that habitat.
Both fixed-r and fixed-X forms of variable-habitat model are incapable of
portraying this condition realistically: if either r or K is negative, the
slope becomes positive and X becomes a repelling point (see Figure A.1).
Interestingly, the common parametrization of the Lotka-Volterra compe-
tition equations, €.g.,

K.—~2a.N.
— : vy I
(A3) (V) =1, [T] ’
where q;; is a *‘competition coefficient”” relating to the effect of species j
on species #, is a multispecies extension of Equation (A.1) and suffers the
same difficulty in portraying submarginal habitats. This problem with
fixed-r or fixed-K forms of the variable-habitat logistic model has occa-
sionally been mentioned (e.g., Slatkin 1978 and Turelli 1977), and a
common although unsatisfactory solution has been to restrict the variance
of the stochastic parameter so that negative values are arbitrarily improb-
able.
The constant-slope form of the variable-habitat logistic model
(Equation A.2, Figure A.1) overcomes many of the difficulties with
fixed-point forms of the model. First appearing in simplified form (b = 1)
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as a mathematical convenience (May 1973), it has been used in most later
treatments of temporally varying habitats. Besides being well behaved at
all values of N, submarginal habitats are modeled easily by a negative
value of r. The corresponding value of X is also negative, and remains an
attracting point (though unattainable) due to the negative slope of r*(N).

The other fixed-point models (SQFP and FQFP) share some of
the problems of fixed-r and fixed-K models, but with lesser severity. In a
spatially varying application of the SQFP model (Figure A.2), N could
exceed the value of the fixed point, but because this must occur at r* < 0,
the likelithood of that conditien is reduced. The FQFP model (Figure A.2)
has no problem with negative values of r, but maximum r must not ex-
ceed the value of the fixed point.

IMPLICATIONS FOR HABITAT SELECTION

It is instructive to compare the common forms of variable-habi-
tat logistic models in light of the DDHS theory of Fretwell and Lucas
(1970) and Fretwell (1972). Their theory predicts that in an ‘‘ideal free
distribution’” individuals differentially occupy available habitats so that
realized “‘suitability’’ is equal for all occupied habitats. Here suitability
comresponds to realized per capita growth rate, r*(%), so the predicted
abundance in each habitat is given by N{r*) as shown by the solid dots in
Figures A.1 and A.2.

The fixed-r, variable-K model indicates that all habitats would
be colonized even at very low total popuiation size, with no further colo-
nization of marginal habitats as overall abundance increases. Rather,
abundance is distributed among all the habitats in proportion to their car-
rying capacities, and the relative distribution does not vary with abun-
dance. Because of this property, the dynamics of the entire population
retain the linear properties of the logistic model.

All other forms of variable-habitat logistic models result in non-
logistic behavior of the overall population due to differential occupation
of habitats as total population size varies, the habitat with the highest r
being colonized first. In the variable-r, fixed-K model, this differential
disappears as K is approached, and order of habitat suitabilities (hence
order of habitat occupation) is reversed if total population size exceeds K.
Again, the constant-slope model is consistently well behaved: Differen-
tial occupation of habitats occurs at all levels of abundance, even if X is
exceeded, under which conditions submarginal habitats are colonized.
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CONCLUSION

1 submit that for theoretical modeling, the constant-slope form
of variable-habitat logistic model is better than the fixed-r or fixed-K
forms in nearly every respect. While the literature on temporally varying
logistic models seems to be in substantial agreement with this conclusion,
treatments of spatially varying habitats (e.g., Gadgil 1971 and Roughgar-
den 1974) and unspecified variable-habitat models (¢.g., Oksanen et al.
1981 and Rosenzweig 1971) have seldom used the constant-slope form of
spatially varying logistic model. The constant-slope form is particularly
well suited to spatially varying models, whereas the fixed-r and fixed-X
forms are unable to represent submarginal habitat. The other fixed-point
forms (SQFP and FQFP) offer greater representational flexibility, but
they also entail greater mathematical complexity and so are unlikely to
see widespread use.
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