Persistent organic pollutants in Alaskan ringed seal (*Phoca hispida*) and walrus (*Odobenus rosmarus*) blubber $\ddagger \$$

John R. Kucklick,^{*a*} Margaret M. Krahn,^{*b*} Paul R. Becker,^{*a*} Barbara J. Porter,^{*c*} Michele M. Schantz,^{*c*} Geoffrey S. York,^{*d*} Todd M. O'Hara^{*e*} and Stephen A. Wise^{*c*}

Received 16th February 2006, Accepted 2nd May 2006 First published as an Advance Article on the web 15th May 2006 DOI: 10.1039/b602379g

Since 1987, the Alaska Marine Mammal Tissue Archival Project (AMMTAP) has collected tissues from 18 marine mammal species. Specimens are archived in the National Institute of Standards and Technology's National Biomonitoring Specimen Bank (NIST-NBSB). AMMTAP has collected blubber, liver and/or kidney specimens from a number of ringed seals (*Phoca hispida*) from the areas near Nome and Barrow, Alaska and walruses (Odobenus rosmarus) from several locations in the Bering Sea. Thirty-three ringed seal and 15 walrus blubber samples from the NIST-NBSB were analyzed for persistent organic pollutants (POPs). The compounds determined included PCBs (28 congeners or congener groups), DDT and related compounds, hexachlorobenzene (HCB), hexachlorocyclohexane isomers (HCHs), chlordanes, dieldrin, and mirex. POP concentrations in ringed seal blubber were significantly higher in Barrow than in Nome when statistically accounting for the interaction of age and gender; HCB, however, was not statistically different between the two locations. Unlike males, POP concentrations and age were not significantly correlated in females probably as a result of lactational loss. POP concentrations in walrus blubber were lower than in ringed seal blubber for $\sum PCBs$, chlordanes, and HCHs, but higher for dieldrin and mirex. POP concentrations in ringed seals and walrus from Alaska provide further evidence that the western Arctic tends to have lower or similar POP concentrations compared to the eastern Canadian Arctic.

Introduction

The ringed seal (*Phoca hispida*) is common in the Arctic with a circumpolar distribution. This species is generally associated with sea ice, using this habitat for resting, reproduction, and foraging, as well as for protection from predators. Ringed seals are the predominant prey of polar bears (*Ursus maritimus*) and important for subsistence users. The importance of the ringed seal in the arctic ecosystem has led the Arctic Monitoring and Assessment Program (AMAP) to suggest that

^a National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA. E-mail: john.kucklick@nist.gov

- ^b National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
- ^c National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
- ^d US Geological Survey, Alaska Biological Science Center, 1011 East Tudor Road, Anchorage, AK 99503, USA
- ^e Institute of Arctic Biology, University of Alaska, Fairbanks, P.O. Box 757000, AK 99775, USA

[†] Presented at the International Environmental Specimen Bank Symposium, 14th–16th November 2005, Charleston, South Carolina, USA.

the ringed seal be included as a target (indicator) species for arctic environmental monitoring.¹

Ringed seal blubber samples have been collected from a variety of locations throughout the Arctic, including the White Sea in Russia, Baltic Sea, Svalbard, Greenland, and several locations in the Canadian Arctic and Alaska, and analyzed for persistent organic pollutants (Fig. 1).^{2,3} Results from this work

John Kucklick was born in the United States, in 1960. He received his PhD in Marine Science from the University of South Carolina, USA in 1992, a Masters Degree in Marine Biology from the University of North Carolina at Wilmington in 1988, and a Bachelors of Science degree in Zoology from Miami University in Ohio, USA in 1983. In 1992 he joined the University of Maryland's Chesa-

peake Biological Laboratory as a post doctoral scientist. Since 1997 he has been a research biologist in the Analytical Chemistry Division of the National Institute of Standards and Technology. His current research interests are: environmental and marine chemistry, environmental fate, bioaccumulation, toxicology, and the analytical chemistry of organic pollutants.

[‡] Electronic supplementary information (ESI) available: Ringed seal and walrus data. See DOI: 10.1039/b602379g

[§] Disclaimer: Certain commercial equipment or instruments are identified in the paper to specify adequately the experimental procedures. Such identification does not imply recommendations or endorsement by the NIST nor does it imply that the equipment or instruments are the best available for the purpose.

Fig. 1 The Arctic and surrounding regions.

showed a negative correlation between \sum DDTs (the sum of 4,4'-DDT, -DDE, and -DDD), $\sum PCB_{10}$ (the sum of PCBs 28, 31, 52, 101, 105, 118, 138, 153, 156, and 180), and transnonachlor blubber concentrations and the longitudes of the locations from where the samples were collected (i.e., blubber concentrations decreased from east to west).² Conversely, the sum of hexachlorocyclohexanes (\sum HCH; the sum of α -, β -, and y-HCH) concentrations increased with increasing longitude. Samples for this work originated from several locations ranging from the Russian central Arctic (Kara Sea, approximately 76° east longitude) to Resolute Bay in the eastern Canadian Arctic (approximately, 95° west longitude). The finding was consistent with that of Hoekstra et al. who found that persistent organic pollutant (POP) concentrations were lower in ringed seals collected from Barrow, Alaska, relative to the eastern Canadian Arctic.⁴

Unlike for ringed seals, little is known about geographical trends of POPs in walruses (*Odobenus rosmarus*). Data on POPs in walruses are mainly limited to three locations including Greenland, the eastern Canadian Arctic (Hudson Bay and the vicinity of Baffin Island), and the Bering Sea.^{5–7} In general, concentrations of POPs in walruses are lower than seals as walruses feed primarily on benthic invertebrates. For example,

male ringed seals collected from a region similar to that for the walruses had 2 to 4 times higher concentrations of PCB 153.⁵ However, unusually high concentrations, up to 11 500 ng g^{-1} (8500 ng g^{-1} wet mass; mean (1 SD)) sum \sum PCBs (sum of 86 congeners) in male walruses (n = 9) have been observed from eastern Hudson Bay and have been attributed to seal predation by walruses.⁵ In male walruses (n = 8) from the Bering Sea, the median \sum PCB (unspecified number of congeners) was 450 ng g^{-1} (390 ng g^{-1} wet mass) compared to 193 ng g^{-1} (53 ng g^{-1}) for non-seal eating walruses (n = 6) from northeastern Canadian Arctic (Igloolik).^{5,7}

The present study aims to provide additional information on ringed seals in the western Arctic as well as new information on walruses collected from the Bering Sea. This study makes use of samples collected and archived by the Alaska Marine Mammal Tissue Archival Project (AMMTAP)^{8,9} for inclusion in the National Institute of Standards and Technology's National Biomonitoring Specimen Bank (NIST-NBSB). Samples were collected with the cooperation of Alaskan Native organizations and subsistence hunters. As of 2005, AMMTAP has sampled the blubber, liver, and/or kidney of 115 ringed seals from areas near Nome and Barrow, Alaska. Thirty-three ringed seal and fifteen walrus blubber samples from the NIST-NBSB have been

Table 1	Information	on ringed s	seal blubber	samples us	ed in this	s study
---------	-------------	-------------	--------------	------------	------------	---------

NIST NBSB identifier	Location	Year collected	Gender	Age/year	Blubber thickness/cm	Lipid, mass fraction (%)
RGSL-2	Barrow	1988	Female	0.5	2.5	81.3
RGSL-5	Barrow	1988	Female	1	2.7	82.1
RGSL-6	Barrow	1988	Female	0.5	2.8	82.2
RGSL-10	Barrow	1988	Female	2	3.0	78.5
RGSL-23	Barrow	1991	Female	5.5	2.3	78.0
RGSL-28	Barrow	1991	Female	9	2.5	81.5
RGSL-48	Barrow	1996	Female	7	2.0	79.4
RGSL-54	Barrow	1996	Female	6	1.8	84.9
RGSL-55	Barrow	1996	Female	5	2.0	85.3
RGSL-25	Barrow	1991	Female	1.5	2.4	84.3
RGSL-37	Barrow	1994	Male	1	3.2	88.3
RGSL-47	Barrow	1996	Male	7	3.5	83.2
RGSL-50	Barrow	1996	Male	6	2.9	87.0
RGSL-51	Barrow	1996	Male	7	2.8	85.9
RGSL-52	Barrow	1996	Male	5	2.9	84.6
RGSL-53	Barrow	1996	Male	6	1.9	88.3
RGSL-49	Barrow	1996	Male	7	1.9	84.5
RGSL-12	Nome	1989	Female	2	3.5	74.0
RGSL-15	Nome	1989	Female	0.5	3.3	85.5
RGSL-17	Nome	1991	Female	NA^{a}	7.0	89.5
RGSL-18	Nome	1991	Female	1	2.0	90.9
RGSL-35	Nome	1994	Female	NA	3.5	87.5
RGSL-36	Nome	1994	Female	NA	3.8	85.8
RGSL-48	Nome	1997	Female	NA	4.4	86.3
RGSL-56	Nome	1997	Female	4	2.0	90.0
RGSL-11	Nome	1989	Male	1	4.0	86.7
RGSL-14	Nome	1989	Male	1	3.0	84.2
RGSL-16	Nome	1991	Male	0.5	4.0	87.6
RGSL-29	Nome	1993	Male	1	3.4	90.0
RGSL-30	Nome	1993	Male	NA	6.0	87.0
RGSL-31	Nome	1993	Male	1.5	4.0	91.0
RGSL-33	Nome	1994	Male	NA	4.0	85.1
RGSL-34	Nome	1994	Male	NA	2.5	86.5
^a Not available.						

analyzed for POPs by NIST, and/or the National Oceanic and Atmospheric Administration (NOAA).

Experimental

The ringed seal blubber samples used in this study were from 10 female and 7 male seals from Barrow, Alaska and 8 male and 8 female seals from Nome, Alaska collected from 1988–1997 during native subsistence hunts (Fig. 1 and Table 1).

While the collection spans ten years, previous studies did not find significant temporal trends of POPs during this period in ringed seals.^{10,11} Walrus blubber samples were collected during native subsistence hunts from several locations in Alaska including Round Island, Saint Lawrence Island, and from coastal waters around the Seward Peninsula (Table 2). Samples were collected, shipped, and stored using stringent protocols designed for samples to be included in the NIST-NBSB.¹² Prior to analysis, samples were cryohomogenized

Table 2 Information on walrus blubber samples used in this study

NIST NBSB identifier	Location	Year collected	Gender	Age/year	Blubber thickness/cm	Lipid, mass fraction (%)
WLRS-001	Norton Sound	1993	Male	12 to 15	2.5	72.1
WLRS-002	Nome	1993	Male	8 to 10	2.5	77.5
WLRS-003	Nome	1994	Male	19	5.0	55.7
WLRS-004	Nome	1994	Male	21	3.3	74.9
WLRS-005	Nome	1994	Male	18	3.0	79.2
WLRS-006	West of Gambell ^a	1995	Female	8	NA^b	82.0
WLRS-007	West of Gambell	1995	Female	8 to 10	8.0	81.6
WLRS-008	West of Gambell	1995	Female	5 to 6	6.0	79.4
WLRS-010	NE of Gambell	1995	Female	Calf	NA	64.3
WLRS-013	Gambell	1996	Female	Adult	3.9	84.5
WLRS-014	St. Lawrence Island	1996	Female	6 to 9	6.8	79.3
WLRS-016	Round Island	1996	Male	16 to 25	6.3	74.4
WLRS-017	Round Island	1996	Male	16 to 25	NA	62.6
WLRS-018	Round Island	1996	Male	16 to 25	3.3	39.7
WLRS-020	Round Island	1996	Na	ca. 15	17	69.0
^{<i>a</i>} Western end of St. La	wrence Island. ^b Not ava	ailable.				

850 | J. Environ. Monit., 2006, 8, 848-854

according to Zeisler *et al.*¹³ then stored at -80 °C or below. Ringed seal ages were estimated by enumerating the number of front claw growth rings, and walrus ages were determined from stained, sectioned teeth.

Sample analysis of ringed seals was done jointly by NIST and NOAA. NOAA and NIST jointly analyzed 17 of the samples for POPs; 8 were analyzed by NIST only and 8 by NOAA only. All walrus blubber samples were analyzed for POPs by NIST only. POPs were measured by gas chromatography with electron capture detection using techniques described in detail elsewhere.^{14–16} Briefly, samples were extracted using Soxhlet or pressurized fluid extraction, fat was removed by size exclusion chromatography, and the extracts were further purified using Florisil or NH2 open column and liquid chromatography techniques, respectively. Analyte values were averaged if determined by multiple laboratories. NIST and NOAA have participated in NIST sponsored interlaboratory comparison exercises for organohalogen compounds in marine mammal tissues for nearly 20 years.¹⁷ In addition, Standard Reference Material (SRM) 1945 Organics in Whale Blubber was run with each batch of samples at both laboratories as a control material. Measurements made by the two laboratories using this material were in excellent agreement: $r^2 = 0.97$, slope = 0.95 and residuals for all compounds were < 20%.

Several POPs classes were summed prior to statistical analysis. The sum of hexachlorocyclohexanes (Σ HCH) was the sum of α -, β -, and γ -HCH; the sum chlordane (Schlordane) was the sum of cis- and trans-chlordane, cisand *trans*-nonachlor, heptachlor epoxide, and oxychlordane; the sum of polychlorinated biphenyls ($\sum PCB_{28}$) was the sum of 28 PCB congeners or congener groups that were measured by both laboratories; the sum of DDT (\sum DDT) was the sum of 4,4'- and 2,4'-DDT, DDE, and DDD. POP data were log transformed prior to statistical analysis. The importance of variables contributing to POP variance was assessed by backwards stepwise regression including age, collection year, gender, location, and blubber thickness and their interaction terms as independent variables. For ringed seals, location and the interaction between age and gender were the only two variables significantly contributing to POP variability. However, sample collection date, while removed from the model was approaching significance suggesting a weak trend in POP concentration with sample collection year. POP concentrations of ringed seals collected from Nome and Barrow, Alaska were compared using an analysis of covariance (ANCOVA) controlling for the age/gender interaction term. For walruses, none of the variables measured significantly contributed to contaminant variability.

Table 3 Concentrations (ng g^{-1} wet mass) of persistent organic pollutants in ringed seal and walrus blubber. Values are the geometric mean (mean) and standard deviation (SD). $\sum PCB_{10}$ is the sum of chlorobiphenyl (CB) congeners 28, 31, 52, 101, 105, 118, 138, 153, 156, and 180 and are the same congeners summed in Muir *et al.*² to obtain $\sum PCB$

	Ringed s	seals							Walruse	s		
	Barrow				Nome							
	Female	(n = 10)	Male (n	= 7)	Female	(n = 8)	Male (n	n = 8)	Female	(n = 6)	Male (n	= 8)
Compound	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
∑TriCB	25	4.4	24	15	12	6.4	11	2.4	6.9	11	1.8	0.3
∑TetraCB	54	22	59	28	34	12	16	7.7	2.7	3.1	1.1	0.2
$\overline{\Sigma}$ PentaCB	220	74	240	92	110	37	120	17	10	8.5	11	4.4
∑HexaCB	240	47	300	150	130	47	130	44	44	25	27	27
∑HeptaCB	65	22	77	45	32	15	21	10	4.6	2.0	3.1	1.5
$\sum Octa$ -decaCB	2.8	4.2	3.6	2.1	4.0	5.8	< 0.3		2.0	1.7	1.0	0.8
ΣPCB_{28}	620	120	710	320	330	110	300	71	77	41	47	32
ΣPCB_{10}	430	77	500	240	220	79	220	55	60	28	39	31
HCB	26	15	12	3.7	17	6.2	20	13	<1		<1	
α-HCH	240	240	210	130	130	81	170	100	13	10	34	14
в-нсн	54	12	66	44	42	25	44	13	65	47	69	63
γ-HCH	10	7.3	14	14	7.5	4.6	4.2	3.1	1.9	0.9	4.2	1.3
ΣHCH	410	250	300	200	180	96	220	110	81	56	110	73
<i>cis</i> -Chlordane	7.1	11	8.4	12	5.1	4.8	2.9	6.0	<1	_	<1	
trans-Chlordane	2.6	0.9	3.7	1.8	2.3	1.5	2.0	1.2	2.3	0.8	1.1	0.1
Oxychlordane	170	66	230	180	99	38	71	50	83	52	37	31
<i>cis</i> -Nonachlor	11	13	14	16	7.1	4.9	3.9	3.5	<1	_	<1	
trans-Nonachlor	130	190	260	410	79	83	58	44	3.0	1.6	3.2	1.1
Nonachlor III	54	23	81	98	23	9.0	26	17	_			
Heptachlor epoxide	45	25	73	79	34	15	27	13	10	5.9	11	5.2
Σ Chlordane	400	230	660	670	270	140	200	110	88	53	42	31
2.4'-DDD	< 3		3.3	0.3	< 3		< 3		<2	_	<2	_
2.4'-DDE	5.7	0.2	2.4	2.4	<2		<2		<2	_	<2	
2.4'-DDT	4.8	3.1	9.3	5.4	4.3	4.9	2.0	1.4	<2	_	<2	
4.4'-DDD	10	11	5.8	2.8	5.7	3.9	4.7	5.0	2.7	0.1	1.5	0.1
4.4'-DDE	320	92	440	250	170	77	160	62	4.5	3.6	4.2	1.0
4.4'-DDT	62	66	46	28	21	10	15	17	< 2	_	< 2	
$\hat{\Sigma}$ DDT	410	150	510	280	200	94	180	75	5.0	3.7	5.2	1.2
Dieldrin	34	20	35	27	19	8.0	17	25	45	23	48	34
Mirex	8.2	5.1	11	10	6.6	4.0	3.0	1.3	17	8.7	5.7	3.0

Table 4 The geometric mean and range (ng g⁻¹ wet mass) of selected persistent organic pollutants in ringed seals. Values from Grise Fjord, Arctic Bay, Eureka, and Resolute are given in Muir *et al.*² additional samples from Barrow are from Hoekstra *et al.*⁴ \sum PCB₁₀ is the sum of PCB congeners 28, 31, 52, 101, 105, 118, 138, 153, 156, and 180; \sum DDT is the sum of 4,4'-DDD, -DDE, and -DDT; \sum HCH is the sum of α -, β -, and γ -HCH

	Grise Fjord 82.5		Arctic Bay Eure 85 88		Eureka	reka Resolute		Barrow (ref. 4)		Barrow (this study) 156.5		Nome (this study) 165		
Longitude/°					88		94.5		156.5					
Gender n	F 4	M 4	F 6	M 8	F 10	M 8	F 10	M 10	F 6	M 14	F 11	M 6	F 8	M 8
НСВ	10	13 7_30	25	28	87 39, 200	104	43	41	11	16	26	12	17	20
trans-Nonachlor	54 54	149	86 50, 150	330 87 1100	140 20, 270	160 25_820	110	95 55 100	66 8 220	62 15, 200	126	230	79 218 250	58 16 140
∑НСН	44-04 72	94–220 75	219	260	20=370 260	23-820 300	33-220 310	400	8=350 120	13-200	410	300	180	10–140 220
∑DDT	46–88 40	56–89 1140	136–330 190	138–510 910	133–430 640	160–600 970	150–660 340	260–580 350	65–230 100	1–410 120	200–990 400	150–590 490	94–390 200	160–370 180
$\sum PCB_{10}$	150–430 170 140–430	420–3000 670 290–1400	140–240 180 140–240	210–6900 612 210–2500	400–1300 530 280–820	510–1500 1000 670–2000	160–510 330 210–530	140-750 400 220-620	15–400 180 85–570	18–260 240 81–680	270–650 420 330–540	180–870 500 230–820	110–370 220 140–380	66–320 220 170–210

Results and discussion

Ringed seals

Summed POP concentrations for the Nome and Barrow ringed seals are presented in Table 3 and the concentrations of individual compounds are given in the supplementary information. All concentrations are reported on a wet mass basis unless otherwise specified. Overall, $\sum PCB_{28}$ concentrations were greater than \sum chlordanes with \sum chlordanes greater than \sum DDT, followed by \sum HCH. The exception was male ringed seals from Nome, where $\sum PCB_{28} > \sum HCH >$ \sum chlordanes > \sum DDTs (Table 3). Dieldrin and mirex, while detected in all blubber samples, were present at concentrations generally lower than most other organochlorines. PCBs were dominated by the hexa- and hepta-chloro PCB isomers which comprised an average of 74% (4%) of the $\sum PCB_{28}$. The variation in male POP concentrations was generally higher than in females, as was previously observed in ringed seals.^{2,3} Age and POP concentrations were significantly correlated in males for mirex, Σ HCH, Σ chlordane, Σ DDT and Σ PCB₂₈, but not for HCB. POP concentrations and age were not significantly correlated in females, which was likely to be due to the loss of lipophilic contaminants through lactation and parturition.18

The POP concentrations observed in the Barrow ringed seals were comparable to western Arctic values based on a recent compilation of ringed seal data from around the Arctic (Table 4). For example, the geometric mean of \sum DDT in female seals from Resolute Bay was 340 ng g^{-1} (the range was 163 ng g⁻¹ to 540 ng g⁻¹)² versus 424 ng g⁻¹ in the Barrow female seals (the range was 266 ng g^{-1} to 652 ng g^{-1}) and 179 ng g^{-1} (the range was 94 ng g^{-1} to 387 ng g^{-1}) in the Nome female seals. For the locations given in Table 4, POP concentrations in Barrow seals appeared most similar to those in Resolute Bay, while Nome seals were more comparable to those from Grise Fjord, with the exception of \sum HCHs which were 2.7 times higher in the Nome seals. Interestingly, more recent data (1999–2000) on ringed seals samples from Barrow⁴ show much lower levels than in this study suggesting a temporal difference (Table 4).

Studies of ringed seals have generally found significant correlations between age and blubber thickness for many classes of POPs. For example Muir *et al.*² found significant correlations between the age of male ringed seals and the sum of 10 PCB congeners ($\sum PCB_{10}$), $\sum DDT$, *trans*-nonachlor, concentrations, but not $\sum HCH$ concentrations. No relationship was seen in females which is a result of the transfer of POPs from lactation.¹⁹ Weak relationships between blubber thickness were also observed for some POPs, however none of the relationships was significant. For the Nome and Barrow seals, POP concentrations were significantly correlated (p < 0.05) with age in male seals for mirex, $\sum HCH$, \sum chlordane, $\sum DDT$, and $\sum PCB_{28}$, but not for HCB or dieldrin. POP concentrations and age were not significantly correlated in females.

To further investigate the effects of age, blubber thickness, gender and location on POP concentrations, backwards stepwise regression was used on the log transformed concentrations. Based on this, only the interaction between age/gender and location significantly contributed to contaminant variance. When controlling for the age/gender interaction term, Barrow seals had significantly (ANCOVA, p < 0.05) higher concentrations of $\sum PCB_{28}$, \sum chlordanes, \sum DDT, dieldrin, and mirex than Nome seals. HCB concentrations, however, were not significantly different between the two locations.

Ratios of POPs may indicate regional sources or transport patterns.²⁰ Nome is 10° longitude farther west and 7° latitude farther south than Barrow, hence the POP ratios in Nome may indicate a stronger influence of the current sources originating from Asia or India. The ratios of β -HCH/ Σ HCH, 4,4'-DDT/4,4'-DDE and PCB 52/PCB 180 are shown in Fig. 2. Russian PCB mixtures differ substantially from the North American PCB formulations²¹ therefore the ratio of PCB 52/PCB 180 was calculated because the ratio of these two congeners is much higher in the Russian PCB formulation "Soval" than in PCB mixtures manufactured in North America.²¹ The β -HCH/ Σ HCH was higher in Nome seals relative to Barrow seals but not significantly so (*t*-test, *p* = 0.07). Similar to the β -HCH/ Σ HCH ratio, the ratios of 4,4'-DDT/4,4'-DDE and PCB 52/PCB 180 were also higher in the Nome seals, but the

difference was not significant (*t*-test, p = 0.051 and p = 0.27, respectively). These results suggest that there could have been more recent sources and/or relatively greater amounts of HCH and DDT entering the Bering Sea environment when these samples were collected. However, additional samples should be analyzed before making this conclusion.

Walruses

Concentrations of POPs in walrus blubber are shown in Table 3. Concentrations of POPs were generally lower than in ringed seal blubber from Nome or Barrow except for dieldrin and mirex (Table 3). Concentrations were not significantly affected by age or gender as seen in other studies.⁶ The lack of a significant difference between males and females is somewhat surprising; however this may be due to the relatively young females that were sampled, which ranged in age from a calf to 8 to 10 years old. It is possible that the females sampled had not calved hence had not reduced their POP burdens through

Fig. 3 Concentrations of selected POPs in walruses from eastern Greenland (Avanersuaq), the eastern Canadian Arctic (Igloolik and Hall Beach) and the Bering Sea (this study and Seagars and Garlich-Miller⁷). Values are the arithmetic mean and 1 SD. \sum PCBs are the sum of 86 congeners for Hall Beach, Iglooklik, and Avanersuq.^{5,6} The number of congeners summed to derive \sum PCB in Seagars and Garlich-Miller was not specified. \sum HCH and \sum DDT is as specified in the text.

maternal transfer. Previous studies of walrus reproduction rates indicate that female walruses begin to reproduce from roughly 6 to 10 years of age with the maximum reproduction rate occurring from 11 to 15 years of age.²² Other studies of marine mammals have also found that males and immature females do not have statistically different POP concentrations.²³

The relative order of the major POP groups in walruses (average of both males and females) was different than that observed in the ringed seals with Σ HCH > Σ PCB₂₈ > Σ chlordanes > Σ DDTs. Total PCBs and 4,4'-DDE were especially low compared to ringed seals. This possibly results from reliance on a benthic food web (walruses) versus an ice/ pelagic-based food web (ringed seals), or walruses may be better able to metabolize and eliminate these compounds compared to ringed seals. Further evidence of good biotransformation ability is the relatively high concentration of oxychlordane, the major chlordane metabolite in walrus versus ringed seals. In walruses 92% of the chlordane was in the form of oxychlordane versus 40% in ringed seals and 62% observed previously in polar bears.9 The ratio of oxychlordane to Σ chlordane in this study is much higher than observed previously in walruses (28% to 41%) from the eastern Canadian Arctic.⁶ The reason for the difference in oxychlordane to Σ chlordane ratios between the walruses in this study (Pacific walruses) and those from the eastern Canadian Arctic (Atlantic walruses) is unknown.

POP concentrations in male walruses from another study in the Bering Sea and other locations in the Arctic are shown in Fig. 3. Only values from male walruses were used due to the assumed reproductive effects on POP concentrations in females (excretion of POPs to calves via lactation).²³ Male and female walruses from the present study were averaged since POP concentrations were not statistically different. Σ HCH and mirex concentrations among the different studies were tightly clustered with mirex concentrations ranging from 5 ng g^{-1} (1.7 ng g^{-1}) in Igloolik walruses to 12 ng g^{-1} (8.4 ng g^{-1}) in walruses from the Bering Sea; \sum HCH concentrations ranged from 97 ng g^{-1} (11 ng g^{-1}) to 120 ng g^{-1} (79 ng g^{-1}) in Bering Sea walruses, more consistent than found in ringed seals from similar locations. The reason for this difference is not known but may again be related to reliance on a benthic food web for walruses and an ice-based/pelagic food web for ringed seals. **DDTs**, dieldrin, and **D**chlordanes were higher in walruses from locations other than the Bering Sea, consistent with the trend seen in ringed seals. $\sum PCB_{28}$ concentrations in the walruses sampled in the present study were found to be lower than those from other investigations. The overall trend of lower PCBs in the eastern Arctic relative to the western Arctic is consistent with that observed by Muir et al. for ringed seals.²

Conclusion

POP concentrations in ringed seals and walruses from Alaska provide further evidence that the western Arctic tends to have lower or similar POP concentrations compared to the eastern Canadian Arctic for most POPs. POP levels in ringed seals from around Barrow were more similar to those in the Canadian Arctic than in seals from Nome. The Nome animals had statistically lower concentrations for the compounds examined except for HCB, which was similar in seals from the two areas. Further analysis of ringed seals should be conducted using more recent samples to look for temporal trends and the presence of compounds of emerging interest such as flame retardants and substituted fluorinated alkanes. The higher β -HCH/ Σ HCH and 4.4'-DDT/4.4-DDE ratios in Nome compared to Barrow suggest that Asia continues to be a source of these POPs in Alaskan waters. More recent samples should be examined to see if this still is the case. POP concentrations in walruses, in agreement with other work on non-seal eating walruses, were much lower than ringed seals reflecting the walruses's reliance on a lower trophic level benthic food web. POP patterns in walruses suggest a better ability to metabolize POPs, especially chlordanes, than ringed seals.

Acknowledgements

The authors wish to thank the following individuals for their contribution to this work: Victoria Woshner; Charles D. N. Brower and the North Slope Borough Department of Wildlife Management, Barrow, AK; Teri Rowles, Donald Brown, Jennie Bolton, Ronald Pearce and Richard Boyer, National Oceanic and Atmospheric Administration, National Marine Fisheries Service; Charlie Johnson, Albert Johnson, Jake Olanna, Roy Aschenfelter, and Kawerak, Inc., Nome, AK; Caleb Pungowiyi, Kotzebue, AK; U.S. Fish and Wildlife Service Marine Mammals Management Office; Eskimo Walrus Commission, the Qayassiq Walrus Commission, the walrus hunters of Round and St. Lawrence Islands and Jeanne Higgins for help with walrus sample analyses. Summer undergraduate student support was provided by a grant to the College of Charleston from the National Science Foundation. Collections were supported through the Alaska Marine Mammal Tissue Archival Project and the Minerals Management Service. The photo for the illustrated table of contents was kindly provided by Joel Garlich-Miller, U.S. Fish and Wildlife Service.

References

1 AMAP, AMAP Assessment 2002: Persistent Organic Pollutants (POPs) in the Arctic, Oslo, Norway, xvi + 310 pp.

- 2 D. Muir, F. Riget, M. Cleemann, J. Skaare, L. Kleivane, H. Nakata, R. Dietz, T. Severinsen and S. Tanabe, *Environ. Sci. Technol.*, 2000, **34**, 2431–2438.
- 3 I. M. Weis and D. C. Muir, Environ. Pollut., 1997, 96, 321-333.
- 4 P. F. Hoekstra, B. M. Braune, T. M. O'Hara, B. Elkin, K. R. Solomon and D. C. Muir, *Environ. Pollut.*, 2003, **122**, 423–433.
- 5 D. C. G. Muir, M. D. Segstro, K. A. Hobson, C. A. Ford, R. E. A. Stewart and S. Olpinski, *Environ. Pollut.*, 1995, **90**, 335–348.
- 6 D. C. G. Muir, E. W. Born, K. Koczansky and G. A. Stern, *Sci. Total Environ.*, 2000, 245, 73–86.
- 7 D. J. Seagars and J. Garlich-Miller, *Mar. Pollut. Bull.*, 2001, **43**, 122–131.
- 8 P. R. Becker, B. J. Koster, S. A. Wise and R. Zeisler, *Sci. Total Environ.*, 1993, **139/140**, 69–95.
- 9 J. R. Kucklick, W. D. Struntz, P. R. Becker, G. W. York, T. M. O'Hara and J. E. Bohonowych, *Sci. Total Environ.*, 2002, 287, 45–59.
- 10 D. Muir, B. Braune, D. DeMarch, R. Norstrom, R. Wagemann, L. Lockhart, B. Hargrave, D. Bright, R. Addison, J. Payne and K. Reimer, *Sci. Total Environ.*, 1999, 230, 83–144.
- 11 R. F. Addison and M. E. Zinck, *Environ. Sci. Technol.*, 1986, 20, 253–256.
- 12 P. R. Becker, B. J. Porter, E. A. Mackay, M. M. Schantz, R. Demiralp, S. A. Wise, National Marine Mammal Tissue Bank and Quality Assurance Program: Protocols, Inventory, and Analytical Results, March 1999, NISTIR 6279, Gaithersburg, MD, 183.
- 13 R. Zeisler, J. K. Langland and S. H. Harrison, Anal. Chem., 1983, 55, 2434–2461.
- 14 M. M. Krahn, D. G. Burrows, J. E. Stein, P. R. Becker, M. M. Schantz, D. C. G. Muir, T. M. O'Hara and T. Rowles, *J. Cetacean Res. Manage.*, 1999, 1, 239–249.
- 15 M. M. Schantz, B. J. Koster, S. A. Wise and P. R. Becker, *Sci. Total Environ.*, 1993, **139/140**, 323.
- 16 J. R. Kucklick, W. D. J. Struntz, P. R. Becker, G. W. York, T. M. O'Hara and J. E. Bohonowych, *Sci. Total Environ.*, 2002, 287, 45–59.
- 17 J. R. Kucklick, R. S. Pugh, P. R. Becker, M. M. Schantz, S. A. Wise, T. K. Rowles, Description and Results of the 2003 NIST/ NOAA Interlaboratory Comparison Exercise Program for Organic Contaminants in Marine Mammal Tissues, November 2005, NISTIR 7269, Gaithersburg, MD, 150 pp.
- 18 S. Tanabe, J. K. Sung, D.-Y. Choi, N. Baba, M. Kyota, K. Yoshida and R. Tatsukawa, *Environ. Pollut.*, 1994, 85, 305–314.
- 19 B. E. Hickie, D. C. Muir, R. F. Addison and P. F. Hoekstra, *Sci. Total Environ.*, 2005, **351–352**, 413–426.
- 20 T. F. Bidleman and R. L. Falconer, *Environ. Sci. Technol.*, 1999, 33, 2299–2301.
- 21 V. Ivanov and E. Sandell, *Environ. Sci. Technol.*, 1992, 26, 2012–2017.
- 22 F. H. Fay, I. I. Eberhardt, B. P. Kelly, J. J. Burns and I. T. Quakenbush, *Mar. Mamm. Sci.*, 1997, **13**, 537–565.
- 23 K. J. Tuerk, J. R. Kucklick, W. E. McFee, R. S. Pugh and P. R. Becker, *Environ. Toxicol. Chem.*, 2005, 24, 1079–1087.