

Draft Special Publication 800-XXX

NIST Recommendation for X.509 Path Validation

Version 0.5

May 3, 2004

David A. Cooper
W. Timothy Polk

DRAFT 1 May 3, 2004

Draft: NIST Recommendation for X.509 Path Validation

1. INTRODUCTION
A Public Key Infrastructure (PKI) binds cryptographic public keys to physical entities
through digital certificates. A PKI includes components that issue digital certificates and
distribute certificate status information. PKI users select one or more certificate issuers as
trust anchors, and establish security services based on certificates that may be validated
using one of their trust anchors.

One critical component of PKI clients is the X.509 Path Validation Module (PVM). This
module determines whether a certificate may be trusted for use by a particular application.
Section 6 of the “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List Profile” (RFC 3280) [3] describes one path validation algorithm. Client
implementations that conform to RFC 3280 are required to implement a path validation
algorithm functionally equivalent to the algorithm presented in Section 6. That is, the
PVM is considered as a black box – if the PVM provides the same answer as the algorithm
presented in Section 6 algorithm, it conforms to RFC 3280.

The path validation algorithm uses the information contained in certificates and CRLs to
determine whether a certificate may be trusted for a particular application. The certificate
and CRL information may appear as fields in the base certificate or CRL, or may appear in
a number of standard certificate and CRL extensions. Implementations of the path
validation algorithm are required to recognize and process all the fields in the base
certificate and CRL. Implementations of the path validation algorithm are not required to
recognize all the standard extensions, but must process recognized extensions according to
the algorithm. The algorithm also establishes rules for processing unrecognized
extensions.

Certificate and CRL extensions encountered in path validation depend upon the
architecture and complexity of the public key infrastructure. For an overview of PKI
architectures and their implications for path validation, see [1]. In the Federal government,
PKI-enabled applications may expect to encounter two different levels of complexity:
applications that serve users associated with a single agency will perform path validation in
an Enterprise PKI; applications that serve users from multiple agencies or outside the
Federal Government will perform path validation in a Bridge-enabled PKI.

A suite of tests, PKITS, has been developed for conformance testing of Path Validation
Modules [2]. These tests may be used to objectively measure the conformance of
implementations to the path validation algorithm as defined by RFC 3280.

Agencies are strongly encouraged to deploy path validation software that implements the
Bridge-enabled functionality to support multi-agency applications. At a minimum, path
validation software deployed by federal agencies must support the functionality specified
for Enterprise PKIs. Agencies may determine whether or not additional functionality is
required to meet agency requirements. Software that has demonstrated conformance using
the PKITS test suite should be preferred over untested applications.

DRAFT 2 May 3, 2004

1.1. Scope
The scope of this document is limited to functional requirements for the path validation
module. This specification assumes the use of a FIPS 140-1 or FIPS 140-2 Validated
Module for all cryptographic operations. (For more information on Validated Modules, see
http://csrc.nist.gov/cryptval). This specification does not define requirements for
certification path building. NIST plans to publish a requirements document for path
building, along with a corresponding test suite, in the future.

1.2. Document Overview
This document consists of six major sections and a normative appendix:

Section 2 provides an overview of path validation and explains how a path validation
module fits into an overall system.

Section 3 identifies functional groupings of certificate and CRL extensions that are
required to support Enterprise PKI architectures.

Section 4 identifies functional groupings of certificate and CRL extensions that are
required to support Bridge-enabled PKI architectures.

Section 5 provides a naming scheme for path validation modules based on the functionality
implemented by a PVM.

Section 6 contains the bibliographic references.

Appendix A identifies the subset of PKITS required to test a PVM based on the
functionality implemented by the PVM.

2. Background

2.1. X.509 Certificates and CRLs
X.509 public key certificates are data structures that bind public key values to subjects
(i.e., users or devices). The binding is asserted by having a CA, the issuer, digitally sign
each certificate. A certificate has a limited valid lifetime which is indicated in its signed
contents. Because a certificate's signature and timeliness can be independently checked by
a certificate-using client, certificates can be distributed via untrusted communications and
server systems, and can be cached in unsecured storage in certificate-using systems.

X.509 CRLs are data structures that list unexpired certificates that have been revoked by
their issuer. The integrity of the list is protected by having the issuer digitally sign each
CRL. In general, CRLs cover all unexpired certificates issued by the CA that signed the
CRL. The CRL is issued periodically; the next expected update is indicated in its signed
contents. Like certificates, CRLs can be distributed via untrusted communications and
server systems, and can be cached in unsecured storage in certificate-using systems.

DRAFT 3 May 3, 2004

http://csrc.nist.gov/cryptval

2.2. X.509 Certification Path Validation
PKI-enabled application protocols rely upon the trustworthiness of certificates to achieve
security in their protocols. For example, the S/MIME secure electronic mail protocol
depends upon X.509 certificates to verify digital signatures and exchange symmetric
keying material. The binding between the subject name and the subject public key must be
reliable, or the mail may not be secure! To ensure that certificates are trustworthy,
applications request that the PVM determine if a certificate is (1) valid and (2) appropriate
for the requesting application.

The X.509 certificate that the application wishes to use is called the certificate of interest,
or the end entity certificate. The PVM confirms the trustworthiness of the certificate of
interest by validating a sequence of certificates from a trust anchor or trust-point to the
certificate of interest. This sequence of certificates is known as a certification path. Paths
may be obtained from a Certification Path Constructor (CPC), or paths may be provided by
other parties (via the application protocol). The PVM may process multiple paths before
finding an acceptable path.

Section 6 of RFC 3280 describes a comprehensive algorithm for X.509 path processing,
covering all the standard certificate and CRL extensions described in RFC 3280. A
conformant implementation of a path validation module MUST include an X.509 path
processing procedure that is functionally equivalent to the external behavior of this
algorithm. Conformant implementations are not required to implement the algorithm as
specified.

The trust anchor is an input to the algorithm. There is no requirement that the same trust
anchor be used to validate all certification paths. Different trust anchors may be used to
validate different paths. In particular, different applications may request validation with
respect to different trust anchors.

The path validation process verifies, among other things, that a prospective certification
path (a sequence of n certificates) satisfies the following conditions:

a) for all x in {1, ..., n-1}, the subject of certificate x is the issuer of certificate x+1;

b) certificate 1 is issued by the trust anchor;

c) certificate n is the certificate to be validated; and

d) for all x in {1, ..., n}, the certificate was valid at the time in question.

PVMs are commonly implemented so that the trust anchor is provided in the form of a self-
signed certificate. This self-signed certificate is not included as part of the prospective
certification path. Information about trust anchors are provided as inputs to the
certification path validation algorithm.

A particular certification path may not be appropriate for all applications. In particular, the
certificate policy that governs issuing certificates and maintaining their status can vary
widely. The path validation process determines the set of certificate policies that are valid
for this path, based on the certificatePolicies extension, policyMappings extension,

DRAFT 4 May 3, 2004

policyConstraints extension, and inhibitAnyPolicy extension. Applications may request
validation of the certificate of interest with respect to an acceptable policy set.

2.3. PATH VALIDATION MODULE SPECIFICATION
Figure 1 shows the major functional components for an X.509 Path Validation System. The
Path Validation Module is the core component but requires support from both the
cryptographic module (to verify digital signatures) and path building module (to construct
the set of certificates and CRLs). Note that these are functional components only, and do
not imply any restrictions upon the architecture of a particular module or modules.

The scope of this document is limited to functional requirements for the path validation
module. This specification assumes the use of a FIPS 140-1 or FIPS 140-2 Validated
Module for all cryptographic operations. (For more information on Validated Modules, see
http://csrc.nist.gov/cryptval). This specification does not define requirements for
certification path building. NIST plans to publish a requirements document for path
building, along with a corresponding test suite, in the future.

Path Validation System

Path Validation Module Supporting Components

(PVM)

Cryptographic Module
Validation Engine for

X.509 Certification Paths Signature generation & verification

Path Building Module

Constructs paths and retrieves certificate
status information

Figure 1 Path Validation Module and Supporting Components

The X.509 Path Validation Module will validate certificates with respect to one or more
trusted CAs and verify the path with respect to a set of initial conditions and constraints
imposed in the certificates themselves.

For the path validation module to operate properly, there are additional functional
capabilities that must be provided by other functional components. This specification
identifies two functional components providing these capabilities:

• Cryptographic module; and

• Path building module.

DRAFT 5 May 3, 2004

http://csrc.nist.gov/cryptval

The cryptographic module functional component verifies digital signatures on certificates
and CRLs. For Federal agencies, FIPS PUB 140 requires use of FIPS 140-1 or FIPS 140-2
Validated Modules. (For more information on Validated Modules, see
http://csrc.nist.gov/cryptval).

The path building component retrieves certificates and CRLs to create a certification path
linking a trust anchor and the certificate of interest. In some applications, certification
paths are provided via the application, so the path building module may be omitted.

3. Enterprise Path Validation Module Functional
Requirements

The Enterprise PVM component processes X.509 certification paths composed of X.509 v3
certificates and X.509 v2 CRLs. The PVM component MUST support the following
features:

• Name chaining;

• Signature chaining;

• Certificate validity;

• Key usage, basic constraints, and certificate policies certificate extensions;

• Full CRLs; and

• CRLs segmented on names.

An Enterprise PVM may support additional path processing functionality.

3.1. Basic Path Processing

1.	 The PVM shall verify that digital signatures and public keys in the certification
path chain in accordance with RFC 3280, using RSA PKCS#1 with SHA-1 in
accordance with RFC 32791. (That is, the PVM shall verify that the RSA with
SHA-1 signature on each certificate in the path verifies using the RSA public key
in the preceding certificate, and the RSA with SHA-1 signature on the first
certificate in the path verifies using a trust anchor’s RSA public key.)

2.	 The PVM shall verify that issuer and subject names in certification paths chain in
accordance with RFC 3280. (That is, the PVM shall verify that the issuer of each
certificate in the path was the subject of the preceding certificate, and the issuer of
the first certificate in the path is the name associated with the trust anchor public
key)

1 NIST is recommending that agencies transition to signing certificates and CRLs using RSA with SHA-256
by January 1, 2009. It is therefore recommended that path validation modules be able to verify digital
signatures using RSA with SHA-256 in addition to RSA with SHA-1.

DRAFT	 6 May 3, 2004

http://csrc.nist.gov/cryptval

3.	 The PVM shall verify that subject of each intermediate version 3 certificate is a CA
by verifying that the certificate contains the basicConstraints extension with cA
asserted. The PVM may either:

a.	 not accept version 1 or version 2 certificates as intermediate certificates; or

b.	 verify that the subject of each intermediate version 1 or 2 certificate is a CA
through local mechanisms.

3.	 The PVM shall verify that each intermediate certificate containing the keyUsage
extension asserts the keyCertSign bit.

4.	 The PVM shall verify that each certificate that contains a keyUsage extension
asserts the cRLSigning bit if the subject public key is used to validate a CRL.

5.	 The PVM shall verify that each certificate whose subject public key is used to
validate a CRL is the end certificate in a valid certificate chain.

6.	 The PVM shall verify that the length of the chain does not violate constraints
imposed by the issuer of any certificate in the chain by processing the
pathLenConstraint field in the basicConstraints extension in accordance with RFC
3280.

3.2. Basic Policy Processing

1.	 The PVM shall be capable of processing the certificatePolicies extension, in
accordance with RFC 3280, to determine the set of policies under which the path is
valid.

2.	 The PVM shall recognize and process the requireExplicitPolicy field in the

policyConstraints extension in accordance with RFC 3280.

3.	 The PVM shall include the capability to specify a set of acceptable policies, and
indicate the path may only be accepted if valid under one of those policies. [Note:
The capability may be supplied as a configuration setting, or as a parameter in an
API call.]

3.3. Revocation Status

1.	 The PVM shall verify that each certificate in the path is valid at the specified time
(e.g., the current time) in accordance with RFC 3280.

2.	 The PVM shall determine the revocation status of intermediate and end certificates
in all paths. The PVM shall reject paths that include revoked certificates. The
PVM shall return a warning or a rejection for paths containing certificates whose
revocation status cannot be determined.

3.	 The PVM shall be capable of processing full CRLs issued by the certificate issuer
to determine certificate status, in accordance with RFC 3280.

DRAFT	 7 May 3, 2004

4.	 The PVM shall be capable of processing segmented CRLs, where the correct CRL
is identified by matching the contents of the full names in the
distributionPointName field in cRLDistributionPoints certificate extension and the
issuingDistributionPoint CRL extension in accordance with RFC 3280.

5.	 The PVM shall process CRLs segmented by certificate type (e.g., CA certificate,
user certificate, etc.) as specified in the issuingDistributionPoint CRL extension, in
accordance with RFC 3280.

3.4. Critical Extensions

1.	 The PVM shall reject chains that include certificates containing unrecognized
critical certificate extensions or critical certificate extensions with unrecognized
fields.

2.	 The PVM shall not use CRLs containing unrecognized critical extensions or critical
extensions with unrecognized fields as the basis for determining that a certificate is
valid. However, the PVM shall assume that any certificates identified on such
CRLs are revoked.

4. Bridge-Enabled Path Validation Module Requirements
In addition to meeting the requirements of an Enterprise PVM, a Bridge-enabled Path
Validation Module must be capable of processing the types of certificate extensions that are
typically found in CA certificates that cross enterprise boundaries. This section defines
three packages of requirements for Bridge-enabled PVMs: Name Constraints, Policy
Mapping, and anyPolicy. A PVM that meets all of the requirements for each of these
packages, in addition to all of the requirements in section 3, is considered to be Bridge-
enabled.

4.1. Name Constraints Processing Requirements

1.	 The PVM shall process name constraints as described in RFC 3280 for the

following name forms:

a) distinguished names, and

b) RFC 822 names.

4.2. Policy Mapping Requirements

1.	 The PVM shall recognize and process the policyMappings extension, in accordance
with RFC 3280.

2.	 The PVM shall recognize and process the inhibitPolicyMapping field in the

policyConstraints extension, in accordance with RFC 3280.

DRAFT	 8 May 3, 2004

3.	 The PVM shall include the capability to specify whether policy mapping is
permitted or inhibited as an initial condition for path validation. [Note: The
capability may be supplied as a configuration setting, or as a parameter in an API
call.]

4.3. anyPolicy Processing Requirements

1.	 The PVM shall recognize and process the special policy anyPolicy in accordance
with RFC 3280 when it appears in the certificate policies extension.

2.	 The PVM shall recognize and process the inhibitAnyPolicy certificate extension in
accordance with RFC 3280.

3.	 The PVM shall include the capability to specify whether the special policy
anyPolicy may be processed as an initial condition for path validation. [Note: The
capability may be supplied as a configuration setting, or as a parameter in an API
call.]

5. Supplementary Path Validation Functionality
The preceding sections identified common PKI requirements for enterprise PKIs and PKIs
that cross organizational boundaries. Specific PKIs may use additional features, imposing
additional requirements on PVMs. This document defines four independent functional
packages in addition to the three packages defined in section 4. Three of the packages
support additional mechanisms for certificate revocation,. The fourth package supports the
use of the DSA cryptographic algorithm to sign certificates and CRLs.

The four supplementary path validation packages are:

1.	 Indirect CRLs: The ability to process indirect CRLs, including the ability to
process:

a) the cRLIssuer field of the cRLDistributionPoints extension;

b) the indirectCRL field of the issuingDistributionPoint extension; and

c) the certificateIssuer CRL entry extension.

2.	 Reasons: The ability to process CRLs that have been segmented by reason code,
including the ability to process the onlySomeReasons field of the
issuingDistributionPoint extension.

3.	 Delta-CRLs: The ability to process delta-CRLs.

4.	 DSA: The ability to process DSA public keys and signatures, including public
keys in which the parameters have been inherited.

DRAFT	 9 May 3, 2004

6. Path Validation Module Naming Scheme
To assist in comparison and succinct description of functional requirements for PVMs, this
specification establishes a naming scheme that identifies PVMs that implement all of the
functionality specified for Enterprise PVMs and, optionally, the functional packages
specified in sections 4 and 5. While this naming scheme does not factor in partially
supported packages or functionality not specified in a package, PVMs may implement any
set of functionality as long as all functionality specified in section 3 is implemented and
any functionality that is implemented is implemented correctly.

The following table is supplied to facilitate name construction, and is used as follows:
working from the top to the bottom, find the first row where all required packages
(indicated by an X) are implemented. Use the name from the topmost row that applies,
filling in the optional packages that have been fully implemented as specified in the
selected row.

Title of Protection Profile

N
a
m
e

C
o
n
s
t
r
a
i
n
t
s

P
o
l
i
c
y

M
a
p
p
i
n
g

a
n
y
P
o
l
i
c
y

I
n
d
i
r
e
c
t

C
R
L
s

R
e
a
s
o
n
s

D
e
l
t
a
-
C
R
L
s

D
S
A

Bridge-enabled PVM with Advanced CRLs [, f, and g] X X X X X f g
Bridge-enabled PVM [with d, e, f, and g] X X X d e f g
Enterprise PVM with Advanced CRLs[, a, b, c, f, and g] a b c X X f g
Enterprise PVM [with a, b, c, d, e, f, and g] a b c d e f g

X: required package for this naming scheme

Optional packages:

a: Name Constraints e: Reasons

b: Policy Mapping f: Delta-CRLs

c: anyPolicy g: DSA

d: Indirect CRLs

Example #1: An Path Validation Module that implements all of the functionality specified
in sections 3 and 4 in addition to the requirements of the DSA package would be a Bridge-
enabled PVM with DSA, based on the second row in the table above.

DRAFT 10 May 3, 2004

Example #2: An Path Validation Module that implements all of the functionality specified
in section 3 in addition to the requirements for the Name Constraints and Delta-CRLs
packages would be an Enterprise PVM with Delta-CRLs and Name Constraints, based on
the fourth row in the table.

7. References
[1]	 William T. Polk, Nelson E. Hastings, and Ambarish Malpani. Public Key

Infrastructures that Satisfy Security Goals. IEEE Internet Computing, 7(4): 60 – 67,
July-August, 2003.

[2]	 Public Key Interoperability Test Suite (PKITS): Certification Path Validation, Version
1.0, May XX, 2004. http://csrc.nist.gov/pki/testing/x509paths.html.

[3]	 Russel Housley, Tim Polk, Warwick Ford, and David Solo. Internet Public Key
Infrastructure: X.509 Certificate and Certificate Revocation List (CRL) Profile, RFC
3280, April 2002.

A. Conformance Testing
The Public Key Interoperability Test suite (PKITS) [2] can be used to determine whether a
Path Validation Module has been implemented in conformance with RFC 3280.
Conformance testing of any given PVM will not require running every test in PKITS. The
specific set of tests that need to be run for any given PVM, and the expected outcome for
each test, will depend on what functionality that PVM has implemented. For example, in a
test involving name constraints, a PVM that implements name constraints may be expected
to process the name constraints extension and determine that the path is valid whereas a
PVM that does not implement name constraints may be expected to reject the certification
path as including a certificate with an unrecognized, critical extension.

In order to determine which tests to run and the expected outcome for each test, it is
necessary to know whether or not the PVM being tested implements each of the following:

1.	 DSA signature verification: The ability to process DSA public keys and
signatures when each certificate with a DSA subject public key includes
parameters.

2.	 DSA parameter inheritance: The ability to process DSA public keys and
signatures, including public keys in which the parameters have been inherited.

3.	 directoryName: The ability to process nameConstraints extensions that include a
directoryName as a permitted and/or excluded subtree and to determine whether
subsequent certificates satisfy the specified constraints.

4.	 rfc822Name: The ability to process nameConstraints extensions that include an
rfc822Name as a permitted and/or excluded subtree and to determine whether
subsequent certificates satisfy the specified constraints.

DRAFT	 11 May 3, 2004

http://csrc.nist.gov/pki/testing/x509paths.html

5.	 dNSName: The ability to process nameConstraints extensions that include a
dNSName as a permitted and/or excluded subtree and to determine whether
subsequent certificates satisfy the specified constraints.

6.	 uniformResourceIdentifier: The ability to process nameConstraints extensions
that include a uniformResourceIdentifier as a permitted and/or excluded subtree
and to determine whether subsequent certificates satisfy the specified constraints.

7.	 onlySomeReasons: The ability to process CRLs that have been segmented by
reason code, including the ability to process the onlySomeReasons field of the
issuingDistributionPoint extension.

8.	 nameRelativeToIssuer: The ability to process cRLDistributionPoints extensions
and issuingDistributionPoint extensions that include a distributionPoint specified
as nameRelativeToIssuer.

9.	 indirect CRLs: The ability to process indirect CRLs, including the ability to
process:

d) the cRLIssuer field of the cRLDistributionPoints extension;

e) the indirectCRL field of the issuingDistributionPoint extension; and

f) the certificateIssuer CRL entry extension.

10.delta-CRLs: The ability to process delta-CRLs.

11.anyPolicy OID: The ability to process the special policy anyPolicy in accordance
with RFC 3280 when it appears in the certificate policies extension.

12.inhibitAnyPolicy: The ability to process the inhibitAnyPolicy extension.

13.initial-inhibit-any-policy: The ability to specify whether the special policy
anyPolicy may be processed as an initial condition for path validation. [Note: The
capability may be supplied as a configuration setting, or as a parameter in an API
call.]

14.policyMappings: The ability to process the policyMappings extension.

15.inhibitPolicyMapping: The ability to process the inhibitPolicyMapping field of
the policyConstraints extension.

16.initial-inhibit-policy-mapping: The ability to specify whether policy mapping is
permitted or inhibited as an initial condition for path validation. [Note: The
capability may be supplied as a configuration setting, or as a parameter in an API
call.]

At a minimum, it is assumed that all PVMs can implement all of the functionality specified
in section 3 for Enterprise PVMs.

Below is a list of each test in PKITS along with an indication of which applications need to
run the test, based on the set of functionality implemented by the applications. Unless
explicitly stated otherwise, the expected result for a PVM for a test that is to be run is the
outcome specified in PKITS for that test.

DRAFT	 12 May 3, 2004

Test Applications that need to run test

4.1.1 Valid Signatures Test1 All.

4.1.2 Invalid CA Signature Test2 All.

4.1.3 Invalid EE Signature Test3 All.

4.1.4 Valid DSA Signatures Test4 All. Applications that can not verify DSA signatures
must reject the path.

4.1.5 Valid DSA Parameter
Inheritance Test5

Run only if application can verify DSA signatures
and parameter inheritance.

4.1.6 Invalid DSA Signature Test6 Run only if application can verify DSA signatures

4.2.1 Invalid CA notBefore Date
Test1

All.

4.2.2 Invalid EE notBefore Date
Test2

All.

4.2.3 Valid pre2000 UTC
notBefore Date Test3

All.

4.2.4 Valid GeneralizedTime
notBefore Date Test4

All.

4.2.5 Invalid CA notAfter Date
Test5

All.

4.2.6 Invalid EE notAfter Date
Test6

All.

4.2.7 Invalid pre2000 UTC EE
notAfter Date Test7

All.

4.2.8 Valid GeneralizedTime
notAfter Date Test8

All.

4.3.1 Invalid Name Chaining EE
Test1

All.

4.3.2 Invalid Name Chaining
Order Test2

All.

4.3.3 Valid Name Chaining
Whitespace Test3

All.

4.3.4 Valid Name Chaining
Whitespace Test4

All.

DRAFT 13 May 3, 2004

Test Applications that need to run test

4.3.5 Valid Name Chaining
Capitalization Test5

All.

4.3.6 Valid Name Chaining UIDs
Test6

All.

4.3.7 Valid RFC3280 Mandatory
Attribute Types Test7

This test does not need to be run.

4.3.8 Valid RFC3280 Optional
Attribute Types Test8

This test does not need to be run.

4.3.9 Valid UTF8String Encoded
Names Test9

All.

4.3.10 Valid Rollover from
PrintableString to UTF8String
Test10

This test does not need to be run.

4.3.11 Valid UTF8String Case
Insensitive Match Test11

This test does not need to be run.

4.4.1 Missing CRL Test1 All.

4.4.2 Invalid Revoked CA Test2 All.

4.4.3 Invalid Revoked EE Test3 All.

4.4.4. Invalid Bad CRL Signature
Test4

All.

4.4.5 Invalid Bad CRL Issuer
Name Test5

All.

4.4.6 Invalid Wrong CRL Test6 All.

4.4.7 Valid Two CRLs Test7 All.

4.4.8 Invalid Unknown CRL Entry
Extension Test8

All.

4.4.9 Invalid Unknown CRL
Extension Test9

All.

4.4.10 Invalid Unknown CRL
Extension Test10

All.

4.4.11 Invalid Old CRL
nextUpdate Test11

All.

DRAFT 14 May 3, 2004

Test Applications that need to run test

4.4.12 Invalid pre2000 CRL
nextUpdate Tesst12

All.

4.4.13 Valid GeneralizedTime
CRL nextUpdate Test13

All.

4.4.14 Valid Negative Serial
Number Test14

All.

4.4.15 Invalid Negative Serial
Number Test15

All.

4.4.16 Valid Long Serial Number
Test16

All.

4.4.17 Valid Long Serial Number
Test17

All.

4.4.18 Invalid Long Serial Number
Test18

All.

4.4.19 Valid Separate Certificate
and CRL Keys Test19

All.

4.4.20 Invalid Separate Certificate
and CRL Keys Test20

All.

4.4.21 Invalid Separate Certificate
and CRL Keys Test21

All.

4.5.1 Valid Basic Self-Issued Old
With New Test1

All.

4.5.2 Invalid Basic Self-Issued Old
With New Test2

All.

4.5.3 Valid Basic Self-Issued New
With Old Test3

All.

4.5.4 Valid Basic Self-Issued New
With Old Test4

All.

4.5.5 Invalid Basic Self-Issued
New With Old Test5

All.

4.5.6 Valid Basic Self-Issued CRL
Signing Key Test6

All.

DRAFT 15 May 3, 2004

Test Applications that need to run test

4.5.7 Invalid Basic Self-Issued
CRL Signing Key Test7

All.

4.5.8 Invalid Basic Self-Issued
CRL Signing Key Test8

All.

4.6.1 Invalid Missing
basicConstraints Test1

All.

4.6.2 Invalid cA False Test2 All.

4.6.3 Invalid cA False Test3 All.

4.6.4 Valid basicConstraints Not
Critical Test4

All.

4.6.5 Invalid pathLenConstraint
Test5

All.

4.6.6 Invalid pathLenConstraint
Test6

All.

4.6.7 Valid pathLenConstraint
Test7

All.

4.6.8 Valid pathLenConstraint
Test8

All.

4.6.9 Invalid pathLenConstraint
Test9

All.

4.6.10 Invalid pathLenConstraint
Test10

All.

4.6.11 Invalid pathLenConstraint
Test11

All.

4.6.12 Invalid pathLenConstraint
Test12

All.

4.6.13 Valid pathLenConstraint
Test13

All.

4.6.14 Valid pathLenConstraint
Test14

All.

4.6.15 Valid Self-Issued
pathLenConstraint Test15

All.

DRAFT 16 May 3, 2004

Test Applications that need to run test

4.6.16 Invalid Self-Issued
pathLenConstraint Test16

All.

4.6.17 Valid Self-Issued
pathLenConstraint Test17

All.

4.7.1 Invalid keyUsage Critical
keyCertSign False Test1

All.

4.7.2 Invalid keyUsage Not
Critical keyCertSign False Test2

All.

4.7.3 Valid keyUsage Not Critical
Test3

All.

4.7.4 Invalid keyUsage Critical
cRLSign False Test4

All.

4.7.5 Invalid keyUsage Not
Critical cRLSign False Test5

All.

4.8.1 All Certificates Same Policy
Test1, subtest 1

Run if application can be configured as specified
(i.e., if initial-policy-set can be any-policy when
initial-explicit-policy is set).

4.8.1 All Certificates Same Policy
Test1, subtest 2

All.

4.8.1 All Certificates Same Policy
Test1, subtest 3

All.

4.8.1 All Certificates Same Policy
Test1, subtest 4

All.

4.8.2 All Certificates No Policies
Test2, subtest 1

All.

4.8.2 All Certificates No Policies
Test2, subtest 2

All. (initial-policy-set may be set to {NIST-test­
policy-1, NIST-test-policy-2, NIST-test-policy-3,
NIST-test-policy-4, NIST-test-policy-5, NIST-test­
policy-6} if it can not be set to any-policy).

4.8.3 Different Policies Test3,
subtest 1

All.

4.8.3 Different Policies Test3,
subtest 2

Run if application can be configured as specified
(i.e., if initial-policy-set can be any-policy when
initial-explicit-policy is set).

DRAFT 17 May 3, 2004

Test Applications that need to run test

4.8.3 Different Policies Test3,
subtest 3

All.

4.8.4 Different Policies Test4 All.

4.8.5 Different Policies Test5 All.

4.8.6 Overlapping Policies Test6,
subtest 1

All.

4.8.6 Overlapping Policies Test6,
subtest 2

All.

4.8.6 Overlapping Policies Test6,
subtest 3

All.

4.8.7 Different Policies Test7 All.

4.8.8 Different Policies Test8 All.

4.8.9 Different Policies Test9 All.

4.8.10 All Certificates Same
Policies Test10, subtest 1

All.

4.8.10 All Certificates Same
Policies Test10, subtest 2

All.

4.8.10 All Certificates Same
Policies Test10, subtest 3

All.

4.8.11 All Certificates AnyPolicy
Test11, subtest 1

This subtest does not need to be run.

4.8.11 All Certificates AnyPolicy
Test11, subtest 2

Run if application can process the special policy
anyPolicy.

4.8.12 Different Policies Test12 All.

4.8.13 All Certificates Same
Policies Test13, subtest 1

All.

4.8.13 All Certificates Same
Policies Test13, subtest 2

All.

4.8.13 All Certificates Same
Policies Test13, subtest 3

All.

4.8.14 AnyPolicy Test14, subtest 1 Run if application can process the special policy
anyPolicy.

DRAFT 18 May 3, 2004

Test Applications that need to run test

4.8.14 AnyPolicy Test14, subtest 2 Run if application can process the special policy
anyPolicy.

4.8.15 User Notice Qualifier
Test15

This test does not need to be run.

4.8.16 User Notice Qualifier
Test16

This test does not need to be run.

4.8.17 User Notice Qualifier
Test17

This test does not need to be run.

4.8.18 User Notice Qualifier
Test18, subtest 1

This subtest does not need to be run.

4.8.18 User Notice Qualifier
Test18, subtest 2

This subtest does not need to be run.

4.8.19 User Notice Qualifier
Test19

This test does not need to be run.

4.8.20 CPS Pointer Qualifier
Test20

All. Test should be run with initial-explicit-policy set
(initial-policy-set may be set to {NIST-test-policy-1,
NIST-test-policy-2, NIST-test-policy-3, NIST-test­
policy-4, NIST-test-policy-5, NIST-test-policy-6} if it
can not be set to any-policy).

4.9.1 Valid RequireExplicitPolicy
Test1

All.

4.9.2 Valid RequireExplicitPolicy
Test2

All.

4.9.3 Invalid
RequireExplicitPolicy Test3

All.

4.9.4 Valid RequireExplicitPolicy
Test4

All.

4.9.5 Invalid
RequireExplicitPolicy Test5

All.

4.9.6 Valid Self-Issued
requireExplicitPolicy Test6

All.

4.9.7 Invalid Self-Issued
requireExplicitPolicy Test7

All.

DRAFT 19 May 3, 2004

Test Applications that need to run test

4.9.8 Invalid Self-Issued
requireExplicitPolicy Test8

All.

4.10.1 Valid Policy Mapping
Test1, subtest 1

All. Applications that can not process the
policyMappings extension should reject the path (When
testing an application that does not process the
policyMappings extension, the default settings should
be used (i.e., initial-policy-set = any-policy)).

4.10.1 Valid Policy Mapping
Test1, subtest 2

Run if application can process the policyMappings

extension.

4.10.1 Valid Policy Mapping
Test1, subtest 3

Run if initial-policy-mapping-inhibit can be set.

4.10.2 Invalid Policy Mapping
Test2, subtest 1

Run if application can process the policyMappings

extension.

4.10.2 Invalid Policy Mapping
Test2, subtest 2

Run if initial-policy-mapping-inhibit can be set.

4.10.3 Valid Policy Mapping
Test3, subtest 1

Run if application can process the policyMappings

extension.

4.10.3 Valid Policy Mapping
Test3, subtest 2

Run if application can process the policyMappings

extension.

4.10.4 Invalid Policy Mapping
Test4

Run if application can process the policyMappings

extension.

4.10.5 Valid Policy Mapping
Test5, subtest 1

Run if application can process the policyMappings

extension.

4.10.5 Valid Policy Mapping
Test5, subtest 2

Run if application can process the policyMappings

extension.

4.10.6 Valid Policy Mapping
Test6, subtest 1

Run if application can process the policyMappings

extension.

4.10.6 Valid Policy Mapping
Test6, subtest 2

Run if application can process the policyMappings

extension.

4.10.7 Invalid Mapping From
anyPolicy Test7

Run if application can process the policyMappings

extension and the special policy anyPolicy.

4.10.8 Invalid Mapping To
anyPolicy Test8

Run if application can process the policyMappings

extension and the special policy anyPolicy.

DRAFT 20 May 3, 2004

Test Applications that need to run test

4.10.9 Valid Policy Mapping Test9 This test does not need to be run.

4.10.10 Invalid Policy Mapping
Test10

Run if application can process the policyMappings

extension and the special policy anyPolicy.

4.10.11 Valid Policy Mapping
Test11

Run if application can process the policyMappings

extension and the special policy anyPolicy.

4.10.12 Valid Policy Mapping
Test12, subtest 1

Run if application can process the policyMappings

extension. It is irrelevant whether the user notice is
displayed.

4.10.12 Valid Policy Mapping
Test12, subtest 2

Run if application can process the policyMappings

extension and the special policy anyPolicy. It is
irrelevant whether the user notice is displayed.

4.10.13 Valid Policy Mapping
Test13

This test does not need to be run.

4.10.14 Valid Policy Mapping
Test14

This test does not need to be run.

4.11.1 Invalid
inhibitPolicyMapping Test1

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.2 Valid inhibitPolicyMapping
Test2

All. Applications that can not process the
inhibitPolicyMapping field in the policyConstraints

extension should reject the path.

4.11.3 Invalid
inhibitPolicyMapping Test3

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.4 Valid inhibitPolicyMapping
Test4

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.5 Invalid
inhibitPolicyMapping Test5

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.6 Invalid
inhibitPolicyMapping Test6

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.7 Valid Self-Issued
inhibitPolicyMapping Test7

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.8 Invalid Self-Issued
inhibitPolicyMapping Test8

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

DRAFT 21 May 3, 2004

Test Applications that need to run test

4.11.9 Invalid Self-Issued
inhibitPolicyMapping Test9

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.10 Invalid Self-Issued
inhibitPolicyMapping Test10

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.11.11 Invalid Self-Issued
inhibitPolicyMapping Test11

Run if application can process the inhibitPolicyMapping

field in the policyConstraints extension.

4.12.1 Invalid inhibitAnyPolicy
Test1

Run if application can process the inhibitAnyPolicy

extension.

4.12.2 Valid inhibitAnyPolicy
Test2

All. Applications that can not process the
inhibitAnyPolicy extension should reject the path.

4.12.3 inhibitAnyPolicy Test3,
subtest 1

Run if application can process the inhibitAnyPolicy

extension.

4.12.3 inhibitAnyPolicy Test3,
subtest 2

Run if initial-inhibit-any-policy can be set.

4.12.4 Invalid inhibitAnyPolicy
Test4

Run if application can process the inhibitAnyPolicy

extension.

4.12.5 Invalid inhibitAnyPolicy
Test5

Run if application can process the inhibitAnyPolicy

extension.

4.12.6 Invalid inhibitAnyPolicy
Test6

Run if application can process the inhibitAnyPolicy

extension.

4.12.7 Valid Self-Issued
inhibitAnyPolicy Test7

Run if application can process the inhibitAnyPolicy

extension.

4.12.8 Invalid Self-Issued
inhibitAnyPolicy Test8

Run if application can process the inhibitAnyPolicy

extension.

4.12.9 Valid Self-Issued
inhibitAnyPolicy Test9

Run if application can process the inhibitAnyPolicy

extension.

4.12.10 Invalid Self-Issued
inhibitAnyPolicy Test10

Run if application can process the inhibitAnyPolicy

extension.

4.13.1 Valid DN nameConstraints
Test1

All. Applications that can not process name
constraints for the directoryName form should reject the
path.

DRAFT 22 May 3, 2004

Test Applications that need to run test

4.13.2 Invalid DN
nameConstraints Test2

Run if application can process name constraints for
the directoryName form.

4.13.3 Invalid DN
nameConstraints Test3

Run if application can process name constraints for
the directoryName form.

4.13.4 Valid DN nameConstraints
Test4

Run if application can process name constraints for
the directoryName form.

4.13.5 Valid DN nameConstraints
Test5

Run if application can process name constraints for
the directoryName form.

4.13.6 Valid DN nameConstraints
Test6

Run if application can process name constraints for
the directoryName form.

4.13.7 Invalid DN
nameConstraints Test7

Run if application can process name constraints for
the directoryName form.

4.13.8 Invalid DN
nameConstraints Test8

Run if application can process name constraints for
the directoryName form.

4.13.9 Invalid DN
nameConstraints Test9

Run if application can process name constraints for
the directoryName form.

4.13.10 Invalid DN
nameConstraints Test10

Run if application can process name constraints for
the directoryName form.

4.13.11 Valid DN nameConstraints
Test11

Run if application can process name constraints for
the directoryName form.

4.13.12 Invalid DN
nameConstraints Test12

Run if application can process name constraints for
the directoryName form.

4.13.13 Invalid DN
nameConstraints Test13

Run if application can process name constraints for
the directoryName form.

4.13.14 Valid DN nameConstraints
Test14

Run if application can process name constraints for
the directoryName form.

4.13.15 Invalid DN
nameConstraints Test15

Run if application can process name constraints for
the directoryName form.

4.13.16 Invalid DN
nameConstraints Test16

Run if application can process name constraints for
the directoryName form.

4.13.17 Invalid DN
nameConstraints Test17

Run if application can process name constraints for
the directoryName form.

DRAFT 23 May 3, 2004

Test Applications that need to run test

4.13.18 Valid DN nameConstraints
Test18

Run if application can process name constraints for
the directoryName form.

4.13.19 Valid Self-Issued DN
nameConstraints Test19

Run if application can process name constraints for
the directoryName form.

4.13.20 Invalid Self-Issued DN
nameConstraints Test20

Run if application can process name constraints for
the directoryName form.

4.13.21 Valid RFC822
nameConstraints Test21

All. Applications that can not process name
constraints for the rfc822Name form should reject the
path.

4.13.22 Invalid RFC822
nameConstraints Test22

Run if application can process name constraints for
the rfc822Name form.

4.13.23 Valid RFC822
nameConstraints Test23

Run if application can process name constraints for
the rfc822Name form.

4.13.24 Invalid RFC822
nameConstraints Test24

Run if application can process name constraints for
the rfc822Name form.

4.13.25 Valid RFC822
nameConstraints Test25

Run if application can process name constraints for
the rfc822Name form.

4.13.26 Invalid RFC822
nameConstraints Test26

Run if application can process name constraints for
the rfc822Name form.

4.13.27 Valid DN and RFC822
nameConstraints Test27

Run if application can process name constraints for
both the directoryName form and the rfc822Name form.

4.13.28 Invalid DN and RFC822
nameConstraints Test28

Run if application can process name constraints for
both the directoryName form and the rfc822Name form.

4.13.29 Invalid DN and RFC822
nameConstraints Test29

Run if application can process name constraints for
both the directoryName form and the rfc822Name form.

4.13.30 Valid DNS
nameConstraints Test30

All. Applications that can not process name
constraints for the dNSName form should reject the
path.

4.13.31 Invalid DNS
nameConstraints Test31

Run if application can process name constraints for
the dNSName form.

4.13.32 Valid DNS
nameConstraints Test32

Run if application can process name constraints for
the dNSName form.

DRAFT 24 May 3, 2004

Test Applications that need to run test

4.13.33 Invalid DNS
nameConstraints Test33

Run if application can process name constraints for
the dNSName form.

4.13.34 Valid URI
nameConstraints Test34

All. Applications that can not process name
constraints for the uniformResourceIdentifier name form
should reject the path.

4.13.35 Invalid URI
nameConstraints Test35

Run if application can process name constraints for
the uniformResourceIdentifier name form.

4.13.36 Valid URI
nameConstraints Test36

Run if application can process name constraints for
the uniformResourceIdentifier name form.

4.13.37 Invalid URI
nameConstraints Test37

Run if application can process name constraints for
the uniformResourceIdentifier name form.

4.13.38 Invalid DNS
nameConstraints Test38

Run if application can process name constraints for
the dNSName form.

4.14.1 Valid distributionPoint
Test1

All.

4.14.2 Invalid distributionPoint
Test2

All.

4.14.3 Invalid distributionPoint
Test3

All.

4.14.4 Valid distributionPoint
Test4

All. Applications that can not process
cRLDistributionPoints extensions that include a
distributionPoint that is specified as
nameRelativeToCRLIssuer should reject the path (or issue
a warning that certificate status can not be
determined).

4.14.5 Valid distributionPoint
Test5

All. Applications that can not process
cRLDistributionPoints extensions or issuingDistributionPoint

extensions that include a distributionPoint that is
specified as nameRelativeToCRLIssuer should reject the
path (or issue a warning that certificate status can not
be determined).

4.14.6 Invalid distributionPoint
Test6

Run if application can process cRLDistributionPoints

extensions and issuingDistributionPoint extensions that
include a distributionPoint that is specified as
nameRelativeToCRLIssuer.

DRAFT 25 May 3, 2004

Test Applications that need to run test

4.14.7 Valid distributionPoint
Test7

Run if application can process issuingDistributionPoint

extensions that include a distributionPoint that is
specified as nameRelativeToCRLIssuer.

4.14.8 Invalid distributionPoint
Test8

Run if application can process issuingDistributionPoint

extensions that include a distributionPoint that is
specified as nameRelativeToCRLIssuer.

4.14.9 Invalid distributionPoint
Test9

All.

4.14.10 Valid No
issuingDistributionPoint Test10

All.

4.14.11 Invalid
onlyContainsUserCerts CRL
Test11

All.

4.14.12 Invalid
onlyContainsCACerts CRL Test12

All.

4.14.13 Valid
onlyContainsCACerts CRL Test13

All.

4.14.14 Invalid
onlyContainsAttributeCerts Test14

All.

4.14.15 Invalid onlySomeReasons
Test15

Run if application can process the onlySomeReasons

field of the issuingDistributionPoint extension.

4.14.16 Invalid onlySomeReasons
Test16

Run if application can process the onlySomeReasons

field of the issuingDistributionPoint extension.

4.14.17 Invalid onlySomeReasons
Test17

Run if application can process the onlySomeReasons

field of the issuingDistributionPoint extension.

4.14.18 Valid onlySomeReasons
Test18

All. Applications that can not process the
onlySomeReasons field of the issuingDistributionPoint

extension should reject the path (or issue a warning
that certificate status can not be determined).

4.14.19 Valid onlySomeReasons
Test19

Run if application can process the onlySomeReasons

field of the issuingDistributionPoint extension.

4.14.20 Invalid onlySomeReasons
Test20

Run if application can process the onlySomeReasons

field of the issuingDistributionPoint extension.

DRAFT 26 May 3, 2004

Test Applications that need to run test

4.14.21 Invalid onlySomeReasons
Test21

Run if application can process the onlySomeReasons

field of the issuingDistributionPoint extension.

4.14.22 Valid IDP with
indirectCRL Test22

Run if application can process indirect CRLs.

4.14.23 Invalid IDP with
indirectCRL Test23

Run if application can process indirect CRLs.

4.14.24 Valid IDP with
indirectCRL Test24

All. Applications that can not process indirect CRLs
should reject the path (or issue a warning that
certificate status can not be determined).

4.14.25 Valid IDP with
indirectCRL Test25

Run if application can process indirect CRLs.

4.14.26 Invalid IDP with
indirectCRL Test26

Run if application can process indirect CRLs.

4.14.27 Invalid cRLIssuer Test27 Run if application can process indirect CRLs.

4.14.28 Valid cRLIssuer Test28 Run if application can process indirect CRLs.

4.14.29 Valid cRLIssuer Test29 Run if application can process indirect CRLs and
cRLDistributionPoints extensions that include a
distributionPoint that is specified as
nameRelativeToCRLIssuer.

4.14.30 Valid cRLIssuer Test30 This test does not need to be run.

4.14.31 Invalid cRLIssuer Test31 Run if application can process indirect CRLs.

4.14.32 Invalid cRLIssuer Test32 Run if application can process indirect CRLs.

4.14.33 Valid cRLIssuer Test33 Run if application can process indirect CRLs.

4.14.34 Invalid cRLIssuer Test34 Run if application can process indirect CRLs.

4.14.35 Invalid cRLIssuer Test35 Run if application can process indirect CRLs.

4.15.1 Invalid deltaCRLIndicator
No Base Test1

All.

4.15.2 Valid delta-CRL Test2 Run if application can process delta-CRLs.

4.15.3 Invalid delta-CRL Test3 Run if application can process delta-CRLs.

4.15.4 Invalid delta-CRL Test4 Run if application can process delta-CRLs.

4.15.5 Valid delta-CRL Test5 Run if application can process delta-CRLs.

DRAFT 27 May 3, 2004

Test Applications that need to run test

4.15.6 Invalid delta-CRL Test6 Run if application can process delta-CRLs.

4.15.7 Valid delta-CRL Test7 Run if application can process delta-CRLs.

4.15.8 Valid delta-CRL Test8 Run if application can process delta-CRLs.

4.15.9 Invalid delta-CRL Test9 Run if application can process delta-CRLs.

4.15.10 Invalid delta-CRL Test10 Run if application can process delta-CRLs.

4.16.1 Valid Unknown Not Critical
Certificate Extension Test1

All.

4.16.2 Invalid Unknown Critical
Certificate Extension Test2

All.

DRAFT 28 May 3, 2004

