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ABSTRACT 

 

 

The need for low order models capable of performing damage identification has become 

apparent in many structural dynamics applications where structural health monitoring and 

damage prognosis programs are implemented.  These programs require that damage 

identification routines have low computational requirements and be reliable with some 

quantifiable degree of accuracy.  Response surface metamodels (RSMs) are proposed to fill this 

need. Popular in the fields of chemical and industrial engineering, RSMs have only recently been 

applied in the field of structural dynamics and to date there have been no studies which fully 

demonstrate the potential of these methods.  In this thesis, several  RSMs are developed in order 

to demonstrate the potential of the methodology.  They are shown to be robust to noise 

(experimental variability) and have success in solving the damage identification problem, both 

locating and quantifying damage with some degree of accuracy, for both linear and nonlinear 

systems.  A very important characteristic of the RSMs developed in this thesis is that they 

require very little information about the system in order to generate relationships between 

damage indicators and measureable system responses for both linear and nonlinear structures.  

As such, the potential of these methods for damage identification has been demonstrated and it is  

recommended that these methods be developed further.
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Chapter 1   

 

 

INTRODUCTION TO RESPONSE SURFACE METAMODELS  

OF DYNAMIC STRUCTURAL SYSTEMS 

 
 

This research addresses the problem of damage identification in dynamic structural systems 

through the use of response surface metamodels, with careful attention paid to quantification of 

error.  Damage identification is a problem of interest in many engineering industries and is the 

most fundamental part of structural health monitoring and damage prognosis problems.  Damage 

identification is the problem of locating and quantifying damage in structures.  This task may be 

accomplished through any of various methods; for example, visual inspection, non-destructive 

evaluation methods, or analysis of time history and frequency response data.  Structural health 

monitoring (SHM) is the process of continuously monitoring a structure for damages that may 

occur in real-time.  An example of this may be sensors in place on a bridge that send data to a 

remote processing station, where an operator may look for damage on a real-time basis [1].  

Damage prognosis takes SHM one step further and answers the question, “Based on the current 

state of damage, how much remaining life or performance does the structure have?” [2]. This 

thesis will focus on the application of response surface methods to the fundamental damage 

identification problem.  It will become evident that these methods may then be integrated into 

SHM and damage prognosis.  

 

The concept of a “metamodel” is introduced as a fast running surrogate model.  Usually it is a 

model that will run in minutes on a single processor desktop PC compared to the hours or days 

that it may take to run a more detailed simulation on a multi-processor machine.  It could be a 

 1



traditional reduced order model (as obtained from Guyan Reduction or Craig-Bampton methods), 

a neural network, or a statistically derived model.  Because the aim of this research is to focus on 

a method that is viable for both linear and nonlinear structures, reduced order modeling methods 

that rely on modal methods will not be addressed.  Neural networks for use in nonlinear 

structural dynamics problems are being addressed by others and are well documented in the 

literature, for example [2].  They also have the disadvantage of requiring large amounts of 

training data.  The focus of this thesis will be directed toward statistically derived metamodels, 

or response surface metamodels for use in damage identification applications.  Figure 1.1 

conceptually demonstrates the area of structural dynamics problems in which it is hoped that 

response surface methods may be of use.  Response surface methods may be employed with low 

effort and have the potential to be applied to both linear and nonlinear problems. 

 

Type of 
Dynamics 
Modeled Linear Nonlinear 

Response Surface Methods 

Traditional 
Model Reduction 
Methods 

Neural Networks 

 Training / 
Implementation 
Effort Required 

High 

 

 

 

 

 

 
Low 

 

 

 

Figure 1.1  Conceptual plot of the types metamodels and problems for which they are suited. 

 

The concept of a design space is introduced as the set of all possible experiments or simulations 

that interest the analyst.  This set consists of all controllable variables set at all possible levels 

and associated dependent features of interest.  This space may be n-dimensional in size.  Because 

the total design space is often prohibitively large, methods have been developed in the literature 

to efficiently explore it.   
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In the case of response surface metamodels, design of experiments methods (often called 

response surface methods) are employed.  Already popular in the chemical and industrial 

engineering communities, design of experiments is a statistical method used to “intelligently” 

determine which simulation or physical experiments should be run when resources are scarce [3].  

Design of experiments relies on analysis of variance, or ANOVA, to choose a few points out of 

the full factorial set that efficiently provide information about the full response space.  

Metamodels may then be fit to these intelligently chosen data points using standard multiple 

regression methods resulting in a polynomial model that relates input parameters to output 

features.  While these models are empirical in nature, they rely on the expertise of the 

experimenter for assignment of model input parameters and choice of appropriate output 

feature(s).   

 

The advantages of using the response surface metamodel formulation are many.  Table 1.1 

summarizes the abilities of each of the metamodeling methods and it can be seen that response 

surface methods have many desirable qualities. It is important to understand with response 

surface metamodels, a numerical model is fitted over a domain, or a range of input parameters.  

Because of the model form, minimal effort is required to train response surface metamodels and 

they have relative flexibility in the range of problems they are able to model.   

 

Table 1.1  Advantages and disadvantages of various metamodeling techniques. 
 Response Surface 

Methods 
Neural Networks Traditional Model 

Reduction Methods 
Models linear 
dynamics? 

Yes Yes Yes 

Models non-linear 
dynamics? 

Yes Yes No 

Models stochastic 
phenomenon? 

Yes Yes No 

Data requirement 
for a given output? 

Low High Mid 

Ability to do 
damage 
identification? 

Yes - Solving inverse 
problem required 

Yes Yes - Solving inverse 
problem required 

 

 

 3



It is the empirical nature of response surface models that makes them well suited to nonlinear 

dynamics simulation and experiment, because higher order models may be used to relate input 

variables to response features.  In addition to features derived from the frequency domain (which 

may be difficult to derive in nonlinear settings), response features may be derived from measured 

or simulated responses in the time domain.  In fact, the number and types of response features 

used are limited only by the ingenuity of the experimenter.   

 

Another advantage of response surface methods is their ease of implementation in damage 

identification settings.  Relatively few data sets are required to build a model relating inputs and 

outputs.  Because of the large scale of many damage identification projects, engineers rely 

heavily on simulation because it is often not feasible to conduct many experiments to explore all 

damage scenarios.  (Imagine an aerospace firm fabricating and then destroying 500 airplanes to 

test all possible damage scenarios!)  Additionally, with the advent of programs such as the 

Department of Energy’s ASCI (the Accelerated Strategic Computing Initiative) at National 

Laboratories across the country, simulations have become increasingly complex, which means 

they often take tremendous amounts of computing time to run.  One example is a simulation of 

the response of a mechanical joint subject to transient excitation which took 504 processors three 

hours to run three milliseconds of simulation time on Los Alamos National Laboratory’s parallel 

super computer, Blue Mountain [4].  In many commercial settings, computing power is simply 

not available to conduct such complex simulations.  While having unlimited experiments and/or 

simulations would be the ideal to explore a dynamic phenomenon, it is easy to see that this may 

never be the case due to budget and time limitations.   Using a small number of data sets (this is 

equivalent to experiments or simulations), analysts and experimenters may be able to efficiently 

explore the response space to better determine areas of interest and quantify the variability of 

predictions.   

 

Use of low order models will have an increasingly important part to play in applications such as 

structural health monitoring and damage prognosis.  These applications may involve putting 

many sensors on a structure and processing the data onboard, presumably with some kind of 

minimal hardware.  Because of the low training requirements and simple model form of response 

surface metamodels, they could be used in onboard processing applications, requiring a 

 4



minimum of computational power.  Damage in the structure might be identified by a response 

surface model and sent to a remote location where an engineer is monitoring structure status. 

 

In addition to issues of efficiently using small amounts of data, the polynomial nature of 

metamodeling can make it particularly well suited to the damage identification problem, which is 

an inverse problem.  If several response features are modeled, then these models may be used 

with an optimization formulation and system inputs may be determined in this inverse fashion.  

While input formulations may still be non-unique, rating schemes exist which rank the 

combination of inputs that are most likely to have caused the output features measured.  This 

thesis will explore the use of metamodels in damage identification using these methods. 

 

In order to demonstrate that response surface metamodels may be used in structural damage 

identification problems two dynamic systems have been examined.  Simple problems have been 

chosen so that an emphasis on the process of metamodel formulation and damage identification 

may be achieved.  Special attention has been given to characterization of error.  It will be 

demonstrated that metamodels show potential for use as reduced order models for damage 

identification of both linear and nonlinear structural dynamics systems. It will also be shown that 

response surface metamodels are robust to experimental variability.    

 

The rest of this thesis will be organized as follows.  Chapter 2 will address some basic 

background pertinent to the research of this thesis.  Chapter 3 presents a linear five degree-of-

freedom (5DOF) spring-mass simulation that was modeled using response surface methods.  The 

resulting metamodel was used to detect and locate damaged springs.  The method proved to be 

successful with some limitations.  In Chapter 4, the effects of noise and nonlinearity introduced 

(separately) into the 5DOF system were also studied and the response surface metamodel proved 

to be robust to each of these, again with some limitations.  An experimental cantilever beam is 

addressed in Chapter 5 to demonstrate the process of using simulation to “train” a response 

surface model.  Then the model trained on simulation is applied to experimental data.  Masses 

were placed at ten different locations on the beam.  A response surface metamodel of the beam 

was constructed and with it the number and location of the masses on the beam were determined 

with some quantifiable degree of accuracy.  Finally, Chapter 6 presents conclusions.   
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Chapter 2   

 

 

BACKGROUND 

 
 

2.1  Introduction 
Before this thesis research is presented, background information on few different areas of 

research that relate to the use of metamodels (or response surface methods) in damage 

identification is reviewed.  This review is not meant to be an exhaustive literature review.  

Rather, it presents a few different state of the art applications in each of the following three 

categories:  Model reduction, damage identification and applications of response surface 

methods to structural dynamics problems.  It also presents a brief review of response surface 

terminology. 

 

2.2  Model Reduction 
Because it has been emphasized that metamodels may be used with reduced data sets, a review 

of traditional model reduction methods follows so that the advantages and disadvantages of 

response surface metamodels may be seen.  Model reduction methods have been used in 

conjunction with structural dynamics problems for many years.   

 

Hemez and Masson provide a review of exisiting model reduction methods in their 2002 LANL 

Technical Memo, “Model Reduction Primer” [5].  In this paper the authors emphasize that there 

are two families of model reduction methods, direct reduction methods and component mode 

synthesis, or sub-structuring.  Direct reduction methods involve reducing matrices to a subset of 

actual degrees of freedom in order to improve computational efficiency.  Sub-structuring 
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methods, most commonly applied in larger systems, are integrated from numerous subsystems 

that are condensed at their interfaces.  Sub-structuring allows individual components to be 

analyzed separately and may be implemented on problems of unlimited size, given current 

computational capabilities.   

 

Direct condensation methods involve formulation of a transformation matrix, T, that preserves all 

the eigen-characteristics of the original system.  For example if we start with 

 

0)MK( =λ− y   (2.1) 

yc =T      (2.2) 

  

where K is the stiffness and M is the mass of a dynamic system and λ and y are eigenvalues and 

eigenvectors of the system respectively, then we seek a transformation matrix T such that Eq. 2.2 

is satisfied.  The vector c is, according to Hemez and Masson, “a vector of generalized 

coordinates representing the contribution of each column of matrix T” [5].  Equation 2.2 may be 

substituted into Eq. 2.1 resulting in transformed mass and stiffness matrices.  The goal of direct 

condensation methods is to preserve the character of the first few modes of a system.  Methods 

of direct condensation differ only in their choice of T. 

 

The method of sub-structuring is briefly summarized as follows [5].  A large system is broken 

down into sub-domains and interface degrees of freedom are defined.  Then generalized 

coordinates and corresponding T matrices must be defined for each substructure, as well as the 

reduced (or transformed) mass and stiffness matrices.  Then substructures must be assembled 

into the interface problem and the newly reduced eigen-problem solved.  The final step is to 

transform back to physical degrees of freedom in each sub-domain.  The reader is referred to 

Hemez and Masson for specific examples of each of these major types of model reduction 

methods.  Examples of a few papers in the literature that discuss the use of these model reduction 

methods in structural dynamics problems follow.   

 

A paper by Masson, et al. [6] discusses a modification of the Craig-Bampton (CB) method of 

model reduction so that a system modification may be made without completely re-evaluating 
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the reduced order model used.  The problem with the existing CB technique is that if one wishes 

to conduct a parametric study of design variables, the model must either be reformulated, or the 

modeler must live with large inaccuracies that are incurred by using the nominal model.  The 

technique introduced in this paper allows modelers to modify the nominal model based on an a-

priori knowledge of the deisgn parameters and hence avoid re-formulating the model for an 

acceptable analysis.   

 

Bobillot and Balmés [7] provide another example of structural response simulated using reduced 

order (direct condensation) models.  The authors examine two fluid-structure interaction 

problems, that of oil in a viscoelastically damped oil pan and that of a cryogenic stage of the 

Ariane-5 launcher with fluid.  The problems are quadratic (nonlinear) eigenvalue problems.  

Fluid and structure are coupled in such a way that the M and K matrices are non-symmetric and 

high order.  Three classical methods of solving these types of problems are reviewed.  They are 

the inverse iteration method, the subspace method, and the Lanczos method.  The method 

introduced by the authors is a modification of classical Ritz vectors, called the Ritz method with 

residue iterations.  The original eigen-problem is projected on some new, reduced basis, T.  Then 

errors on the force vector due to the use of this new basis are calculated.  Displacement residuals 

are then calculated and a strain energy indicator evaluated using these.  The basis is then updated 

using the displacement residuals until some error tolerance is met.  The problem is then applied 

to the coupled fluid-structure interaction problem and as a result is generalized to a multiple field 

solver.  The application of the solver is comparable to existing methods with respect to both 

accuracy and efficiency. 

 

Burton, et al. [8] look at two different methods of model reduction for use in nonlinear model 

updating.  The first method is to simply use an “exact for the linear case” model reduction and 

apply the resulting model to the nonlinear case with updating performed on the difference 

between simulated and measured time histories.  The second method involves using the same 

reduced nonlinear model as in the first case, but with updating on the singular value 

decomposition of the simulated and measured responses.  The authors apply both methods to a 

simple four degree of freedom simulated problem with a cubic nonlinearity and attempt to see 

damage (reduced stiffness in linear springs) in the system.  Both methods are able to detect 
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damage in an equivalent linear system in almost all cases.  For the nonlinear system, more initial 

information is required (3 sensors out of four possible) to identify the introduced damage.  

Sensitivity to initial condition (very sensitive) and measurement noise (insensitive to 10% signal 

to noise ratio) are examined.   

 

2.3  Damage Identification  
It is the purpose of this section to examine some work that demonstrates current methods of 

damage identification.  Modal methods of damage detection are recognized as the most 

commonly used method of damage detection, and the reader is referred to the wide body of 

literature already in existence on this topic [9].   

 

Brockman, et al. [10] look at an experimental 5 DOF system with different types of linear and 

nonlinear input parameters.  Features are identified that characterize these input (or damage) 

parameters.  Masses and spring stiffnesses are different.  Linear changes are introduced by 

replacing two springs with two of lower stiffness.  Nonlinear changes are introduced by placing 

bumpers between two of the masses, effectively resulting in a nonlinear stiffness increase for the 

spring at that position.  A “loose” model is also used to introduce nonlinearity.  Shaker excitation 

is used with a shaped random input.  For linear changes differences in the natural frequencies 

were calculated.  Mode four is found to be most sensitive to damage in spring one and two.  

Differences in mode shapes are also examined and modes one and two are most affected.  

Nonlinear changes are detected by examining the power spectra.  Those sensors closest to the 

nonlinearity contain more high frequency content than the original system.  Probability density 

functions (PDF) of signal magnitude are also examined, because nonlinear systems often deviate 

from normal (Gaussian) PDF distributions.  The authors found that this indeed occurs at the 

location of the nonlinearity.  Examination of FRFs did not yield much useful information.  

 

Lee, Kim and Shin  [11] use frequency response methods to identify damage in a plate structure.  

The authors argue that an advantage of FRF methods over the use of modal methods is that 

modal data is limited to information near resonance points.  Their method is derived from 

dynamic plate equations, with the introduction of a damage influence matrix, which depends on 

mode shape curvatures and a damage distribution function.  Knowing measured frequencies and 
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other plate properties (intact plate mode shapes and natural frequencies), they backsolve for the 

damage influence matrix.  They apply the method to a simulation of a damaged plate and apply 

noise as well.  They are able to show that their method is robust up to about 10% random noise.  

They find that measuring and exciting at multiple points works the best for their damage 

identification algorithm.   

 

Robertson, et al. [2] demonstrate the use of neural networks to locate and predict velocity of 

impact of a projectile into a composite plate.  While many of the advantages of using neural 

networks are similar to those of response surface methods (use of single number features, 

straight forward relationships between input and outputs), the reader will note that the number of 

training sets used to achieve acceptable results is very high.  The authors compare the 

performance of three different types of networks, multi-layer perceptron network, radial basis 

network and support vector machines.  For all networks, separate models are built for 1) location 

and 2) velocity of impact.  A full factorial of finite element simulations is performed (all input 

parameters set at all possible levels); this involved running the simulation with impact at 10 

different velocity levels, at 10 different x locations and at 10 different y locations, for a total of 

1000 runs.  The neural networks are all trained on 500 of these runs and tested on 250 (remaining 

250 were used for validation if required) using features derived from the strain history at several 

different elements.  All networks are able to locate the impact within the resolution of the 

elements used in the finite element analysis.  Velocities are also predicted well.   

 

The authors then train and test their networks on an experimental set-up, in which the plate is 

tapped in each of 49 locations (a 7x7 grid) and strain data is collected at the corners of the grid.  

This time, networks are trained on 28 to 40 experimental setups (depending on the network 

formulation chosen) using similar features.  While the number of training sets is significantly 

reduced for this set of tests, results are not as good as those detailed above.  After testing on 147 

test setups, it is found that the multi-layer perceptron network performs better with the limited 

training set available.  Finally they use their models that were trained on the experimental setup 

to locate where a projectile shot at the plate impacted.  None of the networks perform well.  They 

hypothesize that this is due to the high energy of this impact test and also due to damage induced 

in the plate by the projectile impact.   
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2.4 Response Surface Methods 
Because the basis of the formulation of the metamodels in this research is provided by the 

statistical techniques of response surface analysis, a brief review of the philosophies and 

terminologies is provided below.  For a more extensive explanation, the reader is referred to the 

many publications in existence on this topic.  This review relies primarily on Response Surface 

Methodology by Myers and Montgomery [3] and the Design-Expert Software Users Manual by 

Stat-Ease [13].   

 
Rutherford [12] notes that there are a few different types of experimental designs for computer 

analysis.  The first type is the sampling approach.  Monte Carlo methods, Latin Hypercube and 

importance sampling all fall into this category.  These methods involve sampling parameters 

from distributions and then running computational analysis (or physical experiments) to find 

output features.  He notes that these may involve many simulations, especially when the event of 

interest is one that is low probability.  Response surface methods make up the second category, 

these include classical response surface methods (the focus of this thesis), reliability methods, 

and spatial methods.  Advantages of response surface methods are that they all tend to reduce the 

number of computational/physical experiments necessary to explore the response space.   

 

As stated in the introduction the primary utility of using design of experiments or response 

surface methods (RSM) is that it provides a way of rigorously choosing a few points in a design 

space to efficiently represent all possible points.  Many different types of designs have been 

proposed in the literature, all are different with respect to which points are chosen for 

representation of the full factorial set (the set of outputs that correspond to the combination of all 

input parameters set at all possible levels).  It is important to note that no design, unless it 

includes every possible point of interest (full factorial), will ever provide a perfect fit.  All 

designs will impose certain constraints on the form of the model that can be fitted.  In the case of 

polynomials, more points added to the model means that a higher order model may be fitted.  

One of the biggest limitations of response surface metamodels is “aliasing” or a mixing of higher 

order effects.  Designs with only a few points may be used to fit higher order surfaces, but great 

care must be taken, because the higher order effects will be mixed, or aliased, with other effects, 
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resulting in an inability to distinguish what the “true” effect is.  Because the focus of this thesis is 

not to discuss the mechanics of response surface design, the reader is referred to Meyers and 

Montgomery [3] for further details. 

 

Let us first consider the form which a response surface model takes.  A response surface is a 

functional mapping of several input parameters to a single output feature.  In our case, it is of a 

polynomial form 

 

ε++++= ...DxCxyByAxz 2   (2.3) 

 

where in this case, z is the output feature of interest and x and y are input parameters, and ε is the 

error term.  A, B, C, D, … are regression coefficients, determined by the method of least squares.  

The number of input parameters may be unlimited; here only two are considered because 

visualization is easier.  Order of the model is determined by the number of points used to “train” 

it.  Typically model properties of interest are those that characterize model fit quality, 

contribution of an individual variable to total model variance, parameter aliasing properties (how 

much one parameter gets “mixed up” with other parameters), and model resolution.  When 

performing response surface analysis, it is customary to use normalized or “coded” input 

parameter values.  Also, if power transformations of the model output feature result in a better 

fit, they are commonly employed. 

 

Consider the following example.  We are interested in the maximum displacement, z of some 

displacement response.  Impulse magnitude, x, and stiffness, y, of the system of interest are 

known to affect the maximum displacement.  Impulse magnitude is examined at x=[5,10,15,20] 

N and stiffness is examined at y=[2000,3000,4000,5000] N/m.  Knowing these levels of interest, 

we can generate maximum displacements that correspond to each pairing of impulse magnitude 

and stiffness (constituting the full factorial, or all inputs at all levels).  With this information, we 

ask the question, what is the best model, in the form of equation (2.3), that predicts the maximum 

displacement, given known impulse magnitude and location?  In this particular example, x and y 

are “input parameters,” the values at which we examine x and y are “levels.”  The maximum 

displacement, z, is the “output feature.”  The full factorial design is (4 levels)(2 factors) = 16 
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simulations or experiments to generate the maximum displacements of interest.  If we picked 

some subset of the possible values of x and y, then we would have a “fractional factorial” design.  

We may then generate a model with linear and/or higher order terms or “effects.” 

 

Commonly used models are usually some fraction of the full factorial design space and are 

therefore called “fractional-factorial models”.  When building models the number of input 

parameter levels of must be considered.  If more input parameter levels are included in a model, 

then a higher order metamodel may be constructed.  The more levels incorporated into a design, 

the larger the design will be for the same resolution of a design with fewer input parameter 

levels.  The following list is a brief summary of each of the models used in this work. 

 

2k factorial design – This design is for any number of model inputs considered at two levels.  

These types of designs are useful in doing input parameter screening or determining how much 

each individual parameter contributes to the total model variance.  Those that do not contribute 

much can be discarded.  Larger “fractions” of the full factorial design will result in higher 

resolution designs with more design points.   

 

Plackett Burman Design – A two level fractional factorial design (each input parameter set at 

two different levels).  Because this design has a complex aliasing structure, it is commonly used 

for parameter screening purposes, or designs in which main effects (first order terms) are thought 

overshadow any higher order effects. 

 

Central Composite Design – A design for input parameters with three to five levels.  Often used 

to fit second order response surfaces.  Runs consist of a center point, and then the corners of a 

square (or cube or higher order equivalent) and axial points, as in Figure 2.1.  May be rotatable 

(error structure the same, no matter how the points are oriented) if axial points are chosen 

correctly.   

 

 

Figure 2.1:  Qualitative design space for a two parameter central composite design. 

y 
x

Circles are design points, x and y are input parameters. 
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Face Centered Cubic Design – A central composite design with axial points set at a normalized 

distance of one away from the center, as in Figure 2.2.  Not necessarily rotatable.   

 

y 
x 

 

 

 

Figure 2.2:  Qualitative design space for a two parameter face centered cubic design. 
Circles are design points, x and y are input parameters. 

 

 

2.5  Application of Response Surface Methods to Structural Dynamics 

Problems  
In addition to traditional model reduction methods, the application of response surface methods 

to structural dynamics problems has also been researched (though very little was found in the 

literature that was specific to the damage identification problem). 

 

Huh and Haldar [14] define a hybrid method for considering the reliability of structures subject 

to short duration nonstationary dynamic loadings and perform damage prognosis of two 

theoretical structures.  The authors consider a hybrid method, consisting of stochastic finite 

element modeling, response surface methodology and the first order reliability method.  They 

focus on the formulation of three different types of response surface models relating structural 

material and geometry properties to probability of failure.  The authors choose iterative 

combinations of second order polynomials (with and without interaction terms) and saturated and 

central composite designs in order to achieve efficiency and accuracy.  Huh and Haldar provide 

examples of the use of these models on a two story steel frame structure (using El Centro time 

history) and on a 13 story steel frame structure (using Northridge time history).  They suggest 

sensitivity analysis to further simplify large problems.   

 

Gao, et al. [15] provide an example of the use of response surface methods in a mechanical 

setting.  They examined design optimization and evaluation of a brushless DC spindle motor for 

better performance, quality, and decreased life cycle cost.  The authors examine the use of a 
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mixed resolution rotatable central composite design.  It is explained that using a CCD requires 

significantly less experiments (75) than a 3 level (2187) or a Taguchi design (225).  For a mixed 

resolution CCD, defining relations are set up such that only factors that are important are 

examined on all levels.  Control factors (whose higher order interactions might be important) and 

noise factors (whose higher order interactions are deemed unimportant) are defined.  Defining 

relationships of the design are set up such that linear terms of all control and noise factors, 

quadratic terms of control factors, interactions between control factors and interactions between 

control and noise factors are estimated.  Quadratic terms and interactions of noise factors are 

eliminated by making the axial points for the noise factors zero.  Compared to a regular CCD, 

which would have 75 experiments required for their setup, their mixed resolution design requires 

only 41 experiments to estimate 30 model terms.  Unlike Huh and Haldar [14], their method is 

not iterative, using only one model to relate input parameters and output features.  They achieved 

promising results on their spindle motor example, which related geometric properties of the 

spindle to torque output.   

 

Meckesheimer, et al. [16] concentrated on comparing different types of metamodels for use in 

discrete/continuous applications.  While the authors do not apply their methods to damage 

identification problems, it is clear that some of the methods may be applied in this setting.  For 

example a continuous-discrete formulation may be used in deciding if a structure is damaged 

(discrete) and then, if so, how much damage has been incurred.  The authors examine linear 

regression models, radial basis functions, kriging models, and five types of designed experiments 

(full factorial, D-best latin hypercube, full factorial latin hypercube, hammersley sampling 

sequence, and uniform designs).  They then look at combining these metamodels in different 

ways such that a combined discrete/continuous response is best estimated. Three different ways 

of estimating these combined responses are introduced.  The first is the combined metamodel 

strategy (one metamodel for both continuous and discrete parts).  The second is a metamodel 

plus the original logic (the discrete part is known a priori).  The last is to have two different 

metamodels, one which estimates the continuous part and one that estimates the discrete, or 

logical part.  Logical models (e.g., neural networks) are suggested.  Large errors at the 

discontinuity are likely to be encountered with all models.  A case study of a desk lamp design is 

examined, metrics of model fit are studied, the mean square error, the mean absolute error and 
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the maximum absolute error.  From the example, the authors conclude that the state-selecting 

metamodel used in combination with second-order polynomials is an accurate and efficient 

method.   

 

Hemez, Wilson and Doebling [17] explore the use of design of experiments for model updating 

of a nonlinear impact problem.  Model updating often involves solving an inverse problem; in 

this case, it may be formulated by asking the question, “Knowing what model responses are, 

what are the model inputs?”  Use of models generated using design of experiments methods 

allowed the authors to optimize model parameters and thus determine what some of the 

experimental model input parameters were.  Then once the values of these input parameters are 

known they are able to improve their higher fidelity finite element model.  The authors use the 

correlation between test data and model predictions based on independent features (time of 

arrival and peak acceleration) as their objective function.  The authors are successful in 

determining what some of these parameters are and are able to independently validate some of 

their parameter values.   

 

Cundy, et al. [18] examine the use of response surface methods and Bayesian screening methods 

to perform parameter screening on a threaded assembly subject to transient excitation.  The set of 

twelve input parameters involve dynamic and static coefficients of friction and preloads of 

threads in the assembly.  Output features were temporal moments (successive integration of the 

acceleration time history times the time to successive powers; these are often used to describe 

transient dynamic signals).  The authors use a two level Plackett Burman design to determine 

contributions of individual parameters to total model variance.  They compare this to Bayesian 

screening methods.  The Bayesian definition of probability accounts for subjective knowledge of 

the analyst, as opposed to the frequentist view of probability, which is based only on the number 

of occurrences of each event.  Using Bayesian model screening, prior liklihoods are assigned to 

input parameters based on the analyst’s knowledge of the problem. Then a form of Markov 

Chain Monte Carlo sampling called the Gibbs sampler (a single direction sampler) is used to 

sample models of unknown distributions.  Models that fit the data well are visited more often, 

those that are a poor fit are visited less often.  The analyst is then able to identify the model form 

which best captures the effects and output features of interest.   Both of these methods are 
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compared to the more traditional general sensitivity analysis, which examines how much each 

output feature changes when each input parameter is changed one at a time (a simple, linear, 

finite differencing method).  All methods resulted in the same six parameters screening out of the 

original set of twelve thought to be important.   

 

Shinn, et al. [19] examine the estimation of error of a metamodel used in a nonlinear dynamics 

application.  A single degree of freedom (SDOF) system is designed to model an impact test of 

an elastomeric (nonlinear) foam material.  Two response features are identified.  These were 

peak acceleration and time of arrival of this peak.  Several different nonlinear models of the 

foam are created and for use in the context of the SDOF model with varying degrees of accuracy.  

In order to assess the predictive fidelity of the model, an error surface is fit.  It is noted that the 

error surface cannot be fit just to model points; if this is done, the error surface may reflect zero 

everywhere, because error at model points is typically very small.  The authors also state that the 

error surface must be bounded and that the bounds must account for all sources of model 

variability and uncertainty, whether they are analytical, experimental or numerical.   
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Chapter 3   

 

 

LINEAR FIVE DEGREE OF FREEDOM SYSTEM 

 

 
3.1  Introduction 
A linear five degree of freedom (henceforth 5DOF) system was simulated in Matlab™ [20] and 

explored using response surface analysis.  Because the focus of this thesis is the process of using 

response surface analysis in damage identification applications, the 5DOF system was deemed 

appropriate for analysis because of its simplicity.  The methods examined were not only tested 

on a linear 5DOF damaged system, but also on one subject to noise and one with a nonlinearity 

introduced (addressed in Chapter 4).   

 

Before delving into the analysis of the 5DOF system, it will be useful to first show the general 

steps of doing damage identification using RSM.  Figure 3.1 shows, in flow chart form, the entire 

process.  First the system of interest must be identified (Step 1 on the flow chart).  Step 2 is of 

primary importance to the damage identification process; it is identification of input and output 

features.  It will be shown how the choice of these can dramatically affect how well a metamodel 

generated using RSM is able to perform damage identification.  In the case of dynamic structural 

systems, inputs must be controllable and are often those material and structural properties that 

may be changed or “damaged” (such as stiffness, mass and damping).  Output features are 

usually single number scalars derived from time or frequency domain data.  The appropriate 

choice of output features will be discussed more later.   
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Step 3:  Construct response surfaces relating 
inputs and outputs; Error characterization. 

Step 4: Damage Identification 
Inverse problem with optimization = Damage 
ID parameters (Input variables that caused a 
particular set of output features)

Out 2 

In 1 

In 2 

Out 1 

In 2 

In 1 

Step 2:  Input variables (damage identifiers) 
and measureable output features identified 
 
Input Variables:  M, K, C,… 
 
Output Features:  Peak Displacement, natural frequencies 

…….  

 
Step 1:  Structure of Interest 
Identified 

 
 

  

Figure 3.1  Four steps for doing damage identification using RSM. 

 

The type of RSM is chosen next in Step 3.  This choice will dictate the design points that must be 

simulated or experimentally derived.  Then the mapping between inputs and outputs is defined 

by, in this case, a multiple-regression, least-squares algorithm resulting in a model that has a 

polynomial form.  An important concept to note is that due to the functional form of this 

relationship, one model must be generated per output feature.  For example, if the analyst wishes 
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to relate input variables to peak acceleration and time of arrival then two separate metamodels 

must be generated.   Finally, after the model has been trained on the set of design points (known 

input variable and output feature pairs), it may be used in an inverse sense to do damage 

identification in Step 4. The question, “Knowing measured output features, what were the input 

parameters that lead to such values?” must be answered.  Of course, in order to have some 

confidence in the answers derived, running extra points to characterize the error between the 

response surface metamodel and simulation and/or experiment is necessary.  The following 

subsections of this chapter will be divided into the steps shown in Figure 3.1 for the case of the 

linear deterministically simulated system.   

 

3.2  Step 1:  Definition of Structure of Interest 
As stated previously, the focus of this chapter is a simulated 5DOF system, consisting of springs, 

dampers and masses, connected as shown below in Figure 3.2.  An impulse excitation is used.  

The simulation was coded into Matlab™ [20] by Dr. Gyuhae Park.  Both time and frequency 

domain data were saved.   

 

 

 

 

 

 

 

…
k5

x5 

m5 

x1 

m1 

k1 

Figure 3.2  5DOF simulated system 

 

 

Table 3.1:  Input parameter identification for linear 5DOF system. 
System Parameter Value(s) 
Spring Stiffness, k1-k5 2000-10000 N/m 
Mass, m1-m5 2.0-10.0 kg 
Damping, c1-c5 1.0 kg/s 
Impulse Magnitude 0.1-5.0 N 
Impulse Location 1, 2, 3, 4, 5 (unitless) 
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All system parameters and the range of their values are shown in Table 3.1.  The only parameter 

held constant for the initial study was damping.   

 

3.3  Step 2:  Selection of Input Variables and Output Features 
Input parameters chosen were stiffness and mass (each could have five different values, but all 

five locations were the same), as well as impulse magnitude and impulse location.  While 

frequency domain features were eventually used for the damage identification problem, in this 

case, the output features chosen were derived from the displacement time history.  Time series 

features are of interest for eventual application in nonlinear problems, where frequency domain 

features may be more difficult to extract.   

 

This thesis makes extensive use of temporal moments, a concept first introduced for use with 

transient dynamics problems by Smallwood [21].  Temporal moments are useful in 

metamodeling because they are single number characterizations of time series data and usually at 

least one of the first few is able to discriminate between damage states.  A general equation for 

taking the ith temporal moment, Mi of a function f(t) about time t=0 is  

 

∫
∞

∞−

= dttftM i
i
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where f(t) is the time series of interest.   

 

Hemez and Doebling [22] have recently explained the physical interpretation of moments M0 

through M2.  Normalized, or central moments are called E, T, and D (where all moments are 

normalized by the zero order moment).  E is the energy of the signal.  T is the centroid of the 

signal or the time at which half of the energy has arrived and half has yet to come.  D is the root 

mean square duration of the signal and may be thought of as equivalent to standard deviation.  

Hemez and Doebling note that usually “the significant part of the transient’s energy should be 

within 2 or 3 RMS durations around the centroid T.”  In the same paper, Hemez and Doebling 

also show that temporal moments may be transformed back to time series with the same 

statistical properties as that from which they were generated.  This implies that much valuable 
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information about the signal is retained in the use of these features.  Other moments are used in 

the literature, but are not addressed in this work, because as the order of the moment increases, 

physical interpretation becomes more difficult.   

 

In this investigation of response surface performance, the first moment, E, from the displacement 

time history at Location 3 was used as a feature, chosen arbitrarily among the choice of five 

possible locations.  Only one location was used for moment calculations because it was desired 

to show that response surface methods may also be used as reduced order models.  That is, much 

information about a system may be gained from a small number of measurement points.   

 

Another feature examined is related to the rate of decay of the displacement time history.  This 

seemed a logical output feature to use, given that the problem is one of free vibration after the 

impulse, and displacement time histories typically look like Figure 3.3.  Such a feature is well 

known in vibration literature as the log decrement, δ [23], 

 









φ++ω+ζω−

φ+ωζω−
=∂

]))Tt(sin[)]Tt((exp[
])tsin[]t(exp[

Ln
dn

dn  (3.2) 

 

where t is time, T is period, ωn is natural frequency, ωd is damped natural frequency, ς is 

damping ratio, and φ is phase angle.  It can be seen that the log decrement depends not only on 

damping, in the form of ωd (which is not changed in this simulation), but also on stiffness and 

mass (in the form of ωn).  For the 5DOF system, a log decrement parameter may be empirically 

fit using the following form  

batetf +=)(   (3.3) 

 

where f(t) are the positive peaks of the displacement time history, t is time and a and b are 

constants defining the curve.  This curve is shown in red on Figure 3.3.  The fit curve was then 

integrated analytically  

 

∫
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a
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where a and b are as above.  The resulting area was used as a feature (again, displacement time 

history from Location 3 was used), and called the “log decrement feature” or “LD.”  This new 

feature is also sensitive to the amplitude of the vibration as well.   
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Figure 3.3  Typical displacement history and line fit to the positive peaks. 

yst can make educated guesses as to which features will be appropriate for use in a 

fication problem, it should be noted that choosing features is often an iterative 

itial set is chosen, models fit, and the damage identification problem attempted.  If 

non-unique, often the analyst must choose new features which yield unique results 

e identification problem.  This problem will be discussed in greater depth in the 

 4.   

 Screening 

ermine if the output features chosen were indeed sensitive to some or all of the 

 parameters (mass, stiffness, impulse magnitude, impulse location), preliminary 

ing was conducted before response surface models were built.  It is important to 

ile variable screening may not be the most important step in a small problem such 

ystem, in large problems with many potential input parameters, variable screening 

orth the time spent on it.  An example is the Los Alamos Threaded Assembly 
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problem [18], in which 12 potential input parameters were screened down to a subset of 6 that 

were actually important to the chosen output features.  Variable screening can significantly 

reduce the number of runs required to generate an adequate response surface model.   

 

For the 5DOF system, two types of screening (General Sensitivity Analysis and Significant 

Effects Screening) were conducted and corroboration between the two methods sought.  Both 

methods screened for only linear input parameter effects (also referred to as main effects).  No 

higher order effects were considered.  The input parameters of interest were mass, stiffness, 

impulse magnitude and impulse location.  The sensitivity of the two output features, E (first 

moment) and LD (the empirical “log-dec” feature) to those input parameters was sought.  If the 

output features were found to be insensitive to any of the parameters, those parameters were 

considered for removal from the response surface design.   

 

3.3.1.1  GENERAL SENSITIVITY ANALYSIS 

General Sensitivity Analysis (GSA) is typically conducted by analysts as a fast way to tell which 

input parameters are important to a particular output feature.  A first order derivative of the 

output feature of interest with respect to each input parameter is computed using finite 

differencing.  The value of this derivative is computed with the level of the input parameter 

under consideration set at its extreme values, while the values of the remaining input parameters 

are held at their nominal values.   

 

 

Table 3.2  GSA input parameter values and corresponding output feature values. 

 Input Parameters (specified) 
Output Features 
(calculated in Matlab) 

 Imp (N) Stiff (N/m) Mass (kg) Loc LD (m*s) E (m2*s) 
I hi 5 6000 6 3 2.4509 0.0138 
I lo 1 6000 6 3 0.4902 0.0006 
S hi 3 10000 6 3 1.0112 0.0030 
S lo 3 2000 6 3 2.8194 0.0149 
M hi 3 6000 10 3 1.9916 0.0050 
M lo 3 6000 2 3 0.5093 0.0048 
L hi 3 6000 6 5 1.9232 0.0085 
L lo 3 6000 6 1 1.0505 0.0026 
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For the 5DOF system, mass, stiffness, impulse magnitude and impulse location were considered 

input parameters.  The set of simulations run are shown in Table 3.2.  For brevity, input 

parameters have been abbreviated in tables and figures as Impulse Magnitude (I), Stiffness (S), 

Mass (M), and Impulse Location (L).  Each input parameter is set at its low range value and then 

its high range value while the others are held at their middle, or nominal value.  Output feature 

values were calculated using the 5DOF Matlab™ simulation.  Estimates of the derivatives were 

then calculated using these input-output pairs according to the simple finite differencing formula 
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where Out and In refer to output features and input parameters (all normalized before the 

calculation to eliminate scaling issues), respectively, and Hi and Low refer to the level at which 

the input parameter of interest is set.  Results of these finite difference calculations are shown 

below in Figure 3.4.   
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Figure 3.4  Results of general sensitivity analysis. 

 

As can be seen in Figure 3.4, all input parameters were “important” to the LD feature, meaning 

that changing any of the input parameters while the others were held at their nominal values 
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resulted in a significant change in the value of the LD feature.  It can also be seen that mass has 

very little effect on the E output feature.  Hence the method has “screened out” the mass 

parameter, meaning that a future metamodel design relating the input parameters and the E 

feature could be based on only the three inputs significantly influence E.  The fourth parameter, 

mass, found to not influence the E feature, could be kept constant and equal to its nominal value, 

or Mass=6 kg. 

 

3.3.1.2  SIGNIFICANT EFFECTS VARIABLE SCREENING 

Another method of variable screening implemented was significant effects variable screening or 

linear variable screening.  A particular input parameter’s contribution (linear effects only) to the 

total model variance was analyzed.  The method of significant effects is an analysis of variance 

method and is expressed as follows 
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  (3.6) 

 

where SSi is the sum of squares for a particular input parameter, n is the number of terms in the 

designed experiment used (in this case, 12, because a Plackett Burman Design was used, see 

Chapter 1 for more details on this two level design), Out is the output feature of interest, and Low 

and Hi are the input variable levels.  PC is the percent contribution of a particular variable.  

Significant effects method provides an advantage over GSA because it is a probabilistic 

assessment of variable importance which is obtained through the analysis of variance (ANOVA).   

 

In order to obtain the percent contribution, a two level factorial design must be used.  As 

mentioned above, a Plackett Burman design was chosen because it is typically used for screening 

purposes.  The choice of design dictates at what levels the input parameters are set; in this case 

various combinations of their high and low values for a total of twelve design points.  To ensure 

that false positives were not obtained two “dummy” input parameters (or “dummy variables”) 

were introduced, to ensure that they were determined to bet as unimportant.  Output features 
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corresponding to the designed input parameters are then calculated using the Matlab™ 5DOF 

simulation.   The percent contribution may be calculated using the Design Expert™ software.  

The results are shown in Figure 3.5 below.    
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Figure 3.5  Significant effects screening results.  “+dv” indicates the addition of 
dummy variables to the screening model. 
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Resulting percent contributions for screening with and without the dummy variables were very 

close and in some cases identical for input parameters of interest.  In both the case of the LD 

feature and the E feature, the dummy variables were screened out (note that dummy input 

parameters were screened out with near zero percent contribution, which is why they are not 

shown explicitly on the plots).  Again it was noted that all input parameters were important to the 

LD feature and mass was screened out of designs with E-time as the output feature.   

 

3.3.1.3  VARIABLE SCREENING CONCLUSIONS 

Results from variable screening suggest the following set-ups for higher order designs:  For E 

models, the three input parameters, stiffness, impulse magnitude, and impulse location may be 

used.  Mass screened out as un-important to the E feature with both of the screening methods 

tried.  For models of the LD feature, all four input parameters could be used, as all of them were 

found to be important.   

 

3.4  Step 3:  Construction of Response Surfaces and Error Characterization 
Several different response surface metamodels of the 5DOF system were designed using the 

results from the above variable screening process and the output features chosen.  Types of 

models and output features used were varied.  Table 3.3 shows the models designed.  The first 

column designates which of the input parameters were chosen for the design and how many 

levels were considered.  The number of full factorial runs was calculated as (Number of Input 

Parameter Levels)Number of Input Parameters for comparison purposes.  A design with two input 

parameters at five levels each would have 25 simulations in the full factorial set.  The number of 

input parameter levels and which points are chosen differentiate one response surface model 

from another (some of those listed under “model type” are discussed in Chapter 2, for details on 

all of those listed see Meyers and Montgomery [3]).  Again, recall that the advantage of using 

response surface analysis is the ability to intelligently choose only a few of the full factorial set 

to construct an input-output relationship.  All models were constructed with the aid of Stat Ease 

Design Expert™ software [13]. 

 

Points used in designed experiments are chosen to maximize information over a minimum 

number of design points.  A typical designed experiment is shown below.  Input parameter levels 
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are dictated by the type of design chosen, in this case a central composite design.  The 5DOF 

Matlab™ simulation is then run to generate the output features, in this case, the first moment or 

E feature.  Mass and impulse location were kept constant with values of 7 kg and 3, respectively. 

 

Table 3.3:  Models of the 5 DOF simulated system. 

Input Parameters 
(number of levels 
considered) 

Number of 
Design Points 

Full 
Factorial  

Model Type Output 
Feature 
Modeled 

Stiffness (5), 
Impulse Magnitude 
(5) 

9 52=25 Central 
Composite 
Design 

E-Time 

Stiffness (5), 
Impulse Magnitude 
(5) 

9 52=25 Central 
Composite 
Design 

Log Dec  

Stiffness (5), 
Impulse Magnitude 
(5) 

9 52=25 Taguchi E-Time 

Stiffness (5), 
Impulse Magnitude 
(5) 

9 52=25 D-Optimal E-Time 

Stiffness (3), 
Impulse Magnitude 
(3) 

9 32=9 3 Level 
Factorial 

E-Time 

 

Table 3.4  CCD design points for simulation of the E feature. 
The design has two input parameters, each with five levels. 

 Input Parameters Output Feature 
Design 
Point 

Number 

Stiffness 
(N/m) 

Impulse 
Magnitude

(N) 

E 
(m2*sec) 

1 3000.00 1.00 0.00110583 
2 5000.00 1.00 0.00066356 
3 3000.00 5.00 0.0276458 
4 5000.00 5.00 0.016589 
5 2585.79 3.00 0.0123797 
6 5414.21 3.00 0.00550603 
7 4000.00 0.17 2.39096E-005 
8 4000.00 5.83 0.0281197 
9 4000.00 3.00 0.00744588 
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The Design Expert software is then used to conduct multiple regression on the set of input-output 

pairs given above.  The output feature may be subject to a power transformation (e.g. square 

root, log, ln, etc) in order to improve goodness of fit.  For the above CCD, the resulting model 

had the polynomial form shown in tabular form for convenience.  In this equation, the input 

parameters stiffness and impulse magnitude are normalized between the values –1 and +1, hence 

the coefficients in the model give an idea of the relative importance of each of the terms.  This 

polynomial may be plotted (in actual units) as the response surface shown in Figure 3.6. 

 

  E-Time= 

+7.446E-003  
-2.652E-003 *Stiffness 
+0.010 *ImpulseMag 
+7.469E-004 *Stiffness2 
+3.311E-003 *ImpulseMag2 
-2.654E-003 *Stiffness * ImpulseMag 

 

 

E feature, 
m2*sec 

Stiffness, 
N/m 

Impulse 
Magnitude, N 

Figure 3.6  Response surface fit to CCD design points.  X’s denote the points designated as the 

“full factorial set.” 

 

Because the surface is an empirical relationship between inputs and outputs, it does not perfectly 

fit the design points.  Appendix A discusses different types of error metrics that may be used to 

aid in deciding which design to choose and shows the results of calculating these metrics for the 
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designs in Table A1.  In the case of the 5DOF system, it turned out that all response surface 

models generated were comparable, with very good error statistics.  A central composite design 

was chosen because these are perhaps the most commonly used response surface models[3]. 

 

3.5  Step 4:  Damage Identification 
Before trying the damage identification problem, identification of system parameters with no 

damage was first attempted.  This was done so that the mechanics of solving the inverse problem 

could be studied before attempting the damage identification problem.  

 
As stated before, the primary purpose of the models generated in Steps 1 through 3 was to 

explore the different properties of response surface models.  Following is a description of how 

the damage identification problem, or the inverse problem, may be solved.  It was discovered 

that time series features originally chosen were inappropriate for doing damage identification and 

the problem had to be reformulated with frequency domain features.  Both models will be 

discussed, and reasons for success of the second model explained.  Reformulation of models is 

often necessary, because the ability to solve the inverse problem is highly dependent on output 

features chosen.  Hence, building models and trying the inverse, or damage identification, 

problem may be an iterative process, ending when the inverse problem is successfully solved.    

 

3.5.1  Step 4a:  Attempts to Solve the Inverse Problem Using Time Series Features 

In order to investigate the mechanics of the inverse problem, central composite designs with four 

input parameters, mass, stiffness, impulse magnitude and impulse location, were constructed.  

Reviewing the previous steps, Design Expert™ was used to choose the design points, the 

Matlab™ simulation was then run with the input parameters at the chosen levels and 

corresponding output features derived.  Finally Design Expert™ was used to generate the 

response surface that relates input parameters to output features.   Now the answer to the 

following question was sought “Can input parameter values (damaged or undamaged) be inferred 

from measured output features?”  In Step 4a, this problem was first attempted using time series 

features, which resulted in an ill-conditioned inverse problem, that is, one without unique 

solutions.  The following paragraphs are a brief summary of these results, for more detail please 

refer to Appendix B.   

 31



 

At first, no “damage” was introduced; the inverse problem was solved to see if input variables 

that caused a particular output feature could be found and the actual mechanics of the inverse 

problem understood.   Recall, that the output features initially chosen for these models were the 

time series features, E and LD at Location 3.  Because solving the problem did not initially work 

using just Location 3, E and LD were chosen from Location 5 as well.  Additionally, it was 

assumed that three of the inputs were known, and the fourth (stiffness) was solved for.  A simple 

error minimization scheme was implemented using MatLab™’s fminsearch routine.  The 

objective function was an error minimization between actual and predicted feature values.  A 

random start point was used for each optimization, and optimizations stopped once a minimum 

was achieved.  However, these minima proved to be non-unique, with many equally valid 

solutions, which should not be a surprise, because solutions to inverse problems are often non-

unique due to their non-functional form. 

 

For this reason, correlation between output features was examined.  The more uncorrelated 

output features are, the more linearly independent information they provide about the system.  It 

was discovered that E and LD features at all sensors were highly correlated (correlation 

coefficients near 1), 

 



















=ρ

00.191.000.191.0
91.000.191.000.1
00.191.000.191.0
91.000.191.000.1

xy   (3.7) 

 

where ρxy is the matrix of correlation coefficients, and the order across and down is E3, LD3, E5, 

LD5.  Highly correlated features mean that no new information is gained by using more than one 

of them.  New, uncorrelated output features were sought.  The next logical ones to try were the 

natural frequencies of the system.  As shown in the next section, they are not highly correlated.  

For this reason, the problem was reformulated and solved using natural frequencies as output 

features.   
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3.5.2  Step 4b:  Damage Identification of the 5DOF System with a Reformulated 

Metamodel  

Again, iteration through the previous three steps is necessary.  Specific details will be neglected.  

Step 1 is to identify the system (again the 5DOF system).  Step 2 is to choose model inputs and 

outputs, detailed in the paragraph below.  Step 3 is to design and run the necessary experiments 

to generate the relationship between the input parameters of interest, in this case stiffness and 

location, and measureable output features (natural frequencies).   

 

In addition to changing the output features, the response surface model inputs were changed to 

better reflect the purpose of the damage identification problem, identification of damage 

magnitude and location.  Input parameters were stiffness (varied from 2000 to 6000 N/m) and 

location of damaged spring (1 to 5).  A stiffness of 6000 N/m was designated “healthy” and was 

included in the model so that the “healthy” system might also be identified.  Mass and damping 

were held constant at 7 kg and 1kg/s, respectively.  All five stiffnesses were set to a nominal, or 

“healthy” value of 6000 N/m and then damage could be introduced by changing a stiffness at one 

of the five locations to a lower value (2000, 3000, 4000, or 5000 N/m).  With two input 

parameters each with five possible levels, the full factorial case would be 25 simulations.  

Impulse magnitude was 5 N at Location 3.   

 

As stated previously, the response features were the values of the five natural frequencies, with 

Location 3 as the input measurement location and Location 5 as the output measurement 

location.  Frequency domain features may be easily used in this simple linear simulation, but 

may not be so easily used in the presence of nonlinearities.  This issue will be addressed in the 

Chapter 4. 

 

A model was built using a face centered cubic (FCC) design, requiring nine Matlab™ 

simulations to determine what the natural frequency values, ωn, were corresponding to the design 

points.  An FCC design is simply a central composite design with its axial points set at +/-1 

(coded value) away from the center point (see Chapter 1 describing different types of designs).  

The face centered cubic design used is shown below in Table 3.5, and the polynomials generated 

for each frequency are shown in Table 3.6.  Below, in Figure 3.7, is an example of one of the 
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response surfaces generated, shown as a contour plot (taken from Design Expert™ software [13] 

used to generate the models).  The dots are the model design points shown in Table 3.5. 

 

 

Table 3.5  FCC design used for damage identification of the 5DOF system. 
 Input Parameters Output Features 
Design 
Point 

Stiffness 
(N/m) 

Location  ω1 
(Hz) 

ω2 
(Hz) 

ω3 
(Hz) 

ω4 
(Hz) 

ω5 
(Hz) 

1 2000 1 6.25 20.75 35.50 47.75 55.75 
2 6000 1 8.25 24.25 38.25 49.75 56.25 
3 2000 5 8.00 19.25 31.75 45.75 55.25 
4 6000 5 8.25 24.25 38.25 49.25 56.25 
5 2000 3 7.00 22.5 32.5 48.25 51.50 
6 6000 3 8.25 24.25 38.25 49.25 56.25 
7 4000 1 7.75 22.75 37.00 48.50 56.00 
8 4000 5 8.25 23.00 35.25 47.00 55.50 
9 4000 3 8.00 23.75 36.00 49.00 53.25 
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Figure 3.7  One of the five response surfaces generated for the damage identification problem.  
Model input parameters are stiffness and location, output in this plot is the second natural 
frequency. 
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Table 3.6  Summary of polynomials generated; units of stiffness and location are scaled between 
–1 and +1. 
Frequency Equation (S=Stiffness, L=Location) 

(ω1)-1.6 =  0.036 - 5.137E-003*S  -  1.798E-003  * L  +  3.412E-003 *S2  +  7.229E-005*L2 
+  4.347E-003*S*L  -2.549E-003*S2* L  -  7.152E-005*S*L2 

ω2 = 23.80  +  0.87*S  -  0.56*S2  -  1.06*L2  +  0.38*S*L  -  0.38*S2*L  +  1.25*S*L2 

ω3 =  35.94  +  2.87*S  -  0.92*L  -  0.41*S2  +  0.34*L2  +  0.94*S*L  -  0.56*S*L2 

ω4 =  48.93  +  0.50*S  -  0.58*L  -  1.01*L2  +  0.50*S*L  +  0.75*S*L2 

ω5 =  53.32  +  2.37*S  -  0.17*L  +  0.38*S2  +  2.26*L2  -  2.00*S*L2 

 

Once the relationship between the input parameters and each of the five output features have 

been established, Step 4 is completed by optimization using the resulting response surfaces in 

order to do damage identification.  That is, knowing the natural frequency values, can the 

magnitude and location of the reduced stiffness be found?  Because natural frequencies were 

used and they are not highly correlated, optimization works better than with the time series 

features used in the previous section.  The matrix of correlation coefficients (ρxy) of the five 

natural frequencies is, where the order across and down is ω1, ω2, ω3, ω4, and ω5.   

 























=ρ

00.134.044.032.034.0
34.000.134.046.043.0
44.034.000.147.044.0
32.046.047.000.132.0
34.043.044.032.000.1

xy   (3.8) 

 

 The optimization procedure used for this set of models was a Nelder-Meade simplex routine 

embedded in the Stat Ease Design Expert™ software [13].  It also incorporates the desirability 

function of Myers and Montgomery [3] which is as follows 
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The powers s and t weight how quickly the function travels to a maximum desirability of 1 at 

target value B, from the range endpoints of either A or C.  Desirability is a criterion placed on the 

measured output values provided.  The optimizer then changes the value of the input parameters 

sought until maximum desirability is achieved near the target output feature values provided.  

Results are then ranked in order of decreasing desirability.  In all cases, the standard followed 

was to choose the set of input parameters that resulted in the highest desirability rating on the 

output features.   

 

To test how well the optimization procedure worked, the full factorial set of experiments was 

optimized (this includes the 9 design points plus 16 points not included in the design, for a total 

of 25 points).  That is, knowing the five natural frequency values, could the change in stiffness 

(if any) and the location of the change be identified?  The damage identification matrix is shown 

in Table 3.7 below, with stiffness and location to be determined by the optimization routine 

(actual values of stiffness and location are given in Table 3.7).  Frequency values were derived 

from the MatLab™ simulation. 

 
 
Table 3.7  Full factorial set of damage identification runs.  Design points are shown in bold. 
 Input Parameters 

(To be determined) 
Output Features 
(Known, simulated or measured) 

Factorial 
Point 

Stiffness 
(N/m) 

Location ω1 
(Hz) 

ω2 
(Hz) 

ω3 
(Hz) 

ω4 
(Hz) 

ω5 
(Hz) 

1 2000 1 6.25 20.75 35.50 47.75 55.75 
2 3000 1 7.00 22.00 36.25 48.25 55.75 
3 4000 1 7.75 22.75 37.00 48.50 56.00 
4 5000 1 8.00 23.75 37.75 48.75 56.00 
5 6000 1 8.25 24.25 38.25 49.25 56.25 
6 2000 2 6.50 23.75 34.25 42.75 54.25 
7 3000 2 7.25 24.00 36.00 44.25 54.50 
8 4000 2 7.75 24.25 37.25 45.75 55.00 
9 5000 2 8.00 24.25 38.00 47.75 55.50 
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10 6000 2 8.25 24.25 38.25 49.25 56.25 
11 2000 3 7.00 22.25 32.50 48.25 51.50 
12 3000 3 7.50 23.00 34.25 48.50 52.25 
13 4000 3 8.00 23.75 36.00 49.00 53.25 
14 5000 3 8.25 24.00 37.25 49.00 54.50 
15 6000 3 8.25 24.25 38.25 49.25 56.25 
16 2000 4 7.50 19.00 37.50 43.75 53.25 
17 3000 4 8.00 21.00 38.00 45.25 53.50 
18 4000 4 8.00 22.50 38.00 47.00 54.00 
19 5000 4 8.25 23.50 38.25 48.25 55.00 
20 6000 4 8.25 24.25 38.25 49.25 56.25 
21 2000 5 8.00 19.25 31.75 45.75 55.25 
22 3000 5 8.25 21.50 33.50 46.25 55.25 
23 4000 5 8.25 23.00 35.25 47.00 55.50 
24 5000 5 8.25 23.75 37.00 48.00 55.75 
25 6000 5 8.25 24.25 38.25 49.25 56.25 
 
Results are shown below in Figure 3.8 in the form of two plots of actual stiffness or location 

versus predicted stiffness or location.  Ideally these results would plot on a line at 45˚ on the plot.   
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Figure 3.8 Location results of solving the damage identification problem using optimization. 
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Figure 3.9 Stiffness results of solving the damage identification problem using optimization. 

 

Note that all of the mis-identified “Location 1” values corresponded to the “healthy system”  (all 

stiffnesses at 6000 N/m; these runs were included to see if the healthy system could be 

identified).  It can be observed from Figure 3.8 that stiffness predictions drift below the ideal line 

as the stiffness increases.  In fact all healthy stiffnesses came back with a value of 5206, 

Location 1.  If the analyst can be expected to recognize a stiffness prediction of 5206 N/m at 

Location 1 as a “healthy” system, then the damage identification of this system is successful. 

 

If the healthy system is not considered, due to its high location error, most of the errors on 

stiffness prediction are under 20% as can be seen in Figure 3.9.  Higher error was expected at the 

stiffnesses (3000, 5000) and locations (2, 4) that were not included in the training data set and 

this was observed.   
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Figure 3.10  Relative errors of predictions for stiffness (increasing for each location) and 

location. 
 

3.6 Conclusions 

A response surface model was constructed of a 5DOF system, using data taken at only two of the 

five possible locations.  The importance of choice of output features to the solution of the 

damage identification problem was demonstrated and it was shown that the more uncorrelated 

the output features are, the more linearly independent information they provide about a system.  

Natural frequencies were found to be acceptable output features to use (because they were 

uncorrelated).  Using these features the magnitude of the damage (altered stiffness) was correctly 

identified for nearly 80% of the simulations tested.  Stiffness reduction identification was 

accomplished by solving the inverse problem using a set of five polynomials, which were trained 

on nine of 25 possible data sets.  Identification of the location of the damaged stiffness was 

somewhat less successful.  One possible reason for higher location error might be because 

continuous input variables were used to represent discrete locations.  The results of the linear 

5DOF damage identification problem clearly demonstrate the potential of using response surface 

metamodels in their inverse formulation for damage identification.  
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Chapter 4   

 

 

ROBUSTNESS OF THE FIVE DEGREE OF FREEDOM SYSTEM  

SUBJECT TO NOISE AND NONLINEARITY 

 

 

4.1  Introduction 
In order to determine how robust the response surface models and damage identification method 

of the previous chapter were, simulated “noise” was introduced into the natural frequencies in an 

attempt to mimic experimental variability.  The response surface models trained on the 

deterministic, or “no noise” simulation were then used for identification of damaged springs.  

The response surface model proved to be robust to 3% noise introduced on the natural 

frequencies with some limitations. 

 

The ability of response surface models to handle nonlinearities was tested with the introduction 

of a nonlinear spring (with no noise).  A new response surface model was developed that could 

distinguish between a linear and a nonlinear system.  In this setup, a damaged nonlinear spring 

was differentiated from a damaged linear spring.  A testing protocol that shows potential for 

determining linearity and then conducting damage identification is presented.  After this initial 

assessment is made, the analyst may choose whether to use the linear model of Chapter 3 to 

perform damage identification or to use a response surface model of the nonlinear system.  It is 

shown that damaged nonlinear springs may be located with satisfactory accuracy, but the value 

of the stiffness coefficient cannot be estimated as accurately. 
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4.2  5DOF System With Noise 
In order to see how the damage identification procedure defined in the previous chapter might 

work in an experimental environment, where variability is inevitable, noise was introduced in the 

natural frequencies.  Three percent normally distributed noise was added to each of the 

simulated, deterministic frequencies, ωnominal.  This was calculated as 

 

ω noisy = ωnominal*(1+.03*randn)   (4.1) 

 

where randn is the Matlab™ [20] function that generates random numbers drawn from a normal 

distribution with mean of zero and standard deviation of one.  Five realizations of the full 

factorial set of 25 natural frequencies were used with the damage identification optimization 

algorithm, using the response surface model trained on the deterministic simulation (see Chapter 

3).   

 

Shown in Figure 4.1 are plots of the mean predicted values versus actual values for both stiffness 

coefficient and location.  Normal confidence intervals (95%) were estimated on these means.  In 

order to estimate the confidence intervals for a distribution of points, the following equations 

must be first solved for d, the standard normal value corresponding to 95% confidence, and then 

for a, the observation that is a part of distribution of interest and corresponds to the 95% 

confidence interval  

 

dad

950dd

<
σ
µ−

<−

=−Φ−Φ .)()(
   (4.2) 

 

where Φ is the normal probability operator, and µ, the mean, and σ, the standard deviation, are 

both known.  The value d may be obtained by using standard normal tables to do an inverse table 

lookup.  The value a may then be found by solving the inequality. The same principle may be 

applied to finding confidence intervals on the mean, where instead of having an observation, a, 

an observation of the mean is used µa, and the variance is equal to n/σ  where σ is the standard 

deviation of the distribution and n is the number of observations [24].   
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Stiffness (N/m), 95% mean CI 

Figure 4.1  Upper and lower 95% confidence intervals on mean of 3% noise realizations. 
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Figure 4.1 demonstrates that the response surface model developed in Chapter 3 can positively 

identify changes in stiffness and some damage locations in the presence of simulated noise.  The 

stiffness trend again errs conservatively below the actual values (shown as a straight line) at the 

higher levels.  Because the confidence intervals overlap for Locations 2, 3, and 4, they are 

impossible to distinguish from each other, though they may be distinguished from Locations 1 

and 5.  This much is achieved by building a model based on 36% of the full factorial set of data, 

9 of the 25 possible (more if continuous values of stiffness are used instead of five discrete 

values).  Also recall that natural frequencies are derived using only data from Locations 3 and 5.  

From an efficiency standpoint, the method of damage identification using response surface 

metamodels yields a great deal of information even in the presence of simulated noise on the 

output features. 

 

4.3  5DOF System with Nonlinearity 
In reality, most structures exhibit nonlinearities, whether they are generated from Coulomb 

friction, material nonlinearities, excitation nonlinearities (such as a transient dynamics problem), 

etc.  In order to demonstrate that response surface metamodels can be useful in identifying 

system nonlinearities, two models of a 5DOF system with a nonlinear spring were developed.  In 

the first formulation, a discriminating parameter was incorporated so that a linear system could 

be differentiated from a nonlinear system.  Damage was defined as either a linear reduced 

stiffness (less severe) or nonlinear spring replacing the linear spring (cubic nonlinear spring, 

severe damage) at a certain location.  The second damage formulation involved defining damage 

as a nonlinear spring replacing a linear spring at a particular location (i.e., damage is known to be 

nonlinear a priori). In this case, the damage was “less severe” because nonlinear spring constants 

were chosen so that displacements and forces were roughly in the same regime as linear.   

 

For the screening model, the 5DOF system was identical to the linear 5DOF system of Chapter 3, 

with the exception of the linear stiffness term.  In half of the cases a linear spring term was 

replaced by a nonlinear Kx3 term (equivalent to a material hardening) for a variable location (1 

through 5).  The spring coefficient K (2000-6000 N/m or N/m3) and location were the input 

parameters that were varied.  Note that spring coefficients were numerically the same for both 
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the linear and nonlinear spring coefficients.  This resulted in linear spring coefficients that were 

stiffer than the nonlinear cases.   

 

Choice of output features was critical.  Three features were chosen.  They were maximum 

displacement (MD), spectral centroid (ST) and temporal centroid (TT).  Recall that the temporal 

centroid, or normalized second moment of the displacement time history, is the time at which 

half of the energy has arrived and half is yet to come.  The spectral moments (SM1, SM2, SM3) 

are calculated in much the same way as temporal moments,  

 

∫
∞

∞−

ωωω= dfSM 2i
i )(

   (4.3) 

 

where SMi is the spectral moment of interest, ω are the frequencies, i is the moment of interest 

(0, 1, 2, …) and f(ω) in this case is the magnitude of the transfer function [21].   The normalized 

second moment is the spectral centroid and a measure of which frequency bands possess the 

most energy.  Because natural frequencies are often hard to discern when nonlinearities are 

introduced, the spectral centroid can be a good indicator of which frequency bands have the most 

power.   A trade off must be accepted; in order to model nonlinear damage and discriminate 

between a linear and nonlinear system the features above were chosen instead of natural 

frequencies.  Because natural frequencies are not the features of choice, the model’s ability to 

capture linear damage may not be as good as that demonstrated in the previous chapter.  

However, it will be shown that if linear and nonlinear cases can be screened with high accuracy, 

then the analyst may revert to the model developed in Chapter 3 for the linear cases if necessary.   

 

Next the design points had to be picked, by choosing a response surface design.  The same face 

centered cubic design was chosen as that of Chapter 3.  For this design, the mass was held 

constant at 7 kg, damping also was constant at 1 kg/s.  The input parameters of stiffness 

coefficients (2000, 3000, 4000, 5000, 6000 N/m1/3 or N/m) and locations (1-5) were used and a 

third parameter, “Linearity,” was added.  It was a categorical, or discrete parameter, meaning it 

could only be one of two values (as opposed to a continuum of values between a range).  A value 

of 1 meant that the system was linear, implying that the stiffness coefficient was a linear spring 
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coefficient.  A value of 2 meant that the system was nonlinear and the spring coefficient was 

nonlinear.  Impulse magnitude was 5 N at Location 3 and response observations were made at 

Location 5.   

 

An FCC design was again chosen, but this time it had 18 design points (the full factorial design 

was twice the size of the full factorial design in Chapter 3 because all points could be run at the 

linear and nonlinear settings, hence 2*52=50 points).  Nine runs were conducted for the linear 

system setup and the same nine runs were conducted for the nonlinear system setup.  These 

points are shown in Table 4.1. 

 

Table 4.1  FCC design used for damage identification of the nonlinear 5DOF system. 
 Input Parameters Output Features 
Design 
Point 

Linearity 
(L or 
NL) 

Stiffness 
(N/m or 
N/m1/3) 

Location Maximum 
Displacement 
(m) 

Temporal 
Centroid 
(TT, s) 

Spectral 
Centroid 
(ST, Hz) 

1 L 2000 1 0.03170 64.7387 6.3949 
2 L 2000 5 0.03460 75.1915 8.2748 
3 L 6000 1 0.03200 85.1324 8.4862 
4 L 6000 5 0.03200 85.1324 8.4862 
5 L 4000 1 0.03260 81.5699 7.7873 
6 L 4000 5 0.03010 84.2039 8.4478 
7 L 2000 3 0.04070 63.6015 7.1038 
8 L 6000 3 0.03200 85.1324 8.4862 
9 L 4000 3 0.03440 82.5572 8.0576 
10 NL 2000 1 0.16830 52.6036 0.6983 
11 NL 2000 5 0.00250 150.031 0.0101 
12 NL 6000 1 0.13000 52.5364 0.9235 
13 NL 6000 5 0.00520 51.4035 0.0606 
14 NL 4000 1 0.14290 52.4482 0.8334 
15 NL 4000 5 0.00410 94.9518 0.0228 
16 NL 2000 3 0.19650 31.8629 1.0394 
17 NL 6000 3 0.15260 31.8496 1.3799 
18 NL 4000 3 0.16560 31.8484 1.2431 
 

When the damage identification problem was solved for the full factorial set of points, the 

linearity parameter was identified with 100% accuracy.  This screening result should not come as 

a surprise due to the fact that nonlinear damaged springs were “much softer” than the linear 

springs for the values of knl used, resulting in output features that were “very different” from the 
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corresponding output features of the linear cases.  The results for stiffness and location 

predictions are shown below in Figures 4.2 and 4.3, and are sorted with respect to whether the 

predictions were for the linear case or the nonlinear case.    

 

While the trend for both the linear and nonlinear stiffness coefficients is correct, both of their 

predicted distributions are very dispersed.  For the linear case, the ranges for each value are 

wider then those predicted with the linear 5DOF model of Chapter 3, because the frequency 

features used in Chapter 3 are better suited to the linear system than the time series features of 

this study.  The nonlinear ranges are also spread widely around the ideal line, although the trend 

is captured correctly (a good result considering the magnitude of damage imparted in the 

nonlinear cases).  In both the linear and nonlinear springs, it would be difficult to distinguish 

what actual value an individual stiffness prediction might correspond to because of the way that 

the ranges of the predictions overlap.   
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Figure 4.2  Stiffness predicted vs. actual. 

 

Because the model is able to screen for linearity with 100% accuracy, an appropriate metamodel 

might be chosen on this basis.  For example, if the identification predicts that the system is 

linear, then employment of the response surface model developed in Chapter 3 is suggested, 
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because it provided more accurate predictions of linear stiffness coefficients (because the output 

features of natural frequency were better suited to a linear system).  If the model predicts that the 

system is nonlinear, inaccuracies in stiffness predictions of the current model are unavoidable at 

this stage. 

 

In contrast to the poor stiffness predictions of the nonlinear system, in Figure 4.3, it can be seen 

that locations for the nonlinear model are predicted very well.  Predictions lay in tight clusters 

near the 45° line that indicates what “ideal” predictions should be.  It should be noted that 

Locations 4 and 5 could be indistinguishable because of the overlap in the range of their 

predicted values.  It can also be seen in Figure 4.3 that linear location predictions are not good.  

However, the screening procedure suggested above should be applied for prediction of location 

as well.  If the system is shown to be linear, use of the response surface model of Chapter 3 is 

suggested for greater accuracy.   
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Figure 4.3  Location predicted vs. actual. 

 

In the second kind of damage configuration, it is assumed that damage is known to be nonlinear.  

A nonlinear spring (in the form of a kx3 term replacing the linear spring) was introduced as 
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“damage” at one of the 5 locations.  The nonlinear spring with varying stiffness coefficient was 

chosen such that it resulted in static displacements that were in the same regime as the linear 

case.  “Healthy” was again defined as all linear springs with stiffness coefficient set at 6000 N/m.  

Damage was defined as a nonlinear spring replacing a linear spring at any of the five locations.  

Degree of damage was defined as the value of the nonlinear spring coefficient:  6e6, 7e6, 8e6, 

9e6, 1e7 N/m1/3.   

 

Again, a 9 run fraction of the full factorial design space (25 runs) was used to formulate 

relationships between controllable inputs and measurable outputs.  Because of the presence of 

nonlinearities in the system, natural frequencies were not chosen as output features because they 

were more difficult to identify.  Instead maximum displacement and spectral and temporal 

moments were chosen.  

 

Results from the damage identification procedure are shown in Figure 4.4.   Optimizations for 

the design set and the full factorial set have been plotted separately for both location and 

nonlinear stiffness coefficient (knl).  Location is predicted well (with one exception) for both the 

design set and the additional points of the full factorial set.  Nonlinear stiffness is predicted 

reasonably well for the design set (errors of less than 15%).  However stiffness predictions for 

those points outside of the training set are significantly worse (errors over 20% in a few cases).   

 

For the case of the nonlinear 5DOF system, in which damage is a nonlinear spring with varying 

stiffness coefficient inserted at one of the five possible locations, response surface metamodels 

again show promise in their ability to predict degree and location of damage in this simple, 

simulated system.  In this example, location was predicted satisfactorily for all 25 simulated sets 

(with one outlier) and the stiffness coefficient was predicted well for the design set.  Again, this 

much was accomplished with training on only nine of the 25 possible sets.  The use of 

displacement, temporal and spectral moments as output features was explored and warrants 

further investigation for use in nonlinear damage identification problems.  Use of additional 

training sets and/or features may be necessary to improve the stiffness predictions.   
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Figure 4.4  Results from damage identification using response surface metamodels developed for 
a nonlinear system (Blue Diamonds are points belonging to the design set, yellow triangles are 
points outside of the design set, the line is where the values should ideally plot). 
 

4.4 Conclusions 
Response surface metamodels show potential to be robust to noise and nonlinearities with some 

limitations.  With 3% noise introduced on the natural frequency features of the linear 5DOF 

model, predictions of the changed stiffness and its location were still satisfactory given the 

limited amount of data used for generation of the response surface metamodels.  For the case of a 

severely damaged nonlinear spring, the response surface metamodels were able to successfully 

locate a the damage, but were not able to quantify the stiffness coefficient of that spring using the 

features chosen.  RSMs were also used to differentiate between a linear and nonlinear data set for 

given impulse magnitude and location, and response observation location, with 100% accuracy 
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in these predictions.  When simulating lower levels of damage with the nonlinear springs, it was 

shown that response surface metamodels could predict damage location well for all points tested 

and could predict stiffness well for the design set.  A protocol for screening and then choosing an 

appropriate RSM for damage identification was demonstrated for the system studied and shows 

potential for use in other systems.   
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status unknown 
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to determine linearity of 
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If linear, switch to 
RSM from Section 
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system damage and 
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If nonlinear can use 
model developed in  
this chapter to 
determine system 
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Figure 4.5  Flowchart of protocol for use in choice of response surface models. 
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Chapter 5   

 

BEAM DAMAGE IDENTIFICATION PROBLEM 

 

 

5.1 Introduction 
This chapter will demonstrate how the methodologies of Chapters 3 and 4 may be applied to a 

more realistic problem.  In real applications it is anticipated that response surface metamodels 

will be used in the experiment-simulation environment.  For example, engineers may be 

interested in identification of damage on an in situ component, such as a bridge girder or an 

aircraft wing.  In this sort of situation, simulation must be used to train metamodels, because it 

would be impractical or even impossible to actually damage structures.  In the spirit of this sort 

of philosophy, a simple simulation and experiment were constructed, and response surface 

metamodels built to do damage identification.   The protocol suggested by the flowchart of 

Chapter 4, section 4.3 suggests initial determination of system linearity.  The system studied in 

this chapter is, by design, linear and hence the protocol further suggests applying the steps 

outlined in Chapter 3.  These are the steps presented in the following sections. 

  

5.2  Step1:  System Description 
The system is a beam with ten potential locations at which small masses may or may not be 

attached.  The beam is aluminum with a stiffness of E=70.3 GPa and density 27.5 kN/m3.  

Dimensions are as shown in Figure 5.1.  The masses are secured to both sides of the beam with 

wax at a particular location.  The mean of the masses is 1.34 g (they are nominally the same).   

 

Figure 5.2 is a photo of the experimental setup, showing masses in place.  The beam is excited 

using a piezo-ceramic patch (PZT) and sensing is also done using a PZT.  Both PZTs are located 
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near the fixed end of the beam.  The excitation signal was random with a 1 kHz bandwidth.  This 

allowed the first ten natural frequencies to be found.   

 

 

 
 
 
 
 
 
 
 

2.540 cm spacing between masses 

PZT on both sides
2.286 cm 

0.081 cm 

39.846 cm 

 
Figure 5.1  Beam dimensions and mass spacing.  Direction of vibration is out of the page. 
 

 
Figure 5.2  Photo of the experimental beam-mass setup. 

 
 
An Ansys™ model of this experiment was designed [25], shown in Figure 5.3.  The model used 

14 2D beam elements.  The masses were represented as point masses at the location of the center 

of the actual mass.  PZT mass and stiffness were neglected.  Boundary conditions imposed at the 

end of the beam were zero rotation and displacement.  Modal analysis was performed using a 

Lanczos solver.  In order to “validate” the finite element model, the first ten natural frequencies 

with all the masses on and the first ten natural frequencies with all the masses off were compared 

to the corresponding experimental results.  Only two setups were used for comparison, because 

to be true to the spirit in which metamodels will actually be used, it is assumed that experimental 
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budgets will be limited in real world situations.  Results of the test-analysis correlation are shown 

in Tables 5.1 and 5.2 (the Relative Error metric is further explained in Appendix A). 

 

 
Fig 5.3  Ansys™ 2D beam simulation with point masses. 

 

Table 5.1  Test-analysis correlation for experimental setup and finite element model:  all masses 
removed (Mode 10 not shown because frequency was higher than 1000 Hz). 

Mode number Experimental 
Frequency (Hz) 

Simulation 
Frequency (Hz) 

Relative Error (%) 

1 3.7500 3.9700 5.8 
2 24.070 24.870 3.4 
3 67.190 69.640 3.7 
4 130.31 136.47 4.7 
5 217.81 225.59 3.4 
6 325.94 336.99 3.4 
7 456.25 470.67 3.2 
8 607.19 626.62 3.2 
9 784.06 804.85 2.7 

 

Table 5.2  Test-analysis correlation for experimental setup  
and finite element model:  all masses present. 

Mode number Experimental 
Frequency (Hz) 

Simulation 
Frequency (Hz) 

Relative Error (%) 

1 3.7500 2.3300 37 
2 16.880 15.260 9.6 
3 46.560 47.080 1.1 
4 96.880 97.740 0.9 
5 156.56 159.03 1.6 
6 229.06 230.73 0.7 
7 331.56 328.45 0.9 
8 443.13 443.40 .06 
9 551.25 552.97 0.3 
10 696.56 679.97 2.3 
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For the most part, it can be seen that differences in the natural frequencies are less than 5%.  A 

few explanations are posed for the high error on Modes 1 and 2 with masses on the beam.  

Experimental values were derived using the highest resolution possible in a 1000 Hz window 

(separation of points is 0.313 Hz).  For low frequencies, this may not be enough resolution.  That 

is, an error of +/- 0.313 Hz out of 3 Hz is about 10% already.  In addition to the resolution 

problem, placement of masses is likely to affect the first two modes more than higher modes.  

Placement of masses was only as accurate as “by eye” can be.  Another possible source of this 

disagreement may be neglecting the PZT mass and stiffness in the simulation.  Despite these 

outliers, it was decided that the FEM was an adequate representation of the laboratory 

experiment based on the good agreement of the other modes. 

 

5.3 Step 2:  Definition of Input Parameters and Output Features 
Model input parameters were undamaged, “mass on” (1), or damaged, “mass off” (0), at each of 

the ten locations (L1-L10, where L1 is near the cantilevered end, and L10 near the fixed end).  

Input parameters were categorical, or discrete, meaning they could only have a value of 1 or 0.  

Because the beam was assumed to be linear, the first ten mode frequencies were chosen for 

output features.  Because of the fundamental physical relationship between mass and system 

frequency, variable screening was deemed unnecessary.   

 

5.4  Step 3:  Construction of Response Surface Model and Error 

Characterization 
The full factorial design for the beam-mass setup would consist of  (2 input parameters levels)(10 

input parameters) = 1024 simulation runs or experiments.  A 1/32 factorial design was chosen with 32 

design points.  In this case simulation runs were used to generate the output features 

corresponding to the input parameter setups.   The full set of design points is shown in Appendix 

C.  Recall that each output feature has its own model associated with it.  Adjusted R2 values (See 

Appendix A for calculation of this error metric) are given in Table 5.3 for each model.  It can be 

seen that all the Adjusted R2 values are very close to 1, indicating that the models are good fits to 

the 32 design points.  
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5.5 Step 4:  Damage Identification 
Once the response surface models were constructed, they were then used for damage 

identification.  In this case, damage is defined as “mass removed.”  To start with, the design 

points were run using the inverse problem formulation – that is, assuming the set of 32 design 

point frequencies has been simulated and are known, how many masses were present and at what 

locations were they on the beam?  In this first set of simulations we seek to characterize the error 

of the inverse problem formulation due to error between simulation and metamodel for the 32 

design points. 

 

 

Table 5.3  Adjusted R2 for each model generated using the set of 32 design points. 
Model of Output 
Feature  

Adjusted 
R2  

ω1 0.9801 
ω2 0.9481 
ω3 0.9294 
ω4 0.8851 
ω5 0.8918 
ω6 0.9216 
ω7 0.9809 
ω8 0.9536 
ω9 0.8130 
ω10 0.8993 

 

 

Because all factors were discrete, the optimizer used to work the inverse problem performs 

somewhat differently.  Instead of a Nelder-Meade simplex optimization routine that was 

implemented before, the optimizer embedded in the Design Expert software simply tries all 

possible combinations of points (in this case 1024 points) and ranks them using the desirability 

function described in Chapter 3, Section 3.5.2.  Computation of all 1024 points is not intensive, 

because only the metamodels are evaluated.  Again, desirability values close to one are best, 

indicating that the output features (mode frequencies) are very near the target values specified by 

the user.  The set of input parameters associated with the highest value of desirability was chosen 

as the predicted set of masses and locations associated with the specified frequencies. 
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The results of optimization on the 32 design points is shown below in Figure 5.4 and 5.5.  All ten 

frequency models were used.  First, just the number of masses predicted is examined in Figure 

5.4.  It can be seen in the figure that the predictions are most accurate when the actual number of 

masses is five or six, which makes sense because there were far more training points with five or 

six masses.  At extreme values, such as two masses on the beam or all ten masses on the beam, 

the models tend to over and under estimate, respectively.  However it is clear to see that the 

inverse formulation captures the main trend for the predicted number of masses on the beam 

which is expected, because the simulated design point frequencies were used.  
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Figure 5.4  Predicted and actual number of masses for the set of design points. 

 

Next we examine how well the masses were located in Figure 5.5.  For each location, the number 

of correct identifications of mass, the number of false positives (mass predicted when none 

actually there), and the number of false negatives (mass not predicted when mass actually there) 

are shown in Figure 5.5.   Locations near the free end of the beam are predicted better than 

locations near the fixed end.  However error for all locations over the set of design points is 

small, possibly because the resonant frequencies are more sensitive to mass loading at the tip of 

the beam than near the cantilevered end.  The next question to answer is, “Do points that are not 

in the design set follow the error trends exhibited by the design set?” 
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Because the full factorial set of points consists of 1024 points, it is not feasible to run every 

possible combination of masses on the beam, either simulated or experimentally.  In order to get 

an idea of how at least some points outside of the design set might be predicted by the response  
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Figure 5.5  Percent of design points identified correctly. 

 

surface model, subsets of points were chosen to characterize error in the damage identification 

problem.  Ten points were chosen to characterize the error of points outside the design set using 

the response surface models developed.  Simulated frequencies were used to predict number of 

masses and locations.  In this case, error in the inverse formulation due to error between the 

simulation and metamodel for points outside of the design set was characterized.  The actual 

mass locations are shown in Table 5.4, three runs with 7 masses, three runs with 8 masses, and 4 

runs with 9 masses were created.  More mass was chosen because there were fewer design points 

at these settings and because characterizing “less damaged” states may be more helpful to the 

analyst.  It is anticipated that response surface metamodels will be most helpful when structures 

are not in their most severely damaged states.   

 

Figure 5.6 again shows error in the prediction of the number of masses on the beam.  If there is 

error in the predictions, it is because fewer masses were predicted than were actually there 

(conservative).  This trend is in agreement with the trend seen in the set of design points for more 
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mass on the beam.  It can be seen in Figure 5.7 that the error in the predictions of location is also 

somewhat similar to the error seen on the design set.  Locations near the free and fixed end of the 

beam have more correct predictions then those locations in the middle of the beam. 

 

Table 5.4  Actual mass locations for points generated for simulated natural frequencies outside of 
the design set . 
Error 
Run 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

1 1 1 1 1 1 1 1 0 0 0 
2 1 1 1 1 0 0 0 1 1 1 
3 1 0 1 1 0 1 1 0 1 1 
4 0 0 1 1 1 1 1 1 1 1 
5 1 1 0 1 1 1 1 0 1 1 
6 0 1 1 1 1 1 1 1 1 0 
7 1 1 1 0 1 1 1 1 1 1 
8 1 0 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 0 
10 1 1 1 1 1 1 0 1 1 1 
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Figure 5.6  Actual and predicted number of masses for simulated natural  

frequencies outside of the design set. 
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Figure 5.7  Location error for simulated natural frequencies outside of the design set. 

 

The final set of points was generated to examine how use of experimental natural frequencies in 

the RSMs designed with ANSYS™ simulated frequencies would affect predictions of mass and 

location.  For this set of points (shown in Table 5.5 below), the natural frequencies were 

generated using the experimental setup described in Section 5.2.  This set of points may be 

thought of as a measure of how robust the inverse damage identification process is to frequencies 

generated in an experimental environment.  Seven of these points corresponded to design points, 

so a one-to-one comparison could be made between simulation frequencies and experimentally 

measured frequencies.  The remaining five points again concentrated on the cases of “more” 

mass on the beam.  These frequencies were used to perform damage identification and results are 

shown in Figures 5.8 and 5.9.  Frequency 1 was not used in damage identification, because it was 

the same value for all experimental runs (3.75 Hz), which was probably due to the resolution of 

the window (0.313 Hz) being too large to capture changes in the first frequency.  Frequency 10 

was not used for Run 7 with all masses removed because the tenth frequency was outside of the 

experimental 1000 Hz window.   
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Table 5.5  Mass locations for experimentally generated natural frequencies. 
Run  Description L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 
1 DP1 0 0 0 0 0 1 1 1 1 1 
2 DP 6 1 0 1 0 0 1 1 0 1 0 
3 DP 12 1 1 0 1 0 0 1 0 1 1 
4 DP 18 1 0 0 0 1 0 1 1 1 0 
5 DP 24 1 1 1 0 1 0 1 0 0 0 
6 DP32/ 

validation run 
1 1 1 1 1 1 1 1 1 1 

7 0 masses/ 
validation run 

0 0 0 0 0 0 0 0 0 0 

8 9 masses 1 1 1 0 1 1 1 1 1 1 
9 8 masses 0 1 1 1 0 1 1 1 1 1 
10 7 masses 1 1 1 1 1 1 0 1 0 0 
11 8 masses 1 1 0 1 1 1 1 1 1 0 
12 7 masses 0 0 1 1 1 1 0 1 1 1 

 

Table 5.6 is the error between simulation and experiment frequencies for the 7 runs that were in 

both  the design set and the experiment-RSM error characterization set.  With the exception of 

Frequency 2, nearly all of the frequencies are over estimated by the simulation (although not by 

much).  Knowing that the response surface model we are using has been trained on the 

simulation data (frequencies higher than experiment), we would expect the response surface 

model to tend to under estimate the number of masses on the beam (fewer masses would result in 

higher frequencies).  When the optimizer is used with the experimental frequencies (lower than 

those that the model was trained on), the model will be “fooled” into thinking that there are 

fewer masses on the beam than actually are present.  Figure 5.8 shows that this is not a bad 

assumption to make.  With two exceptions, if there is error in the predicted number of masses, it 

is lower than actual number of masses.  This error again follows the general trend of the design 

set. 

Table 5.6  Percent error between experimental frequencies and simulated frequencies. 

Run ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1 -4.69% 0.13% 3.43% 2.66% 1.07% 1.55% 1.53% 0.21% 1.12%
2 -5.68% 2.36% 3.78% 2.24% 2.91% 2.23% 2.94% 3.10% -1.66%
3 -8.69% 1.43% 3.09% 4.95% 0.96% 0.33% 2.74% 0.72% 3.53%
4 -9.65% 1.79% 4.71% 2.62% 1.00% 1.68% 2.28% 0.68% 0.40%
5 -6.59% 2.94% 2.04% 0.70% -0.30% 2.31% -0.29% 2.62% 3.80%
6 -9.56% 1.11% 0.90% 1.58% 0.73% -0.94% 0.06% 0.31% -2.38%
7 3.36% 3.65% 4.73% 3.57% 3.39% 3.16% 3.20% 2.65% N/A 
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Figure 5.8  Actual and predicted number of masses using experimentally measured frequencies 

 

In Figure 5.9 we can see that with the exceptions of locations 1 and 2, near the free end of the 

beam, all other location predictions are correct over 70% of the time.  This much is accomplished 

using response surface models trained on a simulated set of frequencies (that was only 1/32nd of 

the full factorial set of points) with experimentally generated frequencies.   
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Figure 5.9  Location error when experimentally measured frequencies are used. 
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In summary, for the design set the number of masses is predicted well (within one or two of the 

actual number), tending to err conservatively at less “damaged” levels.  Both of the error 

characterization sets confirm this trend.  For the two sets tested with simulated frequencies, 

location is predicted correctly about 85% of the time.  For the set tested with experimental 

frequencies, location is predicted about 70% of the time.    

 

5.6 Conclusions 
This chapter has shown how the four-step process of Chapter 3 may be applied to a more 

realistic problem that involves both simulated and experimental data.  The response surface 

models developed for the beam-mass system using natural frequencies again as output features 

are quite successful at predicting the number of masses on the beam and do a reasonable job 

locating masses given the limited amount of data they were trained with.  Two error sets were 

examined, one which used simulated frequencies outside of the design set and one that used 

experimentally measured frequencies.  Results for all sets were encouraging, with correct trends 

captured for number of masses on the beam and locations predicted correctly, often more than 

70% of the time.  The response surface based damage identification method does well given the 

uncertainties inherent in the simulation-experiment environment and the 1/32nd factorial training 

set.  It has also been shown that the uncertainty present may be quantified to some extent.   
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Chapter 6   

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

6.1 Introduction 
This thesis has shown that response surface metamodels may be used in structural damage 

identification problems.  A four-step methodology has been developed and was demonstrated on 

two dynamic structural systems.  The models developed in this thesis have been shown to be 

robust to experimental noise and have shown promise for use in nonlinear systems.  Response 

surface metamodels have also proven useful in the context of reduced order modeling, providing 

much information about a system given a limited amount of data.   

 

6.2 Key Results 

A four-step process was defined for doing damage identification with response surface 

metamodels.  This process was first demonstrated on the linear 5DOF system and then applied to 

the beam-mass system.  Definition of input parameters and output features plays a key role in 

how effectively response surface metamodels may be applied to damage identification problems.  

Input parameters must be “damage indicators.”  In this case mass and stiffness were used along 

with the location of the damage. It is important that output features used provide independent 

information about the system.  For a linear model, like the linear 5DOF system or the beam-mass 

system, natural frequencies work well.  For nonlinear models, time series features such as 

maximum displacement or the centroid of the displacement time history energy, as well as single 

number representations of the frequency domain data (centroid of the energy of FRF) performed 

reasonably well.   
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Damage identification was performed on the 5DOF system with acceptable accuracy using only 

nine design points and measurements taken at only two of the five locations.  Similarly 

identification of number of masses and their location on a beam was performed using only a 

small fraction of the total possible points (1/32nd of the full factorial design set) using both 

simulated and experimental data.    

 

Robustness of RSMs to variability on the output features has been demonstrated.  The linear 

5DOF system had 3% normally distributed noise introduced on its natural frequency output 

features.  The model was still able to locate and predict the magnitude of a damaged spring in the 

system with some limitations.  RSMs were also used to locate and quantify number of masses on 

a beam when experimentally measured frequencies were used instead of the simulated, 

deterministic frequencies that the RSMs were trained on.   

 

Finally, the ability of response surface metamodels to locate and predict the spring coefficient of 

a nonlinear spring replacing a linear spring in the 5DOF system was assessed.  Features better 

suited to a nonlinear system setup than natural frequencies were used.  They were maximum 

displacement, centroid of the energy of the displacement time history and centroid of the energy 

of the FRF.  Using these features and a limited amount of training data, location was predicted 

quite well but spring coefficient was not as accurate.  This model was also able to discriminate 

between a linear system and a nonlinear system with 100% accuracy, suggesting that a screening 

procedure be employed if system linearity is not known.  Once linearity is assessed, the 

appropriate model may be chosen.   

 

6.3 Contributions 
In this thesis, it has been shown that response surface metamodels show potential for use in 

damage identification scenarios.  RSMs were developed for simple physical systems and damage 

identification was performed successfully, given the limited amount of “training” data used.  

Error of the RSMs was characterized.  They were shown to be robust to noise and were applied 

in an experiment/simulation environment successfully.  The RSM in its inverse formulation was 

also used successfully to determine system linearity for the 5DOF example presented in this 

thesis.  To date, there are no known studies that demonstrate the potential of response surface 
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metamodels, in their inverse formulation, on simplified damage identification problems.  To fill 

this void, the potential of RSMs has been demonstrated in this thesis.  It is recommended that 

these models be further developed and their use in structural health monitoring and damage 

prognosis problems be considered. 

 

6.4  Recommendations for Future Work 
The models developed in this thesis suggest that response surface metamodels are reduced order 

models that could be employed for damage identification of dynamic structures.  However, only 

very simple systems have been used for demonstration of the use of RSMs to do damage 

identification.  A wider range of dynamic systems should be examined.  Damage indicators in 

this thesis have focused on changing stiffness and mass parameters.  Future models should 

incorporate changes in damping as a damage indicator, as it has also been proven as a damage 

indicator ([26], for example).  Response surface designs could also be coupled with neural 

networks.  Training points could be chosen using design of experiments methods and the 

mapping between input parameters and output features could then be established by the neural 

networks.  Response surface metamodels should also be considered for application in the realm 

of structural health monitoring and damage prognosis, where their small computational 

requirements could be helpful for on-board damage identification.   
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Appendix A 

 

 

ERROR METRICS:  HOW TO DECIDE WHICH  

RESPONSE SURFACE FITS BEST 

 

 

Any model of a simulation or experiment is subject to inaccuracies.  Error could be caused by, 

among other things, numerical error in simulation code, environmental variability in 

experimental testing, calibration errors, or inability of the model to capture all of the underlying 

physics of the problem.  The most useful model will be the one that best captures the output 

feature of interest over the broadest area of the response space.  In order to compare models, 

error metrics must be defined. 

 

R2, a measure commonly used in regression analysis, is a statistic that estimates Pearson’s 

correlation ratio.  It is a measure of the reduction in variability in the output feature through the 

use of the input variables chosen for the model [3].  In equation form  

 

∑
∑−= 2

2
2

Out
error

1R   (A1) 

 

where error is the difference between actual output feature values and predicted values and Out 

is the actual output feature values.  R2 may be adjusted for the number of terms (or coefficients) 

in the polynomial model and may be estimated for prediction as well.  These values can serve as 

one method of comparing models; values near 1.00 indicate good fit, values near 0.00 indicate 

poor fit.  However regression analysts warn not to use R2 as a definitive measure of how good a 

model is.  Meyers and Montgomery [3] note “a large value of R2 does not necessarily imply that 
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the regression model is a good one.  Adding a variable to the model will always increase R2, 

regardless of whether the additional variable is statistically significant or not.”  Adjusted R2, on 

the other hand, does not always increase as terms are added to the model.  It can be expressed as 
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where n is the number of observations of the output feature and p is one plus the number of terms 

in the model [3].   

 

Another metric of comparison can be as simple as calculation of mean square error  
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where n is the number of experiments conducted, Actual and Pred are the actual and predicted 

values of the output feature, and σactual is the standard deviation of the actual values of the output 

feature.  Relative error might also be used 
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The first set of models designed for the 5 DOF simulation had only two factors, impulse 

magnitude and stiffness.  Each of these parameters was varied over three to five levels depending 

on the design used.  Resulting error metrics are summarized in Table A1 below (Taguchi and D-

Optimal designs are both five-level designs).  Points compared for MSE and RE were the design 

points.  It can be seen that all models perform well in all categories, with high R2 values and low 

MSE and RE.  The central composite design (CCD) was chosen, because this design is perhaps 

the most commonly used due to its ability to fit a second order response surface well [3]. 

 

While single number error metrics are easy to calculate and compare, another concern in the 

computation of error in multi-dimensional design is the determination of model accuracy relative 

to the location in the model space.  In this case error might be imagined as a vector that is  
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Table A1  Summary of error metrics for two-input-parameter designs. 
Design CCD D-Optimal Taguchi 3-Level Factorial 
R2 1.00 1.00 0.98 1.00 
Adj R2 1.00 1.00 0.96 0.99 
MSE 0.69 % 0.13 % 0.48 % 0.10 % 
RE 1.10% 0.17 % 0.64 % 0.14 % 

 

“tacked” at some point, with magnitude and direction.  One method of characterizing and 

locating error is the reservation of a few runs expressly for the purpose of characterizing model 

error.  Often RSM designs reserve runs in the form of replicates of design points, which is useful 

in a stochastic setting, such as conducting physical experiments, but not in a deterministic 

simulation environment. 

 

Stiffness and location errors were calculated for all points in the face centered cubic design space 

discussed in Chapter 3 (25).  Then error surfaces were fit for both of these error features.  The 

error should be nonsystematic and small, however for response surface models it is expected that 

error will be smaller near the design points and larger “far away.”  A high R2 on location error 

indicated a good fit and that error for this variable was likely to be systematic in some way.  On 

the other hand, a relatively low R2 on stiffness error indicated that it was not possible to 

adequately fit a cubic surface to the data, indicating that either the stiffness error is highly 

nonlinear in nature or very non-systematic.  Either another fitting scheme must be used with 

more “error points” reserved, or some other method must be used to estimate the error on 

stiffness predictions. 

 

Shown below is the location error surface developed.  An error criterion could be chosen and 

only those points passing the error criterion would be saved.  In a sense, the model would be 

valid for these locations only.  Elsewhere, the model would not do a good enough job of 

estimating according to the interpolated surface.   This would indicate to the analyst those 

regions of the model with adequate goodness of fit and those regions of the model with poor 

goodness of fit.  Again, this work is not concerned with actually assigning an error criterion and 

determining where the model is valid, as this would be application dependent and the 5DOF 

system is only a simple theoretical problem.   
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Figure A1:  Location Error Surface 
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Appendix B  

 
 

ATTEMPTS TO SOLVE THE INVERSE PROBLEM USING 

TIME SERIES FEATURES 

 

 

The time series features ET and LD were used in the first attempt at the solution of the inverse 

problem.  Time series features were used in anticipation of eventually solving a nonlinear 

problem, where frequency domain features might be difficult to derive.  However, as shown in 

Chapter 3, these features are highly correlated, and so non-unique solutions were obtained.  

Following is an explanation of the steps taken to arrive at this conclusion.   

 

Optimization schemes were implemented for the solution of the inverse problem, that is the 

question “Knowing what the time series output features are, can the system input parameters that 

caused such outputs be determined?” had to be answered.  Because of the nonfunctional nature 

of the inverse problem, optimization seemed a natural choice for its solution.  Matlab™’s 

fminsearch routine, which uses Nelder Meade simplex unconstrained nonlinear optimization 

[20], was implemented. Four features were used as constraints, implemented in the form of an 

error function that was to be minimized.  They were the LD and E features from Location 3 and 

the LD and E features from Location 5.  Additional constraints were that three of the input 

parameters were fixed or considered “known” (mass, impulse magnitude and impulse location), 

reducing the size of the inverse problem to a one-dimensional optimization.   
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The starting value for stiffness was randomly generated between its upper and lower bounds.  

Then the optimization routine worked to minimize the error between the actual and predicted 

values of the output feature.  The response surface relationships generated with the CCD given in 

Chapter 3 along with the fixed mass, impulse magnitude and impulse location, and the changing 

stiffness value were used to obtain predicted output feature values.   The squared error between 

actual and predicted was weighted by the inverse variance between the features, which causes 

more weight to be placed on values with small variance.  In theory, smaller variance on a feature 

should correspond to higher confidence that this feature is known well.  More weight on this 

well- known feature emphasizes it in the optimization process. 

 

Fifty local minima were found using fifty random start points per run.  Global minima were 

defined as the local minima with the lowest objective function values.  Unfortunately many 

points were often “tied” for this honor, implying that several values for stiffness, combined with 

the other three fixed input parameters, could result in a particular combination of output feature 

values.  The conclusion was that different output features were needed and a different 

optimization scheme as well, one that would allow a ranking of points.  
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Appendix C 
 
 

BEAM DESIGN POINT SIMULATION RUNS 
 
 
 
 
Beam-mass design points are shown on the following pages.  Input parameters were whether a 

mass was present at each of the ten locations, output features were the simulated frequencies, in 

Hz, of the first ten beam modes.  The design consists of 32 runs, or 1/32nd of the full factorial set 

of 1024 runs.  
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 Input Parameters                
 (Mass Present at Location)   Output Features (Frequencies derived from simulation, Hz)  

Design point L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1 0 0 0 0 0 1 1 1 1 1 3.42 17.87 56.01 117.65 179.65 269.11 398.91 508.58 634.46 839.89
2 1 0 0 0 0 0 0 0 0 1 3.26 20.72 60.94 134.62 207.47 323.97 463.54 573.03 756.05 949.79
3 0 1 0 0 0 0 0 0 1 0 3.34 21.30 67.21 128.71 199.65 314.26 411.29 601.42 749.46 982.85
4 1 1 0 0 0 1 1 1 0 0 2.72 17.28 62.34 114.69 185.28 282.19 390.81 529.73 682.07 852.50
5 0 0 1 0 0 0 0 1 0 0 3.40 21.89 67.54 115.98 209.30 303.32 469.11 577.40 733.85 915.98
6 1 0 1 0 0 1 1 0 1 0 2.79 17.69 57.26 110.27 171.25 302.93 401.59 527.27 689.19 774.76
7 0 1 1 0 0 1 1 0 0 1 2.86 18.91 57.05 113.86 180.13 273.68 403.23 494.87 656.70 822.79
8 1 1 1 0 0 0 0 1 1 1 2.64 17.05 56.86 108.98 183.26 266.85 400.80 496.35 638.58 794.86
9 0 0 0 1 0 0 1 0 0 0 3.44 22.42 64.28 115.85 214.70 319.46 423.52 580.78 747.16 982.88
10 1 0 0 1 0 1 0 1 1 0 2.86 17.51 54.84 112.21 181.85 299.02 387.35 492.48 739.40 807.58
11 0 1 0 1 0 1 0 1 0 1 2.94 18.76 55.47 112.8 182.69 257.35 341.70 505.47 771.14 910.35
12 1 1 0 1 0 0 1 0 1 1 2.66 17.12 52.93 109.53 179.72 265.03 362.46 531.98 633.93 852.20
13 0 0 1 1 0 1 0 0 1 1 3.02 19.44 54.22 114.13 170.96 290.22 375.44 527.51 674.48
14 1 0 1 1 0 0 1 1 0 1 2.69 17.36 53.14 100.28 188.11 269.02 390.92 518.19 621.22 800.36
15 0 1 1 1 0 0 1 1 1 0 2.55 17.27 60.33 105.52 177.18 281.67 384.09 506.76 638.52 807.19
16 1 1 1 1 0 1 0 0 0 0 2.50 20.25 58.34 111.95 188.19 288.47 375.70 552.12 654.43 845.79
17 0 0 0 0 1 1 0 0 0 0 3.47 22.70 62.04 132.16 204.70 310.30 426.65 590.94 730.94 902.69
18 1 0 0 0 1 0 1 1 1 0 2.93 16.94 56.94 113.22 193.05 278.39 386.39 554.23 650.63 817.03
19 0 1 0 0 1 0 1 1 0 1 3.02 18.13 56.43 113.14 188.66 242.16 394.93 524.54 621.49 922.74
20 1 1 0 0 1 1 0 0 1 1 2.67 17.14 50.43 122.24 172.82 269.69 372.70 531.78 640.63 803.86
21 0 0 1 0 1 0 1 0 1 1 3.11 18.82 54.79 112.64 174.67 256.62 381.55 567.31 614.96 898.82
22 1 0 1 0 1 1 0 1 0 1 2.70 17.42 51.27 109.11 172.50 251.00 409.40 513.31 602.08 869.40
23 0 1 1 0 1 1 0 1 1 0 2.75 18.16 56.46 113.22 165.29 270.66 373.21 481.25 593.63 777.92
24 1 1 1 0 1 0 1 0 0 0 2.55 19.27 59.51 110.33 187.56 265.44 421.07 493.88 691.69 900.82
25 0 0 0 1 1 0 0 1 1 1 3.20 18.83 53.57 112.14 192.98 265.50 402.89 499.52 640.55 828.85
26 1 0 0 1 1 1 1 0 0 1 2.73 17.59 50.36 109.62 185.21 272.50 400.11 493.99 639.20 808.01
27 0 1 0 1 1 1 1 0 1 0 2.77 18.52 55.18 112.25 173.77 257.65 361.99 459.19 680.40 794.71
28 1 1 0 1 1 0 0 1 0 0 2.61 18.94 56.29 113.13 193.84 274.69 386.63 527.97 692.27 871.61
29 0 0 1 1 1 1 1 1 0 0 2.80 19.34 58.37 104.62 176.49 267.29 369.89 510.80 625.82 778.13
30 1 0 1 1 1 0 0 0 1 0 2.67 19.40 52.67 117.29 180.49 296.17 401.39 527.75 685.27 779.62
31 0 1 1 1 1 0 0 0 0 1 2.73 20.92 54.10 122.00 183.26 263.61 398.36 500.56 653.18 837.66
32 1 1 1 1 1 1 1 1 1 1 2.33 15.26 47.08 97.743 159.03 230.73 328.45 443.40 552.97 679.97

778.53
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