14.27 Zeros14.29 Generalizations

§14.28 Sums

Contents

§14.28(i) Addition Theorem

When \realpart{z_{1}}>0, \realpart{z_{2}}>0, |\mathop{\mathrm{ph}\/}\nolimits\!\left(z_{1}-1\right)|<\pi, and |\mathop{\mathrm{ph}\/}\nolimits\!\left(z_{2}-1\right)|<\pi,

14.28.1\mathop{P_{{\nu}}\/}\nolimits\!\left(z_{1}z_{2}-\left(z_{1}^{2}-1\right)^{{1/2}}\left(z_{2}^{2}-1\right)^{{1/2}}\mathop{\cos\/}\nolimits\phi\right)=\mathop{P_{{\nu}}\/}\nolimits\!\left(z_{1}\right)\mathop{P_{{\nu}}\/}\nolimits\!\left(z_{2}\right)+2\sum _{{m=1}}^{{\infty}}(-1)^{m}\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu-m+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu+m+1\right)}\*\mathop{P^{{m}}_{{\nu}}\/}\nolimits\!\left(z_{1}\right)\mathop{P^{{m}}_{{\nu}}\/}\nolimits(z_{2})\mathop{\cos\/}\nolimits\!\left(m\phi\right),

where the branches of the square roots have their principal values when z_{1},z_{2}\in(1,\infty) and are continuous when z_{1},z_{2}\in\Complex\setminus(0,1]. For this and similar results see Erdélyi et al. (1953a, §3.11).

§14.28(ii) Heine’s Formula

14.28.2\sum _{{n=0}}^{{\infty}}(2n+1)\mathop{Q_{{n}}\/}\nolimits\!\left(z_{1}\right)\mathop{P_{{n}}\/}\nolimits\!\left(z_{2}\right)=\frac{1}{z_{1}-z_{2}},z_{1}\in\mathcal{E}_{1}, z_{2}\in\mathcal{E}_{2},

where \mathcal{E}_{1} and \mathcal{E}_{2} are ellipses with foci at \pm 1, \mathcal{E}_{2} being properly interior to \mathcal{E}_{1}. The series converges uniformly for z_{1} outside or on \mathcal{E}_{1}, and z_{2} within or on \mathcal{E}_{2}.

§14.28(iii) Other Sums

See §14.18(iv).