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President Bush 
State of the Union Address 
Jan 23, 2007 

“To reach this goal, we must increase the supply of alternative fuels, by setting 
a mandatory fuels standard to require 35 billion gallons of renewable and 
alternative fuels in 2017 -- and that is nearly five times the current target.” 

“We must continue investing in new methods of producing ethanol using 
everything from wood chips to grasses, to agricultural wastes.” 



Biomass Research and Development Technical Advisory committee
 



Vision for Bioenergy and Biobased Products in the United States 
Biofuels Goals 

2000 2004 2010 2015 2020 2030 

Consumption of Biofuels (Billions 
Gasoline Gallon Equivalent) 1.1 2.1 8.0 13 23 51 

Areas of Focus for R & D 

• Reducing the cost of fermentation 

• Enabling greater conversion of lignocellulosic biomass
 



 

US Fuel Ethanol Production 

Biorefineries (112) 5.5 B Gallons / Yr 
Under Construction (77 + 7) 6.2 B Gallons / Yr 
Anticipated Total 11.7 B Gallons / Yr 

Source: Renewable Fuels Association - Jan. 29, 2007
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US Corn Production (2004) 

US Total 11.8 Billion Bushels 

Iowa 2.24 BB 
Illinois 2.09 BB 
Nebraska 1.32 BB 
Minnesota 1.12 BB 
Indiana 0.93 BB 

Florida 2.88 MB 

Source: USDA-ARS 



Other Sources of Sugars 

• Crop Residues 

• Energy Crops 

• Forest Products
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Sugar caneSugar cane BagasseBagasse –– Biomass ResiduesBiomass Residues
 
(South of Lake Okeechobee, Florida) 



Energy Crop 

Switch grass bales (1200 lb) from 5 year old field – Northeast South Dakota 
Source: DOE Biofuels Joint Roadmap, June 2006 



Hard Woods and Soft Woods 

A rich tapestry of hardwood and softwood trees.
 
The old mill pond at the Aldridge Sawmill site, East Texas terrain. 

Photo courtesy of USDA Forest Service
 



Conversion of Biomass to Fuel Ethanol & Chemicals 
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Process Simplification with Advanced Biocatalysts 

SSCF
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Cost Contribution from Each Process Area 
(% of Ethanol Selling Price) 

Biomass 

Feed Handling 5% 

Pretreatment / Conditioning 

Saccharification & Fermentation 8% 

Cellulase 9% 
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Wastewater Treatment 

Distillation & Solids Recovery 
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Source: NREL/TP-510-32438; June 2002 



Yeast Fermentation Characteristics 
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Breaking the Biological Barriers to Cellulosic
 
Ethanol: A Joint Research Agenda
 

A Research Roadmap Resulting from the Biomass to Biofuels
 
Workshop Sponsored by the U.S. Department of Energy
 

December 7–9, 2005, Rockville, Maryland 

DOE/SC-0095, Publication Date: June 2006 
Office of Science, Office of Biological and Environmental Research, Genomics:GTL 

Program 
Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program 



From DOE Research Roadmap, 2006 

Technical Milestones 
Within 5 years 

Candidate microbes such as thermophilic ethanologens 
compatible with desired cellulase enzyme optima. This 
allows process simplification to single-vessel fermentation 
with efficient use of all biomass-derived sugars 



Bacillus coagulans, a potential Second Generation Biocatalyst
 



 
 

B. coagulans Ferments glucose and Xylose
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0.0 

Growth and Fermentation of B. coagulans matches that of Fungal Cellulase Activity 

Effect of Temperature 
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Growth and Fermentation of B. coagulans matches that of Fungal Cellulase Activity 

Effect of pH 

SSF of Crystalline Cellulose 
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From DOE Research Roadmap, 2006 

Technical Milestones 
Within 15 years 

Thermophillic microbes demonstrated at scale 
to enable simultaneous saccharification and 
fermentation. 
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B. coagulans produces more product in shorter time
 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 
Y

ie
 ld

 F
 r a

 c t
io

 n 
B. coagulans 

Z. mobilis 

S. cerevisiae 

0 5 10 15 20 25
 30
 

[Cellulase] (FPU g-1 Solka Floc) 
Fermentation time: 48 h
 



SSF with B. coagulans requires less enzyme than yeast
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SSF of Cellulose with cellulase and B. coagulans
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From DOE Research Roadmap, 2006 

Technical Milestones 
Within 15 years 

Simultaneous saccharification and cofermentation (SSCF),
 
in which hydrolysis is integrated with fermentation of both 
hexose and pentose sugars but with cellulase produced in a 
separate step. For example, development of thermophilic 
ethanol- producing organisms for use in SSCF could allow 
the consolidated process to run at higher temperatures, thus 
realizing significant savings by reducing cellulase 
requirements. 



SSCF of Sugarcane Bagasse HCH with Cellulose by B. coagulans
 



Metabolic Engineering of B. coagulans for Ethanol Production 

Current Research 

1. Vector Plasmids 
2. DNA Transfer 
3. Source of Pyruvate decarboxylase 
4. Source of Alcohol Dehydrogenase 
5. Alternate Pathways for Ethanol Production 
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DNA Transfer into B. coagulans
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Pathways for Ethanol Production
 

Ethanologenic Organisms (yeast, Zymomonas mobilis, ethanologenic E. coli) 
NADH 

COOH CH2OHCHOCO2 +COGlucose 
PDC CH3 ADH CH3Glycolysis CH3 

Acetaldehyde EthanolPyruvic acid 

A Novel Pathway for Ethanol Production Developed in E. coli 

CoA, NAD+ NADHNADHCOOH CH2OHCO2 CO-CoA CHOCO +PDH + CH3 ADH CH3 ADH CH3CH3 NADH 
Acetyl-CoA Acetaldehyde Ethanol

Pyruvic acid 



Sources of Pyruvate Decarboxylase Gene 

• Zymomonas mobilis 
• Acetobacter pasteurianus 
• Zymobacter palmae 
• Sarcina ventriculi 
• Yeast 

pdc genes from these organisms are available for 
metabolic engineering of B. coagulans 



 
 

Genome Sequence of B. coagulans 

Incomplete Draft Sequence (DOE-JGI) 

~ 2.9 x 106 bp 
2,675 Putative ORFs 
G+C % - 46.2 

~600 ORFs unique to the organism 
~100 ORFs shared with Lactobacillus 
~2000 ORFs shared with Bacillus subtilis 

Seven ORFs encoding Alcohol Dehydrogenase like Enzymes
 



Bacillus coagulans, a Second Generation Biocatalyst 

for Biomass to Ethanol Fermentation
 

• Growth and Fermentation temperature matches that of fungal cellulases 

• Requires less fungal cellulases for SSF of cellulose compared to yeast 

• All the sugars in biomass are rapidly fermented 

• Effective SSCF of hemicellulose hydrolysate (overlimed) and cellulose 

• Gene transfer system has been established 

• Genome sequence is available for metabolic engineering 



Research Support 

US Department of Energy 

State of Florida / University of Florida 

Agricultural Experiment Station
 


