

- Experience
 - * Ethanol quality
 - * Poor ethanol specification
 - * Engine components corrosion protection
 - * Gasoline engine to ethanol conversion in the field
 - * Cold start-100% ethanol (Temperatures below 64° F)
 - Auxilliary gasoline reservoir
 - * High compression ratio engines for thermal efficiency
- Brazilian fuel

Gasoline - E22	Ethanol – E100
22% Ethanol	93% (min) Ethanol
78% Gasoline	7% (max) Water

GM Phase II - The 90's

- Introduction of new emissions regulations
 - * Fuel injection system
 - * Exhaust after treatment
 - * Cold start improvements (Electronically Controled)
- "Pró-Álcool" program collapsed
 - * Sugar prices "skyrocketed" and oil prices leveled out
 - * Ethanol refinaries switched production to sugar
 - * Lack of ethanol at the fuel stations
 - * Ethanol price: 80% of gasoline price
 - * "Pró-Álcool" program lost credibility
 - * Ethanol vehicle market crashed

- * Electronic control could automatically adjust to run on any blend of fuel from 100% ethanol down to 20% Ethanol. "Virtual sensor"
- Ethanol prices decreased
 - * Inventories were growing
 - * Ethanol price: 40% of gasoline price (by offer)
- Flex vehicles would give customers the ability to switch as fuel market dictates

- State of the latest
- Challenges and Concerns for Flex
 - * Water separation
 - * Compression ratio optimization (Gasoline & Ethanol)
 - Thermal Efficiency Keeping high compression

(Octane numbers: E22 = 92 / E100 = 105)

- * Fuel consumption perception (Ethanol X Gasoline)
- * Component protection against corrosion optimization
- * Virtual sensor to detect different fuels in real time
- In 2003 GM launched the first flex vehicle in the market

GM Flexpower - The Future

- Cold start improvements
 - * Cold Start without auxilliary Gasoline reservoir
- Engine thermal management
 - * Temperature adjustment for each different fuel blend
- Optimize Compression Ratio
 - * Increased Efficiency
 - * Reduced Fuel Consumption
- Turbocharging
 - * Variable compression according to the fuel blend
- Direct Injection Engines (SIDI)
 - * Further Increased Efficiency
 - * Further Reduced Fuel Consumption

GM Conclusion

- -Known exhaust emissions standards (Except for California) are not a restriction to Flex Fuel vehicles. Diagnosis (OBD) is still a challenge.
- Ethanol price fluctuation and its availability in the market substantially affects customer decisions on vehicle purchase. The Flex Fuel architecture eliminates this factor.
- -The Flex Fuel technology is mature and can be applied worldwide, the implementation is dependent on Emissions Standards, Diagnosis Level and portfolio size.
- Challenge to expand the Flex Fuel vehicles to other countries is on the availability of ethanol and channels of distribution.
- Distribution of E85 instead of E100 enables elimination of cold starting devices and therefore, should be preferred.