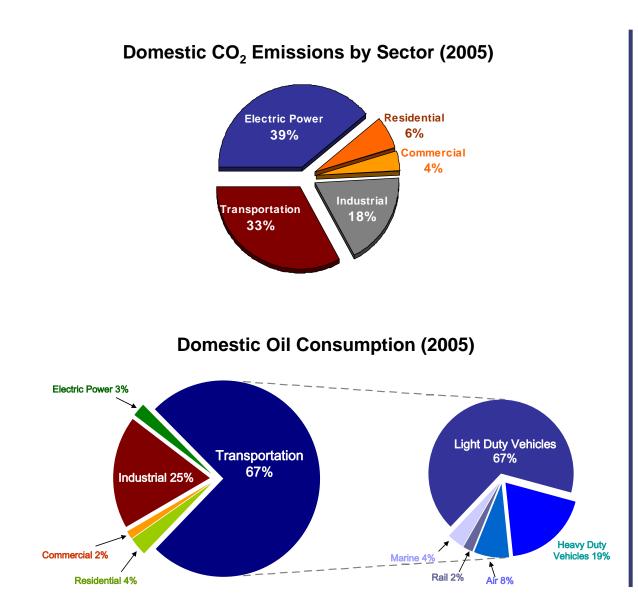


U.S. Department of Energy Energy Efficiency and Renewable Energy

DOE HYDROGEN PROGRAM

Overview

The Biomass – Hydrogen Connection


Biomass R&D Technical Advisory Committee November 12, 2007

Mark Paster

Technology Development Manager U.S. Department of Energy Hydrogen Program

Why Hydrogen?

- Transportation: Use of Hydrogen in fuel cell vehicles can reduce oil use and carbon emissions in the transportation sector
- **Power Generation:** Hydrogen can enable clean, reliable energy for stationary and portable power generation

Hydrogen — The Policy Context

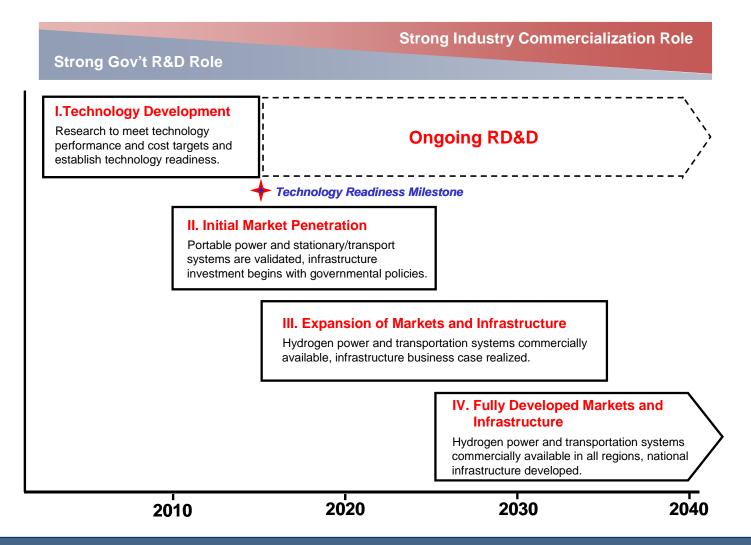
Hydrogen Fuel Initiative

HYDROGEN FUEL INITIATIVE (Jan. 2003):

- Launched the Department of Energy Hydrogen Program
- Committed \$1.2 billion over five years (2004 2008)
- Provides funds to develop H₂, fuel cell and infrastructure technologies
- Goal: to make fuel cell vehicles practical and cost-effective by 2015

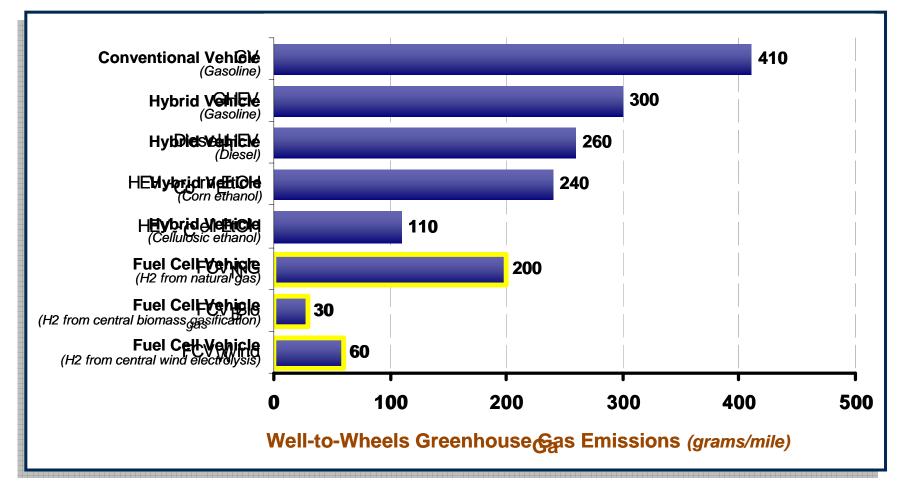
ADVANCED ENERGY INITIATIVE (Feb. 2006):

- Accelerates research on technologies for reducing dependence on oil for transportation and natural gas for power generation
- 22% increase in funding for clean energy research
- Reinforces Hydrogen Fuel Initiative
- Accelerates R&D for near-term vehicle options: biofuels & plug-in hybrids



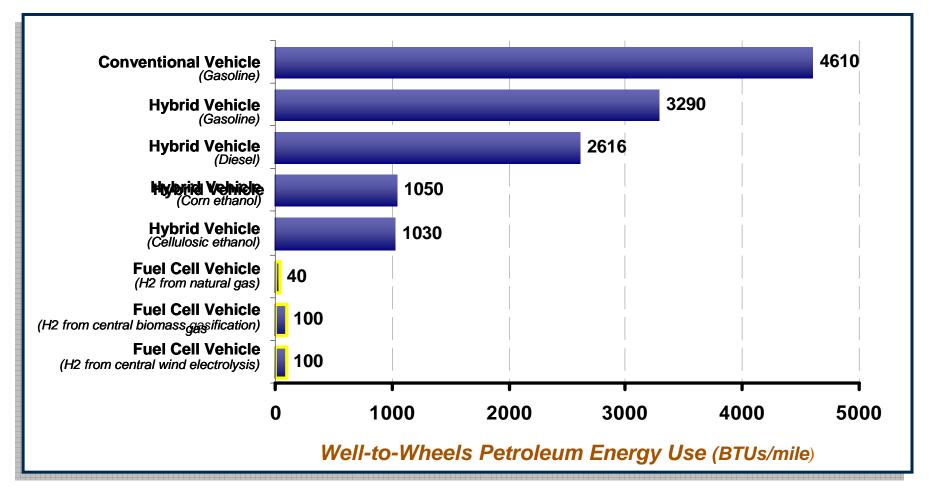
"20-in-10" INITIATIVE (Jan. 2007):

- Sets target of 35 billion gallons of alternative fuels by 2017, to displace 15% of annual gasoline use in 2017 (plus 5% reduction in gasoline use through increased vehicle efficiency)
- Expands Renewable Fuel Standard (RFS) to "Alternative Fuel Standard" (includes corn ethanol, cellulosic ethanol, biodiesel, methanol, butanol, hydrogen, and other alternative fuels)


Hydrogen Economy Timeline

EPACT Title VIII authorizes \$3 billion in funding (FY 2006 – FY 2010) for hydrogen and fuel cell research, development, demonstration, education, and codes and standards development. Additional funding is authorized for FY 2011 – FY 2020.

Benefits — Reducing Greenhouse Gas Emissions


Well-to-wheels analysis* shows that use of H₂—from a variety of sources—would reduce greenhouse gas emissions

*Analysis based on technology expected to be available in 2015, except for central hydrogen production pathways, which are based on delivery infrastructure expected in 2030.

Benefits — *Reducing Petroleum Use*

Well-to-wheels analysis* shows that use of hydrogen—from a variety of sources—would reduce oil consumption

*Analysis based on technology expected to be available in 2015, except for central hydrogen production pathways, which are based on delivery infrastructure expected in 2030.

Challenges & Barriers


 Hydrogen Cost (target: \$2 - \$3/gge) Hydrogen Storage Capacity & Cost (targets: 2.7kWh/L, 3kWh/kg, and \$2/kWh) Fuel Cell Cost and Durability (targets: \$30 per kW, 5000-hour durability) 	world conditions.
---	-------------------

Hydrogen Program Activities

The DOE Hydrogen Program is structured to tackle the wide range of barriers facing hydrogen and fuel cell commercialization

DOE Hydrogen Program – Participants

DOE - Office of Energy Efficiency & Renewable Energy

Research, develop, and validate fuel cell and H2 production, delivery, and storage technologies for transportation and stationary applications.

DOE - Office of Nuclear Energy

Operate sulfur-iodine thermochemical and high-temperature electrolysis experiments to gather data on operability and reaction rates.

DOE - Office of Science

Expand basic research on nano-materials for storage, catalysis for fuel cells, and bio-inspired and solar H_2 production. Increase emphasis on nano-structured design, novel synthesis, and theory and modeling of the physical and chemical interactions of hydrogen with materials.

DOE - Office of Fossil Energy

Continue studies for scaling up hydrogen membrane reactors and CO_2/H_2 separation technologies for coal-based hydrogen systems.

Hydrogen Fuel Initiative Funding — By Participant Organization

		Funding (\$ in thousands)				
Activity	FY2004 Approp.	FY2005 Approp.	FY2006 Approp.	FY2007 Approp.	FY2008 Request	
HYDROGEN FUEL INITIATIVE						
EERE Hydrogen (HFCIT)	144,881	166,772	153,451	189,511	213,000	
Fossil Energy (FE)	4,879	16,518	21,036	22,997	12,450	
Nuclear Energy (NE)	6,201	8,682	24,057	18,855	22,600	
Science (SC)	0	29,183	32,500	36,388	59,500	
DOE Hydrogen TOTAL	155,961	221,155	231,044	267,751	307,550	
Department of Transportation	555	549	1,411	1,420	1,425	
Hydrogen Fuel Initiative TOTAL	156,516	221,704	232,455	269,171	308,975	

Program Partnerships

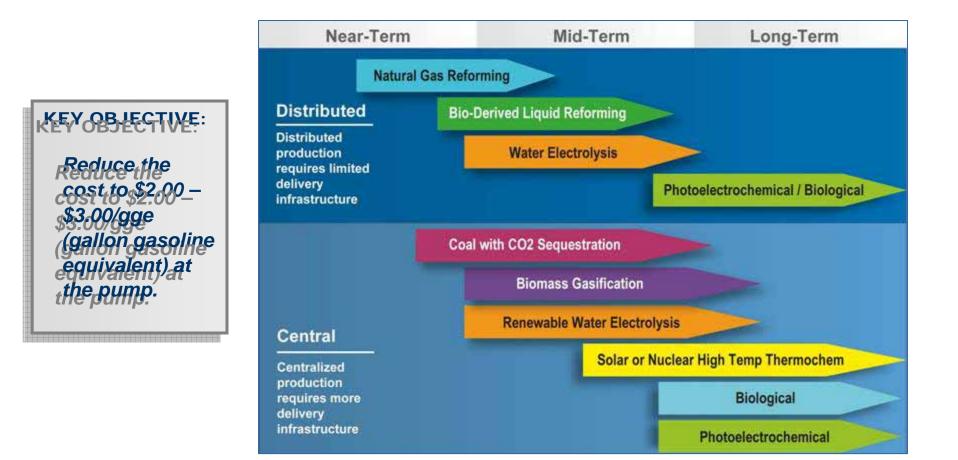
The Program maintains strong partnerships with industry and government, and coordinates extensively with other stakeholder groups.

INTERNATIONAL PARTNERSHIPS

- International Partnership for the Hydrogen Economy
- Represents 16 member countries and the European Commission
- Coordinates inter-governmental research, development and deployment programs
- Provides a forum for advancing policies and common codes and standards

International Energy Agency – Implementing Agreements

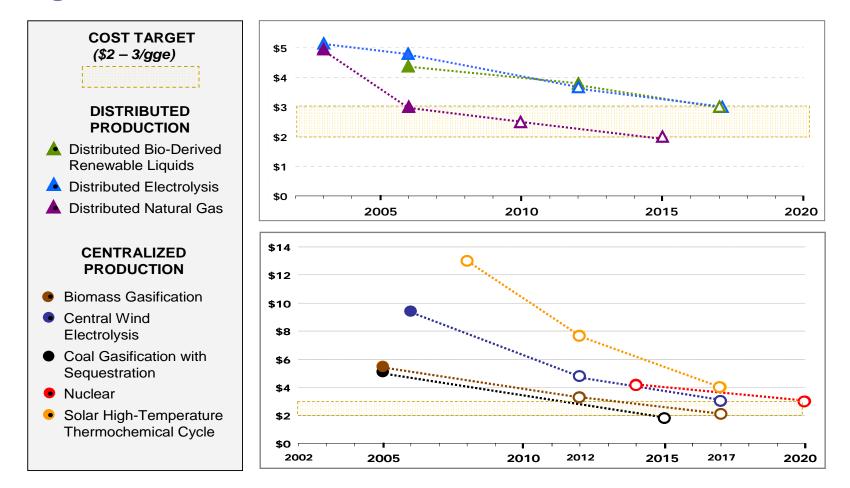
- *Hydrogen Implementing Agreement:* 22 member countries, plus the European Commission. Currently implementing Tasks 18 25.
- Advanced Fuel Cells Implementing Agreement: Signed by 17 countries. Current phase (2004 2008) comprises six annexes (tasks).


U.S. PARTNERSHIPS

- FreedomCAR and Fuel Partnership
- Hydrogen Utility Group (e.g., Xcel Energy, Sempra)
- Other Federal Agencies (e.g., Interagency Hydrogen and Fuel Task Force (with OSTP), Interagency Working Group on Manufacturing R&D)
- State/Local Governments (e.g., California Fuel Cell Partnership, Upper Midwest Hydrogen Initiative)

Hydrogen Production & Delivery

GOAL: Diverse, domesticpathways to hydrogen production

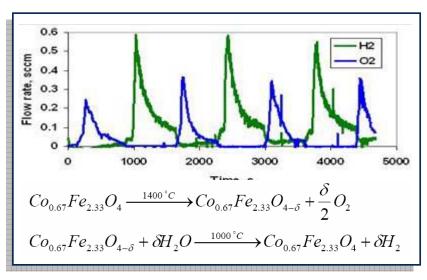


Hydrogen Production — Costs

The Program has reduced the cost of producing hydrogen from multiple pathways.

Near-term: Distributed Hydrogen → Produced at station to enable low-cost delivery

Longer-term: Centralized Production \rightarrow Large investment in delivery infrastructure needed



Hydrogen Production — Renewable Electrolysis

Hydrogen Production — Solar Water Splitting

Demonstrated small-scale solar-driven hightemperature thermochemical water splitting

- On-sun reduction at 1550 °C; H₂ production at 1100 °C
- YSZ-stabilized ferrite shows stability, repeatability

High-temperature water splitting (a "thermochemical" process) uses high temperatures produced from concentrated solar energy to drive chemical reactions that produce hydrogen. This is a long-term technology in the early stages of development.

Hydrogen from Biomass

Biomass Supply

- 6 10 Quads/year currently possible (300 600 million metric tons)
- >20 Quads/year projected potential by 2050 (> 1.2 billion metric tons)
- (Current LDV fleet consumes ~16 Quads)

Key Issues: Feedstock Cost, Technology Improvements, and Infrastructure.

Centralized Hydrogen Production Options

- Gasification/Pyrolysis → Hydrogen
- Biomass Hydrolysis \rightarrow Aqueous Phase Reforming \rightarrow Hydrogen
- Anaerobic Fermentation (e.g. landfill gas) \rightarrow Methane \rightarrow Hydrogen
 - > Agriculture, MSW or industrial sites
- Biomass Hydrolysis to Sugars \rightarrow Fermentation \rightarrow Hydrogen

Central Biomass to Hydrogen R&D

- NREL: Pilot/Bench Scale integrated "standard biomass gasification
- GTI: Integrated gasification, reforming, membrane separation
- UTRC: Central biomass hydrolysis and aqueous phase reforming

Distributed Reforming of Bio-Derived Liquids

- Hydrolysis to Sugars \rightarrow Fermentation \rightarrow Ethanol \rightarrow Hydrogen
- Gasification/Pyrolysis → Syngas → Ethanol, Mixed Alcohols, FTs → Hydrogen
- Pyrolysis → Bio-Oil → Hydrogen
- Hydrolysis to Sugars, etc. → Hydrogen (Aqueous Phase Reforming)

Distributed Bio-Derived Liquids-to-H₂ R&D

Aqueous-Phase Reforming

- Virent Energy Systems, Inc.; U. of Wisconsin; ADM; Universal Oil Products LLC, Sugars (glucose); sugar alcohols; glycerol
- Pacific Northwest National Lab, Sorbitol

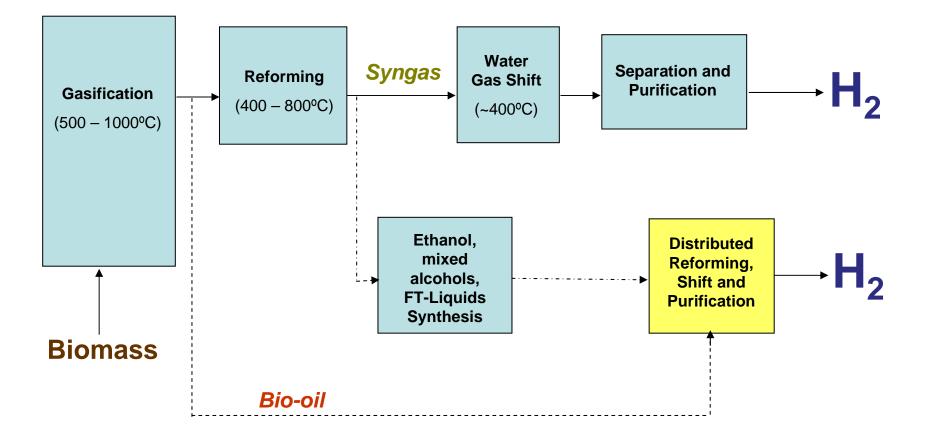
High-Pressure Micro-Reactor and Membrane Reactor

Argonne National Lab, Ethanol

Investigation of Reaction Networks and Active Sites in Bio-Ethanol Steam Reforming over Co-Based Catalysts

• Ohio State University, Ethanol

Distributed Bio-Oil Reforming


 National Renewable Energy Lab, Bio-oil (36.5% carbon, 8.4% hydrogen, 55.0% oxygen)

Distributed Bio-Derived Liquids Reforming

• GE, U. of Minnesota: SCPO

Biomass Gasification/Pyrolysis Options

Sugar-Based Liquids for Distributed Reforming Starch Cellulosic from **Biomass** Corn Enzyme Sugars Sugar Ethanol **Hydrolysis Hydrolysis** Fermentation Ethanol ¥ H_2 **Distributed Reforming, Shift,** and Separation/Purification

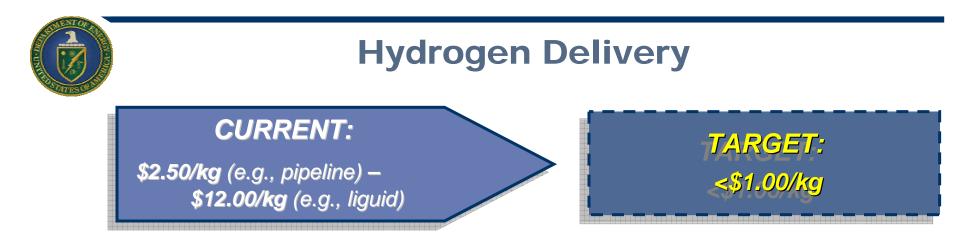
Hydrogen Production Options — Summary

Process Option	\$/kg (Current)	\$/kg (Projected)	Challenges
Coal: Central Gasification	\$0.90 - \$1.80	\$0.50 – 1.40 (Plus \$1/kg delivery)	O_2 Separations, H_2 Separations, CO_2 sequestration
Natural Gas: Distributed Reforming	\$3.00 (\$2.75 - \$3.50)	\$2.00 - 3.00	Capital cost, NG Cost
Biomass: Central Gasification/Pyrolysis	\$2.00 (\$1.60-\$2.20)	\$1.00 – \$2.00 (Plus \$1/kg delivery)	Capital Cost, Process Intensification, Biomass Cost
Biomass: Central Hydrolysis and APR			Process Research/Feasibility, Biomass Cost
Biomass : Central Anaerobic Fermentation/Methane/H2			?
Biomass: Central sugar fermentation	Very high	??	Breakthrough in Yield on Sugars
Biomass: Distr. Ethanol Reforming	\$4.40 (\$4.20 – \$5.00)	<\$3	Capital Cost, Catalyst Life, Coking, Ethanol Cost
Biomass: Distr. Liquids Reforming		<\$3	Capital Cost, Catalyst Life, Coking, Feedstock Cost
Biomass: Distr. APR		<\$3	Capital Cost, Yield, Feedstock Cost

Biomass Potential

Biofuel yields per biomass dry ton

	Hydrogen	Biochemical Conversion	Thermochemical Conversion	Combined BC/TC ¹
Feedstock Year	Biomass (H ₂ /ton)	Corn Stover (ETOH/ton)	Wood Chips (ETOH/ton)	Stover/Lignin (ETOH/ton)
2005: State of Technology	54 Kg 623 L 6.14 MBTU	65 gal 246 L 4.94 MBTU	56 gal 212 L 4.26 MBTU	
2012: Target		90 gal 341 L 6.84 MBTU	76 gal 288 L 5.78 MBTU	
2030: Estimate	> 85 Kg > 980 L > 9.6 MBTU			> 100 gal > 379 L > 7.60 MBTU


Maximum #s for each vehicle-type powered by Biomass				
Vehicle type	le type Fuel Volume ³ #s 15K mile vehicle			
Hydrogen Fuel Cell	85x10 ¹⁰ Kg	400,000,000		
E85 conventional	1.18x10 ¹¹ gal	240,720,000		
E85 hybrid	1.18x10 ¹¹ gal	328,040,000		

¹Assumes large scale, advanced, integrated technology
²10.4 MJ/L - George, T. 2000. DOE Hydrogen Program Review. San Ramon, CA.
³Estimate based on 2030 conversion technology and 1B ton of Biomass.
⁴Estimate based on PSAT model (Argonne) and 2020 vehicle technology.

Hydrogen/Biomass Programs Collaboration

- Jointparticipation in Annual Program Reviews
- Solicitation planning and selections
- Common research participants
- USDA/DOE MOU Ad+Hoc Hydrogen and Fuel Cell Committee
 - Thermochemical Biomass Process Teleseminars
 - Other
- Cost analysis collaboration

Pathways

- Gaseous Hydrogen Delivery
- Liquid Hydrogen Delivery
- Carriers

Including mixed pathways

Components

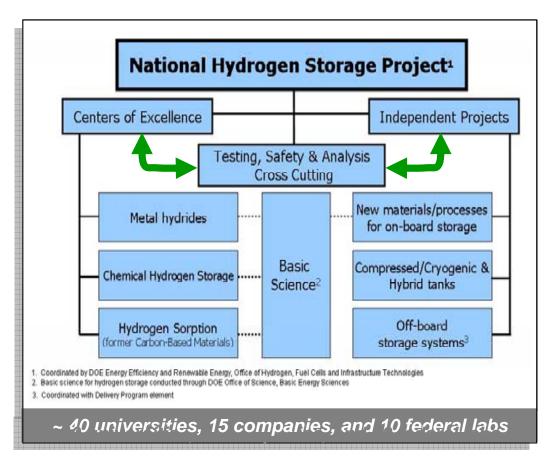
- Pipelines
- Compression
- Liquefaction
- Carriers & Transformations
- Gaseous Storage Tanks
- Geologic Storage
- GH2 Tube Trailers

- Purification
- Terminals
- Dispensers
- Liquid Storage Tanks
- Mobile Fuelers
- Liquid Trucks, Rail, Ships

Hydrogen Delivery — Challenges

Pathway/Technology/Issue	Major Challenges
Pipelines	Hydrogen embrittlement, capital cost, urban distribution
Compression—Transmission and Refueling Stations	Reliability, capital cost, energy efficiency, new technologies
Liquefaction	Capital cost, energy efficiency
Off-Board Storage Vessels	Capital cost
Geologic Storage	Sufficient suitable sites and capacity? Contamination?
Gaseous Tube Trailers	Is 1000-kg capacity possible?
Hydrogen Quality	Must meet stringent quality requirements for PEM FC
Carriers (leverages the onboard- storage program)	Liquid two-way carriers: low cost and efficient hydrogenation and dehydrogenation, high (~100%) yields and selectivity

Hydrogen Storage R&D

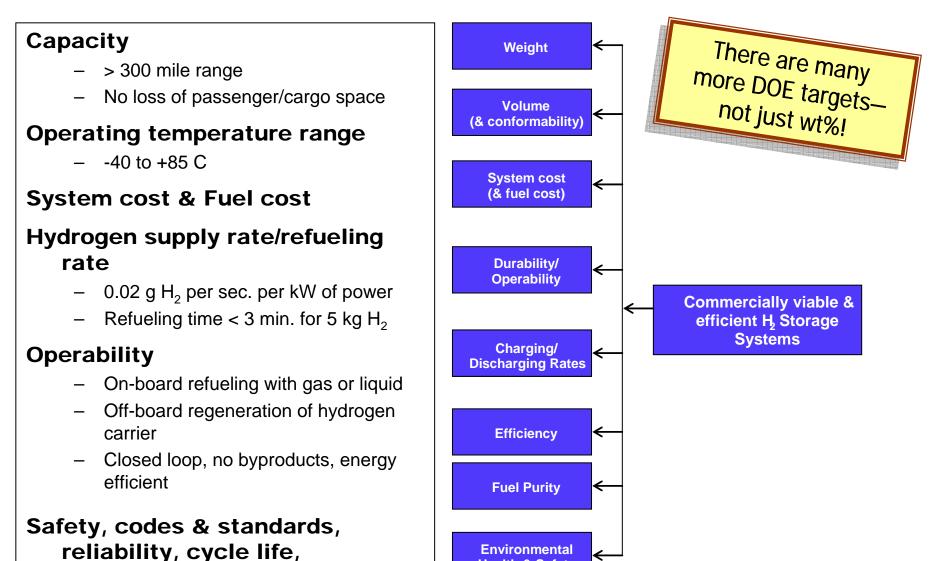

KEY OBJECTIVE: On-board H_2 storage to enable > **300 mile driving range** while meeting all requirements for set for the performance (weight, volume, kinetics, etc.)

NEAR TERM: Allows for early market use of H₂ vehicles, but won't provide full range on all platforms

- Pressurized tanks: currently in use in most H₂ vehicles
- Cryo-compressed storage: combines low-temperature H₂ storage with pressurization

LONGER TERM: Needed to enable >300-mile range

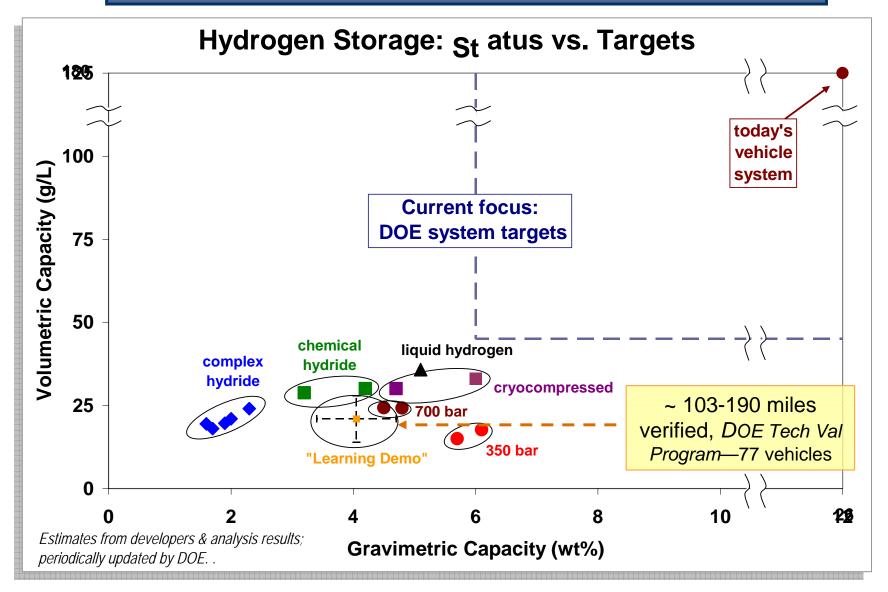
- Diverse portfolio with materials focus, for low-pressure storage
- Focus materials research on temperature, pressure, kinetics (as well as capacity)



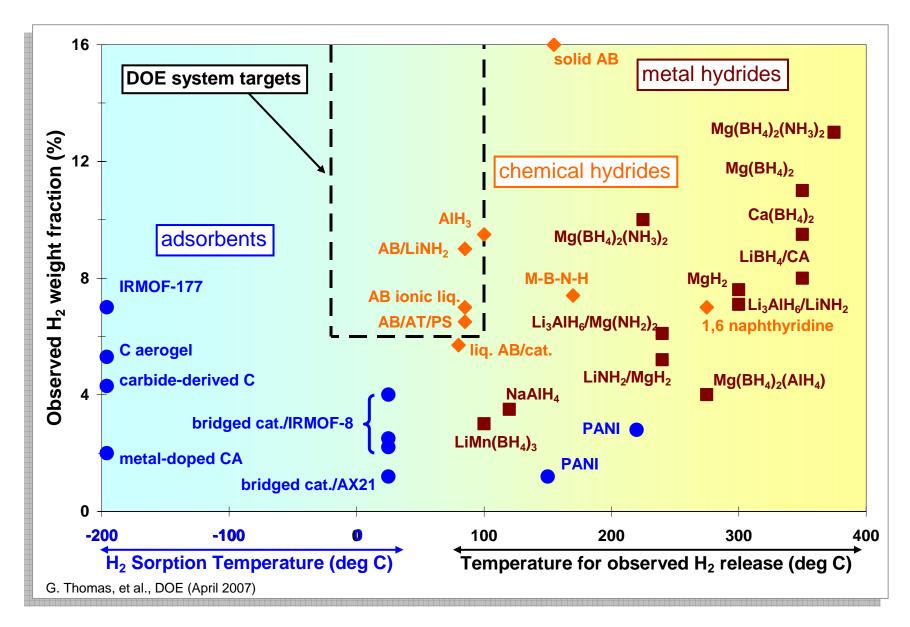
New Engineering Center of Excellence Planned for FY08

efficiency . . .

Hydrogen Storage R&D — Application-driven goals and targets



Health & Safety



Hydrogen Storage — Systems Status

No technology meets targets—Results include data from vehicle validation

Examples of H₂ Storage Progress — Material Capacity vs. Temperature

Fuel Cell R&D

MAJOR RESEARCH AREAS:

Membranes

Catalysts & Supports

Water Transport

Characterization & Analysis

PRIMARY FOCUS

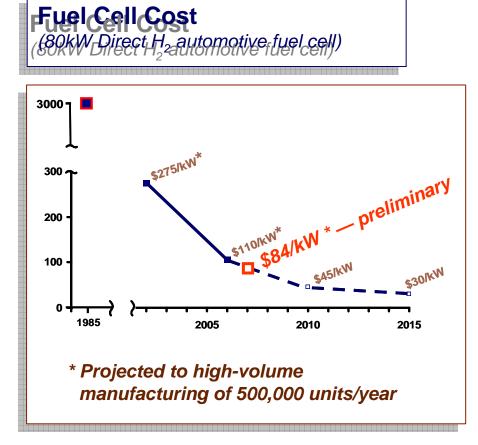
- Primary focus is on fuel cells for transportation applications
- R&D is focused on components rather than systems

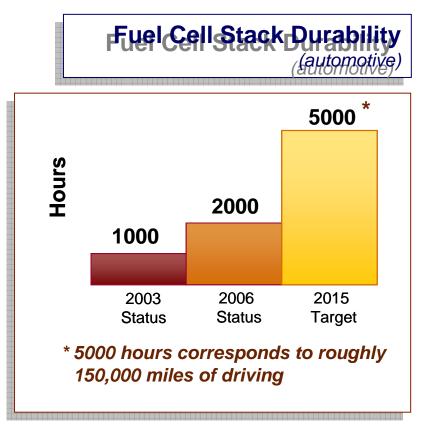
KEY TARGETS:

- \$45/kW by 2010; \$30/kW by 2015
- 5,000-hour durability by 2015

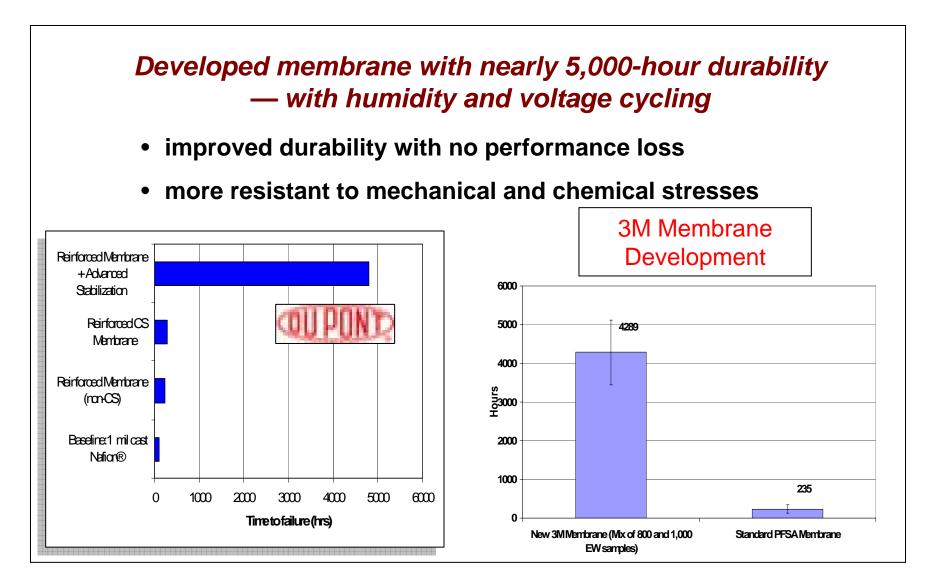
SECONDARY FOCUS

Stationary and other early-market fuel cells to establish the manufacturing base




KEY TARGETS:

- Distributed Power: \$750/kW and 40,000-hour durability (with 40% efficiency) by 2011
- APUs: Specific power of 100 W/kg and power density of 100 W/L by 2010
- Portable Power: Energy density of 1,000 Wh/L by 2010


Fuel Cells — Progress

Fuel Cell Progress — Improved Membrane Durability

Technology Validation — Vehicles & Infrastructure

Technologies are validated and progress evaluated through learning demonstrations

DOE Vehicle/Infrastructure Demonstration

Four teams, in 50/50 cost-shared projects, operating **77 fuel cell vehicles** and **14 hydrogen stations**

Verified fuel cell vehicle performance:

- EFFICIENCY: 53 58% (>2x higher, than internal combustion gasoline engines)
- RANGE: 1693-1590 miles
- FUELCELL SYSTEM DURABLY TY: 1600 HOWES (1-48,000 miles)

Demonstrated Fuel Cost: \$3/gge, from natural gas

DOT is demonstrating fuel cell buses and providing data to DOE for analysis

Eight buses in California, Massachusetts, New York, South Carolina, and Washington, DC

Market Transformation

DOE is actively promoting commercialization of PEM fuel cell technologies by supporting early adoption, and by building partnerships with the public and private sectors

- Resistance to new technologies
- Lack of information on life-cycle costs
- Lack of user confidence related to reliability
- High capital cost

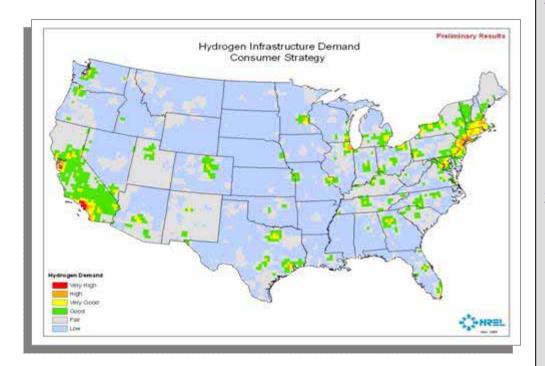
EARLYMARKETOPPORTUNITES

Fuel Cells for Backup Power:

- Longer continuous run-time, greater durability than batteries
- Require less maintenance than batteries or generators
- Potential cost savings over batteries and generators

A1-kW fuel cell system has been providing power for this FAA radio tower near Chicago for more than 3 years. Photo courtesy of Reli0n

Fuel Cells for Material Handling Equipment:


- Allow for rapid refueling much faster than changing-out or recharging batteries
- Provide constant power without voltage drop
- Eliminate need for space for battery storage and chargers

Looking Ahead —

Scenario analysis examines infrastructure development

Los Angeles and New York City metro areas represent the most attractive initial marketplaces for the introduction of hydrogen FCVs. This is due to these areas' high population density.

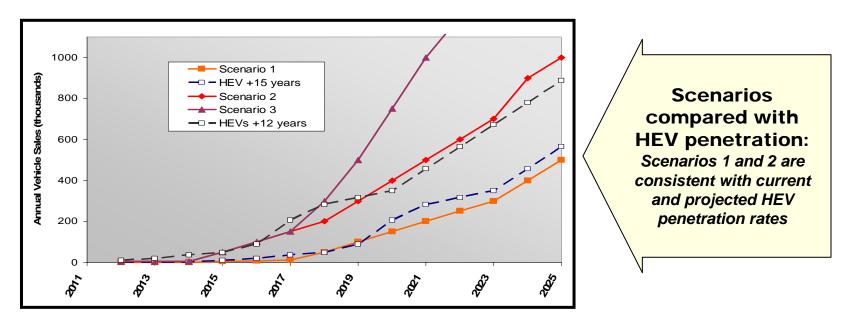
"Lighthouse" concept: targets top urban areas

2012-2015: INITIAL INTRODUCTION

- New York/Northern NJ/Long Island
- Los Angeles/Riverside/Orange County/San Diego

2016-2019: TARGETED REGIONAL GROWTH

- San Francisco/Oakland/San Jose/ Sacramento/Yolo
- Boston/Worcester/Lawrence
- Washington/Baltimore
- Chicago/Gary/Kenosha
- Detroit/Ann Arbor/Flint
- Dallas/Fort Worth
- Atlanta


2020-2025: INTER-REGIONAL EXPANSION

- Houston/Galveston/Brazoria
- St. Louis
- Minneapolis/St. Paul
- Philadelphia/Wilmington/
- Atlantic City
- Phoenix/Mesa
- Denver/Boulder/Greeley

Looking Ahead – Analysis of potential vehicle market penetration scenarios* helps to assess infrastructure needs

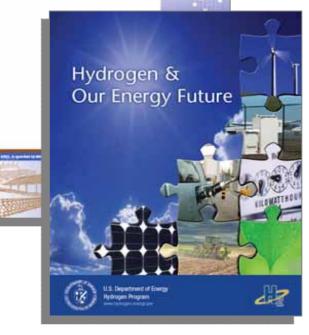
	Initial Stages	Interim Growth	Market Penetration by 2025
Scenario 1	By 2012 : <i>hundreds to thousands</i> of vehicles per year	By 2018: tens of thousands of vehicles per year	2.0 million vehicles
Scenario 2	By 2012 : <i>thousands of vehicles</i> per year	By 2015: <i>tens of thousands</i> per year; by 2018: <i>hundreds of thousands</i> per year.	5.0 million vehicles
Scenario 3	By 2012 : <i>thousands of vehicles</i> per year	By 2021: <i>millions</i> of vehicles per year	10.0 million vehicles

*These are scenarios for analysis purposes only. They do not represent a strategy or a proposal.

Questions?

For more information visit: www.hydrogen_energy.gov

Hydrogen Posture Plan


For more information on the Hydrogen Program www.hydrogen.energy.gov/roadmaps_vision.html

Hydrogen Posture Plan

An Integrated Research, Development and Demonstration Plan

Learning Demonstration Interim Progress Report – Summer 2007 K. Woke, S. Sprik, H. Thomas, C. Weich, and J. Kutz

Learning Demonstration Interim Progress Report For more information on the vehicle/infrastructure demonstration www.hydrogen.energy.gov/news_learning_demo.html

Hydrogen Overview BookFor more information on hydrogen and fuel cell technologieswww1.eere.energy.gov/hydrogenandfuelcells/education/h2iq.html

Back-up Slides

Office of Energy Efficiency & Renewable Energy (EERE) — Hydrogen Budget

	Funding (\$ in thousands)				
Activity	FY 2006 Approp.	FY 2007 Approp.	FY 2008 Request	FY 2008 House Mark	FY 2008 Senate Mark
Hydrogen Production & Delivery	8,391	33,702	40,000	40,000	40,000
Hydrogen Storage R&D	26,040	33,728	43,900	43,900	43,900
Fuel Cell Stack Component R&D	30,710	37,100	44,000	44,000	44,000
Technology Validation	33,301	39,413	30,000	30,000	45,000
Transportation Fuel Cell Systems	1,050	7,324	8,000	8,000	8,000
Distributed Energy Fuel Cell Systems	939	7,257	7,700	7,700	7,700
Fuel Processor R&D	637	3,952	3,000	3,000	3,000
Safety, Codes & Standards	4,595	13,492	16,000	16,000	16,000
Education	481	1,978	3,900	3,900	3,900
Systems Analysis	4,787	9,637	11,500	11,500	11,500
Manufacturing R&D	0	1,928	5,000	5,000	5,000
Congressionally Directed	42,520	0	0	0	0
TOTAL	153,451	189,511	213,000	213,000	228,000