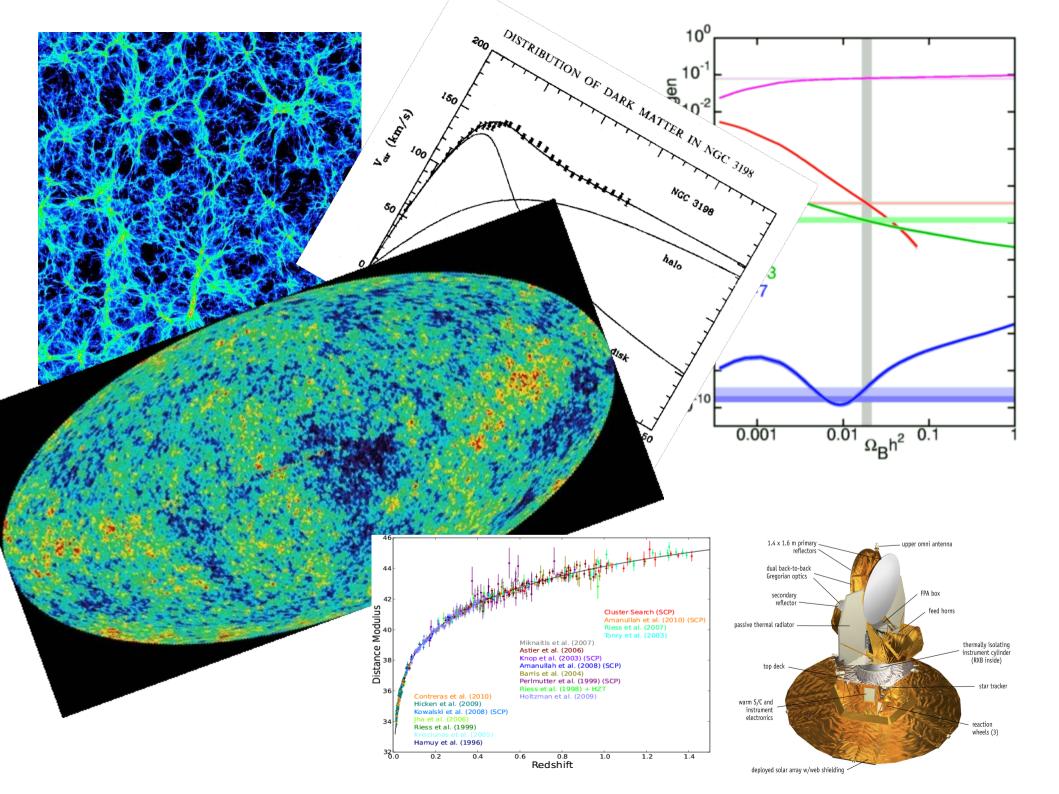
Electroweak Multiplets for Dark Matter and the Higgs


Reinard Primulando

Work with Joachim Kopp, Ethan Neil and Jure Zupan

Outline

- A tentative 130 GeV gamma ray line.
- Electroweak multiplet and the gamma ray line.
- Collider phenomenology.
- Effect to Higgs branching fraction.

The Universe in a Nutshell Cupcake

Figure 1: Contents of the Universe, as illustrated by a chocolate cupcake. Recipe available upon request.

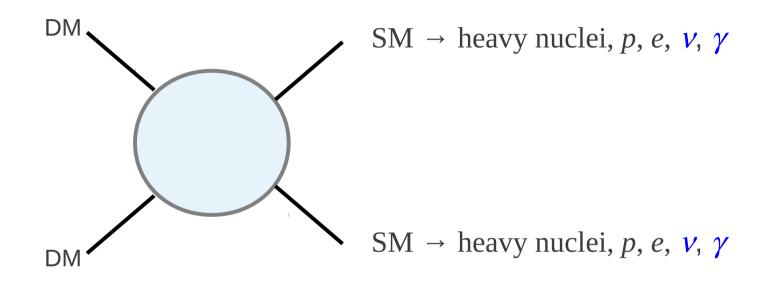
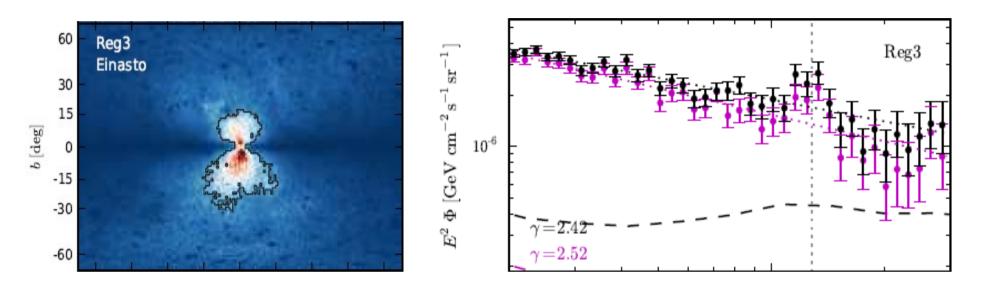

The Universe in a Nutshell Cupcake

Figure 1: Contents of the Universe, as illustrated by a chocolate cupcake Recipe available upon request.

Indirect Detection of Dark Matter

- Photons and neutrinos cosmic rays point to the source.
- Places to see DM: galactic center and dwarf galaxies

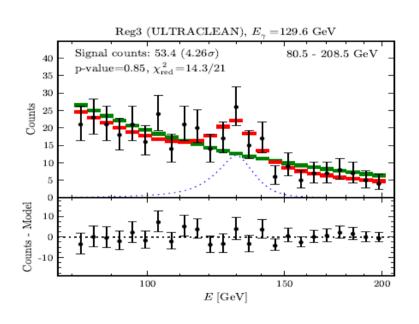
Gamma Rays from DM Annihilation


Continuous spectrum

- Decay products of heavier particles.
- Usually hard to distinguish from astrophysical backgrounds.

Line spectrum

- Usually loop suppressed.
- No astrophysical backgrounds.
- Smoking gun.

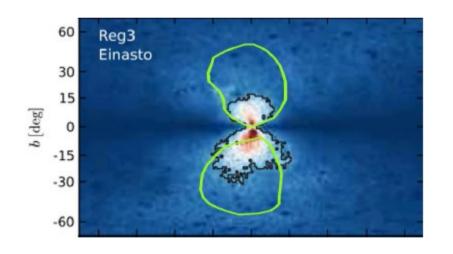

Line Signal from the Galactic Center (?)

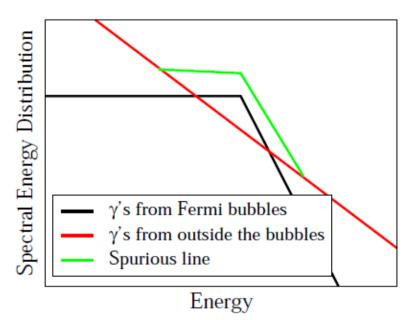
T. Bringmann, et.al., arXiv:1203.1312; C. Weniger, arXiv:1204.2797

- Four years of FERMI-LAT public data (Pass 7).
- Signal area is optimized to maximize SNR.
- Background fluxes are approximated by a single power law.

Tentative Signal from the Galactic Center

- 3.3 σ after trial factor.
- $m_{\chi} = 129.8 \pm 2.4^{+7}_{-13} \text{ GeV}$
- $\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} = (1.27 \pm 0.32^{+0.18}_{-0.28}) \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}$

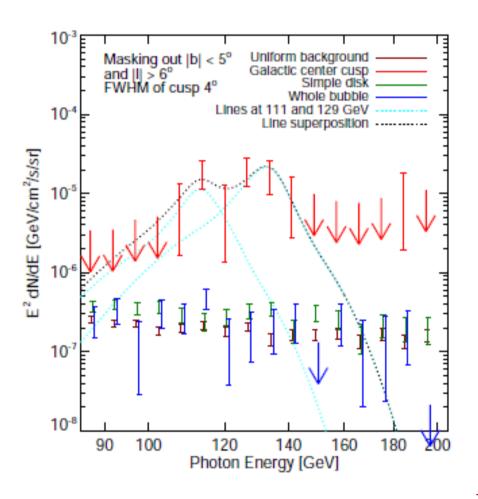

C. Weniger, arXiv:1204.2797


Astrophysics Backgrounds?

Cold ultrarelativistic pulsar winds

F. Aharonian, D. Khangulyan, D. Malyshev, arXiv:1207.0458

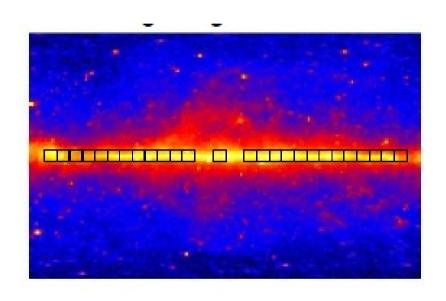
Fermi Bubbles

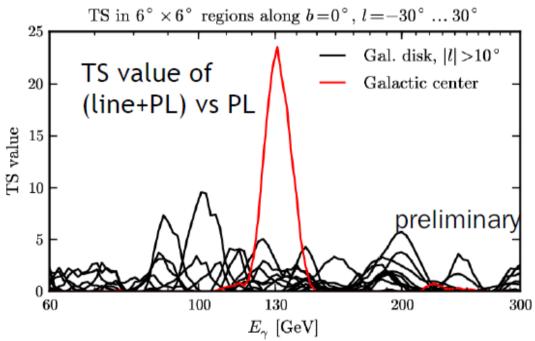


S. Profumo, T. Linden, arXiv:1204.6047

Fermilab Seminar - 8/9/2012

Astrophysics Backgrounds?

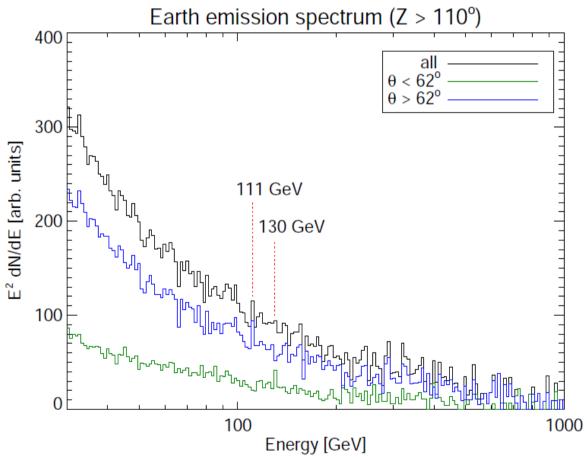



- Contributions from Fermi Bubbles are small.
- Also consistent with two lines at 111 GeV and 130 GeV.
- 5.1σ for one line, 5.5σ for two lines.

M. Su, D.P. Finkbeiner, arXiv:1206.1616

Validation Tests

Scan along the galactic disc:

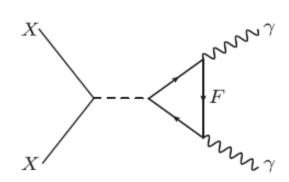


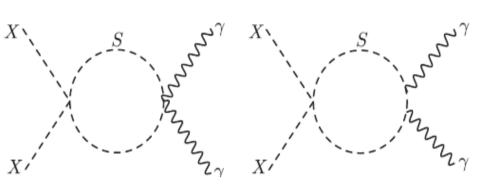
C. Weniger, IDM2012 talk

Validation Tests

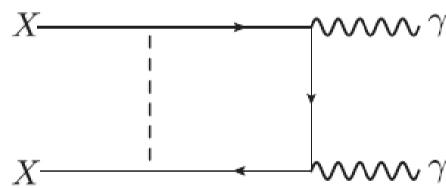
Looking at the Earth limb:

- Cuts were used to maximize the line features.
- Need a trial factor.

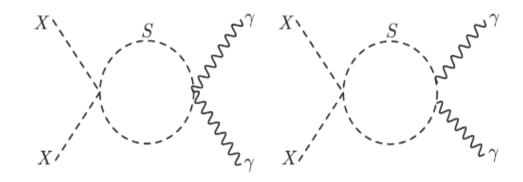

M. Su, D.P. Finkbeiner, arXiv:1206.1616


Everywhere else?

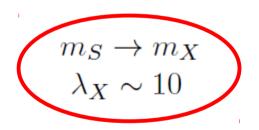
- Galaxy clusters (A. Hektor, M. Raidal, E. Tempel, arXiv:1207.4466).
- Unassociated Fermi-LAT source (M. Su, D. P. Finkbeiner, arXiv:1207.7060).


However see D. Hooper, T. Linden, arXiv:1208.0828.

Models for the Lines



- Large DM-new particle couplings → Perturbativity.
- Charged particle masses are close to DM mass → Tuning.



M. Buckley, D. Hooper, arXiv:1205.6811

Models for the Lines

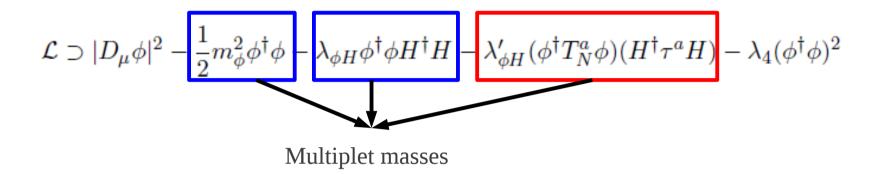
- Large DM-new particles couplings → Perturbativity.
- Charged particle masses are close to DM mass → Tuning.

M. Buckley, D. Hooper, arXiv:1205.6811

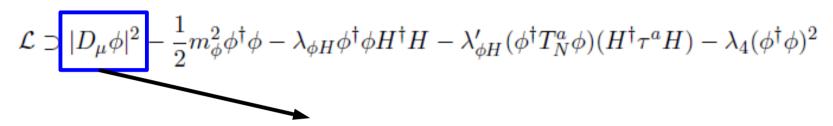
Scalar Multiplet Model

- We consider a model with a scalar SU(2) multiplet.
- The components of the multiplet are multicharged.
- Presence of multicharged particles in the loop helps to alleviate the perturbativity constraints.

$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$

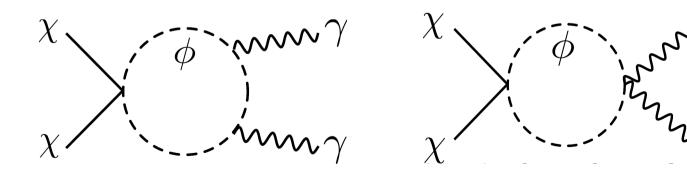

$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^2 \chi^2 - \lambda_{\chi H} \chi^2 H^{\dagger} H - \lambda_{\chi \phi} \chi^2 \phi^{\dagger} \phi.$$

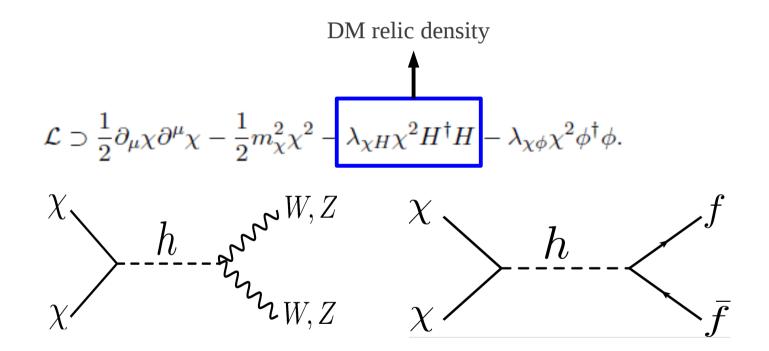

$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^2 \chi^2 - \lambda_{\chi H} \chi^2 H^{\dagger} H - \lambda_{\chi \phi} \chi^2 \phi^{\dagger} \phi.$$

- Impose a \mathbb{Z}_2 symmetry on χ .
- Accidental global U(1) symmetry on ϕ .

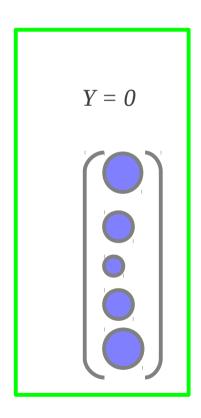


$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^2 \chi^2 - \lambda_{\chi H} \chi^2 H^{\dagger} H - \lambda_{\chi \phi} \chi^2 \phi^{\dagger} \phi.$$



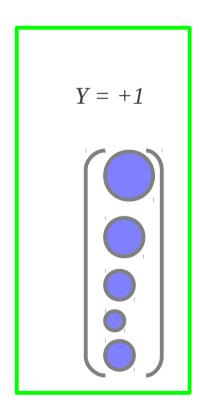
DM annihilation into two photons

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^{2} \chi^{2} - \lambda_{\chi H} \chi^{2} H^{\dagger} H - \lambda_{\chi \phi} \chi^{2} \phi^{\dagger} \phi.$$


$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$

Multiplet Masses

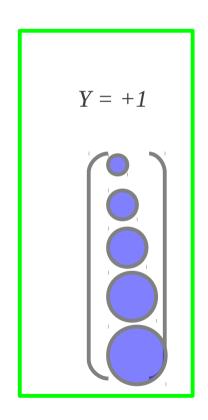
$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$


- The first two terms give an overall mass.
- For a (nearly) degenerate multiplet, the electroweak corrections gives mass splittings.
- The charged components get positive mass contributions.
- The corrections are in order of 100 MeV.

Multiplet Masses

$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$

- The first two terms give an overall mass.
- For a (nearly) degenerate multiplet, the electroweak corrections gives mass splittings.
- The charged components get positive mass contributions.
- The corrections are in order of 100 MeV.

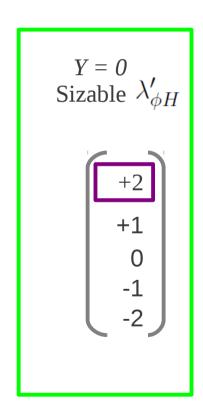

Multiplet Masses

$$\mathcal{L} \supset |D_{\mu}\phi|^2 - \boxed{\frac{1}{2} m_{\phi}^2 \phi^{\dagger} \phi} - \boxed{\lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H} - \boxed{\lambda_{\phi H}' (\phi^{\dagger} T_N^a \phi) (H^{\dagger} \tau^a H)} - \lambda_4 (\phi^{\dagger} \phi)^2$$

• Last term splits the masses between components.

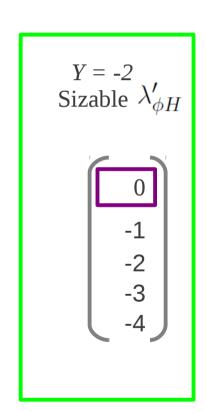
$$-\lambda'_{\phi H}(\phi^{\dagger}T_N^a\phi)(H^{\dagger}\tau^a H) \rightarrow +\lambda'_{\phi H}v^2\phi^{\dagger}T_N^3\phi$$

• The top or bottom component of the multiplet becomes the lightest component.

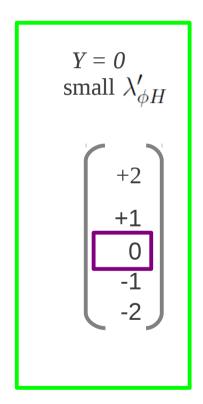


$$\mathcal{L} \supset |D_{\mu}\phi|^2 - \frac{1}{2} m_{\phi}^2 \phi^{\dagger} \phi - \lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H - \lambda_{\phi H}' (\phi^{\dagger} T_N^a \phi) (H^{\dagger} \tau^a H) - \lambda_4 (\phi^{\dagger} \phi)^2$$

- We do not consider lightest charged component.
- The lightest component annihilates efficiently
 → small relic density.
- If $\lambda'_{\phi H}$ is sizable, the lightest component is the top or bottom of the multiplet $\rightarrow Y = -(n-1)/2$.
- The nucleon-multiplet cross section is very large.


$$\mathcal{L} \supset |D_{\mu}\phi|^2 - \frac{1}{2} m_{\phi}^2 \phi^{\dagger} \phi - \lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H - \lambda_{\phi H}' (\phi^{\dagger} T_N^a \phi) (H^{\dagger} \tau^a H) - \lambda_4 (\phi^{\dagger} \phi)^2$$

- We do not consider lightest charged component.
- The lightest component annihilates efficiently
 → small relic density.
- If $\lambda'_{\phi H}$ is sizable, the lightest component is the top or bottom of the multiplet $\rightarrow Y = -(n-1)/2$.
- The nucleon-multiplet cross section is very large.



$$\mathcal{L} \supset |D_{\mu}\phi|^2 - \frac{1}{2} m_{\phi}^2 \phi^{\dagger} \phi - \lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H - \lambda_{\phi H}' (\phi^{\dagger} T_N^a \phi) (H^{\dagger} \tau^a H) - \lambda_4 (\phi^{\dagger} \phi)^2$$

- We do not consider lightest charged component.
- The lightest component annihilates efficiently
 → small relic density.
- If $\lambda'_{\phi H}$ is sizable, the lightest component is the top or bottom of the multiplet $\rightarrow Y = -(n-1)/2$.
- The nucleon-multiplet cross section is very large.

- To avoid direct detection bound, we require Y = 0.
- In this case, $\lambda'_{\phi H}$ has to be small.
- The mass splitting comes mostly from the electroweak corrections.

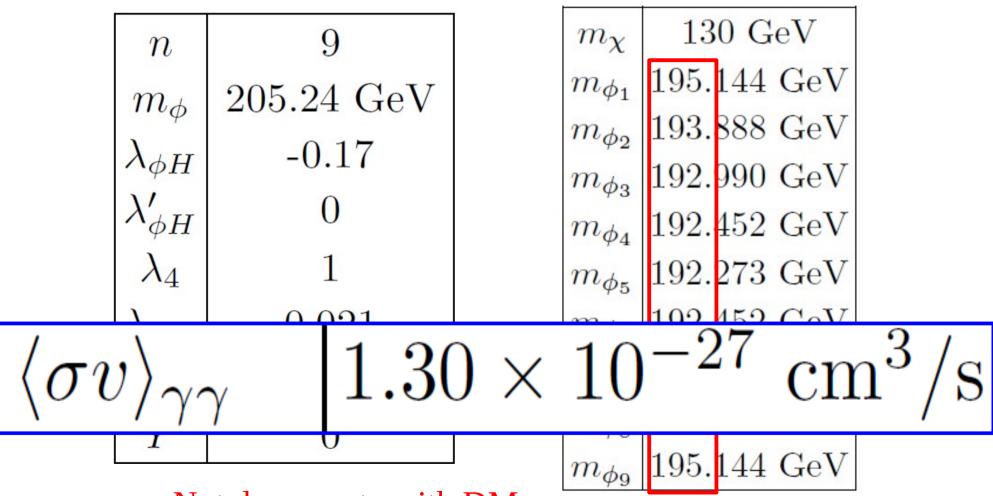
\overline{n}	9
m_{ϕ}	$205.24~\mathrm{GeV}$
$\lambda_{\phi H}$	-0.17
$\lambda'_{\phi H}$	0
λ_4	1
$\lambda_{\chi H}$	0.021
$\lambda_{\chi\phi}$	0.5
Y	0

n	9	dimension of representation
m_{ϕ}	$205.24~\mathrm{GeV}$	
$\lambda_{\phi H}$	-0.17	multiplet-Higgs coupling
$\lambda'_{\phi H}$	0	mass splitting term
λ_4	1	
$\lambda_{\chi H}$	0.021	DM-Higgs coupling
$\lambda_{\chi\phi}$	0.5	DM-multiplet coupling
Y	0	hypercharge

n	9
m_{ϕ}	$205.24~\mathrm{GeV}$
$\lambda_{\phi H}$	-0.17
$\lambda'_{\phi H}$	0
λ_4	1
$\lambda_{\chi H}$	0.021
$\lambda_{\chi\phi}$	0.5
Y	0

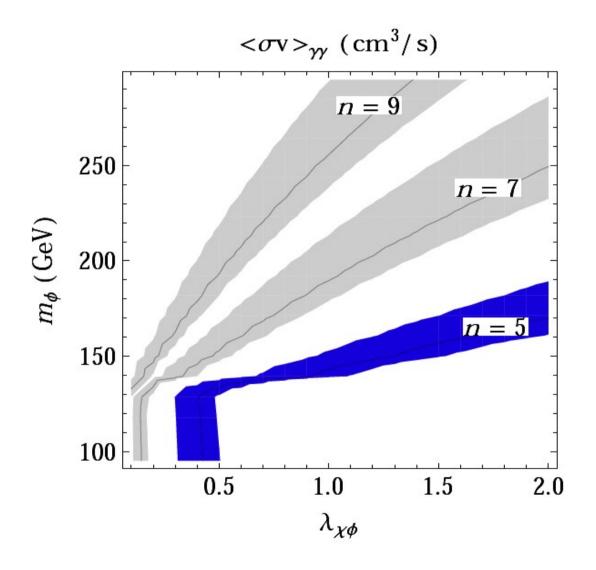
m_{χ}	$130 \mathrm{GeV}$
m_{ϕ_1}	$195.144~\mathrm{GeV}$
m_{ϕ_2}	$193.888~\mathrm{GeV}$
m_{ϕ_3}	$192.990~\mathrm{GeV}$
m_{ϕ_4}	$192.452~\mathrm{GeV}$
m_{ϕ_5}	$192.273~\mathrm{GeV}$
m_{ϕ_6}	$192.452~\mathrm{GeV}$
m_{ϕ_7}	$192.990~{\rm GeV}$
m_{ϕ_8}	$193.888~\mathrm{GeV}$
m_{ϕ_9}	$195.144~\mathrm{GeV}$

\overline{n}	9
m_{ϕ}	$205.24~\mathrm{GeV}$
$\lambda_{\phi H}$	-0.17
$\lambda'_{\phi H}$	0
λ_4	1
$\lambda_{\chi H}$	0.021
$\lambda_{\chi\phi}$	0.5
Y	0


m_{χ}	$130 \mathrm{GeV}$
m_{ϕ_1}	$195.144~\mathrm{GeV}$
m_{ϕ_2}	193.888 GeV
m_{ϕ_3}	$192.990~\mathrm{GeV}$
m_{ϕ_4}	$192.452~\mathrm{GeV}$
m_{ϕ_5}	$192.273~\mathrm{GeV}$
m_{ϕ_6}	$192.452~\mathrm{GeV}$
m_{ϕ_7}	$192.990~{\rm GeV}$
m_{ϕ_8}	193.888 GeV
m_{ϕ_9}	$195.144~\mathrm{GeV}$

Perturbative

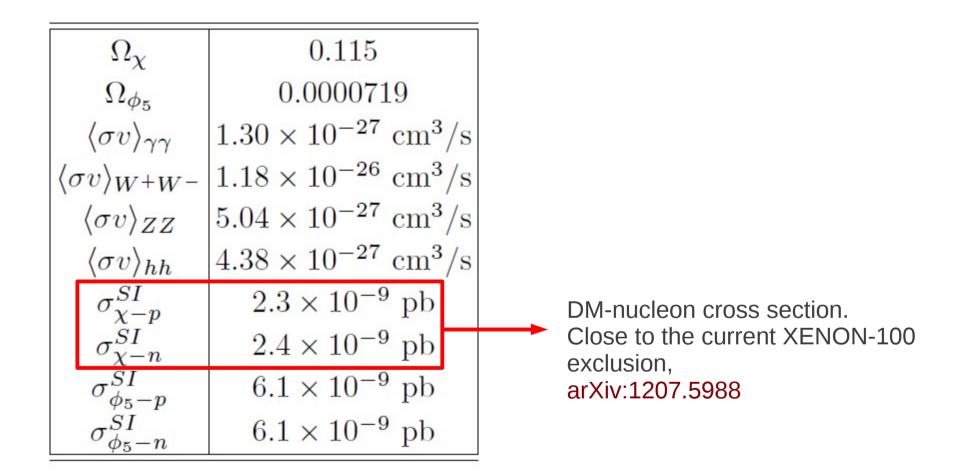
n	9
m_{ϕ}	$205.24~\mathrm{GeV}$
$\lambda_{\phi H}$	-0.17
$\lambda'_{\phi H}$	0
λ_4	1
$\lambda_{\chi H}$	0.021
$\lambda_{\chi\phi}$	0.5
Y	0


m_{χ}	$130 \mathrm{GeV}$
m_{ϕ_1}	$195.144~\mathrm{GeV}$
m_{ϕ_2}	193.888 GeV
m_{ϕ_3}	$192.990~\mathrm{GeV}$
m_{ϕ_4}	$192.452~\mathrm{GeV}$
m_{ϕ_5}	$192.273~\mathrm{GeV}$
m_{ϕ_6}	$192.452~\mathrm{GeV}$
m_{ϕ_7}	$192.990~\mathrm{GeV}$
m_{ϕ_8}	$193.888~\mathrm{GeV}$
m_{ϕ_9}	$195.144~\mathrm{GeV}$

Not degenerate with DM

Not degenerate with DM

Case I – Dependence on Multiplet


Astrophysical Bounds

Ω_χ	0.115
Ω_{ϕ_5}	0.0000719
$\langle \sigma v \rangle_{\gamma\gamma}$	$1.30 \times 10^{-27} \text{ cm}^3/\text{s}$
$\langle \sigma v \rangle_{W^+W^-}$	$1.18 \times 10^{-26} \text{ cm}^3/\text{s}$
$\langle \sigma v \rangle_{ZZ}$	$5.04 \times 10^{-27} \text{ cm}^3/\text{s}$
$\langle \sigma v \rangle_{hh}$	$4.38 \times 10^{-27} \text{ cm}^3/\text{s}$
$\sigma_{\chi-p}^{SI}$	$2.3 \times 10^{-9} \text{ pb}$
$\sigma_{\chi-n}^{SI}$	$2.4 \times 10^{-9} \text{ pb}$
$\sigma_{\phi_5-p}^{SI}$	$6.1 \times 10^{-9} \text{ pb}$
$\sigma^{SI}_{\phi_5-n}$	$6.1 \times 10^{-9} \text{ pb}$

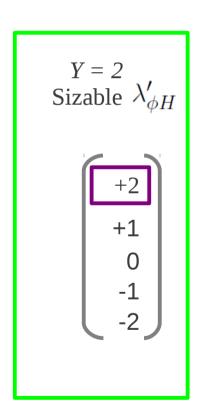
DM abundance

Stable component abundance

Astrophysical Bounds

Astrophysical Bounds

Ω_{χ}	0.115
Ω_{ϕ_5}	0.0000719
$\langle \sigma v \rangle_{\gamma\gamma}$	$1.30 \times 10^{-27} \text{ cm}^3/\text{s}$
$\langle \sigma v \rangle_{W^+W^-}$	$1.18 \times 10^{-26} \text{ cm}^3/\text{s}$
$\langle \sigma v \rangle_{ZZ}$	$5.04 \times 10^{-27} \text{ cm}^3/\text{s}$
$\langle \sigma v \rangle_{hh}$	$4.38 \times 10^{-27} \text{ cm}^3/\text{s}$
$\sigma_{\chi-p}^{SI}$	$2.3 \times 10^{-9} \text{ pb}$
$\sigma_{\chi-n}^{SI}$	$2.4 \times 10^{-9} \text{ pb}$
$\sigma^{SI}_{\phi_5-p}$	$6.1 \times 10^{-9} \text{ pb}$
$\sigma_{\phi_5-n}^{SI}$	$6.1 \times 10^{-9} \text{ pb}$


Stable multiplet component-nucleon cross section

Case II – Unstable Multiplet

$$\mathcal{L} \supset |D_{\mu}\phi|^2 - \frac{1}{2} m_{\phi}^2 \phi^{\dagger} \phi - \lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H - \lambda_{\phi H}' (\phi^{\dagger} T_N^a \phi) (H^{\dagger} \tau^a H) - \lambda_4 (\phi^{\dagger} \phi)^2$$

- If we want a sizable $\lambda'_{\phi H}$, the lightest multiplet has to decay.
- It can decay to SM particles by higher dimension operators.

$$\mathcal{L}_5 \supset \frac{c_\phi}{\Lambda} \phi(H^\dagger)^4$$

Case II – Benchmark Point

n	5
m_{ϕ}	213 GeV
$\lambda_{\phi H}$	-0.1
$\lambda'_{\phi H}$	0.1
λ_4	1
$\lambda_{\chi H}$	0.021
$\lambda_{\chi\phi}$	1
Y	2

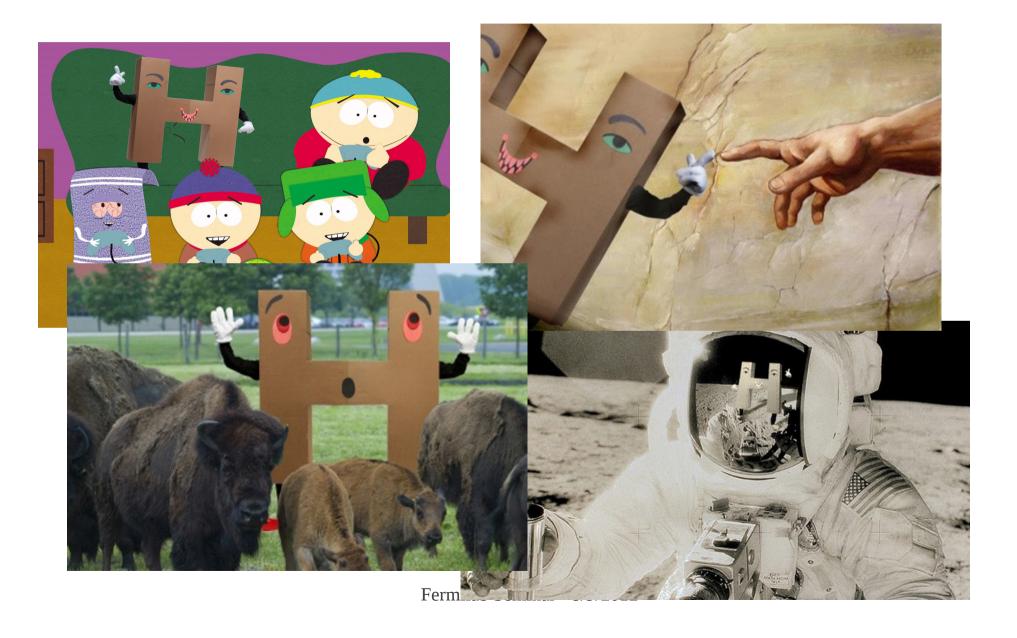
m_{χ}	$130 \mathrm{GeV}$
m_{ϕ_1}	$190.461~\mathrm{GeV}$
m_{ϕ_2}	198.259 GeV
m_{ϕ_3}	$205.761~\mathrm{GeV}$
m_{ϕ_4}	$213.000~\mathrm{GeV}$
m_{ϕ_5}	$220.001~\mathrm{GeV}$

Case II – Astrophysics Bounds

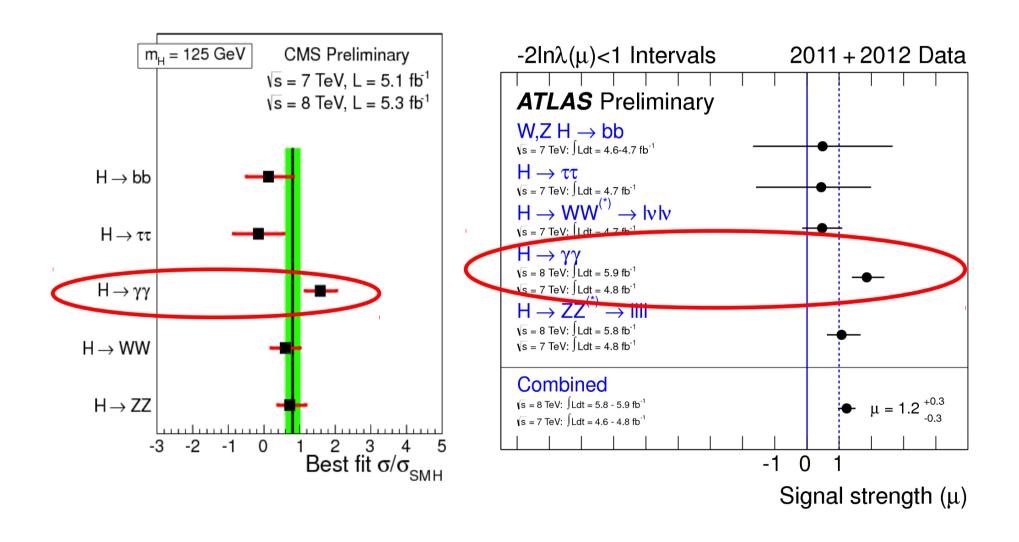
$$\begin{array}{|c|c|c|c|}\hline \Omega_{\chi} & 0.115 \\ \langle \sigma v \rangle_{\gamma\gamma} & 1.28 \times 10^{-27} \text{ cm}^3/\text{s} \\ \langle \sigma v \rangle_{W^+W^-} & 1.18 \times 10^{-26} \text{ cm}^3/\text{s} \\ \langle \sigma v \rangle_{ZZ} & 5.04 \times 10^{-27} \text{ cm}^3/\text{s} \\ \langle \sigma v \rangle_{hh} & 4.38 \times 10^{-27} \text{ cm}^3/\text{s} \\ \sigma_{\chi^-p}^{SI} & 2.3 \times 10^{-9} \text{ pb} \\ \sigma_{\chi^-n}^{SI} & 2.4 \times 10^{-9} \text{ pb} \\ \end{array}$$

Collider Phenomenology

- For case I, the mass splitting is small.
- It is possible that the charged multiplets has long lifetime.
- For case II, heavier multiplets decay into lower multiplet and soft jets/leptons.

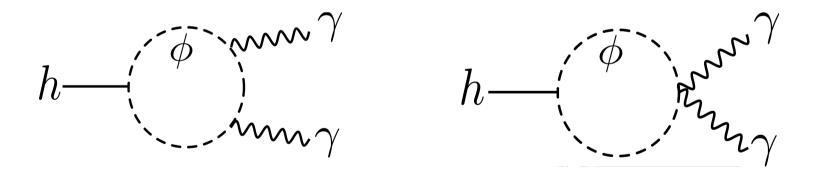

Collider Phenomenology

$\sigma_{\phi_{1,9}^{\pm 4}\phi_{1,9}^{\mp 4}}$ @ 2 TeV Tevatron	51.2 fb
$\sigma_{\phi_{1,9}^{\pm 4}\phi_{1,9}^{\mp 4}}$ @ 7 TeV LHC	308.0 fb
$\sigma_{\phi_{1,9}^{\pm 4}\phi_{1,9}^{\mp 4}}$ @ 8 TeV LHC	405.8 fb
$\Gamma_{\phi_{1,9}}$	$3.5 \times 10^{-11}~\mathrm{GeV}$
$BR_{\phi_{1,9} \to \phi_{2,8}\pi}$	59 %
$BR_{\phi_{1,9} \to \phi_{2,8}e\nu}$	20 %
$BR_{\phi_{1,9} \to \phi_{2,8}\mu\nu}$	21 %
$c\tau$	$5.7~\mu\mathrm{m}$
$\sigma_{\phi_{2,8}^{\pm 3}\phi_{2,8}^{\mp 3}}$ @ 2 TeV Tevatron	29.8 fb
$\sigma_{\phi_{2,8}^{\pm 3}\phi_{2,8}^{\mp 3}}$ @ 7 TeV LHC	178.0 fb
$\sigma_{\phi_{2,8}^{\pm 3}\phi_{2,8}^{\mp 3}}$ @ 8 TeV LHC	234.4 fb
$\Gamma_{\phi_{2,8}}$	$1.1 \times 10^{-11}~\mathrm{GeV}$
$BR_{\phi_{2,8} \to \phi_{3,7}\pi}$	61 %
$\mathrm{BR}_{\phi_{2,8} \to \phi_{3,7}e\nu}$	20 %
$BR_{\phi_{2,8}\to\phi_{3,7}\mu\nu}$	19 %
ст	$18~\mu\mathrm{m}$

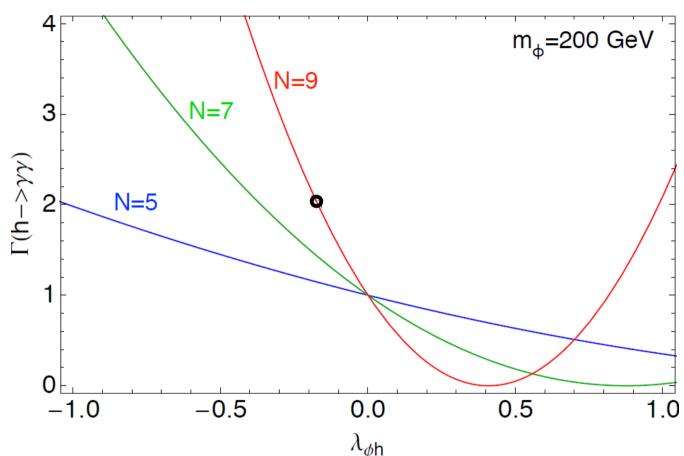

Case I

$\sigma_{\phi_{3,7}^{\pm\pm}\phi_{3,7}^{\mp\mp}}$ @ 2 TeV Tevatron	13.6 fb
$\sigma_{\phi_{3,7}^{\pm\pm}\phi_{3,7}^{\mp\mp}}$ @ 7 TeV LHC	80.6 fb
$\sigma_{\phi_{3,7}^{\pm\pm}\phi_{3,7}^{\mp\mp}}$ @ 8 TeV LHC	106.0 fb
$\Gamma_{\phi_{3,7}}$	$1.1\times 10^{-12}~{\rm GeV}$
$BR_{\phi_{3,7} \to \phi_{4,6}\pi}$	61 %
$BR_{\phi_{3,7} \to \phi_{4,6}e\nu}$	18 %
$BR_{\phi_{3,7} \to \phi_{4,6}\mu\nu}$	21 %
ст	$0.18~\mathrm{mm}$
$\sigma_{\phi_{4,6}^{\pm}\phi_{4,6}^{\mp}}$ @ 2 TeV Tevatron	3.5 fb
$\sigma_{\phi_{4,6}^{\pm}\phi_{4,6}^{\mp}}$ @ 7 TeV LHC	20.2 fb
$\sigma_{\phi_{4,6}^{\pm}\phi_{4,6}^{\mp}}$ @ 8 TeV LHC	26.8 fb
$\Gamma_{\phi_{4,6}}$	$5.3 \times 10^{-14}~\mathrm{GeV}$
$BR_{\phi_{4,6} \to \phi_{5}\pi}$	97.7 %
$BR_{\phi_{4,6} \to \phi_{5}e\nu}$	0.3 %
$BR_{\phi_{4,6} \rightarrow \phi_{\pi}\mu\nu}$	2~%
ст	3.7 mm
$\sigma_{\phi_5^{\pm}\phi_5^{\mp}}$ @ 2 TeV Tevatron	$6.5 \times 10^{-12} \text{ fb}$
$\sigma_{\phi_5^{\pm}\phi_5^{\mp}}$ @ 7 TeV LHC	$2.7 \times 10^{-9} \text{ fb}$
$\sigma_{\phi_5^{\pm}\phi_5^{\mp}}$ @ 8 TeV LHC	$4.2 \times 10^{-9} \text{ fb}$

What About the Higgs?



Higgs Branching Fractions



$h \rightarrow \gamma \gamma$ in the Model

$$\mathcal{L} \supset |D_{\mu}\phi|^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi H}\phi^{\dagger}\phi H^{\dagger}H - \lambda_{\phi H}'(\phi^{\dagger}T_{N}^{a}\phi)(H^{\dagger}\tau^{a}H) - \lambda_{4}(\phi^{\dagger}\phi)^{2}$$
 enhance $h \rightarrow \gamma\gamma$

$h \rightarrow \gamma \gamma$ in the Model

• No modification for $h \to WW$ and $h \to ZZ$

Conclusion

- A possible line feature has been found in FERMI-LAT data.
- A model with a multiplet electroweak scalar can explain the line without having problems with perturbativity.
- Interesting collider phenomenology.
- The model can also explain enhancement of $h \rightarrow \gamma \gamma$

THANK YOU

BACKUP SLIDES

Oblique Parameters Bounds

$$\alpha S \equiv 4e^{2} [\Pi'_{33}(0) - \Pi'_{3Q}(0)],$$

$$\alpha T \equiv \frac{e^{2}}{s^{2}c^{2}m_{Z}^{2}} [\Pi_{11}(0) - \Pi_{33}(0)],$$

$$\alpha U \equiv 4e^{2} [\Pi'_{11}(0) - \Pi'_{33}(0)].$$

Oblique Parameters Bounds

$$\alpha S \equiv 4e^{2} [\Pi'_{33}(0) - \Pi'_{3Q}(0)],$$

$$\alpha T \equiv \frac{e^{2}}{s^{2}c^{2}m_{Z}^{2}} [\Pi_{11}(0) - \Pi_{33}(0)],$$

$$\alpha U \equiv 4e^{2} [\Pi'_{11}(0) - \Pi'_{33}(0)].$$

$$S \propto \Pi'_{33}(0) - (\Pi'_{33}(0) + \Pi'_{3Y}(0)) \to \Pi'_{3Y}(0).$$

S is proportional to $\operatorname{tr}(T^3)$

Oblique Parameters Bounds

$$\alpha S \equiv 4e^{2} [\Pi'_{33}(0) - \Pi'_{3Q}(0)],$$

$$\alpha T \equiv \frac{e^{2}}{s^{2}c^{2}m_{Z}^{2}} [\Pi_{11}(0) - \Pi_{33}(0)],$$

$$\alpha U \equiv 4e^{2} [\Pi'_{11}(0) - \Pi'_{33}(0)].$$

$$T \propto \text{tr}(T^1 T^1) - \text{tr}(T^3 T^3) = C(\mathbf{N})(\delta^{11} - \delta^{33}) = 0.$$