Neutrino Oscillations for large θ_{13}

Pilar Coloma

Fermilab, April 12, 2012

Outline

- Introduction to neutrino oscillations
- Present and future facilities: where are we
- The 1st and 2nd oscillation maxima
- Precision at future oscillation facilities
- Conclusions

$$\mathcal{L}_{mass}^{\nu} \sim Y \bar{L}_L \tilde{\phi} \nu_R + \frac{1}{2} M \bar{\nu}_R^c \nu_R$$

If no M, there may be a profound reason is B-L gauge?

Small M implies extra sterile neutrinos $_{\it SBL}$ anomalies? $_{\it cosmology}$?

Large M opens a window to a higher scale of NP

leptogenesis?

The Dawn of Particle Physics Beyond the Standard Model, Gordon Kane (Scientific American, 2003)

Courtesy of E. Fernández-Martínez

Courtesy of E. Fernández-Martínez

Neutrino oscillations

CC interactions mix charged leptons and neutrinos

$$\mathcal{L}_{CC}^{\nu} \sim U_{i\alpha}^{*} \left(\overline{l}_{\alpha} \gamma_{L}^{\mu} \nu_{i} W_{\mu}^{+} + h.c. \right)$$

Neutrinos are produced as a superposition of mass eigenstates. During propagation, each wave packet evolves independently:

$$|\nu_i(L,t)\rangle = e^{-i(E_i t - p_i L)} |\nu_i\rangle$$

Neutrino oscillations

CC interactions mix charged leptons and neutrinos

$$\mathcal{L}_{CC}^{\nu} \sim U_{i\alpha}^{*} \left(\overline{l}_{\alpha} \gamma_{L}^{\mu} \nu_{i} W_{\mu}^{+} + h.c. \right)$$

Neutrinos are produced as a superposition of mass eigenstates. During propagation, each wave packet evolves independently:

$$P_{\alpha\beta} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

(In two families)

The leptonic mixing matrix

Pontecorvo, 1957 Maki, Nakagawa, Sakata, 1962

$$\sin^2 \theta_{23} = 0.52^{+0.06}_{-0.07}$$

$$\Delta m_{31}^2 = \begin{cases} 2.50^{+0.09}_{-0.16} \\ -(2.40^{+0.08}_{-0.09}) \end{cases} \times 10^{-3} \text{eV}^2$$

Schwetz, Tortola, Valle, 1108.1376

$$\sin^2 \theta_{12} = 0.312^{+0.017}_{-0.015}$$

$$\Delta m_{12}^2 = (7.59_{-0.18}^{+0.20}) \times 10^{-5} \,\mathrm{eV}^2$$

The shopping list

Previous hints

Previous hints from global fits pointed to nonzero θ_{13} ...

González-García, Maltoni, Salvado, 1001.4524 [hep-ph]

Long baseline beams

T2K

(295 km, 22.5 kt WC, 2.5° OA, E~0.6 GeV)

$\Delta m_{23}^2 > 0$ Best fit to T2K data 68% CL 90% CL 1106.2822 [hep-ex]

MINOS

(735 km, 5.4 kt magnetized tracking calorimeter, on axis, E~4.5 GeV)

Reactors

Daya Bay (5.3σ)

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \pm 0.005$ 1203.1669 [hep-ex]

RENO (6.3σ)

$$\sin^2 2\theta_{13} = 0.103 \pm 0.013 \pm 0.011$$
1204.0626 [hep-ex]

Plus a previous hint at 90% CL from Double Chooz, 1112.6353 [hep-ex]

Does this change anything?

Does this change anything?

Present oscillation facilities

Discovery potential at the 90% CL

Huber, Lindner, Schwetz, Winter, 0907.1896 [hep-ph]

Present oscillation facilities

T2K+NOvA+INO

(50kt/100kt; low/high res)

Blennow, Schwetz, 1203.3388 [hep-ph]

Future oscillation facilities

- Super-Beams
 - Japan: T2HK
 - USA: NOvA, LBNE
 - Europe: LAGUNA-LBNO (C2P? SPL?)
- Beta-Beams
 - Low gamma ($\gamma \sim 100$)
 - High gamma ($\gamma \sim 350 580$)
- Neutrino Factories
 - High energy ($E_{\mu} = 25 50 \text{ GeV}$)
 - Low energy $(E_{\mu} = 4.5 10 \text{ GeV})$

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$

 $+Y_{\pm}\cos\theta_{13}\sin2\theta_{13}\cos$

Cervera et al, hep-ph/0002108

Degeneracy problem: several pairs of values are able to fit the same data

Burguet-Castell et al., hep-ph/0103258

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$

 $+Y_{\pm}\cos\theta_{13}\sin2\theta_{13}\cos$

Cervera et al, hep-ph/0002108

Degeneracy problem: several pairs of values are able to fit the same data

Burguet-Castell et al., hep-ph/0103258

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$

 $+Y_{\pm}\cos\theta_{13}\sin2\theta_{13}\cos$

Cervera et al, hep-ph/0002108

Degeneracy problem: several pairs of values are able to fit the same data

Burguet-Castell et al., hep-ph/0103258

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$

Cervera et al, hep-ph/0002108

 $+Y_{\pm}\cos\theta_{13}\sin2\theta_{13}\cos$

This can be solved in several ways, such as including information at different neutrino energies

Matter effects

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta_{31} L}{2}\right)$$

In vacuum, this is the only dependence on the hierarchy...

Matter effects

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta_{31} L}{2}\right)$$

In matter, these are modified differently for NH/IH

Matter effects

In matter, these are modified differently for NH/1H

General landscape

BB100,BB350: hep-ph/0406132 hep-ph/0503021

T2HK: hep-ex/0106019

C2P, SPL:

1001.0077 [physics.ins-det]

hep-ex/0411062

1106.1096 [physics.acc-ph]

LENF: 1012.1872 [hep-ph]

LBNE: 1110.6249 [hep-ex]

IDS: 1112.2853 [hep-ex]

The 1st and 2nd oscillation maxima

$$P_{e\mu}^{\pm}(\theta_{13}, \delta) = X_{\pm} \sin^{2} 2\theta_{13} + Z$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta_{31} L}{2}\right)$$

$$P_{e\mu}^{\pm}(\theta_{13}, \delta) = X_{\pm} \sin^{2} 2\theta_{13} + Z$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta_{31} L}{2}\right)$$

Combining 1st+2nd peaks

The 2nd maximum was already studied for LBNE but it was of little help...

Huber and Kopp, 1010.3706 [hep-ph]

The 2nd oscillation peak

The T2KK proposal considered the 2^{nd} maximum in combination with the 1^{st} for an off-axis beam, at L~1000 km and L~650 km hep-ph/0504026

0901.1517 [hep-ph]

0801.4035 [hep-ph]

The 2nd oscillation peak

T2HK: 4 MW, 440 kton WC, 295 km

SPL-1: 4 MW, 440 kton WC, 130 km

SPL-2: 4 MW, 440 kton WC, 650 km

(Sys errors: 5% sig, 10% bg)

Coloma, Fernandez-Martinez, 1110.4583 [hep-ph]

The 2nd oscillation peak

Coloma, Fernandez-Martinez, 1110.4583 [hep-ph]

Effect of systematics

Coloma, Fernandez-Martinez, 1110.4583 [hep-ph]

Discovery potential vs precision:

Discovery potential vs precision:

On/Off peak (vacuum)

Importance of matter effects

$$(\Delta \delta)_{\pm} \propto \frac{1}{\sin\left(\frac{\pi}{2}\frac{1}{(1\mp\hat{A})}\mp\delta\right)}$$

$$\left(\hat{A} \equiv \frac{\sqrt{2}G_F n_e L}{2\Delta}\right)$$

The starting point

Huber, Lindner, Schwetz, Winter, 0907.1896 [hep-ph]

Coloma, Donini, Fernández-Martínez, Hernández, 1203.5651 [hep-ph]

Precision

Coloma, Donini, Fernández-Martínez, Hernández, 1203.5651 [hep-ph]

T2HK: 4 MW, 500 kton WC, 295 km, 5% sys

C2P: 800 kW, 100 kton LAr, 2300 km, 5% sys

BB350: 1.1(2.8) x10¹⁸ ions, 500 kton WC, 650 km, 2.5% sys

LENF: $1.4 \times 10^{21}~\mu$ decays 100 kton MIND, 2000 km, 2.5% sys

Precision

Coloma, Donini, Fernández-Martínez, Hernández, 1203.5651 [hep-ph]

Conclusions

- We are in the middle of an important change
- Now that we know that t13 is large, priorities may need to be revised
 - Possible optimization of some facilities: go to 2nd peak
 - Precision becomes relevant:
 - not all facilities with good discovery potential are necessarily going to be good in precision too
 - combination of matter+vacuum may be a good option
- Effect of systematics should be studied in detail:
 - for CPV, it might be good to go to 2nd peak; for precision, a ND is needed

Thank you!