Fermi γ-ray line in an axion mediated DM model

Myeonghun Park

(CERN)

Fermilab theory seminar (Dec. 6th 2012)

- 1. Fermi Gamma Ray Line at 130 GeV from Axion-Mediated Dark Matter with Hyun Min Lee, Wan-il Park (arXiv:1205.467)
- 2. Axion-mediated dark matter and Higgs diphoton signal with Hyun Min Lee, Wan-il Park (arxiv: 1209.1955)
- 3. <u>Interplay between Fermi gamma-ray lines and the LHC</u> with Hyun Min Lee, Veronica Sanz (arxiv:12XX.XXXX)

Contents

- A reminder: New boson to two photon
- Fermi γ ray line ~ I30GeV
- Axion mediated dark matter
- Extra particles in a loop.
- Link to the "higgs → diphoton"

A bump hunting

We got the "bump" at the LHC on the 4th of July

Four lepton channel is the golden channel to study the property of newly discovered boson, but a di-photon channel was problematic (compared to "expected higgs boson")

4th of July

Di-photon

Fermi Y ray line

- An excess of E_Y around 130GeV have been reported from Fermi Large Area Telescope (Fermi LAT) based on the data; from Aug. 4 2008 to Mar. 8,2012
- Interpretation with dark matter annihilation provides:

$$<\sigma v>_{\gamma\gamma}=(1.27\sim 2.27)\times 10^{-27}cm^3s^{-1}$$

Set up

- We required a s-channel annihilation to explain a photon line ~ I30GeV
- Fermion dark matter + pseudo scalar "a" in s-channel (s-wave)
- We used "electro-weak" axion to avoid large annihilation of dark matter pair to gluon.
- We included a CP-even singlet in our consideration.
- An axion gets a weak scale mass →
 Cross section enhancement by a resonance effect
 (e.g. high scale PQ breaking)

Axion Mediated model

Dark matters to the photons (SM)

$$\mathcal{L}_{\mathrm{int}} = \lambda_{\chi} (S\bar{\chi}P_{L}\chi + S^{*}\bar{\chi}P_{R}\chi) + \sum_{i=1,2} \frac{c_{i}\alpha_{i}}{8\pi v_{s}} aF_{\mu\nu}^{i}\tilde{F}^{i\mu\nu}$$
 with $S = (s+ia)/\sqrt{2}$

and potential (+ mixing between s and h)

$$V(H,S) = \lambda_H |H|^4 + \lambda_S |S|^4 + 2\lambda_{HS} |S|^2 |H|^2 + m_H^2 |H|^2 + m_S^2 |S|^2 - \left(\frac{1}{2} m_S'^2 S^2 + \text{h.c.}\right)$$

Fermi γ ray

Direct detection

Photon line(s)

We have:

2. DM+DM
$$\rightarrow$$
 photon+Z

3. DM+DM
$$\rightarrow$$
 (Z, Z) (W,W):

$$E_{\gamma} = M_{\chi}$$

$$E_{\gamma} = M_{\chi} \left(1 - \frac{m_Z^2}{4M_{\chi}^2} \right)$$

continuum spectrum

Photon line(s)

• If
$$M_\chi=E_\gamma\sim 130GeV$$
 , then
$$E_\gamma=M_\chi\left(1-\frac{m_Z^2}{4M_\chi^2}\right)\sim 114GeV$$

In our case, when $c_1=c_2$ the intensity ratio will be

$$Z_{Y}$$
 X_{I} X_{I

Photon line(s)

 \bullet If $M_\chi=E_\gamma\sim 130 GeV$, then

$$E_{\gamma} = M_{\chi} \left(1 - \frac{m_Z^2}{4M_{\chi}^2} \right) \sim 114 GeV$$

Reg3 ULTRACLEAN

In our case, when $c_1=c_2$ the intensity ratio will be

• Branch ratio of (DM,DM \rightarrow $\gamma\gamma$) are estimated by $<\sigma v>_{\gamma\gamma}=(1.27\sim 2.27)\times 10^{-27}cm^3s^{-1}$ ~ 4-8%

$$\operatorname{Br}(\bar{\chi}\chi \to XY)_{a} \equiv \frac{\langle \sigma v \rangle_{XY}}{\langle \sigma v \rangle_{a}} \sim 14 \%$$

$$\langle \sigma v \rangle|_{\operatorname{fr}} \simeq \langle \sigma v \rangle_{a}|_{\operatorname{fr}} + \langle \sigma v \rangle_{s}|_{\operatorname{fr}}$$

4~8% =
$$\frac{\langle \sigma v \rangle_{XY}}{\langle \sigma v \rangle_{fr}} = \frac{Br(\bar{\chi}\chi \to XY)_a}{1 + \frac{\langle \sigma v \rangle_s}{\langle \sigma v \rangle_a}|_{fr}}$$

To be consistent with observation

$$\langle \sigma v \rangle_s / \langle \sigma v \rangle_a = 0.8 - 2.3$$

• Branch ratio of (DM,DM \rightarrow $\gamma\gamma$) are estimated by $<\sigma v>_{\gamma\gamma}=(1.27\sim 2.27)\times 10^{-27}cm^3s^{-1}$ ~ 4-8%

$$\operatorname{Br}(\bar{\chi}\chi \to XY)_a \equiv \frac{\langle \sigma v \rangle_{XY}}{\langle \sigma v \rangle_a} \sim 14 \%$$

$$\langle \sigma v \rangle|_{\rm fr} \simeq \langle \sigma v \rangle_a|_{\rm fr} + \langle \sigma v \rangle_s|_{\rm fr}$$

$$4\sim8\% = \frac{\langle \sigma v \rangle_{XY}}{\langle \sigma v \rangle_{fr}} = \frac{Br(\bar{\chi}\chi \to XY)_a}{1 + \frac{\langle \sigma v \rangle_s}{\langle \sigma v \rangle_a}|_{fr}}$$

To be consistent with observation

$$\langle \sigma v \rangle_s / \langle \sigma v \rangle_a = 0.8 - 2.3$$

 (DM,DM→WW) channel satisfies the current upper limit by Fermi LAT.

Direct dark mater detection

 $m_1 \sim 125 GeV$

$$\sigma_{\chi-N}^{\rm SI} = |\lambda_{\chi}|^2 \sin^2(2\theta) \cdot \frac{m_r^2 f_N^2}{8\pi} \left(\frac{m_N}{v}\right)^2 \left(\frac{1}{m_1^2} - \frac{1}{m_2^2}\right)^2$$

 M_x =130GeV, m_a =264GeV, v_s =700GeV

There are extra leptons

- We introduce extra vector-like leptons to generate an anomaly.
- We have two higgs doubles to have Yukawa couplings for extra leptons

vector-like lepton doublets, l_4 , \tilde{l}_4 vector-like lepton singlets, e_4^c , \tilde{e}_4^c

There are three types;

- I. vector-like doublet and singlet with PQ charge
- 2. vector-like doublet and PQ neutral singlet
- 3. vector-like doublet and triplet with PQ charge

$$\mathcal{L}_{a,\text{eff}} = \sum_{i=1,2} \frac{c_i \alpha_i}{8\pi v_s} a F_{\mu\nu}^i \tilde{F}^{i\mu\nu} \longrightarrow c_1 = \text{Tr}(q_{PQ} Y^2) \text{ and } c_2 = \text{Tr}(q_{PQ} l(r))$$

Models with extra leptons

Model : $-\mathcal{L}_{\text{Yukawa}} = \lambda_{\chi} S \chi \tilde{\chi} + \lambda_{l} S l_{4} \tilde{l}_{4} + \lambda_{e} S e_{4}^{c} \tilde{e}_{4}^{c} + y_{l} H_{d} l_{4} e_{4}^{c} - \tilde{y}_{l} H_{u} \tilde{l}_{4} \tilde{e}_{4}^{c} + \text{h.c.}$

Majorana mass for neutrino $\frac{1}{M}(l_iH_u)(l_jH_u)$

	q_i	u_i^c	d_i^c	l_i	e_i^c	l_4	e_4^c	$ ilde{l}_4$	\widetilde{e}_4^c	H_u	H_d	S	χ	$\tilde{\chi}$
PQ	1	1	1	2	0	1	1	1	1	-2	-2	-2	1	1
Z_2	+	+	_	+	_	_	+	+	+	+	_	_	_	+

Table 1: PQ charges and Z_2 parities for Majorana neutrino case

only dirac mass for neutrino

	q_i	u_i^c	d_i^c	l_i	e_i^c	N_i^c	l_4	e^c_4	$ ilde{l}_4 $	\widetilde{e}^c_4	H_u	H_d	S	χ	$ ilde{\chi} $
PQ	1	1	1	1	1	1	1	1	1	1	-2	-2	-2	1	1
Z_2	+	+	_	+		+	_	+	+	+	+	_	_	_	+

Table 2: PQ charges and Z_2 parities for Dirac neutrino case

Possible mixing between leptons by $H_d l_i e_4^c$ exist. We introduced Z_2 to protect mixings.

$$\mathcal{L}_{a,\text{eff}} = \sum_{i=1,2} \frac{c_i \alpha_i}{8\pi v_s} a F_{\mu\nu}^i \tilde{F}^{i\mu\nu} \longrightarrow c_1 : c_2 = 3, 1$$

Models with extra lepton

Model 2: vector-like doublet and PQ neutral singlet

$$-\mathcal{L} = \lambda_{\chi} S \chi \tilde{\chi} + \lambda_{l} S l_{4} \tilde{l}_{4} + m_{e} e_{4}^{c} \tilde{e}_{4}^{c} + y_{l} H_{d} l_{4} e_{4}^{c} - \tilde{y}_{l} H_{u} \tilde{l}_{4} \tilde{e}_{4}^{c} + \text{h.c.}$$

$$\mathcal{L}_{a,\text{eff}} = \sum_{i=1,2} \frac{c_i \alpha_i}{8\pi v_s} a F^i_{\mu\nu} \tilde{F}^{i\mu\nu} \longrightarrow c_1 : c_2 = 1, 1$$

Anomaly only comes from vector-like doublet lepton

Model 3: vector-like doublet and triplet with PQ charge

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\chi} S \chi \tilde{\chi} + \lambda_{l} S l_{4} \tilde{l}_{4} + \lambda_{e} S e_{4}^{c} \tilde{e}_{4}^{c} + y_{l} H_{d} l_{4} T - \tilde{y}_{l} H_{u} \tilde{l}_{4} T + \text{h.c.}$$

$$\mathcal{L}_{a,\text{eff}} = \sum_{i=1,2} \frac{c_i \alpha_i}{8\pi v_s} a F_{\mu\nu}^i \tilde{F}^{i\mu\nu} \longrightarrow c_1 : c_2 = 3, 1$$

Link to higgs

 New charged leptons are inside the higgs to two photon loop.

Summary of model prediction

	Model I	Model II	Model III
(c_1,c_2)	(3,1)	(1, 1)	(1,3)
${ m Br}(ar{\chi}\chi o\gamma\gamma)$	$\gtrsim 40\%$	$\gtrsim 14\%$	$\gtrsim 6\%$
$R_{\gamma\gamma}$	$\lesssim 1.5$	$\lesssim 1.5$	$\lesssim 1.4$

- Singlet model (I, II) have larger higgs to two photon enhancement. But for the Fermi gamma ray, they require extra annihilation channels.
- Triplet model (III) does not require extra annihilation channels. It has smaller higgs to two phton enhancement compared to other models.

Conclusions

- We proposed a singlet fermion dark matter to explain recent Fermi LAT data.
- Extra vector-like leptons can explain Fermi LAT data and higgs to two photon enhancement.
- But we can not see the trace of axion at the LHC yet.

Thank you.

$$\mathcal{L}_{\text{axion}} = i\bar{\chi}\gamma^{\mu}\partial_{\mu}\chi - m_{\chi}\bar{\chi}\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{1}{2}m_{a}^{2}a^{2} - \frac{1}{4}F_{\mu\nu}^{i}F^{i\mu\nu}$$
$$+ \frac{1}{\sqrt{2}}\lambda_{\chi}ia\,\bar{\chi}\gamma^{5}\chi + \sum_{i=1,2}\frac{c_{i}\alpha_{i}}{8\pi v_{s}}aF_{\mu\nu}^{i}\tilde{F}^{i\mu\nu}$$