

Applications of Optimization to Industrial Problems

Nick Sahinidis
Carnegie Mellon University

Optimization in 30 seconds

The optimum is where the gradient of the function is zero

Historical Developments in Optimization

- 300 B.C: Shortest distance from a point to a line (Euclid)
- 1600s: Calculus (Leibniz/Newton)
- 1801: Least squares (Gauss)
- 1875: Minimum free energy principle (Gibbs)
- Late 40's: Linear optimization
 - Army operations; Linear objective function and constraints
- Late 50's: Nonlinear optimization
 - Chemical process industries; Nonlinear functions
- 60's: Integer optimization
 - Discrete manufacturing; Integer variables to model discrete decisions and economies of scale
- Today: Mixed-integer nonlinear optimization—MINLP

The Multiple Local Minima Challenge

 Classical optimization algorithms provide a local minimum "closest" to the starting point used

Convexification

Range Reduction

Finiteness

BRANCH-AND-REDUCE

BARON Software

- First commercial software to offer deterministic guarantee of global optimality for multi-extremal nonlinear optimization problems
- Two-pronged approach to technology transfer
 - Commercial
 - Under the modeling languages GAMS and AIMMS
 - Free
 - Under the NEOS server for optimization

Selected BARON Users

Academic institutions

- MIT
- Pennsylvania State University
- RPI
- Lamar University
- Purdue University
- University of Oklahoma
- McMaster University
- Technical Univ. of Darmstadt
- Norwegian Univ. of Technology
- Middle East Technical University
- Australian National University
- IIT Delhi
- Amsterdam University
- Budapest University
- National Univ. of Singapore

Companies

- Pfizer
- ExxonMobil
- ISO New England
- Energy Greece
- Beijing Research
- Tokyo Gas
- China National Water
- Fort S Houston
- Danmarks Stat
- ABN AMRO Asset Management
- Countrywide
- Unilever
- Ecopetrol
- NEC Info Sys
- Comsoft Direct BV
- Shell Global Solutions

Automotive Refrigerant Design

- Higher enthalpy of vaporization (ΔH_{ve}) reduces the amount of refrigerant
- Lower liquid heat capacity (C_{pla}) reduces amount of vapor generated in expansion valve
- Maximize ∆H_{ve}/ C_{pla}

Electronics Cooling

- Continuous increase in circuit density
- Heat flux expected to exceed 1000 W cm⁻²
- Industry wide accepted limit of 85°C
- Current fluids show poor thermal properties

Heat Transfer Fluid Design

Reduce pumping costs

High heat transfer rates

Reduce refrigerant charge

Low viscosity

High thermal conductivity

High heat capacity

Trim Loss Minimization

- Minimize costs (cutting patterns and pattern changes)
- Satisfy customer demands
- What patterns to use?
- How many times should each pattern repeat?

Supply Chain Design and Operations

- Technology selection
- Facility location
- Capacity expansion
- Blending and pooling
- Uncertainty
- Portfolio optimization
- Very large-scale decision making problems

Breast Cancer Diagnosis

- 200,000 cases diagnosed in the U.S. a year
- 40,000 deaths a year
- Most breast cancers are first diagnosed by the patient as a lump in the breast
- Majority of breast lumps are benign
- Available diagnosis methods:
 - Mammography (68% to 79% correct)
 - Surgical biopsy (100% correct but invasive and costly)
 - Fine needle aspirate (FNA)
 - With visual inspection: 65% to 98% correct
 - Automated diagnosis: 95% correct
 - Linear programming techniques
 - Mangasarian and Wolberg in 1990s

Wisconsin Diagnostic Breast Cancer Database

From Wolberg, Street, & Mangasarian, 1993

- 653 patients
- 9 cytological characteristics:
 - Clump thickness
 - Uniformity of cell size
 - Uniformity of cell shape
 - Marginal adhesion
 - Single epithelial cell size
 - Bare nuclei
 - Bland chromatin
 - Normal nucleoli
 - Mitoses
- Biopsy classified these 653 patients in two classes:
 - Benign
 - Malignant

Bilinear Separability of Two Sets in Rⁿ

- Requires the solution of three nonlinear optimization problems with multiple local optima—solved with BARON
- 99% accuracy on testing set

Partnership Opportunities

- Optimization is essential technology in applications in
 - Chemistry, biology, medicine
 - Automated manufacturing
 - Engineering design
 - Business management
- Center for Advanced Process Decision-making
 - Optimizers: Biegler-Grossmann-Sahinidis
 - International visitors and self-funded students
 - 25 member companies
 - Research contracts
 - http://capd.cheme.cmu.edu/index.html

Contact Information

- Nick Sahinidis
- Carnegie Mellon University
- 412-268-3338
- sahinidis@cmu.edu
- http://archimedes.cheme.cmu.edu

