Posts Tagged ‘spacecraft’

Slice of History: Granite Oil Slip Table

Tuesday, February 5th, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Granite Oil Slip Table
Granite Oil Slip Table — Photograph Number P-2784Ac

In 1963, spacecraft vibration tests were conducted in the Environmental Laboratory at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. A slab of granite, coated in oil, provided a smooth and stable base for the magnesium slip plate, test fixture and Ranger 6 spacecraft mounted on it. There were vibration exciters (shakers) on each end, capable of more than 25,000 pounds of force. The horizontal fixture at left was used for low frequency vibration testing, and the equipment was capable of testing along all three spacecraft axes.

During the 1960s, Ranger, Surveyor and Mariner spacecraft were developed, built and tested at JPL. Because of the heavy use, a similar but smaller test fixture was used for vibration tests on spacecraft components and assemblies. Building 144 still contains test facilities, but this equipment was removed and the room now contains an acoustic chamber.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


The Giant Asteroid, Near and Far

Thursday, January 10th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft departing asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft departing the giant asteroid Vesta. Image credit: NASA/JPL-Caltech

Dawn concluded 2012 almost 13,000 times farther from Vesta than it began the year. At that time, it was in its lowest orbit, circling the alien world at an average altitude of only 210 kilometers (130 miles), scrutinizing the mysterious protoplanet to tease out its secrets about the dawn of the solar system.

To conduct its richly detailed exploration, Dawn spent nearly 14 months in orbit around Vesta, bound by the behemoth’s gravitational grip. In September they bid farewell, as the adventurer gently escaped from the long embrace and slipped back into orbit around the sun. The spaceship is on its own again in the main asteroid belt, its sights set on a 2015 rendezvous with dwarf planet Ceres. Its extensive ion thrusting is gradually enlarging its orbit and taking it ever farther from its erstwhile companion as their solar system paths diverge.

Meanwhile, on faraway Earth (and all the other locations throughout the cosmos where Dawnophiles reside), the trove of pictures and other precious measurements continue to be examined, analyzed, and admired by scientists and everyone else who yearns to glimpse distant celestial sights. And Earth itself, just as Vesta, Ceres, Dawn, and so many other members of the solar system family, continues to follow its own orbit around the sun.

Thanks to a coincidence of their independent trajectories, Earth and Dawn recently reached their smallest separation in well over a year, just as the tips of the hour hand and minute hand on a clock are relatively near every 65 minutes, 27 seconds. On Dec. 9, they were only 236 million kilometers (147 million miles) apart. Only? In human terms, this is not particularly close. Take a moment to let the immensity of their separation register. The International Space Station, for example, firmly in orbit around Earth, was 411 kilometers (255 miles) high that day, so our remote robotic explorer was 575 thousand times farther. If Earth were a soccer ball, the occupants of the orbiting outpost would have been a mere seven millimeters (less than a third of an inch) away. Our deep-space traveler would have been more than four kilometers (2.5 miles) from the ball. So although the planet and its extraterrestrial emissary were closer than usual, they were not in close proximity. Dawn remains extraordinarily far from all of its human friends and colleagues and the world they inhabit.

As the craft reshapes its solar orbit to match Ceres’s, it will wind up farther from the sun than it was while at Vesta. (As a reminder, see the table here that illustrates Dawn’s progress to each destination on its long interplanetary voyage.) We saw recently, however, that the route is complex, and the spacecraft is temporarily approaching the sun. Before the ship has had time to swing back out to a greater heliocentric range, Earth will have looped around again, and the two will briefly be even a little bit closer early in 2014. After that, however, they will never be so near each other again, as Dawn will climb higher and higher up the solar system hill, its quest for new and exciting knowledge of distant worlds taking it farther from the sun and hence from Earth.

› Continue reading Marc Rayman’s Dawn Journal to learn how to approximate Dawn’s position in the sky on Jan. 21 and 22


Short Puffs Keep Dawn Chugging Along

Tuesday, December 4th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at Ceres
Artist’s concept of NASA’s Dawn spacecraft at its next target, the protoplanet Ceres. Image credit: NASA/JPL-Caltech

Dear Dawndroids,

Dawn is continuing to gently and patiently change its orbit around the sun. In September, it left Vesta, a complex and fascinating world it had accompanied for 14 months, and now the bold explorer is traveling to the largest world in the main asteroid belt, dwarf planet Ceres.

Dawn has spent most of its time since leaving Earth powering its way through the solar system atop a column of blue-green xenon ions emitted by its advanced ion propulsion system. Mission controllers have made some changes to Dawn’s operating profile in order to conserve its supply of a conventional rocket propellant known as hydrazine. Firing it through the small jets of the reaction control system helps the ship rotate or maintain its orientation in the zero-gravity of spaceflight. The flight team had already taken some special steps to preserve this precious propellant, and now they have taken further measures. If you remain awake after the description of what the changes are, you can read about the motivation for such frugality.

Dawn’s typical week of interplanetary travel used to include ion thrusting for almost six and two-thirds days. Then it would stop and slowly pirouette to point its main antenna to Earth for about eight hours. That would allow it to send to the giant antennas of NASA’s Deep Space Network a full report on its health from the preceding week, including currents, voltages, temperatures, pressures, instructions it had executed, decisions it had made, and almost everything else save its wonderment at operating in the forbidding depths of space so fantastically far from its planet of origin. Engineers also used these communications sessions to radio updated commands to the craft before it turned once again to fire its ion thruster in the required direction.

Now operators have changed the pace of activities. Every turn consumes hydrazine, as the spacecraft expels a few puffs of propellant through some of its jets to start rotating and through opposing jets to stop. Instead of turning weekly, Dawn has been maintaining thrust for two weeks at a time, and beginning in January it will only turn to Earth once every four weeks. After more than five years of reliable performance, controllers have sufficient confidence in the ship to let it sail longer on its own. They have refined the number and frequency of measurements it records so that even with longer intervals of independence, the spacecraft can store the information engineers deem the most important to monitor.

Although contact is established through the main antenna less often, Dawn uses one of its three auxiliary antennas twice a week. Each of these smaller antennas produces a much broader signal so that even when one cannot be aimed directly at Earth, the Deep Space Network can detect its weak transmission. Only brief messages can be communicated this way, but they are sufficient to confirm that the distant ship remains healthy.

In addition to turning less often, Dawn now turns more slowly. Its standard used to be the same blinding pace at which the minute hand races around a clock (fasten your seat belt!). Engineers cut that in half two years ago but returned to the original value at the beginning of the Vesta approach phase. Now they have lowered it to one quarter of a minute hand’s rate. Dawn is patient, however. There’s no hurry, and the leisurely turns are much more hydrazine-efficient.

With these two changes, the robotic adventurer will arrive at Ceres in 2015 with about half of the 45.6-kilogram (101-pound) hydrazine supply it had when it rocketed away from Cape Canaveral on a lovely September dawn in 2007. Mission planners will be able to make excellent use of it as they guide the probe through its exploration of the giant of the main asteroid belt.

Any limited resource should be consumed responsibly, whether on a planet or on a spaceship. Hydrazine is not the only resource that Dawn’s controllers manage carefully, but let’s recall why this one has grown in importance recently.

› Continue reading Marc Rayman’s Dawn Journal


Dawn’s Stellar Anniversary

Thursday, September 27th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Dawnniversaries,

On the fifth anniversary of the beginning of its ambitious interplanetary adventure, Dawn can look back with great satisfaction on its spectacular exploration of the giant protoplanet Vesta and forward with great eagerness to reaching dwarf planet Ceres. Today Earth’s robotic ambassador to the main asteroid belt is in quiet cruise, gradually reshaping its orbit around the sun so it can keep its appointment in 2015 with the mysterious alien world that lies ahead.

This anniversary resembles the first three more than the fourth. Its first years in space were devoted to spiraling away from the sun, ascending the solar system hill so it could gracefully slip into orbit around Vesta in time for its fourth anniversary. One year ago, Dawn was in the behemoth’s gravitational grip and preparing to map its surface in stereo and make other measurements. The subsequent year yielded stunning treasures as Dawn unveiled the wondrous secrets of a world that had only been glimpsed from afar for over two centuries. While at Vesta, it spiraled around the massive orb to position itself for the best possible perspectives. Its final spiral culminated in its departure from Vesta earlier this month. Now for its fifth anniversary, it is spiraling around the sun again, climbing beyond Vesta so that it can reach Ceres.

For those who would like to track the probe’s progress in the same terms used on previous (and, we boldly predict, subsequent) anniversaries, we present here the fifth annual summary, reusing the text from last year with updates where appropriate. Readers who wish to cogitate about the extraordinary nature of this deep-space expedition may find it helpful to compare this material with the logs from its first, second, third, and fourth anniversaries.

In its five years of interplanetary travels, the spacecraft has thrust for a total of 1060 days, or 58 percent of the time (and about 0.000000021 percent of the time since the Big Bang). While for most spacecraft, firing a thruster to change course is a special event, it is Dawn’s wont. All this thrusting has cost the craft only 267 kilograms (587 pounds) of its supply of xenon propellant, which was 425 kilograms (937 pounds) on September 27, 2007.

The fraction of time the ship has spent in powered flight is lower than last year (when it was 68 percent), because Dawn devoted relatively little of the past year to thrusting. Although it did change orbits extensively at Vesta, most of the time it was focused on exactly what it was designed and built to do: scrutinize the ancient world for clues about the dawn of the solar system.

The thrusting so far in the mission has achieved the equivalent of accelerating the probe by 7.14 kilometers per second (16,000 miles per hour). As previous logs have described (see here for one of the more extensive discussions), because of the principles of motion for orbital flight, whether around the sun or any other gravitating body, Dawn is not actually traveling this much faster than when it launched. But the effective change in speed remains a useful measure of the effect of any spacecraft’s propulsive work. Having accomplished slightly more than half of the thrust time planned for its entire mission, Dawn has already far exceeded the velocity change achieved by any other spacecraft under its own power. (For a comparison with probes that enter orbit around Mars, refer to this earlier log.)

Since launch, our readers who have remained on or near Earth have completed five revolutions around the sun, covering about 31.4 AU (4.70 billion kilometers or 2.92 billion miles). Orbiting farther from the sun, and thus moving at a more leisurely pace, Dawn has traveled 23.4 AU (3.50 billion kilometers or 2.18 billion miles). As it climbed away from the sun to match its orbit to that of Vesta, it continued to slow down to Vesta’s speed. Since Dawn’s launch, Vesta has traveled only 20.4 AU (3.05 billion kilometers or 1.90 billion miles) and the even more sedate Ceres has gone 18.9 AU (2.82 billion kilometers or 1.75 billion miles).

› Continue reading Marc Rayman’s Dawn Journal


Dawn’s Split from Asteroid Vesta - Mission Insider Explains

Wednesday, September 5th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The dwarf planet Ceres as imaged by the Keck Observatory
NASA’s Dawn spacecraft departed the giant asteroid Vesta on Sept. 04, 2012 PDT to begin its journey to a second destination, the dwarf planet Ceres, which is seen in this image from the Keck Observatory on Mauna Kea, Hawaii. Image credit: NASA/JPL-Caltech, Keck Observatory, C. Dumas

Dear Marvestalous Readers,

An interplanetary spaceship left Earth in 2007. Propelling itself gently and patiently through the solar system with a blue-green beam of xenon ions, it gradually spiraled away from the sun. It sailed past Mars in 2009, its sights set on more distant and exotic destinations. In July 2011, it gracefully and elegantly entered orbit around the second most massive resident of the main asteroid belt, Vesta. It spent more than 13 months there scrutinizing the gigantic protoplanet with all of its sensors and maneuvering to different orbits to optimize its investigations, making myriad marvelous discoveries. After they traveled together around the sun for 685 million kilometers (426 million miles), the ship left orbit in September 2012 and is now headed for dwarf planet Ceres, the largest body between the sun and Neptune not yet visited by a spacecraft. No other probe has ever been capable of the amazing feats Dawn is performing, exploring two of the largest uncharted worlds in the inner solar system.

The population of the main asteroid belt numbers in the millions. Vesta is such a behemoth that Dawn has now single-handedly examined about eight percent of the mass of the entire belt. And by the time it finishes at the colossus Ceres, it will have investigated around 40 percent.

The expedition to Vesta has produced riches beyond everyone’s hopes. With 31,000 photos, 20 million visible and infrared spectra, and thousands of hours of neutron spectra, gamma ray spectra, and gravity measurements, Dawn has revealed to humankind a unique and fascinating member of the solar system family. More akin to Earth and the other terrestrial planets than to typical asteroids, Vesta is not just another chunk of rock. It displays complex geology and even has a dense iron-nickel core, a mantle, and a crust. Its heavily cratered northern hemisphere tells the story of more than 4.5 billion years of battering in the rough and tumble asteroid belt. Its southern hemisphere was wiped clean, resurfaced by an enormous impact at least two billion years ago and an even greater collision one billion years ago. These events excavated the 400-kilometer (250-mile) Veneneia and 500-kilometer (310-mile) Rheasilvia basins. The larger basin has a mountain at the center that towers more than twice the height of Mt. Everest; indeed, it soars higher than all but one of the mountains known in the solar system. The impacts were so forceful, they nearly destroyed Vesta. The fierce shock reverberated through the entire body and left as scars an extraordinary network of vast troughs near the equator, some hundreds of kilometers (miles) long and 15 kilometers (10 miles) wide.

The powerful impacts liberated tremendous amounts of material, flinging rocks far out into space, some of which eventually made it all the way to Earth. It is astonishing that about six percent of the meteorites found here came from Vesta. We have some meteorites from Mars, and we have some meteorites from the moon, but we have far, far more that originated in those impacts at Vesta, so distant in time and space. Vesta, Mars, and the moon are the only celestial bodies identified as the source of specific meteorites.

Scientists will spend years productively poring through Dawn’s fabulous findings and learning what secrets they hold about the dawn of the solar system, and many more people will continue to marvel at the spectacular sights of this alien world. But the emissary from Earth has completed its assignment there and moved on. It has spent most of its time since the previous log using its ion propulsion system to climb higher and higher above Vesta. This departure spiral is the mirror image of the approach spiral the robotic adventurer followed last year. The unique method of entering and leaving orbit is one of the many intriguing characteristics of a mission that uses ion propulsion. Without that advanced technology, this ambitious deep space adventure would be impossible.

As Dawn ascended, Vesta’s gravitational grip grew weaker and weaker. At some point along its spiral, the explorer was far enough and moving fast enough that Vesta could no longer hold it in orbit. As smoothly and tenderly as Vesta had taken Dawn in its embrace last year, it released its erstwhile companion, each to go its own way around the sun. The bond was severed at about 11:26 p.m. PDT yesterday, when they were 17,200 kilometers (10,700 miles) apart, separating at the remarkably leisurely speed of less than 33 meters per second (73 miles per hour). Many of our readers drove their cars that fast today (although we hope it was not in school zones).

Unlike missions that use conventional chemical propulsion, there was no sudden change on the spacecraft and no nail-biting on Earth. If you had been in space watching the action, you probably would have been hungry, cold, and hypoxic, but you would not have noticed anything unusual about the scene. Apart from a possible hint of self-satisfaction, Dawn would have looked just as it had for most of its interplanetary flight, a monument to humankind’s ingenuity and passionate drive to know the cosmos perched atop a blue-green pillar of xenon ions. If, instead, you had been in Dawn mission control watching the action, you would have been in the dark and all alone (until JPL Security arrived). There was no need to have radio contact with the reliable spaceship. It had already thrust for almost 2.9 years, or 58 percent of its time in space. Thrusting during escape was no different. No one was tense or anxious; rather, all the drama is in the spectacular results of the bold mission at Vesta and the promise of what is to come at Ceres. When Dawn entered orbit, your correspondent was dancing. When Dawn left orbit, he was sleeping serenely.

A month earlier, on August 8, with the craft more than 2,100 kilometers (1,300 miles) above the surface, patiently powering its way up through Vesta’s gravity field, one of the reaction wheels experienced an increase in internal friction. Reaction wheels are used to control a spacecraft’s orientation in the frictionless, zero-gravity conditions of spaceflight. By electrically changing a wheel’s spin rate, Dawn can rotate or stabilize itself. Protective software quickly detected the event and correctly responded by deactivating that wheel and the other two that were operating, switching to the small jets that are available for the same function, and reconfiguring other systems, including powering off the ion thrust and turning to point the main antenna to Earth.

A routine communications session the next day revealed to mission controllers what had occurred. They had planned long ago to turn the wheels off for the flight from Vesta to Ceres, so having them off a few weeks early was not a significant change. The team soon restored the spacecraft to normal operations and reformulated the departure plan, and on August 17 Dawn resumed its ascent. Because of the hiatus in thrusting, escape shifted from August 26 to September 4. The flexibility in the mission timeline provided by ion propulsion made this delay easy to accommodate.

In order to conserve the hydrazine propellant that the jets use, the bonus departure observations described before were curtailed, as they were not a high priority for the mission. Nevertheless, on August 25 and 26, at an altitude of around 6,000 kilometers (3,700 miles), the explorer did peer at Vesta once more with its camera and visible and infrared mapping spectrometer. The last time it had been this far away was July 21, 2011, during its descent to an unfamiliar destination. This time, 13 months later, the spacecraft turned back for a final gaze at the magnificent world it had unveiled during its remarkable time there, a world that prior to last year had appeared as little more than a tiny smudge among the stars for the two centuries it had been observed.

The delay in the departure schedule provided a convenient benefit. Vesta has seasons, just as Earth does, although they progress more slowly on that distant orb. August 20 was the equinox, when northern hemisphere spring began. Until then, the sun had been in Vesta’s southern hemisphere throughout Dawn’s residence there. While most of the northern hemisphere was revealed during the second high-altitude mapping orbit, the illumination of the landscape immediately around the north pole was even better for this last look. After radioing its parting shots to wistful mission controllers, the ship commenced its climb again.

And then, with an stunningly successful mission behind it, a newly explored world below it, and a mysterious dwarf planet ahead of it, the indomitable and indefatigable adventurer left Vesta forever.

Dawn is 18,500 kilometers (11,500 miles) from Vesta and 64 million kilometers (40 million miles) from Ceres. It is also 2.45 AU (367 million kilometers or 228 million miles) from Earth, or 910 times as far as the moon and 2.43 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 41 minutes to make the round trip.

Dr. Marc D. Rayman
10:00 a.m. PDT September 5, 2012

› Read previous Dawn Journals by Marc Rayman


Dawn Ascends Over Asteroid Vesta

Wednesday, May 2nd, 2012

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at asteroid Vesta
This artist’s concept shows NASA’s Dawn spacecraft orbiting the giant asteroid Vesta. The depiction of Vesta is based on images obtained by Dawn’s framing cameras. Image credit: NASA/JPL-Caltech |
› Full image and caption

Dear Dawnright Spectacular Readers,

Dawn is wrapping up a spectacularly rewarding phase of its mission of exploration. Since descending to its low-altitude mapping orbit (LAMO) in December, the stalwart probe has circled Vesta about 800 times and collected a truly outstanding trove of precious observations of the protoplanet. Having far exceeded the plans, expectations, and even hopes for what it would accomplish when LAMO began, the ambitious explorer is now ready to begin its ascent. On May 1, atop its familiar blue-green pillar of xenon ions, the craft will embark upon the six-week spiral to its second high-altitude mapping orbit.

When the intricate plans for Dawn’s one-year orbital residence at Vesta were developed, LAMO was to be 70 days, longer than any other phase. Because of the many daunting challenges of exploring an uncharted, alien world in the forbidding depths of the asteroid belt so far from home, mission planners could not be confident of staying on a rigid schedule, and yet they wanted to make the most of the precious time at the giant asteroid. They set aside 40 days (with no committed activities) to use as needed in overcoming problems during the unique approach and entry into orbit as well as the intensive observation campaigns in survey orbit and the first high-altitude mapping orbit plus the complex spiral flights from each science orbit to the next. To no one’s surprise, unexpected problems did indeed arise on occasion, and yet in every case, the dedicated professionalism and expertise of the team (occasionally augmented with cortisol, caffeine, and carbohydrates) allowed the expedition to remain on track without needing to draw on that reserve. To everyone’s surprise and great delight, by the beginning of LAMO on December 12, the entirety of the 40 days remained available. Therefore, all of it was used to extend the time the spacecraft would spend at low altitude studying the fascinating world beneath it.

Dawn’s mission at Vesta, exciting and successful though it is, is not the craft’s sole objective. Thanks to the extraordinary capability of its ion propulsion system, this is the first vessel ever planned to orbit two extraterrestrial destinations. After it completes its scrutiny of the behemoth it now orbits, the second most massive resident of the main asteroid belt, Dawn will set sail for dwarf planet Ceres, the largest body between the orbits of Mars and Jupiter.

Since 2009, the interplanetary itinerary has included breaking out of Vesta orbit in July 2012 in order to arrive at Ceres on schedule in February 2015. Taking advantage of additional information they have gained on the spacecraft’s generation and consumption of electrical power, the performance of the ion propulsion system, and other technical issues, engineers have refined their analyses for how long the journey through the asteroid belt to Ceres will take. Their latest assessment is that they can shave 40 days off the previous plan, once again demonstrating the valuable flexibility of ion propulsion, and that translates into being able to stay that much longer at the current celestial residence. (This extension is different from the 40 days described above, because that was designed to ensure Dawn could complete its studies and still leave on schedule in July. For this new extension, the departure date is being changed.) Even though a larger operations team is required at Vesta than during the cruise to Ceres, the Dawn project has the wherewithal to cover the cost. Because operations at Vesta have been so smooth, no new funds from NASA are needed; rather, the project can use the money it had held in reserve in case of problems. In this new schedule, Dawn will gently free itself of Vesta’s gravitational hold on August 26.

Most of the bonus time has been devoted to extending LAMO by a month, allowing the already richly productive investigations there to be even better. (Future logs will describe how the rest of the additional time at Vesta will be spent.) With all sensors fully operational, the robotic explorer has been making the best possible use of its precious time at Vesta, revealing more and more thrilling details of an exotic world deep in the asteroid belt.

› Continue reading Marc Rayman’s Dawn Journal


The Giant Asteroid, Up Close and Personal

Thursday, September 29th, 2011

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Image of the giant asteroid Vesta by Dawn
This image obtained by the framing camera on NASA’s Dawn spacecraft shows the south pole of the giant asteroid Vesta. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› Full image and caption | › Read related news release

Dear Dawnniversaries,

Dawn’s fourth anniversary of being in space is very different from its previous ones. Indeed, those days all were devoted to reaching the distant destination the ship is now exploring. Celebrating its anniversary of leaving Earth, Dawn is in orbit around a kindred terrestrial-type world, the ancient protoplanet Vesta.

The adventurer spent August on Vesta’s shores and now it’s ready to dive in. Dawn devoted most of this month to working its way down from the 2,700-kilometer (1,700-mile) survey orbit to its current altitude of about 680 kilometers (420 miles) and changing the orientation of the orbit. (For a more detailed discussion of the altitude, go here.) The sensationally successful observing campaign in survey orbit produced captivating views, revealing a complex, fascinating landscape. Now four times closer to the surface, the probe is nearly ready for an even more comprehensive exploration from the high altitude mapping orbit (HAMO). The plans for HAMO have changed very little since it was described on the third anniversary of Dawn’s launch.

Dawn’s spiral descent went extremely well. We have seen before that bodies travel at higher velocities in lower altitude orbits, where the force of gravity is greater. For example, Mercury hurtles around the sun faster than Earth in order to balance the stronger pull of gravity, and Earth’s speed is greater than that of more remote Vesta. Similarly, satellites in close orbits around Earth, such as the International Space Station, race around faster than the much more distant moon. When it began its spiral on August 31, Dawn’s orbital speed high above Vesta was 76 meters per second (170 mph), and each revolution took nearly 69 hours. Under the gentle thrust of its ion propulsion system, the spacecraft completed 18 revolutions of Vesta, the loops getting tighter and faster as the orbital altitude gradually decreased, until it arrived at its new orbit on schedule on Sept. 18. In HAMO, Dawn orbits at 135 meters per second (302 mph), circling the world beneath it every 12.3 hours.

When Dawn’s itinerary called for it to stop thrusting, it was very close to HAMO but not quite there yet. As mission planners had recognized long beforehand, small differences between the planned and the actual flight profiles were inevitable. Extensive and sophisticated analysis has been undertaken in recent years to estimate the size of such discrepancies so the intricate plans for completing all the work at Vesta could account for the time and the work needed to deliver the robotic explorer to the intended destination. In order to accomplish the intensive program of observations with its scientific instruments, the spacecraft must follow an orbital path carefully matched to the sequences of commands already developed with painstaking attention to detail. The beauty of Dawn’;s artistically choreographed pas de deux with Vesta depends on the music and the movements being well synchronized.

During its descent, Dawn paused frequently to allow controllers to update the flight profile, accounting for some of the variances in its course along the way. Following the completion of thrusting, navigators tracked the ship more extensively as it sailed around Vesta, measuring its orbit with great accuracy. This revealed not only the details of the orbital parameters (such as size, shape, and orientation) but also more about the character of Vesta’s gravity field than could be detected at higher altitudes. With the new information, the team designed two short maneuvers to adjust the orbit. The first, lasting four hours, was executed last night, and the second, half an hour shorter, will be completed tonight. After further measurements to verify the final orbit, the month of HAMO observations will begin on Sept. 29.

› Continue reading Marc Rayman’s Dawn Journal


Slice of History: Ranger Midcourse Motor

Monday, April 4th, 2011

By Julie Cooper

Each month in “Slice of History” we’ll be featuring a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Ranger Midcourse Motor
Ranger Midcourse Motor — Photograph Number 384-5117B

Engineer Ted Metz proudly showed off the Ranger midcourse correction motor in a photo similar to this one that appeared in the May 1965 issue of Lab-Oratory, the JPL employee newsletter. “Since few Lab employees have seen the Ranger and Mariner midcourse propulsion unit, we show here the rocket motor portion of the system held by Propulsion project engineer, Ted Metz. This 50-pound thrust motor utilizes hydrazine fuel and has successfully corrected the trajectories of the Mariner R, Mariner IV and Rangers VI through IX spacecrafts.”

From 1961 to 1965, there were six Ranger flights that failed for various reasons and three very successful ones (Rangers 7, 8, and 9). Mariner R (based on the Ranger spacecraft, also called Mariner 2) had flown by Venus, and Mariner 4 was on the way to Mars.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.