

Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia

July 5, 2011

DOE/NETL- 2010/1402

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

COST AND PERFORMANCE BASELINE FOR FOSSIL ENERGY PLANTS VOLUME 2: COAL TO SYNTHETIC NATURAL GAS AND AMMONIA

DOE/NETL-2010/1402

Final Report

July 5, 2011

NETL Contact:

Larry Rath Senior Analyst Office of Systems, Analyses and Planning

National Energy Technology Laboratory www.netl.doe.gov This page intentionally left blank

Table of Contents

LIST OF EXHIBITS	III
PREPARED BY	VII
ACKNOWLEDGMENTS	VIII
LIST OF ACRONYMS AND ABBREVIATIONS	
EXECUTIVE SUMMARY	
Conversion Efficiency	
TOTAL OVERNIGHT COST	
FIRST YEAR COST OF PRODUCTION	
FIRST YEAR COST OF CO_2 AVOIDED.	
ECONOMIC PATHWAYS	
1. INTRODUCTION	
2. GENERAL EVALUATION BASIS	
2.1 SITE CHARACTERISTICS	
2.2 PLANT PRODUCTION CAPACITY	
2.3 COAL CHARACTERISTICS	
2.4 PRODUCT SPECIFICATIONS	
2.5 Environmental Targets	
2.6 CAPACITY FACTOR	
2.7 RAW WATER WITHDRAWAL AND CONSUMPTION	
2.8 Cost Estimating Methodology	
2.8.1 Capital Costs	
2.8.2 Operations and Maintenance Costs	
2.8.3 CO ₂ Transport, Storage, and Monitoring	
2.8.4 Finance Structure, Discounted Cash Flow Analysis, and First-Year Cost of SNC	
2.8.5 Ammonia Price	
A GNG AND GNG AND	
3. SNG AND SNG AND AMMONIA CO-PRODUCTION FACILITIES	55
3.1 MAJOR PROCESS AREAS	55
3.1 MAJOR PROCESS AREAS 3.1.1 Coal Receiving and Storage	55
3.1 MAJOR PROCESS AREAS 3.1.1 Coal Receiving and Storage 3.1.2 Coal Drying	
3.1MAJOR PROCESS AREAS3.1.1Coal Receiving and Storage3.1.2Coal Drying3.1.3Air Separation Unit Choice	55
3.1MAJOR PROCESS AREAS3.1.1Coal Receiving and Storage3.1.2Coal Drying3.1.3Air Separation Unit Choice3.1.4Gasifier	55
3.1MAJOR PROCESS AREAS3.1.1Coal Receiving and Storage3.1.2Coal Drying3.1.3Air Separation Unit Choice3.1.4Gasifier	55 555556586162
3.1MAJOR PROCESS AREAS3.1.1Coal Receiving and Storage3.1.2Coal Drying3.1.3Air Separation Unit Choice3.1.4Gasifier3.1.5Water Gas Shift Reactors	55 55555658616263
 3.1 MAJOR PROCESS AREAS	55 555556566162636466
 3.1 MAJOR PROCESS AREAS	55 55565658616263646667
 3.1 MAJOR PROCESS AREAS	
3.1MAJOR PROCESS AREAS3.1.1Coal Receiving and Storage3.1.2Coal Drying3.1.3Air Separation Unit Choice3.1.4Gasifier3.1.5Water Gas Shift Reactors3.1.6Mercury Removal3.1.7Acid Gas Removal (AGR) Process Selection3.1.8Methanation, Synthetic Natural Gas Purification and Compression3.1.9Pressure Swing Adsorber (Co-Production Cases Only)3.1.10Ammonia Synthesis (Co-Production Cases Only)3.1.11Zinc Oxide Guard Bed3.1.12Sulfur Recovery/Tail Gas Cleanup Process Selection3.1.13Slag Handling3.1.14Steam Generation Island3.1.15Accessory Electric Plant3.1.16Instrumentation and Control.	
 3.1 MAJOR PROCESS AREAS	
 3.1 MAJOR PROCESS AREAS 3.1.1 Coal Receiving and Storage. 3.1.2 Coal Drying	55 555555565661626364666767676767717777777777

4.1.4	Cases 1 and 2 Performance Results	
4.1.5	Cases 1 and 2 Equipment Lists	103
4.1.6	Cases 1 and 2 Cost Estimating	118
4.2	SYNTHETIC NATURAL GAS AND AMMONIA CO-PRODUCTION USING ILLINOIS NO	. 6 COAL129
4.2.1	Process Description	129
4.2.2	Key System Assumptions	139
4.2.3	Cases 3 and 4 Performance Results	140
4.2.4	Cases 3 and 4 Equipment Lists	155
4.2.5	Cases 3 and 4 Cost Estimating	174
5. LOV	W RANK COAL CASES	185
5.1	SYNTHETIC NATURAL GAS PRODUCTION USING ROSEBUD PRB COAL	185
5.1.1	Process Description	
5.1.2	Key System Assumptions	192
5.1.3	Cases 5 and 6 Performance Results	193
5.1.4	Cases 5 and 6 Equipment Lists	207
5.1.5	Cases 5 and 6 Cost Estimating	
5.2	SYNTHETIC NATURAL GAS PRODUCTION USING NORTH DAKOTA LIGNITE COAL.	234
5.2.1	Process Description	
5.2.2	Key System Assumptions	241
5.2.3	Cases 7 and 8 Performance Results	242
5.2.4	Cases 7 and 8 Equipment Lists	256
5.2.5	Cases 7 and 8 Cost Estimating	
6. SUN	IMARY	
6.1	Performance	
6.2	ECONOMICS	
6.3	CARBON DIOXIDE EMISSIONS/MITIGATION	291
6.4	RAW WATER WITHDRAWAL AND CONSUMPTION.	
7. REF	FERENCES	295

List of Exhibits

Exhibit ES-1 Case Descriptions	3
Exhibit ES-2 Cost and Performance Summary and Environmental Profile	4
Exhibit ES-3 Net Plant Conversion Efficiency (HHV)	5
Exhibit ES-4 Total Overnight Cost and Total As-spent Capital	7
Exhibit ES-5 Economic Parameters Used to Calculate FYCOP	8
Exhibit ES-6 FYCOP by Cost Component	
Exhibit ES-7 FYCOP Sensitivity to ROE	. 10
Exhibit ES-8 FYCOP Sensitivity to Fuel Costs	. 11
Exhibit ES-9 FYCOP Sensitivity to Capacity Factor	. 11
Exhibit ES-10 CO ₂ Avoided Cost	
Exhibit ES-11 Case 2 Economic Pathway with Favorable Financial Structure	. 14
Exhibit ES-12 Case 4 Economic Pathway with Favorable Financial Structure	. 15
Exhibit ES-13 Case 2 Economic Pathway with Mature Technology	. 16
Exhibit ES-14 Case 4 Economic Pathway with Mature Technology	. 17
Exhibit 2-1 Ambient Conditions	. 21
Exhibit 2-2 Site Characteristics	. 22
Exhibit 2-3 Proposed Capacity for SNG Plants in the United States	. 23
Exhibit 2-4 U.S. Ammonia Plants	. 23
Exhibit 2-5 Illinois No. 6 Bituminous, Old Ben Mine	. 26
Exhibit 2-6 Montana Rosebud PRB, Area D, Western Energy Co. Mine	. 27
Exhibit 2-7 North Dakota Beulah-Zap Lignite, Freedom, ND Mine	. 28
Exhibit 2-8 SNG Pipeline Requirements	. 29
Exhibit 2-9 Ammonia Quality Requirements	. 30
Exhibit 2-10 Capital Cost Levels and their Elements	
Exhibit 2-11 Features of an AACE Class 4 Cost Estimate	
Exhibit 2-12 AACE Guidelines for Process Contingency	. 38
Exhibit 2-13 Owner's Costs Included in TOC	
Exhibit 2-14 CO ₂ Pipeline Specification	
Exhibit 2-15 Deep Saline Aquifer Specification	. 45
Exhibit 2-16 Global Economic Assumptions	
Exhibit 2-17 Financial Structure for High Risk Fuels Projects	
Exhibit 2-18 Economic Parameters for FYCOP Calculation	
Exhibit 2-19 Monthly U.S. Prices of Natural Gas and Ammonia	
Exhibit 2-20 Price Projections for Natural Gas Consumers	
Exhibit 2-21 Global Ammonia Utilization	
Exhibit 2-22 U.S. Farmer Ammonia and Industrial Natural Gas Prices	
Exhibit 3-1 WTA Process Schematic	
Exhibit 3-2 Typical ASU Process Schematic	
Exhibit 3-3 Haldor Topsoe TREMP [™] High Temperature Methanation Process	
Exhibit 3-4 Ammonia Synthesis Loop Configuration	
Exhibit 3-5 Typical Three-Stage Claus Sulfur Plant	. 70
Exhibit 4-1 Case 1 Block Flow Diagram, Bituminous Coal to SNG without Carbon	
Sequestration	. 78

Exhibit 4-2	Case 1 Stream Table, Bituminous Coal to SNG without Carbon Sequestration	. 79
Exhibit 4-3	Case 2 Block Flow Diagram, Bituminous Coal to SNG with Carbon Sequestration	n81
Exhibit 4-4	Case 2 Stream Table, Bituminous Coal to SNG with Carbon Sequestration	. 82
Exhibit 4-5	Cases 1 and 2 Plant Study Configuration Matrix	. 87
Exhibit 4-6	Balance of Plant Assumptions	. 88
	Cases 1 and 2 Plant Performance Summary	
	Cases 1 and 2 Air Emissions	
Exhibit 4-9	Cases 1 and 2 Carbon Balance	. 92
Exhibit 4-10	Cases 1 and 2 Sulfur Balance	. 93
Exhibit 4-11	Cases 1 and 2 Water Balance	. 94
Exhibit 4-12	Case 1 Gasification and ASU Heat and Mass Balance	. 96
Exhibit 4-13	Case 1 Gas Cleanup Heat and Mass Balance	. 97
	Case 1 Methanation and Power Block Heat and Mass Balance	
Exhibit 4-15	Case 2 Gasifier and ASU Heat and Mass Balance	. 99
Exhibit 4-16	Case 2 Gas Cleanup Heat and Mass Balance	100
	Case 2 Methanation and Power Block Heat and Mass Balance	
Exhibit 4-18	Cases 1 and 2 Energy Balance	102
	Case 1 Total Plant Cost Details	
Exhibit 4-20	Case 1 Initial and Annual O&M Costs	123
Exhibit 4-21	Case 2 Total Plant Cost Details	124
Exhibit 4-22	Case 2 Initial and Annual O&M Costs	128
Exhibit 4-23	Case 3 Block Flow Diagram, Bituminous Coal to SNG and Ammonia without	
	Sequestration	131
Exhibit 4-24	Case 3 Stream Table, Bituminous Coal to SNG and Ammonia without Carbon	
	ration	132
Exhibit 4-25	Case 4 Block Flow Diagram, Bituminous Coal to SNG and Ammonia with Carb	oon
Sequest	ration	135
	Case 4 Stream Table, Bituminous Coal to SNG and Ammonia with Carbon	
Sequest	ration	136
Exhibit 4-27	Cases 3 and 4 Plant Study Configuration Matrix	139
	Cases 3 and 4 Plant Performance Summary	
	Cases 3 and 4 Air Emissions.	
Exhibit 4-30	Cases 3 and 4 Carbon Balance	143
Exhibit 4-31	Cases 3 and 4 Sulfur Balance	144
Exhibit 4-32	Cases 3 and 4 Water Balance	145
Exhibit 4-33	Case 3 Gasification and ASU Heat and Mass Balance	146
	Case 3 Gas Cleanup Heat and Mass Balance	
	Case 3 Methanation and Power Block Heat and Mass Balance	
	Case 3 Ammonia Production Heat and Mass Balance	
	Case 4 Gasification and ASU Heat and Mass Balance	
	Case 4 Gas Cleanup Heat and Mass Balance	
	Case 4 Methanation and Power Block Heat and Mass Balance	
	Case 4 Ammonia Production Heat and Mass Balance	
	Cases 3 and 4 Energy Balance	
	Case 3 Total Plant Cost Details	
	Case 3 Initial and Annual O&M Costs	

Exhibit 4-44 Case 4 Total Plant Cost Details	180
Exhibit 4-45 Case 4 Initial and Annual O&M Costs	184
Exhibit 5-1 Case 5 Block Flow Diagram, Subbituminous Rosebud PRB Coal to SNG without	out
Carbon Sequestration	186
Exhibit 5-2 Case 5 Stream Table, Subbituminous Rosebud Coal to SNG without Carbon	
Sequestration	187
Exhibit 5-3 Case 6 Block Flow Diagram, Subbituminous Rosebud Coal to SNG with Carbo	
Sequestration	189
Exhibit 5-4 Case 6 Stream Table, Subbituminous Rosebud PRB Coal to SNG with Carbon	100
Sequestration	
Exhibit 5-5 Cases 5 and 6 Plant Study Configuration Matrix	
Exhibit 5-6 Cases 5 and 6 Plant Performance Summary	
Exhibit 5-7 Cases 5 and 6 Air Emissions	
Exhibit 5-8 Cases 5 and 6 Carbon Balance Exhibit 5-9 Cases 5 and 6 Sulfur Balance	
Exhibit 5-9 Cases 5 and 6 Sulfur Balance	
Exhibit 5-10 Cases 5 and 6 water Balance Exhibit 5-11 Case 5 Gasification and ASU Heat and Mass Balance	
Exhibit 5-12 Case 5 Gas Cleanup Heat and Mass Balance Exhibit 5-13 Case 5 Methanation and Power Block Heat and Mass Balance	
Exhibit 5-15 Case 5 Methanation and Power Block Heat and Mass Balance	
Exhibit 5-15 Case 6 Gas Cleanup Heat and Mass Balance	
Exhibit 5-16 Case 6 Methanation and Power Block Heat and Mass Balance	
Exhibit 5-17 Cases 5 and 6 Energy Balance Exhibit 5-18 Case 5 Total Plant Cost Details	
Exhibit 5-19 Case 5 Initial and Annual O&M Costs	
Exhibit 5-20 Case 6 Total Plant Cost Details	
Exhibit 5-20 Case 6 Initial and Annual O&M Costs	
Exhibit 5-22 Case 7 Block Flow Diagram, North Dakota Lignite Coal to SNG without Carl	
Sequestration	
Exhibit 5-23 Case 7 Stream Table, North Dakota Lignite Coal to SNG without Carbon	235
Sequestration	236
Exhibit 5-24 Case 8 Block Flow Diagram, North Dakota Lignite to SNG with Carbon	230
	238
Exhibit 5-25 Case 8 Stream Table, North Dakota Lignite Coal to SNG with Carbon	250
Sequestration	239
Exhibit 5-26 Cases 7 and 8 Plant Study Configuration Matrix	
Exhibit 5-27 Cases 7 and 8 Plant Performance Summary	
Exhibit 5-28 Cases 7 and 8 Air Emissions	
Exhibit 5-29 Cases 7 and 8 Carbon Balance	
Exhibit 5-30 Cases 7 and 8 Sulfur Balance	
Exhibit 5-31 Cases 7 and 8 Water Balance	
Exhibit 5-32 Case 7 Gasification and ASU Heat and Mass Balance	
Exhibit 5-33 Case 7 Gas Cleanup Heat and Mass Balance	
Exhibit 5-34 Case 7 Methanation and Power Block Heat and Mass Balance	
Exhibit 5-35 Case 8 Gasification and ASU Heat and Mass Balance	
Exhibit 5-36 Case 8 Gas Cleanup Heat and Mass Balance	
1	

Exhibit 5-37 Case 8 Methanation and Power Block Heat and Mass Balance	
Exhibit 5-38 Cases 7 and 8 Energy Balance	
Exhibit 5-39 Case 7 Total Plant Cost Details	
Exhibit 5-40 Case 7 Initial and Annual O&M Costs	
Exhibit 5-41 Case 8 Total Plant Cost Details	
Exhibit 5-42 Case 8 Initial and Annual O&M Costs	
Exhibit 6-1 Performance, Emissions, and Cost Results	
Exhibit 6-2 Net Plant Conversion Efficiency (HHV)	
Exhibit 6-3 SNG Heating Values	
Exhibit 6-4 Total Overnight Cost and Total As-spent Capital	
Exhibit 6-5 First Year Cost of Production	
Exhibit 6-6 First Year Cost of Production Components	
Exhibit 6-7 Impact of CO ₂ Tax on FYCOP	
Exhibit 6-8 CO ₂ Emissions Normalized by Thermal Input	
Exhibit 6-9 Raw Water Withdrawal and Consumption	

PREPARED BY:

Research and Development Solutions, LLC (RDS)

UPDATED BY:

Energy Sector Planning and Analysis (ESPA)

Robert D. Brasington formerly of Parsons Corporation

> John L. Haslbeck Booz Allen Hamilton

> Norma J. Kuehn Booz Allen Hamilton

> Eric G. Lewis Booz Allen Hamilton

Lora L. Pinkerton WorleyParsons Group, Inc.

> Marc Turner Booz Allen Hamilton

Elsy Varghese WorleyParsons Group Inc.

> Mark Woods Booz Allen Hamilton

DOE Contract # DE-FE0004001

Acknowledgments

This report was initially prepared by Research and Development Solutions, LLC (RDS) for the United States Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under DOE NETL Contract Number DE-AM26-04NT41817; Subtask 41817-401.01.04. The report was updated by Booz Allen Hamilton Inc. under DOE NETL Contract Number DE-FE0004001, Energy Sector Planning and Analysis.

The authors wish to acknowledge the excellent guidance, contributions, and cooperation of the NETL staff and other past contributors, particularly:

Larry Rath, Director of Performance Division of the Office of Program Planning, and Analysis

The authors also wish to acknowledge the valuable input to this study provided by Siemens Energy, Inc, and Leucadia Energy, LLC. However, participation by outside parties is not an endorsement of any technology or project nor does it imply that the outside party certifies or endorses the results of the work.

LIST OF ACRONYMS AND ABBREVIATIONS

AACE	Association for the Advancement of Cost Engineering
AEO	Annual Energy Outlook
AF	Availability factor
AFUDC	Allowance for funds used during construction
AGR	Acid gas removal
Aspen	AspenPlus®
ASU	Air separation unit
BEC	Bare erected cost
BFD	Block flow diagram
BFP	Boiler feed pump
BFW	Boiler feedwater
Btu	British thermal unit
Bscf	Billion standard cubic foot
Btu/lb	British thermal unit per pound
Btu/scf	British thermal unit per standard cubic foot
C_4+	Butane + higher paraffins
CCF	Capital Charge Factor
CCPI	Clean Coal Power Initiative
CCS	Carbon capture and sequestration
CFBC	Circulating fluidized bed combustor
cfm	Cubic feet per minute
CL	Closed-loop
cm	Centimeter
CO	Carbon monoxide
CO_2	Carbon dioxide
CoP	Conoco Phillips
COP	Cost of production
COS	Carbonyl sulfide
CRT	Cathode ray tube
CS	Carbon steel
CS_2	Carbon disulfide
CT	Combustion turbine
CWP	Circulating water pump
CWS	Circulating water system
CWT	Cold water temperature
DCS	Distributed control system
DI	De-ionized
DOE	Department of Energy
EIA	Energy Information Administration
EM	Electromagnetic
EOR	Enhanced oil recovery
EPA	Environmental Protection Agency

EPC	Engineer/Dreeuro/Construct
EPC	Engineer/Procure/Construct Electric Power Research Institute
EPCM	Engineering/Procurement/Construction Management
FBG	Fluidized bed gasifier
FEED	Front-End Engineering Design
ESPA	Energy Sector Planning and Analysis
FERC	Federal Energy Regulatory Commission
FGT	Florida gas transmission
FOAK	First-of-a-kind
ft	Foot, Feet
FW	Feedwater
FYCOP	First year cost of production
gal	Gallon
GDP	Gross domestic product
GEE	General Electric Energy
GHG	Greenhouse gas
GJ/hr	Gigajoule per hour
gpm	Gallons per minute
GRE	Great River Energy
H_2	Hydrogen
H_2S	Hydrogen sulfide
Hg	Mercury
HHV	Higher heating value
hp	Horsepower
HP	High-pressure
HVAC	Heating, ventilating, and air conditioning
HWT	Hot water temperature
Hz	Hertz
ICR	Information Collection Request
IDGCC	Integrated Drying and Gasification Combined Cycle
IGCC	Integrated gasification combined cycle
IP	Intermediate-pressure
kg/GJ	Kilogram per gigajoule
kg/hr	Kilogram per hour
kJ/Nm ³	Kilojoule per normal cubic meter
kJ/kg	Kilojoule per kilogram
km	Kilometer
KO	Knockout
kV	Kilovolt
	Kilowatts electric
kWth	Kilowatt thermal
lb/hr	Pound per hour
lb/MMBtu	Pound per million British thermal units

LCOPLevelized cost of productionLFLevelization FactorLNGLiquefied natural gasLHVLower heating valueLPLow-pressurelpmLiters per minutemMetersm³/minCubic meter per minutemdMillidarcyMMBtuMillion British thermal units (also shown as 106 Btu)MMBtu/hr Million British thermal units (also shown as 106 Btu) per hourMMkJMillion kilojoules (also shown as 106 kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersm0%Mole percentMPaMegapascalMVAMega volt-amp
LHVLower heating valueLPLow-pressurelpmLiters per minutemMetersm³/minCubic meter per minutemdMillidarcyMMBtuMillion British thermal units (also shown as 10 ⁶ Btu)MMBtu/hrMillion British thermal units (also shown as 10 ⁶ Btu) per hourMMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersm0%Mole percentMPaMegapascal
LHVLower heating valueLPLow-pressurelpmLiters per minutemMetersm³/minCubic meter per minutemdMillidarcyMMBtuMillion British thermal units (also shown as 10 ⁶ Btu)MMBtu/hr Million British thermal units (also shown as 10 ⁶ Btu) per hourMMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersm0%Mole percentMPaMegapascal
LPLow-pressurelpmLiters per minutemMetersm³/minCubic meter per minutemdMillidarcyMMBtuMillion British thermal units (also shown as 10 ⁶ Btu)MMBtu/hrMillion British thermal units (also shown as 10 ⁶ Btu) per hourMMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
lpmLiters per minutemMetersm³/minCubic meter per minutemdMillidarcyMMBtuMillion British thermal units (also shown as 106 Btu)MMBtu/rrMillion British thermal units (also shown as 106 Btu) per hourMMkJMillion kilojoules (also shown as 106 kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
mMetersm³/minCubic meter per minutemdMillidarcyMMBtuMillion British thermal units (also shown as 10 ⁶ Btu)MMBtu/nrMillion British thermal units (also shown as 10 ⁶ Btu) per hourMMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
mdMillidarcyMMBtuMillion British thermal units (also shown as 10 ⁶ Btu)MMBtu/hrMillion British thermal units (also shown as 10 ⁶ Btu) per hourMMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm ³ Thousand normal cubic metersBNm ³ Billion normal cubic metersmol%Mole percentMPaMegapascal
MMBtuMillion British thermal units (also shown as 106 Btu)MMBtu/hr Million British thermal units (also shown as 106 Btu) per hourMMkJMillion kilojoules (also shown as 106 kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
MMBtu/hr Million British thermal units (also shown as 10 ⁶ Btu) per hourMMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm ³ Thousand normal cubic metersBNm ³ Billion normal cubic metersmol%Mole percentMPaMegapascal
MMkJMillion kilojoules (also shown as 10 ⁶ kJ)MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
MMscfMillion standard cubic feetMNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
MNm³Thousand normal cubic metersBNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
BNm³Billion normal cubic metersmol%Mole percentMPaMegapascal
mol%Mole percentMPaMegapascal
MPa Megapascal
MVA Mega volt-amp
MW Megawatt
MWh Megawatt-hour
MWth Megawatts thermal
N/A Not applicable
NDL North Dakota Lignite
NETL National Energy Technology Laboratory
NGCC Natural gas combined cycle
NH ₃ Ammonia
Nm ³ Normal cubic meter
Nm ³ /min Normal cubic meter per minute
NOAK N th -of-a-kind
No. Number
NOx Oxides of nitrogen
O eqv Oxygen equivalents
O&GJ Oil and Gas Journal
O&M Operation and maintenance
O ₂ Oxygen
OC _{Fn} Category n fixed operating cost for the initial year of operation
PAS PAS, Inc.
PC Pulverized coal
PM Particulate matter
POTW Publicly Owned Treatment Works
ppm Parts per million
ppmv Parts per million volume
PRB Powder River Basin

PSA	Pressure Swing Advantion
PSFM	Pressure Swing Adsorption Power Systems Financial Model
psi	Pound per square inch
-	Pound per square inch absolute
psia	
psig R&D	Pound per square inch gage
	Research and Development Solutions, LLC
RDS ROE	Research and Development Solutions, LLC
	Return on equity Retaining Wasfäligehes Elektrizitetewark (Cormon compony)
RWE SC	Rheinisch-Wesfälisches Elektrizitatswerk (German company)
	Supercritical Standard subjects
scf	Standard cubic feet
scfm	Standard cubic feet per minute
SCOT	Shell Claus Off-gas Treating
SFG	Siemens Fuel Gasification
SG	Specific gravity
SGC	Synthesis gas cooler
SGS	Sour gas shift
SNG	Synthetic Natural Gas
SO_2	Sulfur dioxide
SRU	Sulfur recovery unit
STG	Steam turbine generator
Syngas	Synthesis gas
TASC	Total as-spent cost
TGTU	Tail gas treating unit
TOC	Total overnight cost
Tonne	Metric Ton (1000 kg)
TPC	Total plant cost
TPH	Ton per hour
TS&M	Transport, storage, and monitoring
USDA	United States Department of Agricultural
vol%	Volume percent
WB	Wet bulb
WGS	Water gas shift
wt%	Weight percent
WTA	German acronym for "fluidized bed dryer with integrated waste heat recovery"
ZnO	Zinc oxide
\$/GJ	Dollars per gigajoule
\$/MMBtu	Dollars per million British thermal units
\$/MMkJ	Dollars per million kilojoule
\$/ton	Dollars per ton
°C	Degrees Celsius
°F	Degrees Fahrenheit
5-10s	50-hour work-week

EXECUTIVE SUMMARY

The objective of this report is to present an accurate, independent assessment of the cost and performance of bituminous, subbituminous, and lignite coal conversion systems, specifically for the production of synthetic natural gas (SNG) and ammonia, using a consistent economic approach that accurately reflects current market conditions for plants starting operation in the near term. This is Volume 2 of a four volume report. The four volume series consists of the following:

- Volume 1: Bituminous Coal and Natural Gas to Electricity
- Volume 2: Coal to Synthetic Natural Gas and Ammonia (Various Coal Ranks)
- Volume 3: Low Rank Coal and Natural Gas to Electricity
- Volume 4: Bituminous Coal to Liquid Fuels with Carbon Capture

Volume 1 entitled *Cost and Performance Baseline for Fossil Energy Power Plants Study, Volume 1: Bituminous Coal and Natural Gas to Electricity* was recently revised and re-released in November 2010. Volume 3 was published in 2011 and Volume 4 is scheduled for publication later in 2011.

The cost and performance of a coal-to-SNG plant, with and without ammonia co-production, were evaluated in this study. The results are expected to be valuable to policy makers and will help guide research and development (R&D) efforts necessary to make SNG more cost competitive. Selection of new technologies will depend on many factors, including:

- Capital and operating costs;
- Overall conversion efficiency;
- Fuel prices;
- Cost of production (COP);
- Availability, reliability, and environmental performance; and
- Current and potential regulation of air, water, and solid waste discharges from fossil fuelbased production facilities, including a potential cap or tax on carbon dioxide (CO₂) emissions.

Eight coal-based plants using the Siemens gasifier were analyzed as listed in Exhibit ES-1. The list includes six SNG production cases using various coal ranks and two SNG and ammonia coproduction cases using bituminous coal only. All cases require carbon capture prior to the methanation reactors and the ammonia (NH₃) plant in co-production cases. In some cases the removed CO_2 is sequestered, and in other cases it is released to the atmosphere. Normally cases are designated as CO_2 capture and non-capture, but since all cases are capture in this study, the designation used to differentiate between cases is sequestration and non-sequestration. Each specific scenario is presented without and with carbon sequestration.

While input was sought from various technology vendors, the final assessment of performance and cost was determined independently, and may not represent the views of the technology vendors. The extent of collaboration with the technology vendors varied in scope for each of the processes within the plant, with minimal or no collaboration obtained from some vendors. The gasification scheme used in this study includes a partial quench followed by a syngas cooler. Heat recovery was necessary to produce enough power to satisfy internal auxiliary loads with some excess power for export in most cases. This configuration is not currently a commercial offering by Siemens, but based on personal communications, it is a configuration they are planning to offer for future coal-to-SNG projects.

The methodology included performing steady-state simulations of the various technologies using the AspenPlus[®] (Aspen) modeling program. The resulting mass and energy balance data from Aspen were used to size major pieces of equipment. These equipment sizes formed the basis for cost estimating. Performance and process limits were based upon published reports, information obtained from vendors and users of the technology, performance data from design/build projects, and/or best engineering judgment. Capital and operating costs were estimated based on simulation results and through a combination of vendor quotes and scaled estimates. Baseline fuel costs for this analysis were determined using data from the Energy Information Administration's (EIA) 2008 Annual Energy Outlook (AEO). The first year of capital expenditure (2007) costs used are 1.55 dollars per gigajoule (\$/GJ) (1.64 dollars per million British thermal units [\$/MMBtu]) for Illinois No. 6 coal, \$0.84/GJ (\$0.89/MMBtu) for Powder River Basin (PRB) coal, and \$0.79/GJ (\$0.83/MMBtu) for North Dakota lignite (NDL). All coal prices are on a higher heating value (HHV) basis and in 2007 United States (U.S.) dollars. The Illinois No. 6 and PRB coal prices include transportation costs while the NDL coal is assumed to be used at a minemouth location. Anhydrous ammonia selling prices were determined from the historic correlation between the cost of industrial natural gas (EIA) and the price of ammonia fertilizers as paid by U.S. farmers (United States Department of Agriculture [USDA] Economic Research Service). The first year selling price of ammonia for the non-sequestration SNG and ammonia co-production facility was determined to be \$880/metric ton (tonne) (\$799/ton) and \$913/tonne (\$828/ton) with carbon sequestration. All plant configurations are evaluated on installation at a greenfield site. SNG production is limited by a nominal thermal input of 500 megawatt-thermal (MW_{th}) to the gasifier. Based on vendor input, the actual gasifier thermal input varies according to the type of coal feed and ranges from 506 to 550 MWth. The nominal net plant production capacity of ammonia is 2,000 tonnes/day (2,204 tons/day) for the coproduction cases. All cases are based on a 90 percent plant capacity factor (CF). Exhibit ES-2 shows the cost, performance, and environmental profile summary for all cases. These plants are expected to operate at full capacity when available. Since variations in fuel costs, capacity factor, and financing structure (required return on equity) can influence the economics of production, sensitivities of the first year cost of production (FYCOP) are evaluated and presented later in this Executive Summary.

Case	Product(s)	Steam Cycle, psig/°F/°F ¹	Coal Type	Coal Drying Process	Gasifier Technology	Oxidant	H₂S Separation/ Removal	Sulfur Removal/ Recovery	CO₂ Separation	CO ₂ Compression/ Sequestration
1	SNG	1800/1050/1000	Illinois No. 6	Standard	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Ν
2	SNG	1800/1050/1000	Illinois No. 6	Standard	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Y
3	SNG & Ammonia	1800/1050/1000	Illinois No. 6	Standard	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Ν
4	SNG & Ammonia	1800/1050/1000	Illinois No. 6	Standard	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Y
5	SNG	1800/1050/1000	Montana Rosebud PRB	WTA	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Ν
6	SNG	1800/1050/1000	Montana Rosebud PRB	WTA	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Y
7	SNG	1800/1050/1000	North Dakota Lignite	WTA	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Ν
8	SNG	1800/1050/1000	North Dakota Lignite	WTA	Siemens	99 mol% O ₂	Selexol	Claus Plant	Selexol 2 nd stage	Y

Exhibit ES-1 Case Descriptions

¹ Steam cycle reheat temperatures are nominal.

	Illinois No. 6 Coal				Rosebu	ud PRB	North Dakota Lignite	
	SNG	Only	SNG and Ar	nmonia	SNG	Only	SNG Only	
PERFORMANCE	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
CO ₂ Sequestration	No	Yes	No	Yes	No	Yes	No	Yes
SNG Production (Bscf/year) ¹	57	56	42	42	55	55	52	52
Ammonia Production (TPD) ¹	N/A	N/A	2,204	2,204	N/A	N/A	N/A	N/A
HHV Conversion Efficiency, %	61.4%	61.3%	61.5%	61.4%	63.1%	63.1%	61.5%	61.5%
Gross Power Output (kW _e)	308,000	310,600	292,300	292,300	302,000	302,000	305,800	310,500
Auxiliary Power Requirement (kW _e)	216,350	262,090	263,600	316,030	247,570	300,190	259,740	313,930
Net Power Output (kW _e)	91,650	48,510	28,700	-23,730	54,430	1,810	46,060	-3,430
Coal Flowrate (lb/hr)	964,752	964,752	964,000	964,000	1,259,331	1,259,331	1,564,932	1,564,932
HHV Thermal Input (kW _{th})	3,298,455	3,298,455	3,295,885	3,295,885	3,160,745	3,160,745	3,034,796	3,034,796
Raw Water Withdrawal (gpm)	7,169	7,123	7,434	7,458	4,853	5,509	4,421	5,131
Process Water Discharge (gpm)	1,462	1,451	1,455	1,461	1,071	1,218	1,071	1,230
Raw Water Consumption (gpm)	5,708	5,672	5,979	5,997	3,783	4,291	3,350	3,901
CO ₂ Emissions (lb/MMBtu) ²	128	5	147	10	140	0.7	147	0.9
SO ₂ Emissions (lb/MMBtu) ²	0.0274	0.0003	0.0229	0.0006	0.0218	0.0000	0.0239	0.0000
NOx Emissions (Ib/MMBtu) ²	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
PM Emissions (Ib/MMBtu) ²	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
Hg Emissions (Ib/MMBtu) ²	5.71E-07	5.71E-07	5.71E-07	5.71E-07	3.51E-07	3.51E-07	5.60E-07	5.60E-07
COST								
Total Plant Cost (\$ x 1,000)	2,628,754	2,692,997	3,048,463	3,119,611	2,741,044	2,813,258	2,864,478	2,941,335
Total Overnight Cost (\$ x 1,000)	3,235,262	3,312,740	3,742,411	3,829,817	3,354,442	3,442,310	3,504,262	3,595,468
Total As-spent Capital (\$ x 1,000)	3,885,549	3,978,601	4,494,636	4,599,610	4,028,684	4,134,215	4,208,619	4,318,158
SNG FYCOP (\$/MMBtu) ¹	19.27	20.95	15.82	17.85	19.15	21.01	21.27	23.24
CO ₂ TS&M Costs	0.00	0.91	0.00	1.29	0.00	0.96	0.00	1.03
Fuel Costs	2.67	2.67	1.89	1.89	1.41	1.41	1.34	1.35
Variable Costs	1.03	1.04	0.79	0.82	1.02	1.03	1.18	1.18
Fixed Costs	1.76	1.79	1.41	1.45	1.84	1.86	2.03	2.06
Electricity Costs	-0.77	-0.41	-0.17	0.15	-0.46	-0.02	-0.42	0.03
Capital Costs	14.58	14.94	11.90	12.25	15.34	15.76	17.13	17.59
Ammonia FYCOP ³ (\$/ton)	-	-	799	828	-	-	-	-

¹ Based on a capacity factor of 90 percent for all cases

² Based on coal thermal input

³ Ammonia price is correlated to historic natural gas costs

CONVERSION EFFICIENCY

The net plant conversion efficiency (HHV basis) for all eight cases is shown in Exhibit ES-3. The conversion efficiency is the HHV of the products divided by the HHV of the coal. The primary conclusions that can be drawn are:

- The SNG production facilities feeding PRB coal have the highest conversion efficiencies of the coal types modeled in this study with a conversion efficiency of 63.1 percent for both the non-sequestration and carbon sequestration cases. This is primarily due to the low nitrogen content and high oxygen content in the design fuel, which enables the SNG produced to have a relatively lower concentration of inerts.
- The remaining six cases have essentially constant conversion efficiency (61.3 to 61.5 percent). The addition of carbon sequestration has only a minimal impact on conversion efficiency. The carbon sequestration impact is seen in the reduced available export power relative to the non-sequestration case.

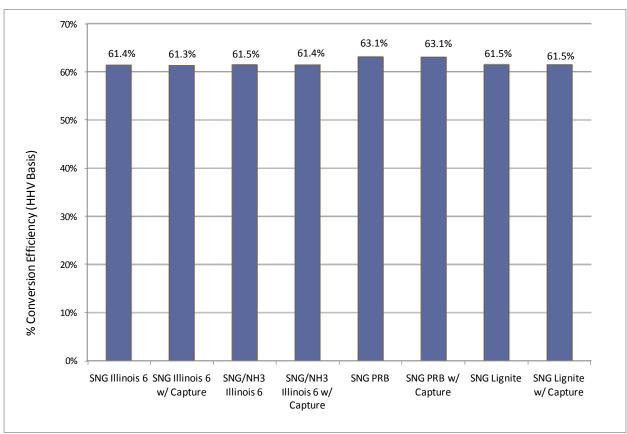


Exhibit ES-3 Net Plant Conversion Efficiency (HHV)

TOTAL OVERNIGHT COST

The Total Overnight Cost (TOC) for each plant was calculated by adding owner's costs to the Total Plant Cost (TPC). The TPC was determined through a combination of vendor quotes and scaled estimates from previous design/build projects. TPC includes all equipment (complete with initial chemical and catalyst loadings), materials, labor (direct and indirect), engineering and construction management, and contingencies (process and project).

The capital costs have an estimated accuracy of -15%/+30%, consistent with the screening study level of design engineering applied to the various cases in the study. The value of the study lies not in the absolute accuracy of the individual cases, but in the fact that all cases were evaluated under the same set of technical and economic assumptions. The consistency of approach allows meaningful comparisons among the cases evaluated.

Project contingencies were added to the Engineering/Procurement/Construction Management (EPCM) capital accounts to cover project uncertainty and the cost of any additional equipment that would result from a detailed design. The contingencies represent costs that are expected to occur. Each bare erected cost (BEC) account was evaluated against the level of estimate detail and field experience to determine project contingency. Process contingency was added to cost account items that were deemed to pose significant risk due to lack of operating experience. The cost accounts that received a process contingency include:

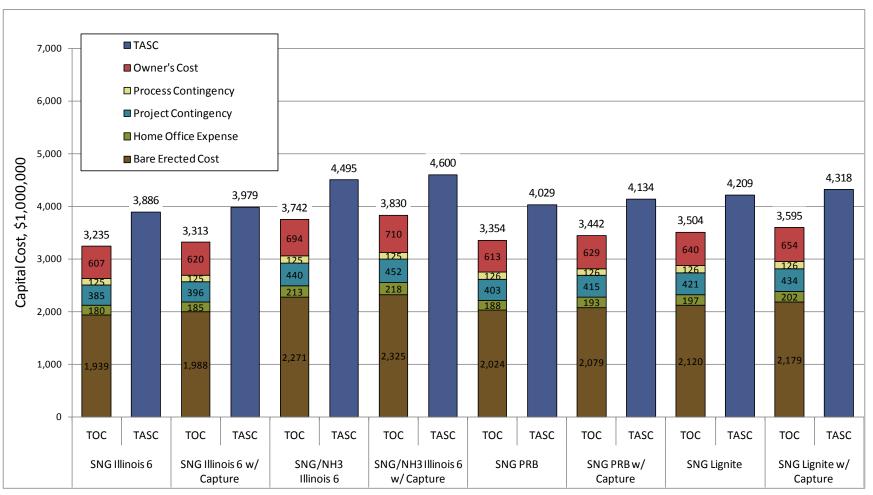
- Gasifiers and Syngas Coolers 15 percent on all cases next-generation commercial offering and integration with the steam generation island
- Two Stage Selexol 20 percent on all cases unproven technology at commercial scale
- Mercury Removal 5 percent on all cases minimal commercial scale experience in gasification applications
- Methanation 10 percent on all cases unproven technology at commercial scale
- Instrumentation and Controls 5 percent on all accounts for integration issues

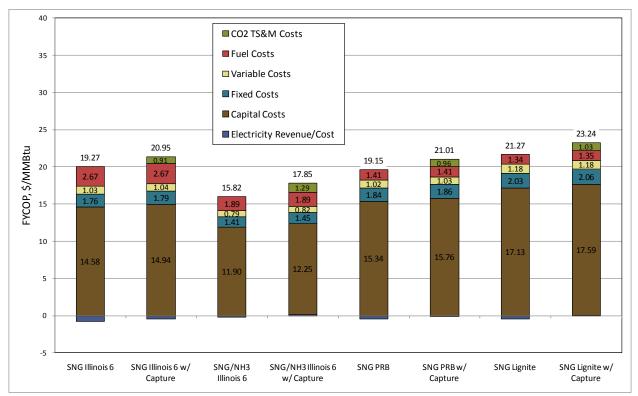
The TOC is shown for each plant configuration in Exhibit ES-4. For reference, Total As-spent Capital (TASC) is also shown. TASC is the sum of TOC, escalation during the capital expenditure period, and interest on debt during the capital expenditure period. The following observations can be made:

- The SNG only case without carbon sequestration using Illinois No. 6 coal has the lowest TOC of \$3.24 billion.
- For the SNG only cases without carbon sequestration, the TOC is higher for PRB coal by 3.7 percent and lignite coal by 8.3 percent relative to the Illinois No. 6 coal cases.
- The TOC increase to add carbon sequestration for the SNG only cases is approximately 2.4 percent for the Illinois No. 6 cases, 2.6 percent for the PRB coal cases and 2.6 percent for the lignite coal case. For the SNG and ammonia co-production case, the TOC increases by 2.4 percent to add carbon sequestration.
- The SNG and ammonia co-production cases increase the TOC by approximately 16 percent when compared to the SNG only cases using Illinois No. 6 coal.

FIRST YEAR COST OF PRODUCTION

The cost metric used in this study is the first year cost of production (FYCOP). The capital charge factor (CCF) shown in Exhibit ES-5, which was derived using the National Energy Technology Laboratory (NETL) Power Systems Financial Model (PSFM) [9], was used to calculate the FYCOP. The project financial structure is representative of a high-risk fuels project with no loan guarantees or other government subsidies. The parameters were chosen to reflect the next commercial offering in which the technical and economic risks have not been reduced by the wide-scale demonstration of the technology.




Exhibit ES-4 Total Overnight Cost and Total As-spent Capital

	High Risk Fuels Financial Structure
First Year Capital Charge Factor	0.2449

Exhibit ES-5 Economic Parameters Used to Calculate FYCOP

The FYCOP was calculated as detailed in Section 2.8. The FYCOP is shown in Exhibit ES-6 with the capital cost, fixed operating cost, variable operating cost, electricity cost (or revenue), and fuel costs shown separately. In the carbon sequestration cases, the CO_2 transport, storage, and monitoring (TS&M) costs are also shown as a separate bar segment. The following conclusions can be drawn, using first year cost as the basis for comparison:

- The co-production case using Illinois No. 6 coal without carbon sequestration has the lowest cost of the cases modeled in this study with an FYCOP of \$15.82/MMBtu.
- The FYCOP is dominated by capital charges in all cases. The capital cost component of FYCOP, which includes owner's costs, comprises 71 to 81 percent for the SNG only cases.
- The fuel cost component in the SNG only cases represents 13 percent for Illinois No. 6 coal, 7 percent for the PRB coal, and 6 percent for the lignite coal.
- The TS&M component of FYCOP in the carbon sequestration cases is 4 percent, 5 percent, and 4 percent for the Illinois No. 6 coal, PRB coal, and lignite coal respectively. For the SNG and ammonia co-production case, the TS&M account for 7 percent of the total FYCOP.
- The SNG FYCOP increases by an average amount of 9 percent with the addition of carbon sequestration for the SNG only cases and 13 percent for the co-production case. The cost of TS&M is shared between the two products in the co-production case based on the SNG-NH₃ cost relationship.

Exhibit ES-6 FYCOP by Cost Component

The EIA's AEO 2009 shows a 2007 residential natural gas delivered price of \$12.69/MMBtu. The EIA reference case projections show a price of \$12.09/MMBtu in 2010, \$12.50/MMBtu in 2020, and \$14.31/MMBtu in 2030. The price of SNG determined in this study is generally higher than current or projected natural gas market prices. However, the assumed financing structure (addressed in Section 2.8 of this report) plays a significant role in the elevated prices. The assumed return on equity (ROE) is 20 percent. A sensitivity analysis on ROE was performed and is shown in Exhibit ES-7. As expected, as the ROE requirement increases, the cost of SNG and ammonia increases. At the assumed high-risk fuels scenario first year capital charge factor (CCF) and ROE, SNG prices range from \$15.82 to \$23.24/MMBtu and ammonia costs range from \$799 to \$828/ton. Adjusting the first year CCF to 0.1344, representative of a high-risk fuels project with a corresponding ROE of 12 percent, results in SNG FYCOP cost ranging from \$9.85 to \$14.85/MMBtu and ammonia cost ranging from \$560 to \$585/ton.

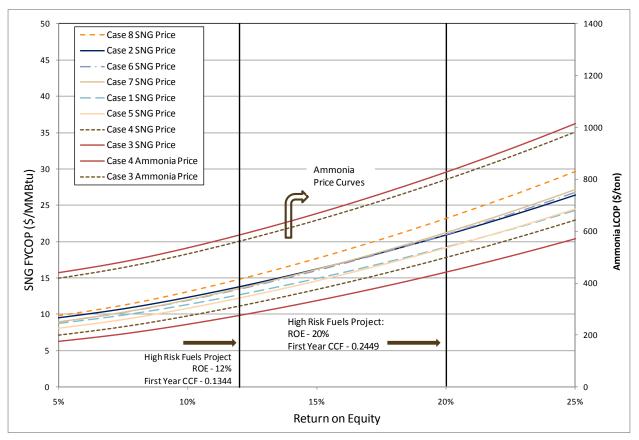


Exhibit ES-7 FYCOP Sensitivity to ROE

Exhibit ES-8 shows the FYCOP sensitivity to fuel costs. As expected, all cases show a linear increase in FYCOP with the increase in coal price. Fuel cost represents a relatively minor fraction of the FYCOP so that even at a fuel price of zero, the FYCOP of SNG ranges from \$13.73 to \$21.89/MMBtu.

The sensitivity of FYCOP to CF is shown in Exhibit ES-9. All cases show a decrease in FYCOP with an increase in CF. The CF used in this study was 90 percent. The rate of decrease is relatively small above 90 percent with the maximum differential between 90 percent and 100 percent capacity of \$1.96/MMBtu for SNG only cases and \$1.52/MMBtu for the co-production cases.

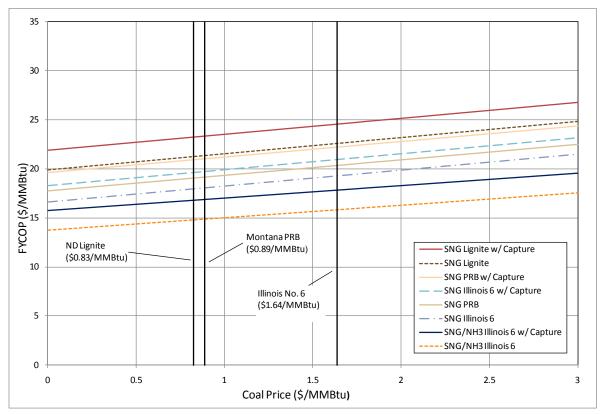
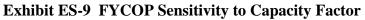
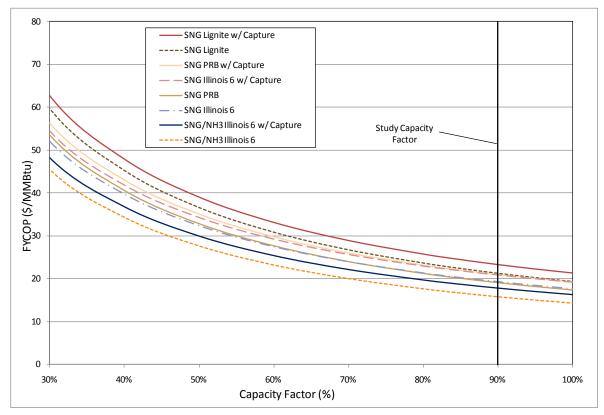




Exhibit ES-8 FYCOP Sensitivity to Fuel Costs

FIRST YEAR COST OF CO₂ AVOIDED

In cases where the CO_2 was sequestered, the associated costs of CO_2 compression and TS&M were calculated as an avoided cost, relative to the analogous non-sequestration case, as illustrated in Equation ES-1:

Avoided
$$Cost = \frac{\{FYCOP_{with sequestration} - FYCOP_{w/o sequestration}\} \$ / MMBtu}{\{Emissions_{w/o sequestration} - Emissions_{with sequestration}\} tons / MMBtu}$$
 (ES-1)

The resulting first year avoided costs are shown in Exhibit ES-10 for each of the four carbon sequestration cases. The cost of CO_2 avoided for the SNG only cases averages \$18.38/tonne (\$16.67/ton) within a very narrow range. The CO_2 avoided costs are lower for the co-production cases because the increase in the selling price of ammonia for the carbon sequestration case absorbs some of the costs related to the addition of compression and TS&M. For integrated gasification combined cycle (IGCC) cases in Volume 1 of this series, CO_2 avoided costs range from \$43-61/tonne (\$39-56/ton) avoided. The avoided costs for the SNG plants are significantly lower than IGCC plants because the capital cost increase is lower (there is capture in all cases; the incremental cost is for compression and carbon sequestration only). The TOC increase from non-sequestration to sequestration cases ranges from 2.4 to 2.6 percent for the cases in this study. The capital cost increase for the IGCC cases in Volume 1 is from 13.5 to 21.1 percent.

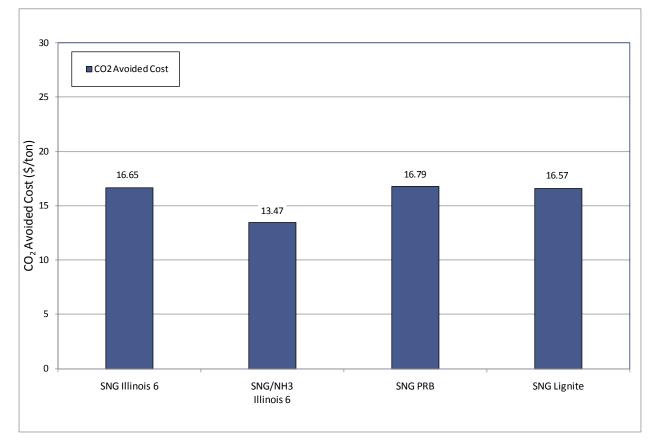


Exhibit ES-10 CO₂ Avoided Cost

ECONOMIC PATHWAYS

As stated above, the project financial structure used for the FYCOP calculations presented in this report is representative of a high-risk fuels project with no loan guarantees or other government subsidies. The parameters were chosen to reflect the next commercial offering in which the technical and economic risks have not been reduced by the wide-scale demonstration of the technology. The cost of producing SNG from coal can be substantially lower given more favorable financial and economic conditions. A more favorable structure could involve government loan guarantees, tax incentives, and shorter construction periods. Projects can also include different technologies and subsequently different capital costs, different O&M costs, production of other co-products, etc. that will impact the cost of SNG.

Exhibit ES-11 and Exhibit ES-12 show the results of adjusting selected economic assumptions for Cases 2 and 4 respectively to be representative of some of the parameters associated with a commercial coal-to-SNG project recently proposed. The modified parameters are highlighted in blue for each step. The combined modifications reduce the FYCOP by 48.6 percent for Case 2 and by 50.5 percent for Case 4. The resulting values are comparable to those quoted in the proposed project.

Loan guarantees are a near term incentive to commercialize technologies that involve high risk. Ultimately the technology must stand on its own merits. A second economic pathway was investigated to demonstrate a financial structure that would not require loan guarantees, but still achieve a similar cost of SNG. Increased commercial application of technologies reduces risks and lowers capital cost requirements. The gasification production plant capital cost in this study is based on commercial offerings; however, there have been very limited sales of these units. The costs listed reflect the "next commercial offering" level of cost rather than mature nth-of-a-kind (NOAK) cost. As technologies mature, overall costs decrease due to multiple plant completions and lessons learned.

Exhibit ES-13 and Exhibit ES-14 show the results of adjusting the financial structure to values typically assumed for a low risk power project [1]. Reductions in TOC of 21.5 percent for Case 2 and 22.6 percent for Case 4 reduce the FYCOP values to match those of the examples shown in Exhibit ES-11 and Exhibit ES-12 respectively. While these percentages may be considered aggressive for typical first-of-a-kind (FOAK) to NOAK reductions, substantial improvements in the FYCOP are shown even when only the financial structure is modified to reflect the lower risk of mature technologies.

Additionally, after the technology matures, it may be possible for the project developer to obtain financing through the bond market and obtain longer debt payment terms than shown in Exhibit ES-13 and Exhibit ES-14 and subsequently require a lower cost of product to satisfy the equity investors. The specific financing structure options of a project developer will strongly depend on the financial wherewithal of the developer.

The FYCOP values reported in this study reflect the typical assumptions made for high risk fuels projects, which were developed for the specific purpose of comparing the relative cost of coal conversion technologies. They are not intended to represent definitive point costs; however these sensitivities to the assumed financial parameters indicate that the results are comparable to currently proposed projects.

Parameter	NETL Study	Step 1a	Step 1b	Step 1c	Step 2	Step 3	Step 4	Step 5
% Debt	50%	70%	70%	70%	70%	70%	70%	70%
% Equity	50%	30%	30%	30%	30%	30%	30%	30%
Interest Rate	9.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%
Required IRROE	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
Repayment Term (years)	15	15	30	30	30	30	30	30
Capital Expenditure Period (Months)*	60	60	60	48	48	48	48	48
Capital Cost Escalation (%/yr)	3.6%	3.6%	3.6%	3.6%	0.0%	0.0%	0.0%	0.0%
Owner's Cost (%TPC)	23%	23%	23%	23%	23%	18%	18%	18%
Property Taxes and Insurance (%TPC)	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	0.42%	0.42%
CO ₂ Credit (\$/Tonne)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$10.00
CO ₂ Captured (Tonne/Day)	15,134	15,134	15,134	15,134	15,134	15,134	15,134	15,134
TOC (1000\$)	3,312,740	3,312,740	3,312,740	3,312,740	3,312,740	3,180,577	3,180,577	3,180,577
SNG COP \$/MMBtu (excluding TS&M costs)	20.04	15.17	13.47	12.68	12.29	12.01	11.23	10.31
Incremental Step Reduction		24.3%	11.2%	5.9%	3.0%	2.3%	6.5%	8.2%
Cumulative Reduction		24.3%	32.8%	36.7%	38.7%	40.1%	44.0%	48.6%

(SNG from Illinois 6 with CO₂ Capture)

* Capital Expenditure Period (Year-by-Year Distribution) 4 years (48 months) 10 % - 40 % - 30 % - 20 %

5 years (60 months) 10 % - 30 % - 25 % - 20 % - 15 %

Sensitivity Analysis Steps

1. Modify financing structure (debt/equity & interest rate)

1a Increase percentage of debt and decrease interest on debt

1b Increase loan repayment term

1c Decrease capital expenditure period

2. Reduce capital cost escalation during the capital expenditure period

3. Reduce owner's cost

4. Reduce taxes and insurance in fixed O&M costs

5. Assume CO₂ revenue value for enhanced oil recovery

Exhibit ES-12 Case 4 Economic Pathway with Favorable Financial Structure

Parameter	NETL Study	Step 1a	Step 1b	Step 1c	Step 2	Step 3	Step 4	Step 5
% Debt	50%	70%	70%	70%	70%	70%	70%	70%
% Equity	50%	30%	30%	30%	30%	30%	30%	30%
Interest Rate	9.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%
Required IRROE	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
Repayment Term (years)	15	15	30	30	30	30	30	30
Capital Expenditure Period (Months)*	60	60	60	48	48	48	48	48
Capital Cost Escalation (%/yr)	3.6%	3.6%	3.6%	3.6%	0.0%	0.0%	0.0%	0.0%
Owner's Cost (%TPC)	23%	23%	23%	23%	23%	18%	18%	18%
Property Taxes and Insurance (%TPC)	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	0.42%	0.42%
CO ₂ Credit (\$/Tonne)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$10.00
CO ₂ Captured (Tonne/Day)	16,763	16,763	16,763	16,763	16,763	16,763	16,763	16,763
TOC (1000\$)	3,829,817	3,829,817	3,829,817	3,829,817	3,829,817	3,684,431	3,684,431	3,684,431
SNG COP \$/MMBtu (excluding TS&M costs)	16.56	12.60	11.06	10.30	9.96	9.71	9.00	8.20
Incremental Step Reduction		23.9%	12.3%	6.8%	3.4%	2.5%	7.3%	8.8%
Cumulative Reduction		23.9%	33.2%	37.8%	39.9%	41.4%	45.7%	50.5%

(SNG and Ammonia from Illinois 6 with CO₂ Capture)

* Capital Expenditure Period (Year-by-Year Distribution)

4 years (48 months) 10 % - 40 % - 30 % - 20 %

5 years (60 months) 10 % - 30 % - 25 % - 20 % - 15 %

Sensitivity Analysis Steps

1. Modify financing structure (debt/equity & interest rate)

1a Increase percentage of debt and decrease interest on debt

1b Increase loan repayment term

- 1c Decrease capital expenditure period
- 2. Reduce capital cost escalation during the capital expenditure period
- 3. Reduce owner's cost
- 4. Reduce taxes and insurance in fixed O&M costs

5. Assume CO₂ revenue value for enhanced oil recovery

Parameter	NETL Study	Step 1a	Step 1b	Step 2
% Debt	50%	50%	50%	50%
% Equity	50%	50%	50%	50%
Interest Rate	9.5%	4.5%	4.5%	4.5%
Required IRROE	20.0%	20.0%	12.0%	12.0%
Repayment Term (years)	15	15	15	15
Capital Expenditure Period (Months)*	60	60	60	60
Capital Cost %Escalation/yr	3.6%	3.6%	3.6%	3.6%
Owner's Cost %TPC	23%	23%	23%	23%
Property Taxes and Insurance %TPC	2.00%	2.00%	2.00%	2.00%
CO ₂ Credit (\$/Tonne)	\$0.00	\$0.00	\$0.00	\$0.00
CO ₂ Tonne/Day Captured	15,134	15,134	15,134	15,134
TOC (1000\$)	3,312,740	3,312,740	3,312,740	2,602,157
Percent capital (TOC) reduction	0.0%	0.0%	0.0%	21.5%
SNG COP \$/MMBtu (excluding TS&M costs)	20.04	18.54	12.21	10.31
Incremental Step Reduction		7.5%	34.1%	15.6%
Cumulative Reduction		7.5%	39.1%	48.6%

Exhibit ES-13 Case 2 Economic Pathway with Mature Technology (SNG from Illinois 6 with CO₂ Capture)

* Capital Expenditure Period (Year-by-Year Distribution) 5 years (60 months) 10 % - 30 % - 25 % - 20 % - 15 %

Sensitivity Analysis Steps

- 1. Modify financing structure (debt/equity & interest rate)
 - 1a Decrease interest on debt
 - 1b Decrease required internal rate of return on equity (IRROE)
- 2. Reduce capital cost to reflect FOAK to NOAK improvements

Parameter	NETL Study	Step 1a	Step 1b	Step 2
% Debt	50%	50%	50%	50%
% Equity	50%	50%	50%	50%
Interest Rate	9.5%	4.5%	4.5%	4.5%
Required IRROE	20.0%	20.0%	12.0%	12.0%
Repayment Term (years)	15	15	15	15
Capital Expenditure Period (Months)*	60	60	60	60
Capital Cost %Escalation/yr	3.6%	3.6%	3.6%	3.6%
Owner's Cost %TPC	23%	23%	23%	23%
Property Taxes and Insurance %TPC	2.00%	2.00%	2.00%	2.00%
CO ₂ Credit (\$/Tonne)	\$0.00	\$0.00	\$0.00	\$0.00
CO ₂ Tonne/Day Captured	16,763	16,763	16,763	16,763
TOC (1000\$)	3,829,817	3,829,817	3,829,817	2,962,746
Percent capital (TOC) reduction	0.0%	0.0%	0.0%	22.6%
SNG COP \$/MMBtu (excluding TS&M costs)	16.56	15.67	10.02	8.20
Incremental Step Reduction		5.4%	36.0%	18.2%
Cumulative Reduction		5.4%	39.5%	50.5%

Exhibit ES-14 Case 4 Economic Pathway with Mature Technology

(SNG and Ammonia from Illinois 6 with CO₂ Capture)

* Capital Expenditure Period (Year-by-Year Distribution) 5 years (60 months) 10 % - 30 % - 25 % - 20 % - 15 %

Sensitivity Analysis Steps

- 1. Modify financing structure (debt/equity & interest rate)
 - 1a Decrease interest on debt
 - 1b Decrease required internal rate of return on equity (IRROE)
- 2. Reduce capital cost to reflect FOAK to NOAK improvements

This page intentionally left blank

1. INTRODUCTION

The objective of this report is to present an accurate, independent assessment of the cost and performance of fossil energy fuel systems, specifically the Siemens gasifier using bituminous and low rank coals to produce SNG and ammonia as a co-product, in a consistent technical and economic manner that accurately reflects current market conditions for plants starting operation in the near term. This report is Volume 2 of a four volume series. The four volumes are defined below with Volume 1 having been originally published in May 2007 and the most recent revision issued in November 2010. Volume 3 was released in March and May, 2011 and Volume 4 is expected to be released later in 2011.

- Volume 1: Bituminous Coal and Natural Gas to Electricity
- Volume 2: Coal to Synthetic Natural Gas and Ammonia (Various Coal Ranks)
- Volume 3: Low Rank Coal and Natural Gas to Electricity
- Volume 4: Bituminous Coal to Liquid Fuels with Carbon Capture

Eight cases are modeled and analyzed. Since all cases include CO_2 capture the normal designation of capture and non-capture is not used in this study. Rather the cases are differentiated by the designation carbon sequestration or non-sequestration. The carbon sequestration cases assume that compression and drying are the only steps required to produce CO_2 suitable for transportation and sequestration. Two cases use Illinois No. 6 bituminous coal for the production of SNG only, with and without carbon sequestration; two cases use Illinois No. 6 coal for the co-production of SNG and ammonia, with and without carbon sequestration; two cases use PRB subbituminous coal for the production of SNG only, also with and without carbon sequestration; and two cases use NDL coal for the production of SNG only, also with and without carbon sequestration.

The gasification scheme used in this study includes a partial quench followed by a syngas cooler. Heat recovery was necessary to produce enough power to satisfy internal auxiliary loads with some excess power for export in most cases. This configuration is not currently a commercial offering by Siemens, but based on personal communications, it is a configuration they are considering for coal-to-SNG projects.

This Final Report covers the following eight cases:

Case 1 – This case consists of a coal to SNG plant without CO_2 compression and sequestration based on a Siemens gasifier. Illinois No. 6 coal is the fuel and the plant is located at a generic site in Midwestern, U.S.

Case 2 – This case is the same as Case 1 except it includes CO_2 compression and sequestration.

Case 3 – This case consists of a coal to SNG and ammonia co-production plant without CO_2 compression and sequestration based on a Siemens gasifier. Illinois No. 6 coal is the fuel and the plant is located at a generic site in Midwestern, U.S.

Case 4 – This case is the same as Case 3 except it includes CO_2 compression and sequestration.

Case 5 – This case includes a coal to SNG plant without CO_2 compression and sequestration based on a Siemens gasifier. Rosebud PRB coal is the fuel and the plant is located at a generic site in Western, U.S.

Case 6 – This case is the same as Case 5 except it includes CO₂ compression and sequestration.

Case 7 – This case consists of a coal to SNG plant without CO_2 compression and sequestration based on a Siemens gasifier. NDL coal is the fuel and the plant is located at a minemouth site in North Dakota, U.S.

Case 8 – This case is the same as Case 7 except it includes CO_2 compression and sequestration.

While input was sought from various technology vendors, the final assessment of performance and cost was determined independently, and may not represent the views of the technology vendors.

Generating Unit Configurations

The six SNG only cases have a nominal gasifier thermal input of 500 MW. The actual capacity varies from 506 to 549 MWth depending on coal type. This translates into a production of 52 to 57 billion standard cubic feet (Bscf)/year of SNG at 90 percent CF. This translates into a daily capacity of 158-172 million standard cubic feet (MMScf)/day of SNG. The two SNG and ammonia co-production cases are based on a standard-size 2,000 tonnes/day (2,204 tons/day) ammonia facility with the remainder of the syngas used for SNG production.

The balance of this report is organized as follows:

- Chapter 2 provides the basis for technical, environmental, and cost evaluations.
- Chapter 3 describes the major process systems for all eight cases
- Chapter 4 provides the detailed results of the four bituminous coal cases.
- Chapter 5 provides the detailed results of the four low rank coal cases.
- Chapter 0 summarizes the results of the eight cases.
- Chapter 7 contains the reference list.

2. <u>GENERAL EVALUATION BASIS</u>

For each of the plant configurations in this study an Aspen model was developed and used to generate material and energy balances, which in turn were used to provide a design basis for items in the major equipment list. The equipment list and material balances were used as the basis for generating the capital and operating cost estimates. Performance and process limits were based upon published reports, information obtained from vendors of the technology, performance data from design/build utility projects, and/or best engineering judgment. Capital and operating costs were estimated by WorleyParsons Group, Inc. (WorleyParsons) based on simulation results and through a combination of vendor quotes and scaled estimates from previous design/build projects. Ultimately a first year cost of production (FYCOP) of SNG was calculated for each of the cases and is reported as the economic figure-of-merit. Due to the process requirements for both SNG and ammonia production, all cases utilize an AGR system that removes or captures the CO₂ from the syngas. Some cases simply release this removed CO₂ to the atmosphere and are labeled "non-sequestration." The cases that compress the removed CO₂ and include TS&M are labeled "sequestration."

The balance of this chapter documents the design basis, environmental targets, and cost assumptions used in the study.

2.1 SITE CHARACTERISTICS

The plants are located at three different generic plant sites. Plants using Illinois No. 6 coal are assumed to be located at a generic site in Midwestern, U.S. Plants using PRB coal are assumed to be located at a generic site in Montana. Plants using lignite coal are assumed to be located at a minemouth site in North Dakota. The ambient conditions for the three sites are shown in Exhibit 2-1.

	Location		
	Midwest	Montana	North Dakota
Average Elevation, ft	0	3,400	1,900
Barometric Pressure, psia	14.7	13.0	13.8
Design Ambient Temperature, Dry Bulb, °F	59	42	40
Design Ambient Temperature, Wet Bulb, °F	51.5	37	36
Design Ambient Relative Humidity, %	60	62	68

Exhibit 2-1	Ambient	Conditions

The site characteristics are assumed to be the same for all plant locations, except where noted as shown in Exhibit 2-2.

Location	Greenfield, Midwest (Illinois No. 6 coal), Montana (PRB coal) or North Dakota (lignite coal)
Topography	Level
Size, acres	300
Transportation	Rail
Ash/Slag Disposal	Off Site
Water	Municipal (50%) / Groundwater (50%)
Access	Land locked, having access by railway and highway
CO ₂ Storage	Compressed to 15.3 MPa (2,215 psia), transported 80 kilometers (50 miles) and sequestered in a saline formation at a depth of 1,239 meters (4,055 feet)

Exhibit 2-2 Site Characteristics

The land area for all the production plant cases assumes 30 acres are required for the plant proper and the balance provides a buffer of approximately 0.25 miles to the fence line. The extra land could also provide for a rail loop if required.

In all cases it was assumed that the steam turbine (ST) is enclosed in a turbine building, but the gasifier is not enclosed. The following design parameters are considered site-specific, and are not quantified for this study. Allowances for normal conditions and construction are included in the cost estimates.

- Flood plain considerations
- Existing soil/site conditions
- Water discharges and reuse
- Rainfall/snowfall criteria
- Seismic design
- Buildings/enclosures
- Fire protection
- Local code height requirements
- Noise regulations Impact on site and surrounding area

2.2 PLANT PRODUCTION CAPACITY

SNG Only Plant

Currently, the only operating SNG plant (and other co-products) within the U.S. is the Dakota Gasification Company's Great Plains Synfuels Plant. This plant has an annual production of approximately 54 Bscf [2]. In addition, there are several proposed SNG plants in the United States as listed in Exhibit 2-3 [3]. The gasifier capacity is coal-type dependent and the resulting SNG capacity varies accordingly. The six gasifier systems in this study result in average SNG

outputs of 56 Bscf/yr for bituminous coal, 55 Bscf/yr for PRB coal and 52 Bscf/yr for lignite coal at 90 percent CF. These capacities are consistent with the existing plant and announced projects shown in Exhibit 2-3.

Project	Location	Feedstock	Gasifier	Capacity	Units
Kentucky NewGas	Kentucky	Kentucky Bituminous	CoP E-Gas	1,700 – 1,980 (60-70)	MNm ³ /year (Bscf/year)
Hunton Energy Freeport Plant (Lockwood)	Texas	petcoke	GEE	1,870 (66)	MNm ³ /year (Bscf/year)
South Heart	North Dakota	ND Lignite	Lurgi	1,050 (37)	MNm ³ /year (Bscf/year)
Taylorville Energy Center	Illinois	Illinois Bituminous	GEE	74 - 450 (2.6-16)	MNm ³ /year (Bscf/year)
Southern Illinois Coal-to-SNG facility	Illinois	Illinois Bituminous	GEE	1,420 (50)	MNm ³ /year (Bscf/year)
Secure Energy Decatur Gasification	Illinois	Illinois Bituminous	Siemens	570 (20)	MNm ³ /year (Bscf/year)
Indiana SNG Project	Indiana	Illinois Bituminous	GEE	1,130 (40)	MNm ³ /year (Bscf/year)
Lake Charles Cogeneration LLC	Louisiana	petcoke	GEE	unknown	
Scriba Coal Gasification Plant	New York	coal	unknown	2,830 (100)	MNm ³ /year (Bscf/year)
Mississippi SNG Project	Mississippi	petcoke	CoP E-Gas	990 (35)	MNm ³ /year (Bscf/year)
Cash Creek SNG Project	Kentucky	Kentucky Bituminous	GEE	unknown	

Exhibit 2-3 Proposed Capacity for SNG Plants in the United States

SNG and Ammonia Co-Production Plant

The co-production facility cases use the same coal type and coal feed rate as the Illinois No. 6 bituminous coal non-sequestration and sequestration SNG only cases (Cases 1 and 2) with a portion of the syngas utilized to feed a large commercial size ammonia plant and the remaining syngas utilized for SNG production. Some currently operating ammonia plants in the United States and their associated feedstock and capacity are shown in Exhibit 2-4.

Exhibit 2-4 U.S. Ammonia Plants

Company	Location	Feedstock	Capacity	Units
Agrium Inc.	Texas	natural gas	1,342 (1,479)	tonnes/day (tons/day)
CF Industries, Inc.	Louisiana	natural gas	5,589 (6,156)	tonnes/day (tons/day)
Coffeyville Resources, Nitrogen Fertilizers, LLC	Louisiana	coal	1,027 (1,132)	tonnes/day (tons/day)
Dakota Gasification Co.	North Dakota	coal	995 (1,095)	tonnes/day (tons/day)

Company	Location	Feedstock	Capacity	Units
Honeywell International Inc.	Virginia	natural gas	1,452 (1,599)	tonnes/day (tons/day)
Koch Nitrogen Co.	Nebraska	natural gas	726 (800)	tonnes/day (tons/day)
Mosaic Co.	Louisiana	coal/petcoke	1,392 (1,533)	tonnes/day (tons/day)
PCS Nitrogen, Inc., LP	Georgia	natural gas	1,885 (2,076)	tonnes/day (tons/day)
Rentech Energy Midwest Corp.	Illinois	coal	762 (839)	tonnes/day (tons/day)

The standard capacity for new ammonia plants being built today is approximately 2,000 tonnes/day (2,204 tons/day) and is used as the basis for the ammonia portion of the co-production facilities [4]. Advances in ammonia production technology have enabled even higher production rates. At higher operating pressures, higher ammonia conversion per pass is achieved. This allows ammonia plant production capacity to increase while maintaining reasonable reactor and equipment sizes [5]. The remaining portion of the syngas is used to produce approximately 42 Bscf/year of SNG at 90 percent CF.

2.3 COAL CHARACTERISTICS

There are three design coals, bituminous Illinois No. 6 coal, subbituminous PRB coal from Montana, and lignite coal from North Dakota. The coal properties are from NETL's Coal Quality Guidelines and are shown in Exhibit 2-5, Exhibit 2-6, and Exhibit 2-7 [6].

The coal mercury (Hg) content was not available from reference 6 and was obtained through alternate means. Thirty-four samples of Illinois No. 6 coal have an arithmetic mean value of 0.09 parts per million (ppm) (dry basis) with standard deviation of 0.06 based on coal samples shipped by Illinois mines [7]. The coal mercury content for Illinois No. 6 coal shown in Exhibit 2-5 was assumed to be 0.15 ppm (dry) for all Illinois No. 6 cases, which corresponds to the mean plus one standard deviation and encompasses about 84 percent of the samples.

The mercury concentration for the low rank coals used in this study was determined from the Environmental Protection Agency's (EPA) Information Collection Request (ICR) database. The ICR database has 137 records of Montana Rosebud subbituminous coal with an average Hg concentration of 0.056 ppm (dry) and a standard deviation of 0.025 ppm. There are 266 records for NDL from the Beulah seam with an average Hg concentration of 0.081 ppm (dry) and a standard deviation of 0.081 ppm (dry) and a standard deviation of 0.081 ppm (dry) and a standard deviation of 0.081 ppm (dry) for NDL from the Beulah seam with an average Hg concentration of 0.081 ppm (dry) and a standard deviation of 0.035 ppm. The mercury values in Exhibit 2-6 and Exhibit 2-7 are the mean plus one standard deviation, or 0.081 ppm (dry) for PRB coal and 0.116 ppm (dry) for NDL [8]. It was further assumed that all of the coal Hg enters the gas phase and none leaves with the bottom ash or slag.

The Power Systems Financial Model (PSFM) was used to derive the capital charge factor (CCF) for this study [9]. The PSFM requires that all cost inputs have a consistent cost year basis. Because the capital and operating cost estimates are in June 2007 dollars, the fuel costs must also be in June 2007 dollars

The coal cost used in this study is \$1.55/GJ (\$1.64/MMBtu) for Illinois No. 6 coal, \$0.84/GJ (\$0.89/MMBtu) for PRB coal and \$0.78/GJ (\$0.83/MMBtu) for lignite coal (2007 cost of coal in

June 2007 dollars). These costs were determined using the following information from the EIA's 2008 AEO:

- The 2007 minemouth cost of Illinois No. 6 in 2006 dollars, \$32.66/tonne (\$29.63/ton), was obtained from Supplemental Table 112 of the EIA's 2008 AEO for eastern interior high-sulfur bituminous coal. From the same table the 2007 minemouth cost of PRB coal in 2006 dollars is \$13.02/tonne (\$11.81/ton) and of NDL coal in 2006 dollars is \$11.68/tonne (\$10.59/ton).
- The cost of Illinois No. 6 coal was escalated to 2007 dollars using the gross domestic product (GDP) chain-type price index from AEO 2008, resulting in a price of \$33.67/tonne (\$30.55/ton) [10]. Similarly, the cost of PRB coal in 2007 dollars is \$13.42/tonne (\$12.17/ton) and the cost of NDL in 2007 dollars is \$12.04/tonne (\$10.92/ton).
- Transportation costs for Illinois No. 6 and PRB coal were estimated to be 25 percent of the minemouth cost based on the average transportation rate of the respective coals to the surrounding regions [11]. The final delivered costs for Illinois No. 6 coal shown in the report is \$42.09/tonne (\$38.18/ton) or \$1.55/GJ (\$1.64/MMBtu). PRB coal has a final delivered cost of \$16.77/tonne (\$15.22/ton) or \$0.84/GJ (\$0.89/MMBtu). The NDL plant is assumed to be located at the minemouth, so transportation costs are zero. (Note: The Illinois No. 6 coal cost of \$1.6366/MMBtu was used in calculations, but only two decimal places are shown in the report. Similarly, the PRB and lignite fuel costs convert to \$0.8884/MMBtu and \$0.8251/MMBtu, respectively.)

Proximate Analysis	Dry Basis, %	As Received, %
Moisture	0.0	11.12
Ash	10.91	9.70
Volatile Matter	39.37	34.99
Fixed Carbon	49.72	44.19
Total	100.0	100.0
Ultimate Analysis	Dry Basis, %	As Received, %
Carbon	71.72	63.75
Hydrogen	5.06	4.50
Nitrogen	1.41	1.25
Sulfur	2.82	2.51
Chlorine	0.33	0.29
Ash	10.91	9.70
Moisture	0.00	11.12
Oxygen (Note A)	7.75	6.88
Total	100.0	100.0
Heating Value	Dry Basis	As Received
HHV, kJ/kg	30,506	27,113
HHV, Btu/lb	13,126	11,666
LHV, kJ/kg	29,544	26,151
LHV, Btu/lb	12,712	11,252
Hardgrove Grindability Index	60	
Ash Mineral Analysis		%
Silica	SiO ₂	45.0
Aluminum Oxide	Al_2O_3	18.0
Iron Oxide	Fe_2O_3	20.0
Titanium Dioxide	TiO ₂	1.0
Calcium Oxide	CaO	7.0
Magnesium Oxide	MgO	1.0
Sodium Oxide	Na ₂ O	0.6
Potassium Oxide	K ₂ O	1.9
Sulfur Trioxide	SO_3	3.5
Phosphorous Pentoxide	P_2O_5	0.2
Barium Oxide	Ba ₂ O	0.00
Strontium Oxide	SrO	0.00
Unknown		1.8
	Total	100.0
Trace Components		ppmd
Mercury (Note B)	Hg	0.15

Exhibit 2-5 Illinois No. 6 Bituminous, Old Ben Mine Bituminous Design Coal Analysis

Notes: A. By Difference

B. Mercury value is the mean plus one standard deviation using 2004 Keystone Coal Industry Manual

Proximate Analysis	Dry Basis, %	As Received, %
Moisture	0.0	25.77
Ash	11.04	8.19
Volatile Matter	40.87	30.34
Fixed Carbon	48.09	35.70
Total	100.0	100.0
Ultimate Analysis	Dry Basis, %	As Received, %
Carbon	67.45	50.07
Hydrogen	4.56	3.38
Nitrogen	0.96	0.71
Sulfur	0.98	0.73
Chlorine	0.01	0.01
Ash	11.03	8.19
Moisture	0.00	25.77
Oxygen (Note A)	15.01	11.14
Total	100.0	100.0
Heating Value	Dry Basis	As Received
HHV, kJ/kg	26,787	19,920
HHV, Btu/lb	11,516	8,564
LHV, kJ/kg	25,810	19,195
LHV, Btu/lb	11,096	8,252
Hardgrove Grindability Index	57	
Ash Mineral Analysis		%
Silica	SiO ₂	38.09
Aluminum Oxide	Al_2O_3	16.73
Iron Oxide	Fe_2O_3	6.46
Titanium Dioxide	TiO ₂	0.72
Calcium Oxide	CaO	16.56
Magnesium Oxide	MgO	4.25
Sodium Oxide	Na ₂ O	0.54
Potassium Oxide	K ₂ O	0.38
Sulfur Trioxide	SO_3	15.08
Phosphorous Pentoxide	P_2O_5	0.35
Barium Oxide	Ba ₂ O	0.00
Strontium Oxide	SrO	0.00
Unknown		0.84
	Total	100.0
Trace Components		ppmd
Mercury (Note B)	Hg	0.081

Exhibit 2-6 Montana Rosebud PRB, Area D, Western Energy Co. Mine Subbituminous Design Coal Analysis

Notes: A

B. Mercury value is the mean plus one standard deviation using EPA's ICR data

Proximate Analysis	Dry Basis, %	As Received, %
Moisture	0.0	36.08
Ash	15.43	9.86
Volatile Matter	41.49	26.52
Fixed Carbon	43.09	27.54
Total	100.0	100.0
Ultimate Analysis	Dry Basis, %	As Received, %
Carbon	61.88	39.55
Hydrogen	4.29	2.74
Nitrogen	0.98	0.63
Sulfur	0.98	0.63
Chlorine	0.00	0.00
Ash	15.43	9.86
Moisture	0.00	36.08
Oxygen (Note A)	16.44	10.51
Total	100.0	100.0
Heating Value	Dry Basis	As Received
HHV, kJ/kg	24,254	15,391
HHV, Btu/lb	10,427	6,617
LHV, kJ/kg	23,335	14,804
LHV, Btu/lb	10,032	6,364
Hardgrove Grindability Index	Not applicable	
Ash Mineral Analysis		%
Silica	SiO ₂	35.06
Aluminum Oxide	Al_2O_3	12.29
Iron Oxide	Fe_2O_3	5.12
Titanium Dioxide	TiO ₂	0.58
Calcium Oxide	CaO	14.39
Magnesium Oxide	MgO	6.61
Sodium Oxide	Na ₂ O	5.18
Potassium Oxide	K ₂ O	0.64
Sulfur Trioxide	SO ₃	16.27
Barium Oxide	Ba ₂ O	0.56
Strontium Oxide	SrO	0.27
Manganese Dioxide	MnO ₂	0.02
Unknown		3.00
	Total	100.0
Trace Components		ppmd
Mercury (Note B)	Hg	0.116

Exhibit 2-7 North Dakota Beulah-Zap Lignite, Freedom, ND Mine Lignite Design Coal Analysis

Notes: A. By Difference

B. Mercury value is the mean plus one standard deviation using EPA's ICR data

2.4 **PRODUCT SPECIFICATIONS**

Synthetic Natural Gas

To be a viable pipeline replacement fuel for natural gas, the SNG must meet certain specifications. Exhibit 2-8 lists generic specifications for domestic and commercial natural gas from a pipeline handbook [12].

Parameter	Value
Heating Value, kJ/Nm ³ (Btu/scf)	> 35,367 (950)
Sulfur Content, kg/100 Nm ³ (lb/100 scf)	< 0.0023 (0.00014)
CO ₂ Content, vol %	< 2
Moisture Content, kg/1000 Nm ³ (lb/1000 scf)	< 62.5 (3.9)
Temperature, °C (°F)	< 49 (120)

Exhibit 2-8 SNG Pipeline Requirements

As liquefied natural gas (LNG) and other non-conventional gas sources become increasingly prevalent, more attention is being placed on natural gas specifications and its interchangeability. An administrative law judge at the Federal Energy Regulatory Commission (FERC) recently ruled in favor of Florida Gas Transmission (FGT) setting stringent specifications on LNG imported through the gulf coast [13]. The ruling set an acceptable Wobbe Index range of 1,340-1,396 and gross heating value range of 1,025-1,110 British thermal unit per standard cubic foot (Btu/scf). The Wobbe Index is a measure of the energy carrying capacity of a given fuel and is found by dividing the fuel heating value by the square root of the specific gravity (SG). Notably the ruling was not applied to domestic gas received into FGT's system.

There is a wide range of fuel quality that is acceptable to most combustion equipment, but the same equipment often will not handle high variability in the fuel quality. The SNG produced in this study falls at the low end of the acceptable quality range with HHVs ranging from 965-975 Btu/scf, Wobbe Indices in the range of 1,265-1,275, and inert concentrations ranging from 3-4.5 percent. The primary reason for the lower quality product is the absence of higher hydrocarbons. The methanation process produces only methane, and the balance of the SNG is necessarily inerts. Pure methane has a HHV of 1,012 Btu/scf and a Wobbe Index of 1,357, which represent the upper limits of the methanation process.

The quality of the SNG produced in this study could be enhanced in a number of ways:

- Increase the oxygen purity from 99 percent to 99.5 percent (or greater) with a corresponding increase in air separation unit (ASU) cost.
- Upgrade the SNG purification system (pressure swing adsorption [PSA]) by increasing the bed depth or adding beds in series to remove additional CO₂ (again at increased cost).

Ultimately the SNG purity requirements will be dictated by project location and fuel end use. The quality of the product is consistent across the cases modeled in this study.

<u>Ammonia</u>

The two general quality specifications for commercial grade ammonia are shown in Exhibit 2-9 [14]. For the co-production cases, the commercial grade specification was used as the refrigeration grade specification requires further purification that was deemed beyond the scope of these baseline cases.

	Commercial	
Parameter	Grade	Refrigeration Grade
Purity (min wt%)	99.5	99.98
Water (max wt%)	0.5	0.015
Inerts (max mL/g)	not specified	0.1
Oil (ppm by wt)	5.0	3.0

Exhibit 2-9 Ammonia Quality Requirements

2.5 ENVIRONMENTAL TARGETS

There are relatively few emission sources associated with the SNG and ammonia production plants. The primary emissions occur when the SNG is consumed, presumably in a combustion-type process, which is outside of the battery limit of this study. The plants in this study have several point source emissions, but consist mostly of fugitive emissions, which are also beyond the scope of this study. Typical emission sources include particulate matter (PM) from the coal pile, coal transfer operations, slag handling, and the cooling tower; fugitive emissions from valves and other process equipment; and emissions from emergency generators and flare stacks. None of these operations are included in the Aspen model, and emissions from these sources are not quantified.

There are some point source emissions that are modeled and accounted for in the various cases:

- Drying in the bituminous coal cases includes combustion of a slipstream of clean syngas and Claus plant tail gas. The hot flue gases are used to dry the coal and then exhausted to atmosphere.
- In the NH₃ co-production cases there is a waste heat boiler that is fueled by the PSA purification unit purge gas. Heat is recovered from the boiler exhaust gases prior to venting it to atmosphere.
- In all cases a portion of the lockhopper transport gas is vented to atmosphere.
- In all non-sequestration cases the CO₂-rich gas from the two-stage Selexol process is vented to atmosphere. This stream is compressed and stored in a saline aquifer in the carbon sequestration cases.
- In all non-sequestration cases the off gas from the PSA SNG purification unit is vented to atmosphere. This stream is compressed and stored in a saline aquifer in the carbon sequestration cases.

The only emissions reported for each case are sulfur dioxide (SO_2) and CO_2 . In the PRB and lignite coal cases, there are no combustion operations so no SO_2 emissions are reported. PM in the SNG is not released until combustion occurs and fugitive dust sources are not quantified. Similarly, mercury remaining in the SNG is not released to the atmosphere until combustion occurs. Since the fuel in the two combustion operations (coal dryer in bituminous coal cases and waste heat boiler in NH₃ co-production cases) is void of nitrogen, and thermal oxides of nitrogen (NOx) formation is minimal at the temperatures of combustion, NOx is not quantified as an emission.

Since mercury is a methanation catalyst poison, essentially all of the mercury must be removed from the gas stream. The environmental target for mercury capture is greater than 90 percent. Based on experience at the Eastman Chemical plant, where synthesis gas (syngas) from a General Electric Energy (GEE) gasifier is treated, the actual mercury removal efficiency used is 95 percent. Sulfur-impregnated activated carbon is used by Eastman as the adsorbent in the packed beds operated at 30°C (86°F) and 6.2 megapascals (MPa) (900 pounds per square inch gage [psig]). Mercury removal between 90 and 95 percent has been reported with a bed life of 18 to 24 months. Removal efficiencies may be even higher, but at 95 percent the measurement precision limit was reached. Eastman has yet to experience any mercury contamination in its product [15]. Mercury removals of greater than 99 percent can be achieved by the use of dual beds, i.e., two beds in series. However, this study assumes that the use of sulfur-impregnated carbon in a single carbon bed achieves 95 percent reduction of mercury emissions, which reduces the Hg content in the clean syngas to less than 0.45 ppb in all cases.

Since momentum for carbon regulations continues to build, CO_2 emissions are also reported for each case. Because the form of emission limits, should they be imposed, is not known, CO_2 emissions are reported on a pounds per million British thermal units (lb/MMBtu) heat input to the gasifier basis as well as total tons per year. The emission values were used to quantify the impact of a carbon tax later in the report.

Ultimately, the environmental regulations for an SNG or SNG and ammonia co-production plant will be established by state and local jurisdictions. However, since the emissions profiles of these plants are relatively benign, it is assumed that environmental permits will be attainable.

2.6 CAPACITY FACTOR

Electric Power Research Institute (EPRI) examined the historical forced and scheduled outage times for IGCCs and concluded that the reliability factor (which looks at forced or unscheduled outage time only) for a single train IGCC (no spares) would be about 90 percent [16]. To get the AF, one has to deduct the scheduled outage time. In reality the scheduled outage time differs from gasifier technology-to-gasifier technology, but the differences are relatively small and would have minimal impact on the CF.

There are four operating IGCC's worldwide that use a solid feedstock and are primarily power producers (Polk, Wabash, Buggenum, and Puertollano). A 2006 report by Higman et al. examined the reliability of these IGCC power generation units and concluded that typical annual on-stream times are around 80 percent [17]. The CF would be somewhat less than the on-stream time since most plants operate at less than full load for some portion of the operating year.

Previous NETL studies utilizing IGCC technology have assumed a CF of 80 percent based on EPRI's studies and Higman's report. However, a 90 percent CF was assumed for the six gasifier

gasification island used in this study, which has been supported by Siemens Energy, Inc. [18]. It was assumed that if one of the six gasifiers stopped operation for maintenance or repair, reducing the CF to 83 percent, the system could operate at 100 percent capacity long enough to compensate for the down time.

The addition of CO_2 capture or an ammonia co-production facility was assumed not to impact the AF, nor was the addition of compression and sequestration. This assumption was made to enable a comparison based on the impact of capital and variable operating costs only. Any reduction in assumed CF would further increase the FYCOP for the carbon sequestration cases and ammonia co-production cases as shown in the sensitivity analysis in Exhibit ES-9.

2.7 RAW WATER WITHDRAWAL AND CONSUMPTION

A water balance was performed for each case on the major water consumers in the process. The total water demand for each subsystem was determined and internal recycle water available from various sources like boiler feedwater (BFW) blowdown and condensate from syngas was applied to offset the water demand. The difference between demand and recycle is raw water withdrawal. Raw water withdrawal is the water removed from the ground or diverted from a surface-water source for use in the plant. Raw water consumption is also accounted for as the portion of the raw water withdrawn that is evaporated, transpired, incorporated into products or otherwise not returned to the water source it was withdrawn from.

Raw water makeup was assumed to be provided 50 percent by a publicly owned treatment works (POTW) and 50 percent from groundwater. Raw water withdrawal is defined as the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, BFW makeup, slag handling makeup and quench system makeup. The difference between withdrawal and process water returned to the source is consumption. Consumption represents the net impact of the process on the water source.

BFW blowdown and a portion of the sour water stripper blowdown were assumed to be treated and recycled to the cooling tower. The cooling tower blowdown and the balance of the SWS blowdown streams were assumed to be treated and 90 percent returned to the water source with the balance sent to the ash ponds for evaporation.

The largest consumer of raw water in all cases is cooling tower makeup. The bituminous coal cases utilize a mechanical draft, evaporative cooling tower, and all process blowdown streams were assumed to be treated and recycled to the cooling tower. It was assumed that the PRB and NDL coal cases utilized a parallel cooling system with half of the turbine exhaust steam condensed in an air-cooled condenser and half in a water-cooled condenser.

The design ambient wet bulb (WB) temperature of 11° C (51.5° F) at the Midwestern site was used to achieve a cooling water temperature of 16° C (60° F) using an approach of 5° C (8.5° F). The conditions of 3° C (37° F) at the Montana site and 2° C (36° F) at the North Dakota site (Exhibit 2-1) were used to achieve a cooling water temperature of 9° C (48° F) and 8° C (47° F), respectively at the two sites using an approach of 6° C (11° F). The cooling water range was assumed to be 11° C (20° F) for all cases. The cooling tower makeup rate was determined using the following:[19]

- Evaporative losses of 0.8 percent of the circulating water flow rate per 10°F of range
- Drift losses of 0.001 percent of the circulating water flow rate

- Blowdown losses were calculated as follows:
 - Blowdown Losses = Evaporative Losses / (Cycles of Concentration 1)

Where cycles of concentration are a measure of water quality and a mid-range value of 4 was chosen for this study.

The water balances presented in subsequent sections include the water demand of the major water consumers within the process, the amount provided by internal recycle, the amount of raw water withdrawal by difference, the amount of process water returned to the source and the raw water consumption, again by difference.

2.8 COST ESTIMATING METHODOLOGY

The estimating methodology for capital costs, operations and maintenance costs, and CO₂ TS&M costs are described below. The finance structure, basis for the discounted cash flow analysis, and first-year SNG cost calculations are also described.

2.8.1 Capital Costs

As illustrated in Exhibit 2-10, this study reports capital cost at four levels: Bare Erected Cost (BEC), Total Plant Cost (TPC), Total Overnight Cost (TOC) and Total As-spent Capital (TASC). BEC, TPC and TOC are "overnight" costs and are expressed in "base-year" dollars. The base year is the first year of capital expenditure, which for this study is assumed to be 2007. TASC is expressed in mixed-year, current-year dollars over the entire capital expenditure period, which is assumed to last five years (2007 to 2011).

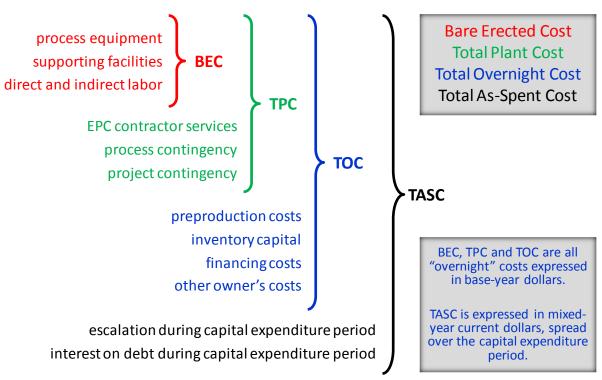


Exhibit 2-10 Capital Cost Levels and their Elements

The <u>BEC</u> comprises the cost of process equipment, on-site facilities and infrastructure that support the plant (e.g., shops, offices, labs, road), and the direct and indirect labor required for its construction and/or installation. The cost of EPC services and contingencies is not included in BEC. BEC is an overnight cost expressed in base-year (2007) dollars.

The <u>TPC</u> comprises the BEC plus the cost of services provided by the engineering, procurement and construction (EPC) contractor and project and process contingencies. EPC services include: detailed design, contractor permitting (i.e., those permits that individual contractors must obtain to perform their scopes of work, as opposed to project permitting, which is not included here), and project/construction management costs. TPC is an overnight cost expressed in base-year (2007) dollars.

The <u>TOC</u> comprises the TPC plus owner's costs. TOC is an "overnight" cost, expressed in baseyear (2007) dollars and as such does not include escalation during construction or interest during construction. TOC is an overnight cost expressed in base-year (2007) dollars.

The <u>TASC</u> is the sum of all capital expenditures as they are incurred during the capital expenditure period including their escalation. TASC also includes interest during construction. Accordingly, TASC is expressed in mixed, current-year dollars over the capital expenditure period.

Cost Estimate Basis and Classification

The TPC and Operation and Maintenance (O&M) costs for each of the cases in the study were estimated by WorleyParsons using an in-house database and conceptual estimating models. Costs were further calibrated using a combination of adjusted vendor-furnished and actual cost data from recent design projects.

The capital costs for each cost account were reviewed by comparing individual accounts across each of the cases to ensure an accurate representation of the relative cost differences between the cases and accounts.

Recommended Practice 18R-97 of the Association for the Advancement of Cost Engineering International (AACE) describes a Cost Estimate Classification System as applied in Engineering, Procurement and Construction for the process industries [20].

Most techno-economic studies, including this coal-to-SNG study, completed by NETL feature cost estimates intended for the purpose of a "Feasibility Study" (AACE Class 4). Exhibit 2-11 describes the characteristics of an AACE Class 4 Cost Estimate. Cost estimates in this study have an expected accuracy range of -15%/+30%.

System Code-of-Accounts

The costs are grouped according to a process/system oriented code of accounts. This type of code-of-account structure has the advantage of grouping all reasonably allocable components of a system or process so they are included in the specific system account. (This would not be the case had a facility, area, or commodity account structure been chosen instead).

Project Definition	Typical Engineering Completed	Expected Accuracy
1 to 15%	plant capacity, block schematics, indicated layout, process flow diagrams for main process systems, and preliminary engineered process and utility equipment lists	-15% to -30% on the low side, and +20% to +50% on the high side

Exhibit 2-11 Features of an AACE Class 4 Cost Estimate

Gasification Plant Maturity

The gasification production plant is based on commercial offerings; however, there have been very limited sales of these units. The costs listed reflect the "next commercial offering" level of cost rather than mature nth-of-a-kind (NOAK) cost. Thus, each of these cases reflects the expected cost for the next commercial sale of the gasification technology.

CO₂ Removal Maturity

Pre-combustion CO_2 removal from syngas streams has been proven in chemical processes with similar conditions to that in gasification plants in this study, and has been demonstrated at the Great Plains Synfuels plan and in hundreds of syngas processing plants such as ammonia, methanol, hydrogen, and other petrochemical plants worldwide.

Contracting Strategy

The estimates are based on an EPCM approach utilizing multiple subcontracts. This approach provides the Owner with greater control of the project, while minimizing, if not eliminating most of the risk premiums typically included in an Engineer/Procure/Construct (EPC) contract price.

In a traditional lump sum EPC contract, the Contractor assumes significant financial risk for performance, schedule, and cost up to stipulated contractual levels. However, as a result of current market conditions, EPC contractors appear more unwilling to accept significant project completion and performance risk. Rather, the current trend appears to be a modified EPC approach where much of the risk remains with the Owner. Where Contractors are willing to accept the risk in EPC type lump-sum arrangements, it is reflected in the project cost. In today's market, Contractor premiums for accepting these risks, particularly performance risk, can be substantial and increase the overall project costs dramatically.

The EPCM approach used as the basis for the estimates here is anticipated to be the most likely contracting model for SNG/ammonia projects today. While the Owner retains the risks, the risks become reduced with time, as there is better scope definition at the time of contract award(s).

Estimate Scope

The estimates represent a complete synfuels production facility, and in the co-production cases, a complete NH_3 production facility on a generic site.

The plant boundary limit is defined as the total plant facility within the "fence line" including coal receiving and water supply system, but terminating at the high voltage side of the main power transformers and the compression of the SNG. The single exception to the fence line limit is in the carbon sequestration cases where costs are included for TS&M of the CO₂.

Capital Costs

WorleyParsons developed the capital cost estimates for each plant using the company's in-house database and conceptual estimating models for each of the specific technologies. This database and the respective models are maintained by WorleyParsons as part of a commercial gasification design base of experience for similar equipment in the company's range of power and process projects. A reference bottoms-up estimate for each major system provides the basis for the estimating models.

Other key estimate considerations include the following:

- Labor costs are based on Midwest, Merit Shop. The estimating models are based on U.S. Gulf Coast and the labor has been factored to Midwest. The basis for the factors is the PAS, Inc. (PAS) "Merit Shop Wage & Benefit Survey," which is published annually. Based on the data provided in PAS, WorleyParsons used the weighted average payroll plus fringe rate for a standard craft distribution as developed for the estimating models. PAS presents information for eight separate regions. For this study, Region 5 (IL, IN, MI, MN, OH, and WI) was selected. The weighted average rate for Region 8 (CO, MT, ND, SD, UT, and WY) is within one-half of one percent of that for Region 5. Given the accuracy limits of the studies, the differential is insignificant.
- The estimates are based on a competitive bidding environment, with adequate skilled craft labor available locally.
- Labor is based on a 50-hour work-week (5-10s). No additional incentives such as perdiems or bonuses have been included to attract craft labor.
- While not included at this time, labor incentives may ultimately be required to attract and retain skilled labor depending on the amount of competing work in the region, and the availability of skilled craft in the area at the time the projects proceed to construction.
- The estimates are based on a greenfield sites.
- The sites are considered to be Seismic Zone 1, relatively level, and free from hazardous materials, archeological artifacts, or excessive rock. Soil conditions are considered adequate for spread footing foundations. The soil bearing capability is assumed adequate such that piling is not needed to support the foundation loads.
- Costs are limited to within the "fence line," terminating at the high voltage side of the main power transformers with the exception of costs included for TS&M of CO₂ in all carbon sequestration cases.
- Engineering and Construction Management are estimated at 10 percent of BEC. These costs consist of all home office engineering and procurement services as well as field construction management costs. Site staffing generally includes a construction manager, resident engineer, scheduler, and personnel for project controls, document control, materials management, site safety, and field inspection.
- All capital costs are presented as "Overnight Costs" in June 2007 dollars. Escalation to period-of-performance is specifically excluded in the TPC. However, the CCF used to calculate FYCOP includes capital cost escalation during construction of 3.6 percent.

Price Fluctuations

During the course of this study, the prices of equipment and bulk materials fluctuated quite substantially. Some reference quotes pre-dated the 2007 year cost basis while others were received post-2007. All vendor quotes used to develop these estimates were adjusted to June 2007 dollars accounting for the price fluctuations. Adjustments of costs pre-dating 2007 benefitted from a vendor survey of actual and projected pricing increases from 2004 through mid-2007 that WorleyParsons conducted for another project. The results of that survey were used to validate/recalibrate the corresponding escalation factors used in the conceptual estimating models. The more recent economic down turn has resulted in a reduction of commodity prices such that many price indices have similar values in January 2010 compared to June 2007. For example, the Chemical Engineering Plant Cost Index was 532.7 in June 2007 and 532.9 in January 2010, and the Gross Domestic Product Chain-type Price Index was 106.7 on July 1, 2007 and 110.0 on January 1, 2010. While these overall indices are nearly constant, it should be noted that the cost of individual equipment types may still deviate from the June 2007 reference point.

Exclusions

The capital cost estimate includes all anticipated costs for equipment and materials, installation labor, professional services (Engineering and Construction Management), and contingency. The following items are excluded from the capital costs:

- Escalation to period-of-performance
- Owner's costs these are accounted for separately and are described below.
- All taxes, with the exception of payroll and property taxes (property taxes are included with the fixed O&M costs)
- Site specific considerations including, but not limited to, seismic zone, accessibility, local regulatory requirements, excessive rock, piles, laydown space, etc.
- Labor incentives in excess of a 5-10s
- Additional premiums associated with an EPC contracting approach

Contingency

Process and project contingencies are included in estimates to account for unknown costs that are omitted or unforeseen due to a lack of complete project definition and engineering. Contingencies are added because experience has shown that such costs are likely, and expected, to be incurred even though they cannot be explicitly determined at the time the estimate is prepared.

Capital cost contingencies do not cover uncertainties or risks associated with

- scope changes
- changes in labor availability or productivity
- delays in equipment deliveries
- changes in regulatory requirements
- unexpected cost escalation
- performance of the plant after startup (e.g., availability, efficiency)

Process Contingency

Process contingency is intended to compensate for uncertainty in cost estimates caused by performance uncertainties associated with the development status of a technology. Process contingencies are applied to each plant section based on its current technology status.

As shown in Exhibit 2-12, AACE International Recommended Practice 16R-90 provides guidelines for estimating process contingency based on EPRI philosophy [21].

Process contingencies have been applied to the estimates in this study as follows:

- Gasifiers and Syngas Coolers 15 percent on all cases next-generation commercial offering
- Two Stage Selexol 20 percent on all cases unproven technology at commercial scale
- Methanation Process 10 percent on all cases unproven technology at commercial scale
- Mercury Removal 5 percent on all cases minimal commercial scale experience in gasification applications
- Instrumentation and Controls 5 percent for integration issues

Technology Status	Process Contingency (% of Associated Process Capital)
New concept with limited data	40+
Concept with bench-scale data	30-70
Small pilot plant data	20-35
Full-sized modules have been operated	5-20
Process is used commercially	0-10

Exhibit 2-12 AACE Guidelines for Process Contingency

Process contingency is typically not applied to costs that are set equal to a research goal or programmatic target since these values presume to reflect the total cost.

Project Contingency

AACE 16R-90 states that project contingency for a "budget-type" estimate (AACE Class 4 or 5) should be 15 to 30 percent of the sum of BEC, EPC fees and process contingency. This was used as a general guideline, but some project contingency values outside of this range occur based on WorleyParsons' in-house experience.

Owner's Costs

Exhibit 2-13 explains the estimation method for owner's costs. With some exceptions, the estimation method follows guidelines in Sections 12.4.7 to 12.4.12 of AACE International Recommended Practice No. 16R-90 [21]. The Electric Power Research Institute's "Technical Assessment Guide (TAG®) – Power Generation and Storage Technology Options" also has guidelines for estimating owner's costs. The EPRI and AACE guidelines are very similar. In instances where they differ, this study has sometimes adopted the EPRI approach.

Owner's Cost	Estimate Basis
Prepaid Royalties	Any technology royalties are assumed to be included in the associated equipment cost, and thus are not included as an owner's cost.
Preproduction (Start-Up) Costs	 6 months operating labor 1 month maintenance materials at full capacity 1 month non-fuel consumables at full capacity 1 month waste disposal 25% of one month's fuel cost at full capacity 2% of TPC Compared to AACE 16R-90, this includes additional costs for operating labor (6 months versus 1 month) to cover the cost of training the plant operators, including their participation in startup, and involving them occasionally during the design and
Working Capital	construction. AACE 16R-90 and EPRI TAG® differ on the amount of fuel cost to include; this estimate follows EPRI. Although inventory capital (see below) is accounted for, no additional costs are included for working capital.
Inventory Capital	 0.5% of TPC for spare parts 60 day supply (at full capacity) of fuel. Not applicable for natural gas. 60 day supply (at full capacity) of non-fuel consumables (e.g., chemicals and catalysts) that are stored on site. Does not include catalysts and adsorbents that are batch replacements such as WGS, COS, and SCR catalysts and activated carbon. AACE 16R-90 does not include an inventory cost for fuel, but EPRI TAG® does.
Land	• \$3,000/acre (300 acres for IGCC and PC, 100 acres for NGCC)
Financing Cost	• 2.7% of TPC This financing cost (not included by AACE 16R-90) covers the cost of securing financing, including fees and closing costs but not including interest during construction (or AFUDC). The "rule of thumb" estimate (2.7% of TPC) is based on a 2008 private communication with a capital services firm.

Exhibit 2-13 Owner's Costs Included in TOC

Owner's Cost	Estimate Basis	
	• 15% of TPC	
	This additional lumped cost is not included by AACE 16R-90 or EPRI TAG®. The "rule of thumb" estimate (15% of TPC) is based on a 2009 private communication with WorleyParsons. Significant deviation from this value is possible as it is very site and owner specific. The lumped cost includes:	
Other Owner's Costs	 Preliminary feasibility studies, including a Front-End Engineering Design (FEED) study Economic development (costs for incentivizing local collaboration and support) Construction and/or improvement of roads and/or railroad spurs outside of site boundary Legal fees Permitting costs Owner's engineering (staff paid by owner to give third-party advice and to help the owner oversee/evaluate the work of the EPC contractor and other contractors) Owner's contingency (Sometimes called "management reserve", these are funds to cover costs relating to delayed startup, fluctuations in equipment costs, unplanned labor incentives in excess of a five-day/ten-hour-per-day work week. Owner's contingency is NOT a part of project contingency.) 	
	 This lumped cost does NOT include: EPC Risk Premiums (Costs estimates are based on an Engineering Procurement Construction Management approach utilizing multiple subcontracts, in which the owner assumes project risks for performance, schedule and cost) Transmission interconnection: the cost of interconnecting with power transmission infrastructure beyond the plant busbar. Taxes on capital costs: all capital costs are assumed to be exempt from state and local taxes. Unusual site improvements: normal costs associated with improvements to the plant site are included in the bare erected cost, assuming that the site is level and requires no environmental remediation. Unusual costs associated with the following design parameters are excluded: flood plain considerations, existing soil/site conditions, water discharges and reuse, rainfall/snowfall criteria, seismic design, buildings/enclosures, fire protection, local code height requirements, noise regulations. 	

2.8.2 **Operations and Maintenance Costs**

The production costs or operating costs and related maintenance expenses (O&M) pertain to those charges associated with operating and maintaining the plants over their expected life. These costs include:

- Operating labor
- Maintenance material and labor
- Administrative and support labor
- Consumables
- Fuel
- Waste disposal
- Co-product or by-product credit (that is, a negative cost for any by-products sold)

There are two components of O&M costs; fixed O&M, which is independent of product production, and variable O&M, which is proportional to product production.

Operating Labor

Operating labor cost was determined based on of the number of operators required for each specific case. The average base labor rate used to determine annual cost is \$34.65/hour (hr) in 2007 dollars. The associated labor burden is estimated at 30 percent of the base labor rate.

All cases have two skilled operators, one foreman, and three laboratory technician positions. The co-production plants have 13 operator positions, whereas the SNG only plants have 12 operator positions. This differs from Volumes 1 and 3 of the Baseline Series, which use nine operator positions for the non-capture cases and ten for the capture cases. The number of the other labor personnel remains the same.

Maintenance Material and Labor

Maintenance cost was evaluated on the basis of relationships of maintenance cost to initial capital cost. This represents a weighted analysis in which the individual cost relationships were considered for each major plant component or section.

Administrative and Support Labor

Labor administration and overhead charges are assessed at a rate of 25 percent of the burdened O&M labor.

Consumables

The cost of consumables, including fuel, was determined on the basis of individual rates of consumption, the unit cost of each specific consumable commodity, and the plant annual operating hours.

Quantities for major consumables such as fuel were taken from technology-specific heat and mass balance diagrams developed for each plant application. Other consumables were evaluated on the basis of the quantity required using reference data.

The quantities for initial fills and daily consumables were calculated on a 100 percent operating capacity basis. The annual cost for the daily consumables was then adjusted to incorporate the annual plant operating basis, or CF.

Initial fills of the consumables, fuels and chemicals, are different from the initial chemical loadings, which are included with the equipment pricing in the capital cost.

Waste Disposal

Waste quantities and disposal costs were determined similarly to the consumables. The slag and spent ZnO sorbent from each case are considered wastes with disposal costs of \$17.89/tonne (\$16.23/ton). The carbon used for mercury control is considered a hazardous waste with disposal cost of \$919/tonne (\$834/ton).

Co-Products and By-Products

The primary products in this study are SNG in all cases and ammonia in the co-production cases. The by-products include sulfur, electricity, and potentially CO_2 . Due to the variable marketability of the sulfur, no credit or disposal cost was used. The electricity produced in excess of internal requirements was assumed sold on the open market at a price of \$58/megawatt-hour (MWh). CO_2 was assumed to be a waste product that is either vented to atmosphere or compressed and sequestered with the associated costs. A sensitivity analysis was done to determine the economic impact of selling the CO_2 for enhanced oil recovery (EOR) at one extreme and debiting the project for CO_2 emissions assuming a carbon tax at the other extreme.

It should be noted that by-product credits and/or disposal costs could potentially be an additional determining factor in the choice of technology for some companies and in selecting some sites. A high local value of the product can establish whether or not added capital should be included in the plant costs to produce a particular co-product. Slag is a potential by-product in certain markets and would have potential marketability. However, as stated above, the slag is considered waste in this study with a concomitant disposal cost.

2.8.3 <u>CO₂ Transport, Storage, and Monitoring</u>

For those cases that feature carbon sequestration, the capital and operating costs for CO_2 TS&M were independently estimated by NETL. Those costs were converted to a FYCOP and combined with the plant capital and operating costs to produce an overall FYCOP. The TS&M costs were initially levelized over a 30-year period using the methodology described in the next subsection of this report, and subsequently converted to first year costs by dividing by the levelization factor.

CO₂ TS&M costs were estimated based on the following assumptions:

• CO₂ is supplied to the pipeline at the plant fence line at a pressure of 15.3 MPa (2,215 psia). The CO₂ product gas composition varies in the cases presented, but is expected to meet the specification described in Exhibit 2-14. A glycol dryer located near the midpoint of the compression train is used to meet the moisture specification.

Parameter	Units	Parameter Value
Inlet Pressure	MPa (psia)	15.3 (2,215)
Outlet Pressure	MPa (psia)	10.4 (1,515)
Inlet Temperature	°C (°F)	35 (95)
N ₂ Concentration	ppmv	< 300
O ₂ Concentration	ppmv	< 40
Ar Concentration	ppmv	< 10
H ₂ O Concentration	ppmv	< 150

Exhibit 2-14 CO₂ Pipeline Specification

- The CO₂ is transported 80 kilometers (km) (50 miles) via pipeline to a geologic sequestration field for injection into a saline formation.
- The CO₂ is transported and injected as a supercritical (SC) fluid in order to avoid twophase flow and achieve maximum efficiency [22]. The pipeline is assumed to have an outlet pressure (above the SC pressure) of 8.3 MPa (1,200 psia) with no recompression along the way. Accordingly, CO₂ flow in the pipeline was modeled to determine the pipe diameter that results in a pressure drop of 6.9 MPa (1,000 psi) over an 80 km (50 mile) pipeline length [23]. (Although not explored in this study, the use of boost compressors and a smaller pipeline diameter could possibly reduce capital costs for sufficiently long pipelines.) The diameter of the injection pipe will be of sufficient size that frictional losses during injection are minimal and no booster compression is required at the wellhead in order to achieve an appropriate down-hole pressure, with hydrostatic head making up the difference between the injection and reservoir pressure.
- The saline formation is at a depth of 1,239 m (4,055 ft) and has a permeability of 22 millidarcy (md) (22 μm²) and formation pressure of 8.4 MPa (1,220 psig) [24]. This is considered an average storage site and requires roughly one injection well for each 9,360 tonnes (10,320 tons) of CO₂ injected per day [24]. The assumed aquifer characteristics are tabulated in Exhibit 2-15.

The cost metrics utilized in this study provide a best estimate of TS&M costs for a "typical" sequestration project, and may vary significantly based on variables such as terrain to be crossed by the pipeline, reservoir characteristics, and number of land owners from which sub-surface rights must be acquired. Raw capital and operating costs are derived from detailed cost metrics found in the literature, escalated to June 2007-year dollars using appropriate price indices. These costs were then verified against values quoted by industrial sources where possible. Where regulatory uncertainty exists or costs are undefined, such as liability costs and the acquisition of underground pore volume, analogous existing policies were used for representative cost scenarios.

Parameter	Units	Base Case
Pressure	MPa (psi)	8.4 (1,220)
Thickness	m (ft)	161 (530)
Depth	m (ft)	1,236 (4,055)
Permeability	md (μ m ²)	22 (22)
Pipeline Distance	Km (miles)	80 (50)
Injection Rate per Well	Tonne (ton) CO ₂ /day	9,360 (10,320)

Exhibit 2-15 Deep Saline Aquifer Specification

The following subsections describe the sources and methodology used for each metric.

Cost Levelization and Conversion to First Year Costs

Capital and operating costs were levelized over a 35-year period (30-year operational period plus 5-year capital expenditure period) and include both a 20 percent process contingency and 30 percent project contingency.

In several areas, such as Pore Volume Acquisition, Monitoring, and Liability, cost outlays occur over a longer time period, up to 100 years. In these cases a capital fund is established based on the net present value of the cost outlay, and this fund is then levelized similar to the other costs.

First year costs are calculated by dividing the levelized cost by the levelization factor. It is the first year cost that is used in this study.

Transport Costs

 CO_2 transport costs are divided into three categories: pipeline costs, related capital expenditures, and O&M costs.

Pipeline costs are derived from data published in the Oil and Gas Journal's (O&GJ) annual Pipeline Economics Report for existing natural gas, oil, and petroleum pipeline project costs from 1991 to 2003. These costs are expected to be analogous to the cost of building a CO₂ pipeline, as noted in various studies [22,24,25]. The University of California performed a regression analysis to generate cost curves from the O&GJ data for: (1) Pipeline Materials, (2) Direct Labor, (3) Indirect Costs, and (4) Right-of-way acquisition, with each represented as a function of pipeline length and diameter [25]. These cost curves were escalated to the June 2007 year dollars used in this study.

Related capital expenditures were based on the findings of a previous study funded by NETL, Carbon Dioxide Sequestration in Saline Formations – Engineering and Economic Assessment [24]. This study utilized a similar basis for pipeline costs (O&GJ Pipeline cost data up to the year 2000), but added a CO_2 surge tank and pipeline control system to the project. Transport O&M costs were assessed using metrics published in a second NETL sponsored report entitled Economic Evaluation of CO_2 Storage and Sink Enhancement Options [22]. This study was chosen due to the reporting of O&M costs in terms of pipeline length, whereas the other studies mentioned above either (a) do not report operating costs, or (b) report them in absolute terms for one pipeline, as opposed to a length- or diameter-based metric.

Storage Costs

Storage costs were divided into five categories: (1) Site Screening and Evaluation, (2) Injection Wells, (3) Injection Equipment, (4) O&M Costs, and (5) Pore Volume Acquisition. With the exception of Pore Volume Acquisition, all of the costs were obtained from Economic Evaluation of CO₂ Storage and Sink Enhancement Options [22]. These costs include all of the costs associated with determining, developing, and maintaining a CO₂ storage location, including site evaluation, well drilling, and the capital equipment required for distributing and injecting CO₂.

Pore Volume Acquisition costs are the costs associated with acquiring rights to use the subsurface volume where the CO_2 will be stored, i.e. the pore space in the geologic formation. These costs were based on recent research by Carnegie Mellon University, which examined existing sub-surface rights acquisition as it pertains to natural gas storage [26]. The regulatory uncertainty in this area combined with unknowns regarding the number and type (private or government) of property owners, require a number of "best engineering judgment" decisions to be made. In this study it was assumed that long-term lease rights were acquired from the property owners in the projected CO_2 plume growth region for a nominal fee, and that an annual "rent" was paid when the plume reached each individual acre of their property for a period of up to 100 years from the injection start date. The present value of the life cycle pore volume costs are assessed at a 10 percent discount rate and a capital fund is set up to pay for these costs over the 100 year rent scenario.

Liability Protection

Liability Protection addresses the fact that if damages are caused by injection and long-term storage of CO_2 , the injecting party may bear financial liability. Several types of liability protection schemes have been suggested for CO_2 storage, including Bonding, Insurance, and Federal Compensation Systems combined with either tort law (as with the Trans-Alaska Pipeline Fund), or with damage caps and preemption, as is used for nuclear energy under the Price Anderson Act [27]. However, at present, a specific liability regime has yet to be dictated either at a Federal or (to our knowledge) State level. However, certain state governments have enacted legislation, which assigns liability to the injecting party, either in perpetuity (Wyoming) or until ten years after the cessation of injection operations, pending reservoir integrity certification, at which time liability is turned over to the state (North Dakota and Louisiana) [28,29,30]. In the case of Louisiana, a trust fund totaling five million dollars is established over the first ten years (120 months) of injection operations for each injector. This fund is then used by the state for CO_2 monitoring and, in the event of an at-fault incident, damage payments.

Liability costs assume that a bond must be purchased before injection operations are permitted in order to establish the ability and good will of an injector to address damages where they are deemed liable. A figure of five million dollars was used for the bond based on the Louisiana fund level. This bond level may be conservatively high, in that the Louisiana fund covers both liability and monitoring, but that fund also pertains to a certified reservoir where injection

operations have ceased, having a reduced risk compared to active operations. The bond cost was not escalated.

Monitoring Costs

Monitoring costs were evaluated based on the methodology set forth in the IEA Greenhouse Gas (GHG) R&D Programme's Overview of Monitoring Projects for Geologic Storage Projects report [31]. In this scenario, operational monitoring of the CO₂ plume occurs over thirty years (during plant operation) and closure monitoring occurs for the following fifty years (for a total of eighty years). Monitoring is via electromagnetic (EM) survey, gravity survey, and periodic seismic survey; EM and gravity surveys are ongoing while seismic survey occurs in years 1, 2, 5, 10, 15, 20, 25, and 30 during the operational period, then in years 40, 50, 60, 70, and 80 after injection ceases.

2.8.4 Finance Structure, Discounted Cash Flow Analysis, and First-Year Cost of SNG

The global economic assumptions are listed in Exhibit 2-16.

The finance structure was chosen based on the assumption of a high-risk fuels project. Exhibit 2-17 describes the finance structure that was assumed. This finance structure was based on information presented in a 2008 NETL report, "Recommended Project Finance Structures for the Economic Analysis of Fossil-Based Energy Projects", based on interviews with project developers/owners, financial organizations and law firms.

Parameter	Value
TAXES	
Income Tax Rate	38% (Effective 34% Federal, 6% State)
Capital Depreciation	20 years, 150% declining balance
Investment Tax Credit	0%
Tax Holiday	0 years
CONTRACTING AND FINANCING	
TERMS	
	Engineering Procurement Construction
Contracting Strategy	Management (owner assumes project risks for
	performance, schedule and cost)
Type of Debt Financing	Non-Recourse (collateral that secures debt is
Type of Debt Financing	limited to the real assets of the project)
Repayment Term of Debt	15 years
Grace Period on Debt Repayment	0 years
Debt Reserve Fund	None
ANALYSIS TIME PERIODS	
Capital Expenditure Period	5 Years
Operational Period	30 years
E a manie A malaria Danie I (ana I fam IDDOE)	35 Years (capital expenditure period plus
Economic Analysis Period (used for IRROE)	operational period)

Exhibit 2-16 Global Economic Assumptions

Parameter	Value
TREATMENT OF CAPITAL COSTS	
Capital Cost Escalation During Capital Expenditure Period (nominal annual rate)	3.6% ¹
Distribution of Total Overnight Capital over the Capital Expenditure Period (before escalation)	10%, 30%, 25%, 20%, 15%
Working Capital	zero for all parameters
% of Total Overnight Capital that is Depreciated	100% (this assumption introduces a very small error even if a substantial amount of TOC is actually non-depreciable)
ESCALATION OF OPERATING	
REVENUES AND COSTS	
Escalation of COP (revenue), O&M Costs, and Fuel Costs (nominal annual rate)	3.0% ²

Exhibit 2-17 Financial Structure for High Risk Fuels Projects

Type of Security	% of Total	Current (Nominal) Dollar Cost	Weighted Current (Nominal) Cost	After Tax Weighted Cost of Capital
Debt	50	9.5%	4.75%	
Equity	50	20%	10%	
Total	100	N/A	14.75%	12.94%

The NETL Power Systems Financial Model (PSFM) is a nominal-dollar³ (current dollar) discounted cash flow (DCF) analysis tool [9]. As explained below, the PSFM was used to calculate first-year cost of production (FYCOP)⁴.

• The <u>FYCOP</u> is the revenue received by the generator per net unit of production (bbl, MMBtu, kg, etc.) *during the plant's first year of operation*. To calculate the first-year COP, the PSFM was used to determine a "base-year" (2007) COP that, when escalated at

¹ A nominal average annual rate of 3.6% is assumed for escalation of capital costs during construction. This rate is equivalent to the nominal average annual escalation rate for process plant construction costs between 1947 and 2008 according to the *Chemical Engineering* Plant Cost Index.

² An average annual inflation rate of 3.0% is assumed. This rate is equivalent to the average annual escalation rate between 1947 and 2008 for the U.S. Department of Labor's Producer Price Index for Finished Goods, the so-called "headline" index of the various Producer Price Indices. (The Producer Price Index for the Electric Power Generation Industry may be more applicable, but that data does not provide a long-term historical perspective since it only dates back to December 2003.)

³ Since the analysis takes into account taxes and depreciation, a nominal dollar basis is preferred to properly reflect the interplay between depreciation and inflation.

⁴ For this calculation, "cost of product" is somewhat of a misnomer because from the production plant's perspective it is actually the "price" received for the product generated. However, since the price paid to the plant for the product is ultimately charged to the end user, from the customer's perspective it is part of the cost of product.

an assumed nominal annual general inflation rate of 3 percent⁵, provided the stipulated internal rate of return on equity over the entire economic analysis period (capital expenditure period plus thirty years of operation). Since this analysis assumes that COP increases over the economic analysis period at the nominal annual general inflation rate, it remains constant in real terms and the first-year COP is equivalent to the base-year COP when expressed in base-year (2007) dollars.

Since 2007 is the first year of the capital expenditure period it is also the base year for the economic analysis. Accordingly, all costs are expressed in base-year (June 2007) dollars except for TASC, which is expressed in mixed-year, current dollars.

All capital costs included in this analysis, including project development and construction costs, are assumed to be incurred during the capital expenditure period. The plants are assumed to have a capital expenditure period of five years. Since the plants begin expending capital in the base year (2007), this means that the analysis assumes that they begin operating in 2012. In addition to the capital expenditure period, the economic analysis considers thirty years of operation.

Estimating First-Year COE with Capital Charge Factors

For scenarios that adhere to the global economic assumptions listed in Exhibit 2-16 and utilize the finance structure listed in Exhibit 2-17, the following simplified equation can be used to estimate first-year COP as a function of TOC, fixed O&M, variable O&M (including fuel), capacity factor and net production. The equation requires the application of the capital charge factor (CCF) listed in Exhibit 2-18. This first year CCF is valid only for the global economic assumptions listed in Exhibit 2-16, the stated finance structure, and the stated capital expenditure period.

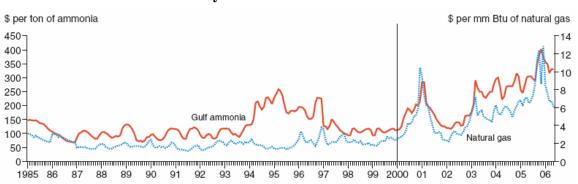
	High Risk Fuels Financial Structure
First Year Capital Charge Factor	0.2449

All factors in the first-year COP equation are expressed in base-year dollars. The base year is the first year of capital expenditure, which for this study is assumed to be 2007. As shown in Exhibit 2-16, all factors (COP, O&M and fuel) are assumed to escalate at a nominal annual

⁵ This nominal escalation rate is equal to the average annual inflation rate between 1947 and 2008 for the U.S. Department of Labor's Producer Price Index for Finished Goods. This index was used instead of the Producer Price Index for the Electric Power Generation Industry because the Electric Power Index only dates back to December 2003 and the Producer Price Index is considered the "headline" index for all of the various Producer Price Indices.

general inflation rate of 3.0 percent. Accordingly, all first-year costs (COP and O&M) are equivalent to base-year costs when expressed in base-year (2007) dollars.

 $First Year COP = \frac{ \begin{array}{c} first year \\ capital charge \end{array}} first year \\ first year \\$


First Year
$$COP = \frac{(CCF)(TOC) + OC_{FIX} + (CF)(OC_{VAR})}{(CF)(Qty)}$$

where:

First Year COP=	current-dollar first-year cost of product <i>expressed in base-year dollars per unit of product</i> (\$/bbl, \$/kg, \$/MMBtu, etc.))
CCF =	capital charge factor taken from Exhibit 2-18 that matches the applicable finance structure and capital expenditure period
TOC =	total overnight capital, expressed in base-year dollars
OC _{FIX} =	the sum of all fixed annual operating costs, <i>expressed in base-year dollars</i>
OC _{VAR} =	the sum of all variable annual operating costs, including fuel at 100 percent capacity factor, <i>expressed in base-year dollars</i>
CF =	plant capacity factor, assumed to be constant over the operational period
Qty =	annual quantity of product generated at 100 percent capacity factor

2.8.5 <u>Ammonia Price</u>

Historically, the price of ammonia has been predominantly dependent on ammonia demand. However, recent volatility of natural gas prices has caused the price of ammonia to become increasingly dependent on the cost of natural gas. A report issued by the USDA found that the price correlation between natural gas and ammonia was weak at 0.17 to 0.07 prior to 2000, but became strong at 0.8 to 0.7 as natural gas prices rose after 2000 [32]. The same report states that from 2000 to 2006, rising natural gas prices resulted in a decrease of U.S. ammonia production by 44 percent while ammonia prices paid by farmers increased by 130 percent. Exhibit 2-19 shows historic prices of natural gas and ammonia [32]. This trend is expected to continue as natural gas prices are expected to rise. Exhibit 2-20 shows AEO 2009 price projections to 2030 for residential, industrial and electric power natural gas users along with high and low economic growth scenarios shown as range bars [33].

A cost correlation between the historic prices of U.S. industrial use natural gas (\$/MMBtu) and the price of ammonia paid by U.S. farmers (dollars per ton [\$/ton]) was developed to estimate the selling price of ammonia in the co-production facilities [33,34]. The correlation was made to the ammonia price paid by U.S. farmers because 84 percent of global ammonia production is utilized by the fertilizer industry. Exhibit 2-21 illustrates ammonia end use [35]. Non-fertilizer applications account for only 16 percent of worldwide ammonia. Direct application of ammonia for fertilization accounts for 3 percent of the total production.

The selling price of ammonia serves as a basis to adequately compare if the synergies created from the co-production facility enhance or serve to detriment the FYCOP of SNG. Exhibit 2-22 shows the data trend for U.S. farmer ammonia prices and industrial natural gas prices. Because other secondary factors such as ammonia supply and demand and cost differences across regions influence the cost of ammonia, the trend is not entirely linear. However, as natural gas prices rise, so does the cost of ammonia.

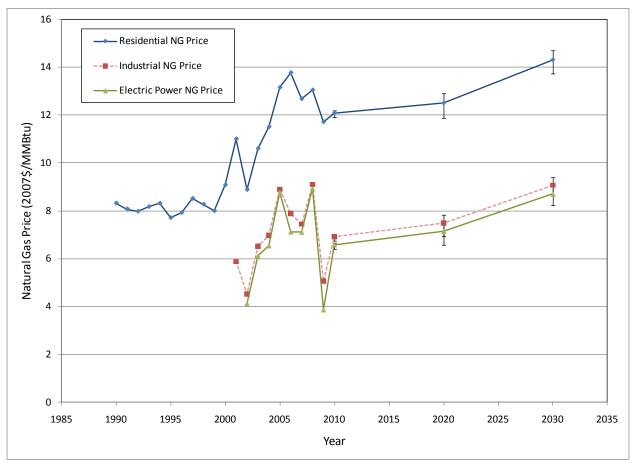
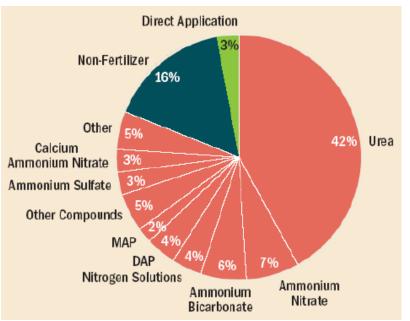



Exhibit 2-20 Price Projections for Natural Gas Consumers

Exhibit 2-21 Global Ammonia Utilization

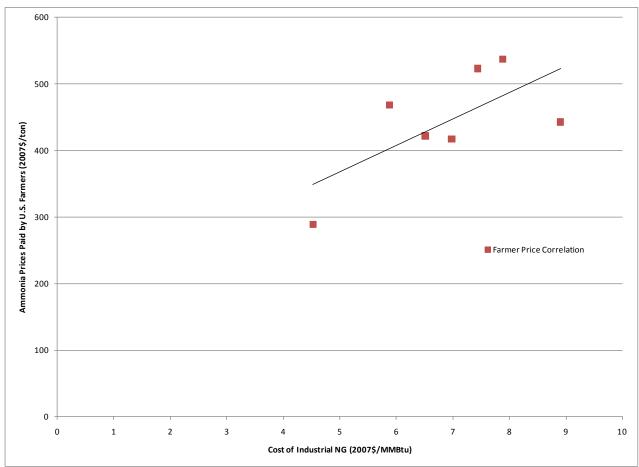


Exhibit 2-22 U.S. Farmer Ammonia and Industrial Natural Gas Prices

The following correlation was derived from Exhibit 2-22:

Ammonia Price Paid by Farmers
$$\left(\frac{\$}{ton}\right) = 39.78 * Cost of Industrial NG \left(\frac{\$}{MMBtu}\right) + 169.29$$

This correlation was used to relate the first year price of ammonia to the first year cost of synthetic natural gas.

This page intentionally left blank

3. SNG AND SNG AND AMMONIA CO-PRODUCTION FACILITIES

Six SNG only and two SNG and ammonia co-production configurations were evaluated and the major process area descriptions are presented in this section. Each design is based on a market-ready technology that is assumed to be commercially available to support startup in the near term.

All eight cases are based on the Siemens gasifier using either bituminous, PRB, or lignite coal, with and without carbon sequestration. As discussed in Section 2, the thermal input for the six SNG only cases varies by coal type based on vendor input [18]. The output of SNG for the coproduction cases is reduced because a portion of the syngas is used to produce 2,000 tonnes/day (2,204 tons/day) of ammonia.

The evaluation scope included developing heat and mass balances and estimating plant performance. Equipment lists were developed for each design to support plant capital and operating cost estimates. The evaluation basis details, including site ambient conditions, fuel composition and environmental targets, were provided in Section 2. Section 3.1 covers general information for the major process areas of the SNG only and co-production plants.

3.1 MAJOR PROCESS AREAS

All eight cases have process areas, which are common to each plant configuration such as coal receiving and storage, coal drying, oxygen supply, gas cleanup, power generation, etc. As detailed descriptions of these process areas for each case would be burdensome and repetitious, they are presented in this section for general background information, where information is present that is specific to a particular case or set of cases it is explicitly stated.

3.1.1 Coal Receiving and Storage

The function of the Coal Receiving and Storage system is to provide the equipment required for unloading, conveying, preparing, and storing the fuel delivered to the plant. The scope of the system is from the coal conveyor receiving hoppers up to the slide gate valves at the outlet of the coal storage silos.

Operation Description – The lignite plants are located at the minemouth and coal is delivered to the plant from the mine by conveyor to the plant storage and reclaim piles. Coal is delivered to the Illinois No. 6 and PRB plants by 100-car unit trains comprised of 91 tonne (100 ton) rail cars. The unloading is done by a trestle bottom dumper, which unloads the coal into two receiving hoppers.

Coal from the reclaim pile is fed directly into a vibratory feeder. The 8 centimenter (cm) x 0 $(3" \times 0)$ coal from the feeder is discharged onto a belt conveyor. Two conveyors with an intermediate transfer tower are assumed to convey the coal to the coal stacker, which transfer the coal to either the long-term storage pile or to the reclaim area. The conveyor passes under a magnetic plate separator to remove tramp iron and then to the reclaim pile.

The reclaimer loads the coal into two vibratory feeders located in the reclaim hopper under the pile. The feeders transfer the coal onto a belt conveyor that transfers the coal to the coal surge bin located in the crusher tower. The coal is reduced in size to 3 cm x 0 (1¹/₄" x 0) by the crusher. A conveyor then transfers the coal to a transfer tower. In the transfer tower the coal is routed to the tripper, which loads the coal into one of three silos. Two sampling systems are

supplied: the as-received sampling system and the as-fired sampling system. Data from the analyses are used to support the reliable and efficient operation of the plant.

3.1.2 <u>Coal Drying</u>

Reduction in coal moisture content improves the efficiency of dry-feed gasifiers, but there is in addition a materials handling requirement. It is necessary to reduce most, if not all, of the surface moisture for coal transport properties to be acceptable. Coal moisture consists of two components, surface moisture and inherent moisture. Low rank coals have higher inherent moisture content and total moisture content than bituminous and other high rank coals and two different drying schemes are used due to this difference. After drying the coal is drawn from the surge hoppers and fed through a pressurization lock hopper system to a dense phase pneumatic conveyor, which uses CO_2 from the Selexol unit that is further pressurized and used to convey the coal to the gasifiers.

Bituminous Coal

The coal is simultaneously crushed and dried in the coal mill then delivered to a surge hopper with an approximate 2-hour capacity. The drying medium is provided by combining off-gas from the Claus plant tail gas treatment unit (TGTU) and a slipstream of clean syngas and passing them through an incinerator. The incinerator flue gas, with an oxygen content of 6 volume percent (vol%), is then used to dry the coal in the mill. The removed moisture is vented to atmosphere through the plant stack along with the incinerator flue gas. The bituminous coal in this study is dried to 6 percent from 11.12 percent [18].

Low Rank Coals

No specific coal drying technique is recommended by Siemens either in publications or their response to modeling questions. Therefore, the WTA drying process was chosen primarily based on a previous analysis done for the Shell gasification system that is equally applicable to a Siemens gasification system. In a recent GTC paper, Shell examined the WTA process for drying low rank coals and considered two cases [36]:

- 1) Case 1: Lignite coal dried from 53 to 12 percent
- 2) Case 2: Subbituminous coal dried from 30 to 6 percent

For the Siemens gasification cases it is assumed that the subbituminous coal is dried to 6 percent moisture and the lignite to 12 percent moisture [18]. Coal drying options that were evaluated prior to selecting the WTA process included:

- Option 1: Use conventional IGCC coal drying methods, which consist of deriving heat from the combustion of natural gas and/or syngas and using the flue gas either directly or indirectly, by heating a nitrogen stream, for use in drying the coal. Some examples include the following:
 - At the Buggenum facility bituminous coal is ground in a conventional roller mill and simultaneously dried using a heated inert recycle gas stream that carries the evaporated water from the system as it sweeps the PC through an internal, rotating classifier. The inert gas generator is fueled by the in-line combustion of treated syngas. Excess gas is vented on pressure control [37].

- At the Puertollano facility, coal is ground in mills using nitrogen for drying from 10 percent to less than 2 percent moisture. The drying circuit is heated to about 250°C (482°F) by intermediate-pressure (IP)-steam and additional burning of natural gas. The report notes that a dual drying circuit using only natural gas and the produced syngas could be studied [38].
- Option 2: Dry the coal using a scheme similar to the Great River Energy (GRE) Clean Coal Power Initiative (CCPI) project approach. In the case of gasification where the drying requirements are greater than in PC plants, higher grade heat than is available from the cooling water exiting the condenser will be required. However, there are many sources of low-level waste heat in a gasification-to-fuels plant and integration of this heat into the drying circuit is possible. Because of the tendency for low rank coals to spontaneously combust after the moisture is removed, it may be necessary to fluidize the coal bed with something other than air. Depending on the source of the fluidization gas, the process could become cost prohibitive.
- Option 3: Use the WTA process (German acronym for "fluidized bed dryer with integrated waste heat recovery" [39]) proposed by RWE, which consists of a fluid bed dryer utilizing a heat pump-type cycle with recovered coal moisture used for fluidizing the coal bed and used as the working fluid [40].
- Option 4: Use a process similar to the Integrated Drying and Gasification Combined Cycle (IDGCC) being developed in Australia.

Conventional coal drying methods would be suitable for the low rank coals used in this study, but there is an efficiency penalty involved with burning either syngas or natural gas as a heat source and there are additional CO_2 emissions generated by the process. Using steam as the heat source also impacts the production of electricity.

The GRE process has potential because of the many sources of low-grade heat in the gasification process. However, the fluidization gas source would have to be identified assuming ambient air cannot be used because of the combustion tendencies of dried, low rank coals.

The RWE process has the advantage of using steam and coal moisture as the fluidizing medium thus eliminating the spontaneous combustion concerns. However, the vapor compressor imposes a significant auxiliary load.

The IDGCC process is being commercialized by HRL Ltd. (Australia) and Harbin Power (China). They recently announced plans for a 400 MW demonstration plant in Australia [41]. The process utilizes hot syngas from an air blown fluidized bed gasifier (FBG) to dry brown coal prior to entering the gasifier. Sulfur is captured in the fluid bed and particulates are removed in a downstream candle filter. The warm, humidified syngas is then burned in a combustion turbine (GT) [42].

The technology is being developed for an air-blown FBG and has features that make it less attractive in the case of an entrained-flow, oxygen-blown gasifier like the Siemens process. The coal is crushed to 10 mm top size and pressurized to 2.5 MPa (363 psi) through a lock hopper system. The FBG can accept 10 mm coal, and at that size and high moisture content the coal will still flow through the lock hoppers. However, in the case of the Siemens gasifier, the coal top size is significantly smaller (Siemens states that conventional coal pulverizers are used,

which likely results in an average coal size of $\leq 500 \ \mu m$ for bituminous coal) and the coal must be dried prior to pressurizing to avoid lock hopper flow problems.

The WTA coal drying system was ultimately chosen for this evaluation largely because of its ability to recover the water from the coal in liquid state for use in the process (recycled to the cooling tower) and the fact that syngas is not used to provide heat for drying. In conventional dryers, the water is mixed with the heating gas and discharged to atmosphere as vapor. Recovery of the coal moisture in a liquid state results in a sizable auxiliary load.

The 'closed' WTA process has been demonstrated at pilot scale. Plans for a commercial demonstration of an 'open' version of the process have been delayed. In spite of the uncertainty of the commercial demonstration, the potential benefit of the technology was viewed to be significant enough to use the 'closed version' of the process in this study. A process schematic is shown in Exhibit 3-1 [43].

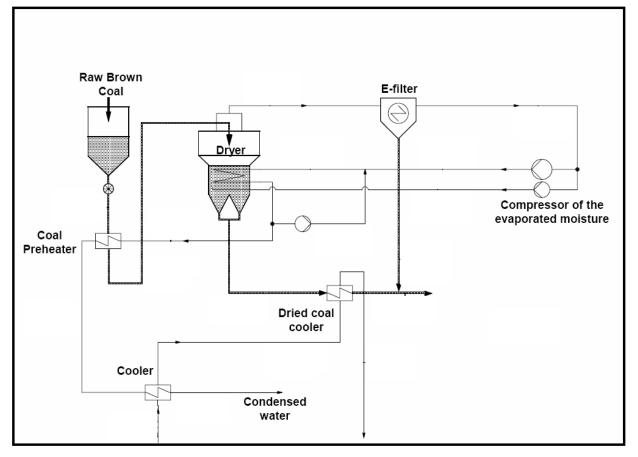


Exhibit 3-1 WTA Process Schematic

3.1.3 <u>Air Separation Unit Choice</u>

In order to economically and efficiently support gasification projects, air separation equipment has been modified and improved in response to production requirements and the consistent need to increase single train output. "Elevated pressure" air separation designs have been implemented that result in distillation column operating pressures that are about twice as high as traditional plants. In this study, the main air compressor discharge pressure was set at 1.3 MPa (190 psia) compared to a traditional ASU plant operating pressure of about 0.7 MPa (105 psia) [44]. For gasification applications the elevated pressure ASU process minimizes power consumption and decreases the size of some of the equipment items.

Elevated Pressure ASU Experience in Gasification

The Buggenum, Netherlands unit built for Demkolec was the first elevated-pressure, fully integrated ASU to be constructed. It was designed to produce up to 1,796 tonnes/day (1,980 tons per day [TPD]) of 95 percent purity oxygen for a Shell coal-based gasification unit that fuels a Siemens V94.2 GT. In normal operation at the Buggenum plant the ASU receives all of its air supply from and sends all residual nitrogen to the GT.

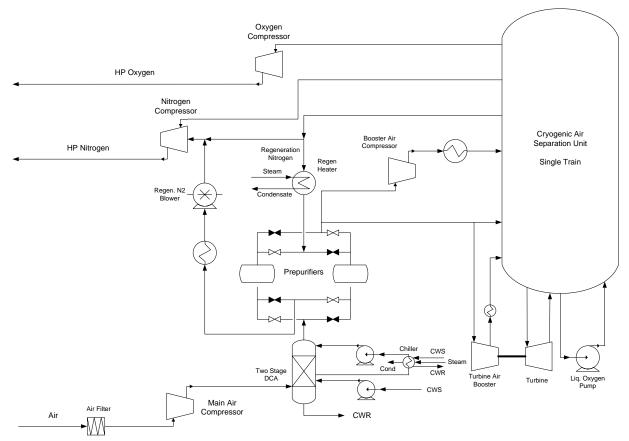
The Polk County, Florida ASU for the Tampa Electric IGCC is also an elevated-pressure, 95 percent purity oxygen design that provides 1,832 tonnes/day (2,020 TPD) of oxygen to a GEE coal-based gasification unit, which fuels a General Electric 7FA GT. All of the nitrogen produced in the ASU is used in the GT. The original design did not allow for air extraction from the combustion turbine (CT). After a CT air compressor failure in January, 2005, a modification was made to allow air extraction, which in turn eliminated a bottleneck in ASU capacity and increased overall power output [45].

Air Separation Plant Process Description

The air separation plant is designed to produce 99 mole percent (mol%) oxygen (O_2) for use in the gasifier [46]. Conventional IGCC plants typically use oxygen purities of 95 mol%. However, the SNG product specification requires higher purity oxygen be used in the gasifier. The plant is designed with four production trains. The air compressor is powered by an electric motor. Nitrogen is also recovered, compressed, and used in the PSA process and the ammonia synthesis loop in the co-production cases only. An additional nitrogen compressor is required in the co-production cases to deliver the nitrogen to the ammonia process at a pressure of 13.6 MPa (1,975 psia). In the SNG only cases, most of the nitrogen is vented to the atmosphere without compression. A process schematic of a typical ASU is shown in Exhibit 3-2.

The air is supplied from a stand-alone compressor. Air to the stand-alone compressor is first filtered in a suction filter upstream of the compressor. This air filter removes particulate, which may tend to cause compressor wheel erosion and foul intercoolers. The filtered air is then compressed in the centrifugal compressor, with intercooling between each stage. The power requirement of the stand-alone compressor is affected by elevation. This effect is accounted for in the plant performance.

Air from the stand-alone compressor is cooled and fed to an adsorbent-based pre-purifier system. The adsorbent removes water, CO_2 , butane + higher paraffins (C_4 +), and saturated hydrocarbons from the air. After passing through the adsorption beds, the air is filtered with a dust filter to remove any adsorbent fines that may be present. Downstream of the dust filter a small stream of air is withdrawn to supply the instrument air requirements of the ASU.


Regeneration of the adsorbent in the pre-purifiers is accomplished by passing a hot nitrogen stream through the off-stream bed(s) in a direction countercurrent to the normal airflow. The nitrogen is heated against extraction steam (1.7 MPa [250 psia]) in a shell and tube heat exchanger. The regeneration nitrogen drives off the adsorbed contaminants. Following regeneration, the heated bed is cooled to near normal operating temperature by passing a cool

nitrogen stream through the adsorbent beds. The bed is re-pressurized with air and placed on stream so that the current on-stream bed(s) can be regenerated.

The air from the pre-purifier is then split into three streams. About 70 percent of the air is fed directly to the cold box. About 25 percent of the air is compressed in an air booster compressor. This boosted air is then cooled in an aftercooler against cooling water in the first stage and against chilled water in the second stage before it is fed to the cold box. The chiller utilizes low-pressure (LP) process steam at 0.45 MPa (65 psia). The remaining 5 percent of the air is fed to a turbine-driven, single-stage, centrifugal booster compressor. This stream is cooled in a shell and tube aftercooler against cooling water before it is fed to the cold box.

All three air feeds are cooled in the cold box to cryogenic temperatures against returning product oxygen and nitrogen streams in plate-and-fin heat exchangers. The large air stream is fed directly to the first distillation column to begin the separation process. The second largest air stream is liquefied against boiling liquid oxygen before it is fed to the distillation columns. The third, smallest air stream is fed to the cryogenic expander to produce refrigeration to sustain the cryogenic separation process.

Inside the cold box the air is separated into oxygen and nitrogen products. The oxygen product is withdrawn from the distillation columns as a liquid and is pressurized by a cryogenic pump. The pressurized liquid oxygen is then vaporized against the high-pressure (HP) air feed before being warmed to ambient temperature. The gaseous oxygen exits the cold box and is fed to the centrifugal compressor with intercooling between each stage of compression. The compressed oxygen is then fed to the gasification unit. Nitrogen is produced from the cold box at two pressure levels and is compressed to fulfill the needs of the PSA systems and the ammonia synthesis loop in the co-production cases only. In the SNG only cases, the nitrogen is vented to the atmosphere.

Exhibit 3-2 Typical ASU Process Schematic

3.1.4 Gasifier

The Siemens gasifier was chosen for this study to allow the use of a single gasifier across all coal types and the vendor was cooperative in providing process information for this and other studies that could be applied to this study. The configuration of processing equipment downstream of the gasifier, such as syngas cooling and degree of quench, may vary with coal type and may not be representative of the latest commercial technology offering.

Development and Current Status – The Siemens Fuel Gasification (SFG) process is based on the Noell process, also known under the name GSP, developed by Deutsches Brennstoffinstitut Freiberg in 1975 for the gasification of domestic brown coal and other solid fuels. The Noell Group acquired the technology in 1991 and did further development to gasify waste materials and liquid residues. The gasifier was marketed under the Future Energy GmbH Company and was sold to Siemens in 2006. The first gasifier of this type was a 200 MW thermal input unit built at Schwarze Pumpe, Germany in 1984, firing high sodium lignite. It was converted to gasify natural gas and waste liquids in 1991. Other installations include a 5 MW test plant in Freiberg, Germany where alternative feed testing is ongoing and a 130 MW autothermal oil conversion plant in the Czech Republic, commissioned in 2008. Current gasifier projects include the JinCheng 1000 MW Chinese anthracite coal-to-ammonia plant (under development)[18], the Ningxia Coal Based Polypropylene Project with capacity of 2500 MW of coal to polypropylene production (scheduled for startup in April/May 2010), and the Secure Energy Decatur Coal-toSNG project. Scale-up risks should be minimized with start-up of the Ningxia project, although a process contingency is still included in the cost estimates for this project.

The Siemens gasifier, which is a single-stage, entrained-flow, dry-feed gasifier, is modeled as an equilibrium reactor. Many literature references support this modeling strategy [39,47]. Steam injection is based on published data for other single-stage, entrained-flow, dry-feed gasifiers, and the oxygen injection is controlled to maintain estimated heat losses for the gasifier. It is assumed that the gasifier cooling screen that insulates the reactor walls generates LP steam.

Gasifier Capacity – The largest current commercial offering from Siemens is a nominal 500 MW thermal input gasifier, with two trains used in the JinCheng project, five trains for the Ningxia project and two trains used in the Secure Energy project. For this study, all cases use six gasifiers. Actual thermal input to each gasifier is coal-type dependent and was based on input from Siemens. The thermal input ranges from 549 MW for bituminous coal to 506 MW for lignite coal with PRB intermediate at 527 MW [18].

Distinguishing Characteristics – The key advantage of the Siemens coal gasification technology is its high carbon conversion with a variety of coals and reliability. Similar to other dry feed systems, the Siemens gasifier allows for minimal diluent to be used to inject the feedstock into the gasifier, which has undergone long term testing to characterize a wide range of fuels. The cooling screen is used to control the gasifier shell temperature and creates a solid and liquid slag lining along the gasifier walls instead of a refractory lining, which improves availability, startup and turndown time, and reduces the concerns surrounding coal, and specifically, ash properties. The raw syngas is tar free due to the high gasification temperatures, which improves the downstream gas cleanup. The water quench simplifies the high temperature syngas cooling, improving reliability, resulting in syngas with a high water content, which contributes to the water gas shift (WGS) reaction, benefitting CO_2 capture and chemical synthesis applications where hydrogen (H₂) and CO_2 is preferable to carbon monoxide (CO) production.

The main disadvantage to this, and all dry feed systems, is the need to dry the coal for transport and injection into the gasifier. Water content is generally inversely proportional to coal rank, so, while this gasifier can handle a wide range of fuels, the coal processing and drying can impact performance with different rank coals.

Important Coal Characteristics – The Siemens gasifier is generally able to fire any type of coal, petcoke, and mixed feeds.

3.1.5 <u>Water Gas Shift Reactors</u>

Selection of Technology - In all cases, the gasifier product must be converted to satisfy the requirements for the SNG methanation process and/or the ammonia synthesis loop. The methanation process requires a $3:1 \text{ H}_2$ to CO ratio, while the ammonia synthesis loop requires that the maximum amount of hydrogen is produced that is technically and economically feasible.

The concept is to convert the syngas carbon monoxide to hydrogen and CO_2 by reacting the CO with water over a bed of catalyst.

Water Gas Shift: $CO + H_2O \iff CO_2 + H_2$

The CO shift converter can be located either upstream of the acid gas removal (AGR) step (SGS [sour gas shift]) or immediately downstream (sweet gas shift). If the CO converter is located downstream of the AGR, then the metallurgy of the unit is less stringent, but additional equipment must be added to the process. Products from the gasifier are quenched with water and contain a portion of the water vapor necessary to meet the water-to-gas criteria at the reactor inlet. If the CO converter is located downstream of the AGR, then the gasifier product would first have to be cooled and the free water separated and treated. Then additional steam would have to be generated and re-injected into the CO converter feed to meet the required water-to-gas ratio. If the CO converter is located upstream of the AGR step, no additional equipment is required. This is because the CO converter promotes carbonyl sulfide (COS) hydrolysis without a separate catalyst bed. Therefore, for this study the CO converter was located upstream of the AGR unit and is referred to as SGS.

Process Description – The two methods to control the amount of shift achieved are the $H_2O:CO$ molar ratio and/or the amount of bypass around the shift reactor.

The individual process descriptions for the SNG and co-production portions of the SGS reactors, including steam requirements and bypass ratios, are presented in Sections 4.1 through 5.2.

3.1.6 Mercury Removal

A gasification facility has the potential of removing mercury in a more simple and cost-effective manner than conventional PC plants. This is because mercury can be removed from the syngas at elevated pressure and prior to product synthesis so that syngas volumes are much smaller than flue gas volumes in comparable PC cases. A conceptual design for a carbon bed adsorption system was developed for mercury control in the gasification plants being studied. Data on the performance of carbon bed systems were obtained from the Eastman Chemical Company, which uses carbon beds at its syngas facility in Kingsport, Tennessee [15]. The coal mercury content (0.15 ppm dry for Illinois No. 6, 0.081 ppm dry for PRB, and 0.116 ppm dry for lignite) and carbon bed removal efficiency (95 percent) were discussed previously in Section 2.5. Gasification-specific design considerations are discussed below.

Carbon Bed Location – The packed carbon bed vessels are located upstream of the AGR process and syngas enters at a temperature near $38^{\circ}C$ ($100^{\circ}F$). Consideration was given to locating the beds further upstream before the COS hydrolysis/SGS unit at a temperature near $204^{\circ}C$ ($400^{\circ}F$). However, while the mercury removal efficiency of carbon has been found to be relatively insensitive to pressure variations, temperature adversely affects the removal efficiency [48]. Eastman Chemical also operates their beds ahead of their sulfur recovery unit (SRU) at a temperature of $30^{\circ}C$ ($86^{\circ}F$) [15].

Consideration was also given to locating the beds downstream of the AGR. However, it was felt that removing the mercury and other contaminants before the AGR unit would enhance the performance of both the AGR and SRU and increase the life of the various solvents.

Process Parameters – An empty vessel basis gas residence time of approximately 20 seconds was used based on Eastman Chemical's experience [15]. Allowable gas velocities are limited by considerations of particle entrainment, bed agitation, and pressure drop. One-foot-per-second superficial velocity is in the middle of the range normally encountered [48] and was selected for this application.

The bed density of 30 lb/ft³ was based on the Calgon Carbon Corporation HGR-P sulfurimpregnated pelletized activated carbon [49]. These parameters determined the size of the vessels and the amount of carbon required. Each gasifier train has one mercury removal bed and there are three gasifier trains in each case, resulting in three carbon beds per case.

Carbon Replacement Time – Eastman Chemicals replaces its bed every 18 to 24 months [15]. However, bed replacement is not because of mercury loading, but for other reasons including:

- A buildup in pressure drop
- A buildup of water in the bed
- A buildup of other contaminants

For this study a 24 month carbon replacement cycle was assumed. Under these assumptions, the mercury loading in the bed would build up to 0.64 weight percent (wt%). Mercury capacity of sulfur-impregnated carbon can be as high as 20 wt% [50]. The mercury laden carbon is considered to be a hazardous waste, and the disposal cost estimate reflects this categorization.

3.1.7 Acid Gas Removal (AGR) Process Selection

Gasification of coal to generate a chemical product produces a syngas that must be treated prior to further utilization. A portion of the treatment consists of AGR and sulfur recovery. To protect the methanation catalyst, the sulfur content of the syngas must be reduced to below 1 ppm to achieve reasonable catalyst life [51,52]. This includes all sulfur species, but in particular the total of COS and hydrogen sulfide (H₂S). A two-stage Selexol Process is capable of cleaning the syngas to these low sulfur levels [53].

COS Hydrolysis

The use of COS hydrolysis pretreatment in the feed to the AGR process provides a means to reduce the COS concentration. The WGS catalyst also serves to hydrolyze COS, so only the portion of the syngas bypassing the shift reactors must pass through a COS reactor. In the low rank coal cases the syngas sulfur content and WGS bypass fraction are low enough to eliminate the need for a COS reactor in the bypass stream.

This method was first commercially proven at the Buggenum plant, and was also used at both the Tampa Electric and Wabash River IGCC projects. Several catalyst manufacturers including Haldor Topsoe and Porocel offer a catalyst that promotes the COS hydrolysis reaction. The COS hydrolysis reactor designs are based on information from Porocel. The SGS reactors also reduce COS to H_2S as discussed in Section 3.1.5.

The COS hydrolysis reaction is equimolar with a slightly exothermic heat of reaction. The reaction is represented as follows:

$$COS + H_2O \leftrightarrow CO_2 + H_2S$$

Since the reaction is exothermic, higher conversion is achieved at lower temperatures. However, at lower temperatures, the reaction kinetics are slower. Since the exit gas COS concentration is critical to the amount of H_2S that must be removed with the AGR process, a retention time of 50-75 seconds was used to achieve 99.5 percent conversion of the COS. The Porocel activated alumina-based catalyst, designated as Hydrocel 640 catalyst, promotes the COS hydrolysis reaction without promoting reaction of H_2S and CO to form COS and H_2 .

Although the reaction is exothermic, the heat of reaction is dissipated among the large amount of non-reacting components. Therefore, the reaction is essentially isothermal. The product gas, now containing less than 4 parts per million volume (ppmv) of COS, is cooled prior to entering the mercury removal process and the AGR.

Acid Gas Removal

All cases in this study require the removal of hydrogen sulfide and carbon dioxide from the syngas stream. Since the two-stage Selexol process has demonstrated the ability to achieve the low sulfur levels required, and it is also an effective process to remove CO_2 , it was used for all cases in this study. The Rectisol process would be equally effective in this application, but at greater capital and operating costs. A brief process description follows.

Untreated syngas enters the first of two absorbers where H_2S is preferentially removed using loaded solvent from the CO_2 absorber. The gas exiting the H_2S absorber passes through the second absorber where CO_2 is removed using first flash regenerated, chilled solvent followed by thermally regenerated solvent added near the top of the column. The treated gas exits the absorber and is sent either to the methanation reactors for SNG production or to the ammonia synthesis loop.

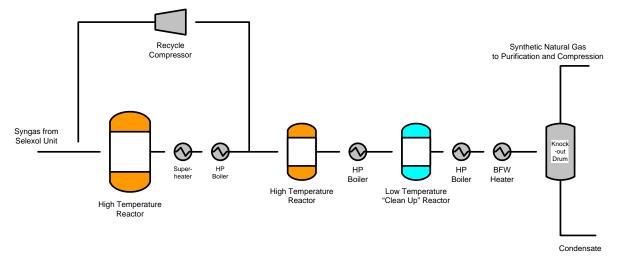
The amount of hydrogen remaining in the syngas stream is dependent on the Selexol process design conditions. In this study, hydrogen recovery is 99.4 percent. The minimal hydrogen slip to the carbon sequestration stream maximizes the overall plant efficiency. The Selexol plant cost estimates are based on a plant designed to recover this high percentage of hydrogen. The balance of the hydrogen is either co-sequestered with the CO_2 , destroyed in the Claus plant burner, or recycled to the gasifier.

The CO_2 loaded solvent exits the CO_2 absorber and a portion is sent to the H_2S absorber, a portion is sent to a reabsorber and the remainder is sent to a series of flash drums for regeneration. The CO_2 product stream is obtained from the three flash drums, and after flash regeneration the solvent is chilled and returned to the CO_2 absorber.

The rich solvent exiting the H_2S absorber is combined with the rich solvent from the reabsorber and the combined stream is heated using the lean solvent from the stripper. The hot, rich solvent enters the H_2S concentrator and partially flashes. The remaining liquid contacts nitrogen from the ASU and a portion of the CO_2 along with lesser amounts of H_2S and COS are stripped from the rich solvent. The stripped gases from the H_2S concentrator are sent to the reabsorber where the H_2S and COS that were co-stripped in the concentrator are transferred to a stream of loaded solvent from the CO_2 absorber. The clean gas from the reabsorber is combined with the clean gas from the H_2S absorber and sent to SNG and/or NH_3 production.

The solvent exiting the H_2S concentrator is sent to the stripper where the absorbed gases are liberated by hot gases flowing up the column from the steam heated reboiler. Water in the overhead vapor from the stripper is condensed and returned as reflux to the stripper or exported as necessary to maintain the proper water content of the lean solvent. The acid gas from the stripper is sent to the Claus plant for further processing. The lean solvent exiting the stripper is first cooled by providing heat to the rich solvent, then further cooled by exchange with the product gas and finally chilled in the lean chiller before returning to the top of the CO_2 absorber.

3.1.8 <u>Methanation, Synthetic Natural Gas Purification and Compression</u>


Methanation is the hydrogenation of carbon monoxide to methane, typically performed over a nickel-based catalyst. There are two highly exothermic reactions:

$$CO + 3H_2 \leftrightarrow CH_4 + H_2O (\Delta H^0_{298} = -206 \text{ kJ/mol})$$
$$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O (\Delta H^0_{298} = -165 \text{ kJ/mol})$$

Due to the highly exothermic nature of the reactions, temperature control and high temperature tolerant catalysts must be implemented.

The methanation system used in this study is based on the high temperature TREMPTM Process by Haldor Topsoe [54]. The TREMPTM process was chosen primarily because it operates at high-temperature and because of the availability of process data in the public domain. A general schematic of the methanation process in this study is shown in Exhibit 3-3. The process uses two different catalysts to account for the adiabatic temperature rise. The high temperature catalyst used in the first and second reactor can operate a range of 300°C (572°F) to 700°C (1290°F) and the low temperature catalyst in the "clean up" reactor can operate at inlet temperatures as low as 200°C (392°F). The process has the ability to make superheated steam at two pressure levels: 12.41 MPa/566°C (1,800 psia/1,050°F) and 4.14 MPa/288°C (600 psia/550°F). The HP steam is used to drive a subcritical turbine, and the medium pressure steam is used for process requirements like shift steam in the WGS reactors.

The syngas from the Selexol Unit, with a H_2 to CO ratio of approximately 3:1, is combined with a recycle stream and fed to the first high temperature reactor after being preheated to the minimum catalyst temperature. The reactor temperature for the first high temperature reactor is maintained below the catalyst threshold by varying the amount of recycle mixed with the syngas. After the second high temperature reactor, the syngas is fed to a low temperature "clean up" reactor that reduces the hydrogen content of the SNG product to 0.5 to 1 vol%.

After the methanation reactors the process condensate is removed from the product stream and the SNG product is then passed through a molecular sieve where it removes nearly all of the remaining water and 98.5 vol% of the CO_2 , which is vented through the plant stack [55]. The

SNG product is further compressed to 6.21 MPa (900 psia) to meet pipeline pressure specifications [56].

3.1.9 <u>Pressure Swing Adsorber (Co-Production Cases Only)</u>

The PSA unit is used to purify the syngas from the NH₃-production Selexol unit and the purge gas from the ammonia synthesis loop. The operation of a PSA unit for ammonia production based on syngas derived from gasification has been demonstrated at the Coffeyville Resources Fertilizer Complex albeit at a smaller scale.

The PSA unit produces 98.8 vol% hydrogen with a recovery efficiency of 94 vol%. Typical recovery efficiencies are from 88 to 90 vol%. The use of nitrogen as the purging medium in the desorption cycle enables the high recovery efficiency used in this study [57].

The PSA process is accomplished in a series of five steps. The gas is fed to the unit at HP, where impurities are adsorbed and the hydrogen product is produced. When the first adsorber is at capacity, it is taken off-line and the syngas is feed to another adsorber. Hydrogen remains trapped in the adsorbent space. To recover this hydrogen, the adsorber is co-currently depressurized from the product side, and the hydrogen recovery is complete, the impurities have migrated to the top of the adsorbent bed, filling the bed to capacity. The bed is partly regenerated by depressurization towards the feed end, and the impurities are rejected to the PSA off-gas. The adsorber is purged with more nitrogen at constant off-gas pressure to further regenerate the bed. The adsorber is repressurized with hydrogen from the co-current depressurization and with a slipstream from the hydrogen product prior to the introduction of the feed gas [14].

3.1.10 Ammonia Synthesis (Co-Production Cases Only)

Ammonia synthesis occurs through the hydrogenation of nitrogen over an iron based catalyst. The hydrogen is derived from the shifted syngas purified by a two-stage Selexol unit and the PSA unit. The nitrogen is produced from the ASU. Co-production cases include the cost and performance adjustments for nitrogen compression.

 $N_2 + 3H_2 \leftrightarrow 2NH_3 \ (\Delta H^0_{298} = -46 \ kJ/mol)$

The synthesis of ammonia typically takes place at pressure in the range of 10.00 to 24.99 MPa (1,450 to 3,625 psia) at a temperature of 343°C to 550°C (650 to 1,022°F) [58]. For this study the gas enters the reactor at 14.00 MPa (2,030 psia) and 343°C (650°F). The configuration modeled in this study is based on the Haldor Topsoe S-300 Ammonia Synthesis Loop and is shown in Exhibit 3-4. The path of the feed gas through the system is shown in red.

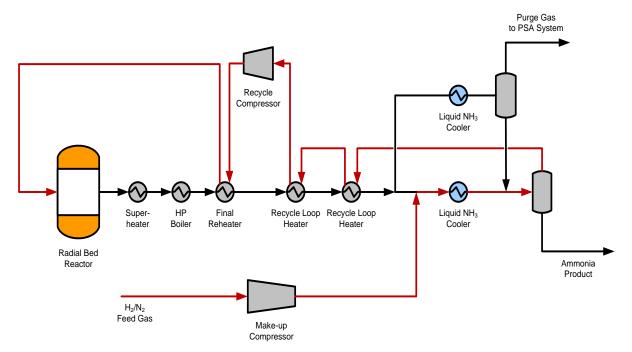


Exhibit 3-4 Ammonia Synthesis Loop Configuration

The makeup gas from the PSA system is introduced into the synthesis loop before the separation of the ammonia product. Each reactor pass converts only 20 to 30 percent due to the unfavorable equilibrium conditions. Due to the exothermic nature of the reaction, superheated steam at 12.51 MPa (1,815 psia) and HP steam at 4.14 MPa (600 psia) can be generated in the synthesis loop. The ammonia is separated/condensed by a refrigeration system.

Purge gas is removed from the system to reduce the concentration of catalyst poisons and inerts such as argon and methane. Permanent poisons are sulfur containing compounds. Temporary catalyst poisons can cause deactivation during the time of exposure. Typical poisons are oxygen containing compounds, such as carbon oxides, water, and oxygen. Catalyst poisoning is a function of the total concentration of oxygen equivalents (O eqv) [59].

ppm O eqv =
$$2 x (ppm O_2) + 2 x (ppm CO_2) + ppm CO + ppm H_2O$$

Less than 2 ppm O eqv is considered ideal and at higher concentrations the catalyst will begin to show a loss of activity. Cases 3 and 4 achieve below 1 total ppm O equivalent.

3.1.11 Zinc Oxide Guard Bed

The sulfur removal requirements for the methanation and ammonia processes are at the extreme limit of Selexol's capabilities. To protect against system upsets or fluctuations in coal sulfur content, a zinc oxide guard bed was included in each case to remove trace sulfur contaminants.

A zinc oxide bed can absorb over 99.99 percent of the inlet H_2S and can absorb a maximum of 39.3 pounds of sulfur per pound of pure zinc oxide (ZnO). In this study it was assumed that the bed would reach 70 percent of saturation at breakthrough.

3.1.12 Sulfur Recovery/Tail Gas Cleanup Process Selection

Currently, most of the world's sulfur is produced from the acid gases coming from gas treating. The Claus process remains the mainstay for sulfur recovery. Conventional three-stage Claus plants, with indirect reheat and feeds with a high H_2S content, can approach 98 percent sulfur recovery efficiency. However, since environmental regulations have become more stringent, sulfur recovery plants are required to recover sulfur with over 99.8 percent efficiency. To meet these stricter regulations, the Claus process underwent various modifications and add-ons.

The add-on modification to the Claus plant selected for this study can be considered a separate option from the Claus process. In this context, it is often called a TGTU process.

The Claus Process

The Claus process converts H_2S to elemental sulfur via the following reactions:

$$\begin{array}{l} H_2S + 3/2 \ O_2 \leftrightarrow H_2O + SO_2 \\ 2H_2S + SO_2 \leftrightarrow 2H_2O + 3S \end{array}$$

The second reaction, the Claus reaction, is equilibrium limited. The overall reaction is:

$$3H_2S + 3/2 O_2 \leftrightarrow 3H_2O + 3S$$

The sulfur in the vapor phase exists as S_2 , S_6 , and S_8 molecular species, with the S_2 predominant at higher temperatures, and S_8 predominant at lower temperatures.

A simplified process flow diagram of a typical three-stage Claus plant is shown in Exhibit 3-5 [60]. One-third of the H_2S is burned in the furnace with oxygen from the air to give sufficient SO_2 to react with the remaining H_2S . Since these reactions are highly exothermic, a waste heat boiler that recovers this heat to generate HP steam usually follows the furnace. Sulfur is condensed in a condenser that follows the HP steam recovery section. LP steam is raised in the condenser. The tail gas from the first condenser then goes to several catalytic conversion stages, usually two to three, where the remaining sulfur is recovered via the Claus reaction. Each catalytic stage consists of gas preheat, a catalytic reactor, and a sulfur condenser. The liquid sulfur goes to the sulfur pit, while the tail gas proceeds to the incinerator or for further processing in a TGTU.

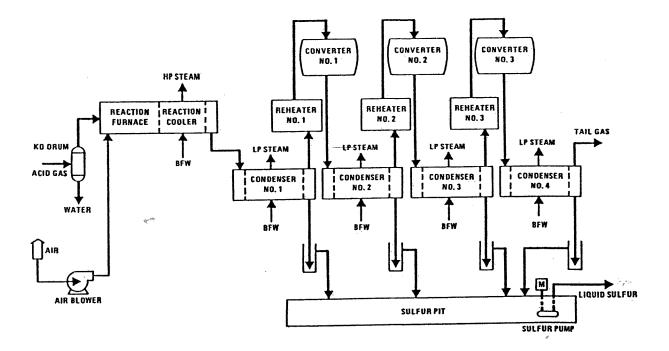


Exhibit 3-5 Typical Three-Stage Claus Sulfur Plant

Claus Plant Sulfur Recovery Efficiency

The Claus reaction is equilibrium limited, and sulfur conversion is sensitive to the reaction temperature. The highest sulfur conversion in the thermal zone is limited to about 75 percent. Typical furnace temperatures are in the range from 1,093 to 1,427°C (2,000 to 2,600°F), and as the temperature decreases, conversion increases dramatically.

Claus plant sulfur recovery efficiency depends on many factors:

- H₂S concentration of the feed gas
- Number of catalytic stages
- Gas reheat method

In order to keep Claus plant recovery efficiencies approaching 94 to 96 percent for feed gases that contain about 20 to 50 percent H_2S , a split-flow design is often used. In this version of the Claus plant, part of the feed gas is bypassed around the furnace to the first catalytic stage, while the rest of the gas is oxidized in the furnace to mostly SO_2 . This results in a more stable temperature in the furnace.

Oxygen-Blown Claus

Large diluent streams in the feed to the Claus plant, such as N_2 from combustion air, or a high CO_2 content in the feed gas, lead to higher cost Claus processes and any add-on or tail gas units. One way to reduce diluent flows through the Claus plant and to obtain stable temperatures in the furnace for dilute H_2S streams is the oxygen-blown Claus process.

The oxygen-blown Claus process was originally developed to increase capacity at existing conventional Claus plants and to increase flame temperatures of low H_2S content gases. The

process has also been used to provide the capacity and operating flexibility for sulfur plants where the feed gas is variable in flow and composition such as often found in refineries. The application of the process has now been extended to grass roots installations, even for rich H_2S feed streams, to provide operating flexibility at lower costs than would be the case for conventional Claus units. At least four of the recently built gasification plants in Europe use oxygen enriched Claus units.

Oxygen enrichment results in higher temperatures in the front-end furnace, potentially reaching temperatures as high as 1,593 to 1,649°C (2,900 to 3,000°F) as the enrichment moves beyond 40 to 70 vol% O_2 in the oxidant feed stream. Although oxygen enrichment has many benefits, its primary benefit for lean H₂S feeds is a stable furnace temperature. Sulfur recovery is not significantly enhanced by oxygen enrichment. Because the gasification process already requires an ASU, the oxygen-blown Claus plant was chosen for all cases.

Tail Gas Treating

In many refinery and other conventional Claus applications, tail gas treating involves the removal of the remaining sulfur compounds from gases exiting the SRU. Tail gas from a typical Claus process, whether a conventional Claus or one of the extended versions of the process, usually contains small, but varying quantities of COS, carbon disulfide (CS_2) , H_2S , SO_2 , and elemental sulfur vapors. In addition, there may be H_2 , CO, and CO₂ in the tail gas. In order to remove the rest of the sulfur compounds from the tail gas, all of the sulfur-bearing species must first be converted to H_2S . Then, the resulting H_2S is absorbed into a solvent and the clean gas vented or recycled for further processing. The clean gas resulting from the hydrolysis step can undergo further cleanup in a dedicated absorption unit or be integrated with an upstream AGR unit. The latter option is particularly suitable with physical absorption solvents. The approach of treating the tail gas in a dedicated amine absorption unit and recycling the resulting acid gas to the Claus plant is the one used by the SCOT process. With tail gas treatment, Claus plants can achieve overall removal efficiencies in excess of 99.9 percent.

In the case of gasification-based applications, the tail gas from the Claus plant can be catalytically hydrogenated and then recycled back into the system with the choice of location being technology dependent, or it can be treated with a SCOT-type process. The low rank coal cases in this report all use a catalytic hydrogenation step with tail gas recycle to the AGR. The bituminous coal cases utilize the SCOT process with acid gas recycled back to the AGR and the clean gas used for coal drying. The Shell Puertollano plant treats the tail gas in a similar manner, but the recycle endpoint is not specified [38].

Flare Stack

A self-supporting, refractory-lined, carbon steel (CS) flare stack is typically provided to combust and dispose of unreacted gas during startup, shutdown, and upset conditions. However, in all eight cases a flare stack was provided for syngas dumping during startup, shutdown, etc. This flare stack eliminates the need for a separate Claus plant flare.

3.1.13 Slag Handling

The slag handling system conveys, stores, and disposes of slag removed from the gasification process. Spent material drains from the gasifier bed into a water bath in the bottom of the gasifier vessel. A slag crusher receives slag from the water bath and grinds the material into pea-

sized fragments. A slag/water slurry that is between 5 and 10 percent solids leaves the gasifier pressure boundary through the use of lockhoppers to a series of dewatering bins.

The slag is dewatered, the water is clarified and recycled and the dried slag is transferred to a storage area for disposal.

In this study the slag bins were sized for a nominal holdup capacity of 72 hours of full-load operation. At periodic intervals, a convoy of slag-hauling trucks will transit the unloading station underneath the hopper and remove a quantity of slag for disposal. Approximately 30-50 truckloads per day are required to remove the total quantity of slag produced by the plant, depending on coal type, operating at nominal rated power. While the slag is suitable for use as a component of road paving mixtures, it was assumed in this study that the slag would be landfilled at a specified cost.

3.1.14 Steam Generation Island

Steam Turbine Generator and Auxiliaries

The ST consists of an HP section, an IP section, and one double-flow LP section, all connected to the generator by a common shaft. The HP and IP sections are contained in a single-span, opposed-flow casing, with the double-flow LP section in a separate casing.

Superheated main steam is combined in a header, and then passes through the stop valves and control valves and enters the turbine at 12.4 MPa/566°C (1800 psig/1050°F). The steam initially enters the turbine near the middle of the HP span, flows through the turbine. After passing through the IP section, the steam enters a crossover pipe, which transports the steam to the LP section. The steam divides into two paths and flows through the LP sections, exhausting downward into the condenser. In the Midwestern location cases the single condenser is water-cooled. In the Montana and North Dakota location cases the steam exiting the turbine splits evenly between a water-cooled condenser and an air-cooled condenser.

The generator is a hydrogen-cooled synchronous type, generating power at 24 kilovolt (kV). A static, transformer type exciter is provided. The generator is cooled with a hydrogen gas recirculation system using fans mounted on the generator rotor shaft. The heat absorbed by the gas is removed as it passes over finned tube gas coolers mounted in the stator frame. Gas is prevented from escaping at the rotor shafts by a closed-loop (CL) oil seal system. The oil seal system consists of storage tank, pumps, filters, and pressure controls, all skid-mounted.

The STG is controlled by a triple-redundant, microprocessor-based electro-hydraulic control system. The system provides digital control of the unit in accordance with programmed control algorithms, color cathode ray tube (CRT) operator interfacing, and data link interfaces to the balance-of-plant distributed control system (DCS), and incorporates on-line repair capability.

Feedwater System

The function of the feedwater (FW) system is to pump the various FW streams from the deaerator storage tank to the respective vaporizers. Two 50 percent capacity boiler feed pumps (BFPs) are provided for each of three pressure levels, HP, IP, and LP. Each pump is provided with inlet and outlet isolation valves, and outlet check valve. Minimum flow recirculation to prevent overheating and cavitation of the pumps during startup and low loads is provided by an automatic recirculation valve and associated piping that discharges back to the deaerator storage tank. Pneumatic flow control valves control the recirculation flow.

The FW pumps are supplied with instrumentation to monitor and alarm on low oil pressure, or high bearing temperature. FW pump suction pressure and temperature are also monitored. In addition, the suction of each BFP is equipped with a startup strainer.

Main and Reheat Steam Systems

The function of the main steam system is to convey main steam generated in the raw gas coolers and the methanation and ammonia synthesis superheater (where applicable) outlets to the HP turbine stop valves.

Main steam at approximately 12.4 MPa/566°C (1800 psig/1050°F) exits through a motoroperated stop/check valve and a motor-operated gate valve, and is routed to a single line feeding the HP turbine. Cold reheat steam at 3.5 MPa/376°C (501 psia/708°F) exits the HP turbine, flows through a motor-operated isolation gate valve, to the syngas cooler. Hot reheat steam at approximately 3.5 MPa/538°C (501 psia/1000°F) exits the syngas cooler and is routed to the IP turbines.

Safety valves are installed to comply with appropriate codes and to ensure the safety of personnel and equipment.

Circulating Water System

The circulating water system (CWS) is a closed-cycle cooling water system that supplies cooling water to the condenser to condense the main turbine exhaust steam (all of the exhaust steam in Midwestern locations and half of the steam in the Montana and North Dakota locations). The system also supplies cooling water to the AGR plant as required, and to the auxiliary cooling system. The auxiliary cooling system is a CL process that utilizes a higher quality water to remove heat from compressor intercoolers, oil coolers and other ancillary equipment and transfers that heat to the main circulating cooling water system in plate and frame heat exchangers. The heat transferred to the circulating water in the condenser and other applications is removed by a mechanical draft cooling tower.

The system consists of two 50 percent capacity vertical CWPs, a mechanical draft evaporative cooling tower, and CS cement-lined interconnecting piping. The pumps are single-stage vertical pumps. The piping system is equipped with butterfly isolation valves and all required expansion joints. The cooling tower is a multi-cell wood frame counter flow mechanical draft cooling tower.

Midwestern Location Cases

The condenser is a single-pass, horizontal type with divided water boxes. All of the steam is condensed using cooling water for the bituminous coal cases. There are two separate circulating water circuits in each box. One-half of the condenser can be removed from service for cleaning or for plugging tubes. This can be done during normal operation at reduced load.

The condenser is equipped with an air extraction system to evacuate the condenser steam space for removal of non-condensable gases during ST operation and to rapidly reduce the condenser pressure from atmospheric pressure before unit startup and admission of steam to the condenser.

Montana and North Dakota Location Cases

Exhaust steam from the ST is split 50/50 to a surface condenser cooled with cooling water and to an air-cooled condenser used ambient air and forced convection. A decision to use a parallel

wet/dry cooling system was based primarily on the plans for the Xcel Energy Comanche 3 PC plant currently in start up, and the desire to reduce the plant water requirement in western locations where water constraints are frequently encountered. With the relatively low ambient temperature, the performance impact from the parallel cooling, as compared to wet cooling, is minor.

The major impact of parallel cooling is a significant reduction in water requirement when compared to a wet cooling system. This impact is included in the water balance presented later in this report.

With this cooling system and the specific ambient temperature, a condenser pressure of 0.005 MPa (0.698 psia) (condensing temperature of 32° C [90°F]) is used in the Western location cases as compared to 0.007 MPa (0.983 psia) (condensing temperature of 38° C [101°F]) used in the Midwestern location cases.

Raw Water, Fire Protection, and Cycle Makeup Water Systems

The raw water system supplies cooling tower makeup, cycle makeup, service water, and potable water requirements. The water source is 50 percent from a POTW and 50 percent from groundwater. Booster pumps within the plant boundary provide the necessary pressure.

The fire protection system provides water under pressure to the fire hydrants, hose stations, and fixed water suppression system within the buildings and structures. The system consists of pumps, underground and aboveground supply piping, distribution piping, hydrants, hose stations, spray systems, and deluge spray systems. One motor-operated booster pump is supplied on the intake structure of the cooling tower with a diesel engine backup pump installed on the water inlet line.

The cycle makeup water system provides high quality demineralized water for makeup to the steam cycle, for steam injection ahead of the WGS reactors and gasifier, and for injection steam to the auxiliary boiler for control of NOx emissions, if required.

The cycle makeup system consists of two 100 percent trains, each with a full-capacity activated carbon filter, primary cation exchanger, primary anion exchanger, mixed bed exchanger, recycle pump, and regeneration equipment. The equipment is skid-mounted and includes a control panel and associated piping, valves, and instrumentation.

3.1.15 Accessory Electric Plant

The accessory electric plant consists of switchgear and control equipment, generator equipment, station service equipment, conduit and cable trays, and wire and cable. It also includes the main power transformer, all required foundations, and standby equipment.

3.1.16 Instrumentation and Control

An integrated plant-wide DCS is provided. The DCS is a redundant microprocessor-based, functionally DCS. The control room houses an array of multiple video monitor (CRT) and keyboard units. The CRT/keyboard units are the primary interface between the generating process and operations personnel. The DCS incorporates plant monitoring and control functions for all the major plant equipment. The DCS is designed to be operational and accessible 99.5

percent of the time it is required (99.5 percent availability). The plant equipment and the DCS are designed for automatic response to load changes from minimum load to 100 percent. Startup and shutdown routines are manually implemented, with operator selection of modular automation routines available. The exception to this, and an important facet of the control system for gasification, is the critical controller system, which is a part of the license package from the gasifier supplier and is a dedicated and distinct hardware segment of the DCS.

This critical controller system is used to control the gasification process. The partial oxidation of the fuel feed and oxygen feed streams to form a syngas product is a stoichiometric, temperatureand pressure-dependent reaction. The critical controller utilizes a redundant microprocessor executing calculations and dynamic controls at 100- to 200-millisecond intervals. The enhanced execution speeds as well as evolved predictive controls allow the critical controller to mitigate process upsets and maintain the reactor operation within a stable set of operating parameters. This page intentionally left blank

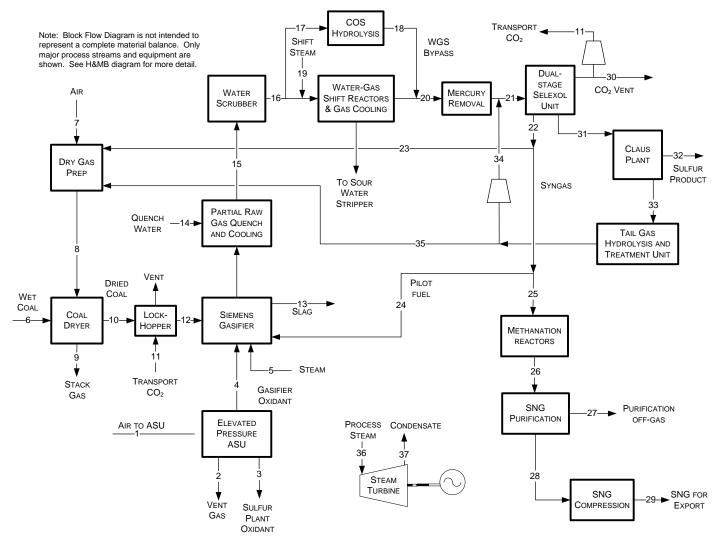
4. <u>BITUMINOUS COAL CASES</u>

This section contains an evaluation of plant designs for Cases 1 through 4, which are based on the Siemens gasifier using Illinois No. 6 coal as the fuel. All cases capture CO_2 from the syngas stream because of the necessary process conditions for chemical production, but in one case CO_2 is released to the atmosphere and in the other it is compressed and sequestered. Cases 1 and 2 are very similar in terms of process, equipment, scope and arrangement, except that Case 2 utilizes a CO_2 compression train to enable transportation and sequestration. The same is true for Cases 3 and 4.

Section 4.1 covers the two SNG cases using Illinois No. 6 coal. Section 4.2 covers the two SNG and ammonia co-production cases using Illinois No. 6 coal. Each section is structured analogously as follows:

- Process and System Description provides an overview of the technology operation as applied.
- Key Assumptions is a summary of relevant study and modeling assumptions.
- Sparing Philosophy is provided.
- Performance Results provide the main modeling results, including the performance summary, environmental performance, carbon balance, sulfur balance, water balance, mass and energy balance diagrams, and mass and energy balance tables.
- Equipment List provides an itemized list of major equipment with account codes that correspond to the cost accounts in the Cost Estimates section.
- Cost Estimates provides a summary of capital and operating costs.

If the information is identical to that presented for the non-sequestration cases, a reference is made to the earlier section rather than repeating the information.


4.1 SYNTHETIC NATURAL GAS PRODUCTION USING ILLINOIS NO. 6 COAL

4.1.1 <u>Process Description</u>

In this section the overall Siemens gasification process for the production of SNG for Cases 1 and 2 is described. The only major process difference is that Case 2 employs CO_2 compression and sequestration. The system description follows the block flow diagrams (BFDs) in Exhibit 4-1 and Exhibit 4-3 and stream numbers reference the same exhibit. The tables in Exhibit 4-2 and Exhibit 4-4 provide process data for the numbered streams in the BFD.

Coal Preparation and Feed Systems

Coal receiving and handling is covered in Section 3.1.1. The receiving and handling subsystem ends at the coal silo. The Siemens process uses a dry feed system which is sensitive to the coal moisture content. Coal moisture consists of two parts, surface moisture and inherent moisture. For coal to flow smoothly through the lock hoppers, the surface moisture must be removed. The bituminous coal used in this study contains 11.12 percent moisture on an as-received basis (stream 6). It was assumed that the bituminous coal must be dried to 6 percent moisture to allow for smooth flow through the dry feed system (stream 10).

Exhibit 4-1 Case 1 Block Flow Diagram, Bituminous Coal to SNG without Carbon Sequestration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
V-L Mole Fraction																			
Ar	0.0092	0.0091	0.0101	0.0101	0.0000	0.0000	0.0092	0.0084	0.0064	0.0000	0.0001	0.0000	0.0000	0.0000	0.0019	0.0020	0.0020	0.0020	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0119	0.0015	0.0000	0.0000	0.4228	0.4387	0.4387	0.4387	0.0000
CO ₂	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0003	0.1134	0.0869	0.0000	0.9736	0.1231	0.0000	0.0000	0.0380	0.0394	0.0394	0.0400	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0005	0.0006	0.0006	0.0000	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0127	0.6936	0.0000	0.0000	0.2001	0.2076	0.2076	0.2076	0.0000
H ₂ O	0.0099	0.0039	0.0000	0.0000	1.0000	0.0000	0.0099	0.1726	0.3661	0.0000	0.0015	0.0979	0.0000	1.0000	0.3261	0.3009	0.3009	0.3004	1.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0058	0.0060	0.0060	0.0066	0.0000
N ₂	0.7732	0.9790	0.0004	0.0004	0.0000	0.0000	0.7732	0.6276	0.4809	0.0000	0.0001	0.0171	0.0000	0.0000	0.0046	0.0047	0.0047	0.0047	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0076	0.9895	0.9895	0.0000	0.0000	0.2074	0.0780	0.0597	0.0000	0.0000	0.0668	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	51,091	40,346	151	10,249	3,445	0	3,513	4,336	5,659	0	3,569	14,109	0	14,021	53,959	52,011	7,721	7,721	14,746
V-L Flowrate (kg/hr)	1,474,339	1,134,515	4,838	328,760	62,065	0	101,361	123,623	147,458	0	154,354	158,594	0	252,597	1,091,692	1,056,587	156,847	156,847	265,661
Solids Flowrate (kg/hr)	0	0	0	0	0	437,604	0	0	0	413,769	0	332,351	43,828	0	0	0	0	0	0
Temperature (°C)	15	24	32	32	343	15	15	1,278	143	71	83	18	1,500	216	260	215	215	215	288
Pressure (MPa, abs)	0.10	0.11	0.86	0.86	5.10	0.10	0.10	0.10	0.10	0.10	5.62	5.62	4.24	8.274	3.89	3.76	3.76	3.69	4.14
Enthalpy (kJ/kg)	30.93	30.58	26.94	26.94	3,177.81		30.93	1,884.17	835.89		31.45	4,685.53		1,017.873	1,148.27	1,011.50	1,011.50	1,011.03	3,070.04
Density (kg/m ³)	1.2	1.3	11.0	11.0	20.1		1.2	0.2	0.8		98.9	28.4		782.0	17.9	19.0	19.0	18.7	18.2
V-L Molecular Weight	28.857	28.120	32.078	32.078	18.015		28.857	28.514	26.059		43.248	11.241		18.015	20.232	20.314	20.314	20.314	18.015
V-L Flowrate (lbmol/hr)	112.637	88.948	332	22,595	7,595	0	7.744	9,558	12,475	0	7.868	31,105	0	30.912	118,960	114.666	17,022	17,022	32,510
V-L Flowrate (lb/hr)	3.250.361	2,501,177	10.665	724,793	136,831	0	223.464	272,542	325,090	0	340.292	349.640	0	556,880		2,329,375	345.789	345.789	585.682
Solids Flowrate (lb/hr)	0	0	0	0	0	964,752	0	0	0	912,204	0	732,709	96,625	0	0	0	0	0	0
Temperature (°F)	59	74	90	90	650	59	59	2,332	290	160	181	65	2,732	420	500	418	418	419	550
Pressure (psia)	14.7	16.4	125.0	125.0	740.0	14.7	14.7	14.7	14.7	14.4	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7	534.7	600.0
Enthalpy (Btu/lb)	13.3	13.1	11.6	11.6	1,366.2		13.3	810.0	359.4		13.5	2,014.4		437.6	493.7	434.9	434.9	434.7	1,319.9
Density (lb/ft ³)	0.076	0.081	0.685	0.685	1.257		0.076	0.014	0.048		6.174	1.774		48.817	1.120	1.189	1.189	1.166	1.135
	A - Refere	nce conditio	ons are 32.	02 F & 0.08	9 PSIA														

Exhibit 4-2 Case 1 Stream Table, Bituminous Coal to SNG without Carbon Sequestration

	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
V-L Mole Fraction																		
Ar	0.0021	0.0020	0.0029	0.0029	0.0029	0.0029	0.0103	0.0000	0.0118	0.0118	0.0000	0.0005	0.0000	0.0021	0.0000	0.0077	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.8334	0.0000	0.9495	0.9495	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1648	0.1644	0.2366	0.2366	0.2366	0.2366	0.0000	0.0000	0.0000	0.0000	0.0028	0.0484	0.0000	0.1158	0.0000	0.0327	0.0000	0.0000
CO ₂	0.3242	0.3256	0.0361	0.0361	0.0361	0.0361	0.1217	0.9811	0.0021	0.0021	0.9896	0.4310	0.0000	0.3134	0.9589	0.0713	0.0000	0.0000
COS	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0017	0.0000	0.0005	0.0001	0.0000	0.0000	0.0000
H ₂	0.4956	0.4945	0.7172	0.7172	0.7172	0.7172	0.0076	0.0000	0.0086	0.0086	0.0028	0.0927	0.0000	0.0623	0.0006	0.1325	0.0000	0.0000
H ₂ O	0.0018	0.0018	0.0001	0.0001	0.0001	0.0001	0.0023	0.0189	0.0000	0.0000	0.0045	0.0330	0.0000	0.5017	0.0059	0.0258	1.0000	1.0000
H ₂ S	0.0066	0.0067	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3921	0.0000	0.0021	0.0345	0.0000	0.0000	0.0000
N ₂	0.0048	0.0048	0.0070	0.0070	0.0070	0.0070	0.0246	0.0000	0.0280	0.0280	0.0000	0.0006	0.0000	0.0008	0.0000	0.5758	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1542	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	50,897	51,011	34,955	638	115	34,202	9,763	1,193	8,570	8,570	11,619	868	0	991	114	4,726	41,891	64,580
V-L Flowrate (kg/hr)	1,036,367	1,041,318	348,816	6,363	1,152	341,301	194,158	51,931	142,227	142,227	508,119	30,029	0	26,262	4,952	123,623	754,680	1,163,420
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	10,888	0	0	0	0	0
Temperature (°C)	35	34	31	31	31	31	35	35	35	35	18	48	178	232	21	23	566	39
Pressure (MPa, abs)	3.31	3.24	3.24	3.24	3.24	3.24	2.731	0.138	2.627	6.202	0.9	0.163	0.119	0.085	3.272	0.103	12.512	0.827
Enthalpy (kJ/kg)	45.27	44.52	86.41	86.41	86.41	86.41	42.166	48.781	47.826	13.195	8.0	91.877		1,202.561	-13.721	67.724	3,513.235	164.567
Density (kg/m ³) V-L Molecular Weight	26.7 20.362	26.3 20.414	12.6 9.979	12.6 9.979	12.6 9.979	12.6 9.979	22.4 19.887	2.4 43.519	17.8 16.597	44.6 16.597	17.8 44	2.1 34.607	5,280.4	0.5 26.492	73.9 43.489	1.1 26.158	34.9 18.015	992.9 18.015
	20.362	20.414	9.979	9.979	9.979	9.979	19.007	43.519	16.597	10.597	44	34.007		20.492	43.409	20.156	16.015	16.015
V-L Flowrate (lbmol/hr)	112.209	112.460	77.063	1.406	255	75.402	21.523	2.631	18,893	18.893	25,616	1,913	0	2,185	251	10.419	92,354	142.374
V-L Flowrate (lb/hr)	2,284,798	2,295,714	769,007	14,028	2,540	752,440	428,046	114,489	313,557	313,557	1,120,211	66,204	0	57,897	10,916	272,542	1,663,785	2,564,903
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	24,003	0	0	0	0	0
Temperature (°F)	95	94	87	87	87	87	95	95	95	95	65	119	352	450	70	74	1,050	103
Pressure (psia)	479.7	469.7	469.6	469.6	469.6	469.6	396.1	20.1	381.0	899.5	135.0	23.7	17.3	12.3	474.5	14.9	1,814.7	120.0
Enthalpy (Btu/lb)	19.5	19.1	37.1	37.1	37.1	37.1	18.1	21.0	20.6	5.7	3.4	39.5		517.0	-5.9	29.1	1,510.4	70.8
Density (lb/ft ³)	1.667	1.639	0.789	0.789	0.789	0.789	1.401	0.148	1.114	2.785	1.11	0.133	329.643	0.033	4.616	0.068	2.177	61.987

Exhibit 4-2 Case 1 Stream Table, Bituminous Coal to SNG without Carbon Sequestration (continued)

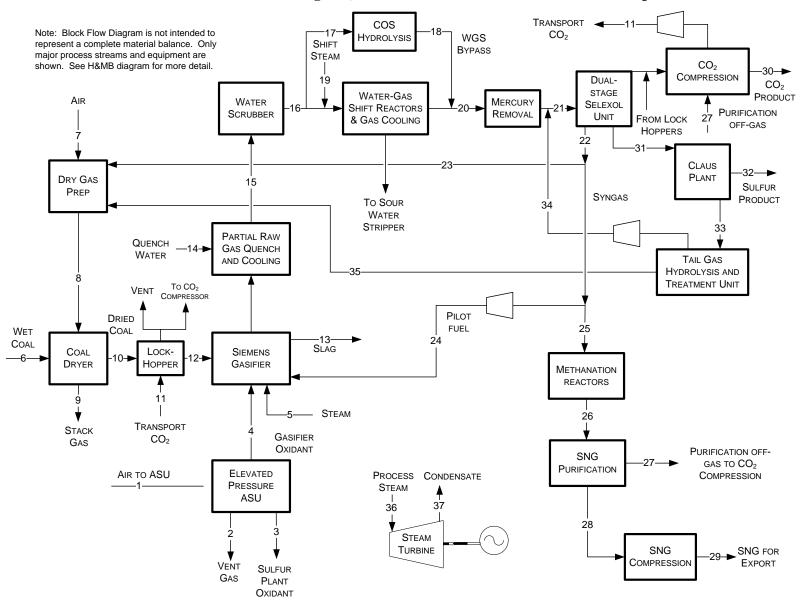


Exhibit 4-3 Case 2 Block Flow Diagram, Bituminous Coal to SNG with Carbon Sequestration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
V-L Mole Fraction																			
Ar	0.0092	0.0091	0.0101	0.0101	0.0000	0.0000	0.0092	0.0084	0.0064	0.0000	0.0001	0.0000	0.0000	0.0000	0.0019	0.0020	0.0020	0.0020	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0046	0.0006	0.0000	0.0000	0.4229	0.4388	0.4388	0.4388	0.0000
CO ₂	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0003	0.1133	0.0869	0.0000	0.9902	0.1240	0.0000	0.0000	0.0381	0.0395	0.0395	0.0401	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0005	0.0006	0.0006	0.0000	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0048	0.6935	0.0000	0.0000	0.1999	0.2074	0.2074	0.2074	0.0000
H ₂ O	0.0099	0.0039	0.0000	0.0000	1.0000	0.0000	0.0099	0.1718	0.3648	0.0000	0.0001	0.0978	0.0000	1.0000	0.3262	0.3010	0.3010	0.3004	1.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0058	0.0060	0.0060	0.0066	0.0000
N ₂	0.7732	0.9790	0.0004	0.0004	0.0000	0.0000	0.7732	0.6281	0.4817	0.0000	0.0000	0.0172	0.0000	0.0000	0.0046	0.0047	0.0047	0.0047	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0076	0.9895	0.9895	0.0000	0.0000	0.2074	0.0785	0.0602	0.0000	0.0000	0.0669	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	51,089	40,345	151	10,248	3,445	0	3,531	4,355	5,678	0	3,530	14,089	0	14,016	53,935	51,984	7,779	7,779	14,732
V-L Flowrate (kg/hr)	1,474,284	1,134,472	4,848	328,738	62,065	0	101,888	124,203	148,038	0	154,354	158,594	0	252,508	1,091,580	1,056,432	158,081	158,081	265,396
Solids Flowrate (kg/hr)	0	0	0	0	0	437,604	0	0	0	413,769	0	332,351	43,828	0	0	0	0	0	0
Temperature (°C)	15	24	32	32	343	15	15	1,274	143	71	82	18	1,500	216	260	215	215	215	288
Pressure (MPa, abs)	0.10	0.11	0.86	0.86	5.10	0.10	0.10	0.10	0.10	0.10	5.62	5.62	4.24	8.274	3.89	3.76	3.76	3.69	4.14
Enthalpy (kJ/kg)	30.93	30.58	26.94	26.94	3,177.81		30.93	1,875.99	833.13		27.52	4,692.64		1,017.873	1,148.09	1,011.26	1,011.26	1,010.79	3,070.04
Density (kg/m ³)	1.2	1.3	11.0	11.0	20.1		1.2	0.2	0.8		101.2	28.5		782.0	17.9	19.1	19.1	18.7	18.2
V-L Molecular Weight	28.857	28.120	32.078	32.078	18.015		28.857	28.521	26.073		43.732	11.256		18.015	20.239	20.322	20.322	20.322	18.015
	440.000	00.044	000	00.500	7.505	0	7 704	0.004	40 540	0	7 704	04.004	0	00.004	440.005	444.000	47.440	47.440	00.470
V-L Flowrate (lb _{mol} /hr)	112,633	88,944	333	22,593	7,595	ů	7,784	9,601	12,518	0	7,781	31,061	0	30,901	118,905	114,606	17,149	17,149	32,478
V-L Flowrate (lb/hr) Solids Flowrate (lb/hr)	3,250,240	2,501,083	10,688 0	724,742 0	136,831 0	0 964,752	224,625	273,820	326,368 0	0 912,204	340,292 0	349,640 732,709	96,625	556,684 0	2,406,522	2,329,035 0	348,508 0	348,508	585,098 0
Solius Flowlate (ID/III)	0	0	0	0	0	904,752	0	0	0	912,204	0	132,109	90,023	0	0	0	0	0	0
Temperature (°F)	59	74	90	90	650	59	59	2,325	290	160	179	65	2,732	420	500	418	418	419	550
Pressure (psia)	14.7	16.4	125.0	125.0	740.0	14.7	14.7	14.7	14.7	14.4	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7	534.7	600.0
Enthalpy (Btu/lb)	13.3	13.1	11.6	11.6	1,366.2		13.3	806.5	358.2		11.8	2,017.5		437.6	493.6	434.8	434.8	434.6	1,319.9
Density (lb/ft ³)	0.076	0.081	0.685	0.685	1.257		0.076	0.014	0.048	-	6.320	1.778		48.817	1.120	1.190	1.190	1.167	1.135
	A - Referen	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA														

Exhibit 4-4 Case 2 Stream Table, Bituminous Coal to SNG with Carbon Sequestration

	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
V-L Mole Fraction																		
Ar	0.0020	0.0020	0.0029	0.0029	0.0029	0.0029	0.0103	0.0000	0.0118	0.0118	0.0001	0.0005	0.0000	0.0021	0.0000	0.0036	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.8318	0.0000	0.9495	0.9495	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1652	0.1649	0.2372	0.2372	0.2372	0.2372	0.0000	0.0000	0.0000	0.0000	0.0046	0.0485	0.0000	0.1153	0.0000	0.0065	0.0000	0.0000
CO ₂	0.3241	0.3255	0.0361	0.0361	0.0361	0.0361	0.1236	0.9814	0.0021	0.0021	0.9902	0.4310	0.0000	0.3149	0.9630	0.5446	0.0000	0.0000
COS	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0017	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000
H ₂	0.4953	0.4942	0.7166	0.7166	0.7166	0.7166	0.0075	0.0000	0.0085	0.0085	0.0048	0.0927	0.0000	0.0611	0.0006	0.2924	0.0000	0.0000
H ₂ O	0.0018	0.0018	0.0001	0.0001	0.0001	0.0001	0.0023	0.0186	0.0000	0.0000	0.0001	0.0330	0.0000	0.5024	0.0059	0.1514	1.0000	1.0000
H ₂ S	0.0066	0.0067	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3920	0.0000	0.0021	0.0304	0.0000	0.0000	0.0000
N ₂	0.0048	0.0048	0.0070	0.0070	0.0070	0.0070	0.0245	0.0000	0.0280	0.0280	0.0000	0.0006	0.0000	0.0008	0.0000	0.0014	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	50,851	50,965	34,927	638	115	34,174	9,775	1,212	8,562	8,562	14,470	867	0	992	114	576	42,211	65,028
V-L Flowrate (kg/hr)	1,035,837	1,040,786	349,074	6,379	1,152	341,543	194,891	52,765	142,126	142,126	632,824	29,996	0	26,303	4,949	15,936	760,442	1,171,495
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	10,891	0	0	0	0	0
Temperature (°C)	35	34	31	31	80	31	35	35	35	35	32	48	178	232	21	51	566	39
Pressure (MPa, abs)	3.31 45.24	3.24	3.24	3.24	5.10	3.24 86.27	2.73	0.138	2.627	6.202	15.272	0.2	0.119	0.085	3.272	0.103	12.512	0.827
Enthalpy (kJ/kg)	-	44.50	86.27	86.27	234.71		42.02	48.480	47.817	13.183	-216.068	91.9		1,202.323	-13.694	240.482	3,513	164.549
Density (kg/m ³) V-L Molecular Weight	26.7 20.370	26.3 20.422	12.7 9.994	12.7 9.994	17.0 9.994	12.7 9.994	22.5 19.938	2.4 43.526	17.9 16.599	44.6 16.599	799.5 43.732	2.1 35	5,279.9	0.5 26.526	74.0 43.529	1.1 27.652	34.9 18.015	992.9 18.015
	20.370	20.422	3.334	3.334	3.334	3.334	19.950	43.320	10.555	10.555	43.732	- 55		20.320	43.323	21.052	10.015	10.013
V-L Flowrate (lbmol/hr)	112,108	112,359	77,001	1,407	254	75,340	21,549	2,673	18,877	18,877	31,902	1,911	0	2,186	251	1,271	93,059	143,362
V-L Flowrate (lb/hr)	2,283,630	2,294,540	769,577	14,063	2,540	752,974	429,662	116,328	313,334	313,334	1,395,138	66,130	0	57,988	10,910	35,132	1,676,488	2,582,704
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	24,010	0	0	0	0	0
Temperature (°F)	95	94	87	87	177	87	95	95	95	95	90	119	352	450	70	123	1,050	103
Pressure (psia)	479.7	469.7	469.6	469.6	740.0	469.6	396.1	20.1	381.0	899.5	2,215.0	23.7	17.3	12.3	474.5	14.9	1,814.7	120.0
Enthalpy (Btu/lb)	19.5	19.1	37.1	37.1	100.9	37.1	18.1	20.8	20.6	5.7	-92.9	39.5		516.9	-5.9	103.4	1,510	70.7
Density (lb/ft ³)	1.667	1.640	0.790	0.790	1.061	0.790	1.405	0.148	1.114	2.786	49.913	0	329.612	0.033	4.620	0.069	2.177	61.987

Exhibit 4-4 Case 2 Stream Table, Bituminous Coal to SNG with Carbon Sequestration (continued)

The coal is simultaneously crushed and dried in the coal mill then delivered to a surge hopper with an approximate 2-hour capacity. The drying medium is provided by combining the off-gas from the Claus plant TGTU and a slipstream of clean syngas (stream 23) and passing them through the incinerator. The incinerator flue gas, with an oxygen content of 8 vol%, is then used to dry the coal in the mill (stream 8).

The coal is drawn from the surge hoppers and fed through a pressurization lock hopper system to a dense phase pneumatic conveyor, which uses CO_2 from the Selexol unit (stream 11) to convey the coal to the gasifiers. CO_2 is chosen instead of N_2 as the transport medium due to the process needs of the methanation section, which requires a low level of inerts for a more high value product and also eliminates the need for further SNG product purification. Approximately 50 percent of the coal transport CO_2 is vented from the lock hopper. In the non-sequestration case, the CO_2 is simply vented to the atmosphere and in the sequestration case approximately 97 percent of the CO_2 is recovered and compressed for sequestration.

Gasifier

There are six Siemens dry feed, pressurized, down flow, entrained, slagging gasifiers, operating at 4.24 MPa (615 psia). Coal reacts with oxygen (stream 4) and steam (stream 5) at a temperature of 1,499°C (2,730°F) to produce principally hydrogen and carbon monoxide. The clean syngas recycle stream is used as pilot fuel for the gasifier burners. The Siemens gasifiers use a 'cooling screen' (heat exchanger tubes) in the gasification zone of the gasifier. Circulating water passes through these heat exchangers and LP steam is generated in an external steam drum. Molten slag builds up a layer on the cooling screen and protects the cooling screen against the high reaction temperatures. Liquid slag from the reaction phase only comes in contact with the solidified slag layer and hence no corrosion of the reactor wall can take place. The gasifier reaction temperature is maintained by setting the oxygen/feedstock (primary) and steam to feedstock (secondary) ratios within precise limits.

Raw Gas Cooling/Particulate Removal

The Siemens system in this study uses a partial water quench to 899°C (1,650°F) with a syngas cooler for steam generation. High-temperature heat recovery in each gasifier train is accomplished in three steps, including the gasifier cooling screen. The product gas from the gasifier is cooled using quench water (stream 14) to lower the temperature below the ash melting point. Syngas then goes through a raw gas cooler, which lowers the gas temperature to 260°C (500°F), and produces HP steam for use in the steam cycle.

The ash that is not carried out with the gas forms slag and runs down the interior walls, exiting the gasifier in liquid form. The slag is solidified in a quench tank for disposal (stream 13). Lockhoppers are used to reduce the pressure of the solids from 4.24 MPa (615 psia) to ambient.

Syngas Scrubber/Sour Water Stripper

Downstream of the quench section is a raw gas scrubber system including two venturi scrubbers and a partial condenser. In two successive venturi scrubbers the raw gas is intensely mixed with water to remove the fine ash and soot particles. Cyclone-type separators remove water and particles from the raw gas flow. The scrubbers run on circuit water and additional water (e.g., gas condensate from the downstream gas cooling after CO shift, if applicable). To reduce fine particles and the salty fogs from the raw gas, a partial condensation of the raw gas is done downstream of the scrubber unit. In the partial condenser the raw gas is cooled down to condense a portion of the water content and separate fine particles. This generated gas condensate is separated from the raw gas and collected in a separator drum with a demister.

The sour water stripper removes NH_3 , SO_2 , and other impurities from the waste stream of the scrubber. The sour gas stripper consists of a sour drum that accumulates sour water from the gas scrubber and condensate from synthesis gas coolers (SGCs). Sour water from the drum flows to the sour stripper, which consists of a packed column with a steam-heated reboiler. Sour gas is stripped from the liquid and sent to the SRU. Remaining water is sent to wastewater treatment.

Sour Gas Shift and COS Hydrolysis

The SGS and COS hydrolysis units are employed in combination to achieve a $3:1 \text{ H}_2$ to CO ratio required for methanation and to reduce the amount of COS entering the AGR system. H₂S and COS are at significant concentrations, requiring removal to achieve the low design level necessary for methanation synthesis. H₂S is removed in an AGR process; however, because COS is not readily removed, it is catalytically converted to H₂S in the SGS reactor and COS hydrolysis unit.

Following the water scrubber, the gas is reheated to $214^{\circ}C$ ($418^{\circ}F$) and fed to the SGS and COS hydrolysis reactors. This raw gas reheat temperature is controlled to achieve a nominal temperature of $232^{\circ}C$ ($450^{\circ}F$) entering the SGS reactor when combined with steam injection. Approximately 85 percent of the raw gas stream exiting the scrubber is sent to the SGS reactor. Steam (stream 19) is injected into the SGS reactor at $288^{\circ}C$ ($550^{\circ}F$) and 4.14 MPa (600 psia) to drive the shift reaction and maintain a 0.3 H₂O to dry gas ratio exiting the reactor. The remaining raw gas from the scrubber is sent to the hydrolysis reactor in the bypass (stream 17) and COS is hydrolyzed with steam over a catalyst bed to H₂S, which is more easily removed by the AGR solvent.

Mercury Removal and Acid Gas Removal

Before the raw fuel gas can be treated in the AGR process, it must be cooled to about 35° C (95°F). During this cooling through a series of heat exchangers, most of the water vapor condenses. This water, which contains some NH₃, is sent to the sour water stripper. The cooled syngas (stream 20) then passes through a carbon bed to remove 95 percent of the Hg (Section 3.1.6).

The AGR process is a two stage Selexol process where H_2S is removed in the first stage and CO_2 in the second stage of absorption. The process results in three product streams, the clean syngas (stream 22), a CO_2 -rich stream (streams 11 and 30), and an acid gas feed to the Claus plant (stream 31). In both cases, the acid gas contains about 40 percent H_2S and 45 percent CO_2 with the balance primarily H_2 and CO. The CO_2 -rich stream is discussed further in the CO_2 compression section.

CO₂ Compression

 CO_2 from the AGR process is generated at two pressure levels, a LP stream at 0.12 MPa (17 psia) and an HP stream at 1.03 MPa (150 psia). For the non-sequestration case (Case 1), a portion of the captured CO_2 from the HP stream is further compressed to 5.62 MPa (815 psia) to provide the transport medium in the coal feed/lock hopper system and the remaining CO_2 is vented to the atmosphere. For the carbon sequestration case (Case 2), the LP stream is compressed to 1.0 MPa (150 psia) and then combined with the HP stream. The combined

stream is further compressed to a SC condition at 15.3 MPa (2,215 psia) using a multiple-stage, intercooled compressor. At 5.17 MPa (750 psia), a portion of the CO₂ compression stream is withdrawn, further compressed to 5.86 MPa (850 psia) using a boost compressor (stream 11), and sent to the lock hopper system. During compression, the CO₂ stream is dehydrated to a dewpoint of -40°C (-40°F) with triethylene glycol prior to extraction of the transport CO₂. The raw CO₂ stream from the Selexol process contains over 99 percent CO₂. The dehydrated CO₂ (stream 30 in Exhibit 4-3) is transported to the plant fence line and is sequestration ready. CO₂ TS&M costs were estimated using the methodology described in Section 2.8.

Methanation System and SNG Compression

Clean syngas from the Selexol unit (stream 25) is sent to the methanation reactors after syngas is withdrawn to fulfill the requirements of the gasifier (stream 24) and the coal drying system (stream 23). The syngas is reacted over three methanation reactors with interstage cooling that generates superheated HP and medium pressure steam as described in Section 3.1.8. Process condensate is removed from the SNG product (stream 26), which now contains approximately 83 vol% CH₄. The SNG product is further purified by a molecular sieve, which removes 98.5 vol% of the CO₂ and all of the water. The purification off-gas (stream 27) contains over 98 vol% CO₂ and is either vented in the non-sequestration case or sent to CO₂ compression for sequestration in the carbon sequestration case. The purified SNG product stream (stream 28) is compressed to 6.21 MPa (900 psia) to meet natural gas pipeline specifications (stream 29).

Claus Unit

The SRU is a Claus bypass type SRU utilizing oxygen instead of air. The Claus plant produces molten sulfur (stream 32) by reacting approximately one third of the H_2S in the feed to SO₂, then reacting the H_2S and SO₂ to sulfur and water. The combination of Claus technology and SCOT tail gas technology results in an overall sulfur recovery exceeding 99 percent.

Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant produces elemental sulfur. Feed for each case consists of acid gas from both the acid gas cleanup unit (stream 31) and a vent stream from the sour water stripper in the gasifier section.

In the furnace waste heat boiler steam is generated. This steam is used to satisfy all Claus process preheating and reheating requirements as well as to provide some steam to the medium-pressure steam header. The sulfur condensers produce 0.45 MPa (65 psia) steam for the LP steam header.

Power Block

The methanation system and syngas cooler in the gasifier generates superheated steam that is used to power a commercially available ST using a 12.4MPa/566°C (1800 psig/1050°F) steam cycle (stream 36).

Air Separation Unit (ASU)

The ASU is designed to produce 99 mol% O_2 for use in the gasifier (stream 4) and SRU (stream 3). The plant is designed with four production trains. The main air compressor is powered by an electric motor. Nitrogen is vented to the atmosphere or used for ammonia synthesis in the co-production cases.

Balance of Plant

Balance of plant items were covered in Section 3.1.

4.1.2 Key System Assumptions

System assumptions for Cases 1 and 2, Siemens gasifier using Illinois No. 6 coal with and without carbon sequestration, are compiled in Exhibit 4-5.

	Case 1	Case 2
Gasifier Pressure, MPa (psia)	4.2 (615)	4.2 (615)
O_2 :Coal Ratio, kg O_2 /kg dry coal	0.784	0.784
	99.5	99.5
Carbon Conversion, %	99.3	99.3
Syngas HHV at Gasifier Outlet, kJ/Nm ³ (Btu/scf)	10,283 (276)	10,283 (276)
Steen Cycle MDe/°C (noig/°E)	12.4/566/534	12.4/566/533
Steam Cycle, MPa/°C (psig/°F)	(1800/1050/994)	(1800/1050/992)
Condenser Pressure, mm Hg	51 (2.0)	51 (2.0)
(in Hg)	51 (2.0)	51 (2.0)
Combustion Turbine	N/A	N/A
Gasifier Technology	Siemens	Siemens
Oxidant	99 vol% Oxygen	99 vol% Oxygen
Coal	Illinois No. 6	Illinois No. 6
Coal Feed Moisture Content, %	11.12	11.12
COS Hydrolysis Reactor	Yes	Yes
Water Gas Shift	Yes	Yes
H ₂ S Separation	Selexol (1 st Stage)	Selexol (1 st Stage)
Sulfur Removal, %	99.3	99.9
CO ₂ Separation	Selexol (2 nd Stage)	Selexol (2 nd Stage)
CO ₂ Sequestered, %	N/A	62.3
•	Claus Plant with Tail Gas	Claus Plant with Tail Gas
Sulfur Recovery	Treatment / Elemental	Treatment / Elemental
	Sulfur	Sulfur
Mathematica Creations	Based on Haldor Topsoe	Based on Haldor Topsoe
Methanation System	TREMP TM Process	TREMP TM Process
Particulate Control	Scrubber and AGR	Scrubber and AGR
Particulate Control	Absorber	Absorber
Mercury Control	Carbon Bed	Carbon Bed
NOx Control	N/A	N/A

Exhibit 4-5 Cases 1 and 2 Plant Study Configuration Matrix

Balance of Plant – All Cases

The balance of plant assumptions are common to all cases and are presented in Exhibit 4-6.

Cooling water system	Recirculating Wet Cooling Tower
Fuel and Other storage	6
Coal	30 days
Slag	30 days
Sulfur	30 days
Sorbent	30 days
Plant Distribution Voltage	
Motors below 1hp	110/220 volt
Motors between 1 hp and	400 1
250 hp	480 volt
Motors between 250 hp and	4 160
5,000 hp	4,160 volt
Motors above 5,000 hp	13,800 volt
Steam Generators	24,000 volt
Grid Interconnection Voltage	345 kV
Water and Waste Water	
Makeup Water	The water supply is 50 percent from a local Publicly Owned Treatment Works and 50 percent from groundwater, and is assumed to be in sufficient quantities to meet plant makeup requirements. Makeup for potable, process, and de-ionized (DI) water is drawn from municipal sources
Process Wastewater	Water associated with gasification activity and storm water that contacts equipment surfaces is collected and treated for discharge through a permitted discharge.
Sanitary Waste Disposal	Design includes a packaged domestic sewage treatment plant with effluent discharged to the industrial wastewater treatment system. Sludge is hauled off site. Packaged plant was sized for 5.68 cubic meters per day (1,500 gallons per day)
Water Discharge	Most of the process wastewater is recycled to the cooling tower basin. Blowdown is treated for chloride and metals, and discharged.

Exhibit 4-6 Balance of Plant Assumptions

4.1.3 Sparing Philosophy

The sparing philosophy for Cases 1 and 2 is provided below. Single trains are utilized throughout with exceptions where equipment capacity requires an additional train. There is no redundancy other than normal sparing of rotating equipment.

The plant design consists of the following major subsystems:

- Three ASUs (3 x 33%).
- Six trains of coal drying and dry feed systems (6 x 17%).
- Six trains of gasification, including gasifier and SGC (6 x 17%).
- Three trains of syngas clean-up process (3 x 33%).
- Three trains of two-stage Selexol (3 x 33%).
- Three trains of methanation reactors (3 x 33%).
- Two trains of Claus-based sulfur recovery (2 x 50%).
- One ST (1 x 100%).

4.1.4 Cases 1 and 2 Performance Results

The Siemens SNG plant without and with carbon sequestration and using Illinois No. 6 coal produces an average net output of 57 Bscf/year at 90 percent CF. The HHV conversion efficiency of the non-sequestration case is 61.4 percent and 61.3 percent for the carbon sequestration case.

Overall performance for the two plants is summarized in Exhibit 4-7, which includes auxiliary power requirements and production values. The ASU accounts for approximately 68 percent of the total auxiliary load in the non-sequestration case and 54 percent in the carbon sequestration case, distributed between the main air compressor, the oxygen compressor, and ASU auxiliaries. CO₂ compression accounts for about 19 percent of the total auxiliary load for the carbon sequestration case. The AGR process accounts for about 13 percent and 11 percent of the auxiliary load for the non-sequestration and sequestration cases, respectively. All other individual auxiliary loads are less than 3 percent of the total.

POWER SUMMARY Gross Power at Generator Terminals, kWe)	Case 1	Case 2
Steam Turbine Power	208.000	210,600
TOTAL POWER, kWe	308,000	310,600
	308,000	310,600
AUXILIARY LOAD SUMMARY, kWe		
Coal Handling	700	700
Coal Milling	4,500	4,500
Slag Handling	1,140	1,140
Air Separation Unit Auxiliaries	1,000	1,000
Air Separation Unit Main Air Compressor	120,220	120,220
Oxygen Compressor	20,910	20,910
CO ₂ Solid Feed System Compressors	4,950	240
SNG Compressors	6,290	6,290
Methanation Plant Recycle Compressor	5,840	5,840
Gasifier Pilot Fuel Compressor and Incinerator Air		300
Blower	300	
CO ₂ Compressor	0	50,400
Boiler Feedwater Pumps	4,980	5,000
Condensate Pump	420	430
Quench Water Pump	640	640
Circulating Water Pump	6,240	6,200
Ground Water Pumps	650	640
Cooling Tower Fans	3,640	3,610
Scrubber Pumps	1,000	1,000
Acid Gas Removal	27,790	27,750
Steam Turbine Auxiliaries	100	100
Claus Plant/TGTU Auxiliaries	250	250
Claus Plant TG Recycle Compressor	280	280
Miscellaneous Balance of Plant ²	3,000	3,000
Transformer Losses	1,510	1,650
TOTAL AUXILIARIES, kWe	216,350	262,090
NET POWER, kWe	91,650	48,510
SNG Production Rate, MNm ³ /hr (Mscf/hr)	202.9 (7,169)	202.7 (7,163)
Capacity Factor	90%	90%
Net Exported Power Efficiency (HHV)	2.8%	1.5%
SNG Conversion Efficiency (HHV _{product} /HHV _{coal}), %	61.4%	61.3%
Coal to SNG Product Yield, MNm ³ _{SNG} /tonne _{coal} (Mscf _{SNG} /ton _{coal})	0.44 (14.9)	0.44 (14.8)
Coal Feed Flow Rate, kg/hr (lb/hr)	437,604 (964,752)	437,604 (964,752)
Thermal Input, ¹ kWth	3,298,455	3,298,455
Condenser Cooling Duty, GJ/hr (MMBtu/hr)	1,709 (1,620)	1,730 (1,640)
•••		
Raw Water Withdrawal, m ³ /min (gpm)	27.1 (7,169)	27.0 (7,123)
Raw Water Consumption, m ³ /min (gpm)	21.6 (5,708)	21.5 (5,672)

Exhibit 4-7 Cases 1 and 2 Plant Performance Summary

1 - HHV of Illinois No. 6 coal is 27,135 kJ/kg (11,666 Btu/lb) 2 - Includes plant control systems, lighting, heating, ventilating, and air conditioning (HVAC), and miscellaneous low voltage loads

Environmental Performance

The environmental targets for emissions of Hg, NOx, SO_2 , and PM were discussed in Section 2.5. A summary of the plant air emissions for Cases 1 and 2 is presented in Exhibit 4-8. The first emissions metric is based on coal heat input to the gasifier.

		/GJ ⁶ Btu)	Tonne/year (ton/year) 90% capacity factor				
	Case 1	Case 2	Case 1	Case 2			
SO ₂	0.012 (0.027)	0.0001 (0.0003)	1,103 (1,216)	11 (12)			
NO _X	Negligible	Negligible	Negligible	Negligible			
Particulates	0.003 (0.0071)	0.003 (0.0071)	286 (315)	286 (315)			
Hg	2.46E-7 (5.71E-7)	2.46E-7 (5.71E-7)	0.023 (0.025)	0.023 (0.025)			
CO ₂	55 (128)	2.1 (4.9)	5,169,343 (5,698,226)	195,324 (215,308)			

Exhibit 4-8 Cases 1 and 2 Air Emissions

The low level of SO₂ emissions in Case 2 is achieved by capture of the sulfur in the gas by the two-stage Selexol AGR process and co-sequestration with the CO₂ product stream. The clean syngas exiting the AGR process has a sulfur concentration of less than 5 ppmv in both cases. The H₂S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The Claus plant tail gas is treated using an amine based system to capture most of the remaining sulfur. The clean syngas from the tail gas treatment unit is combined with a slipstream of clean syngas from the Selexol process, passed through an incinerator, and the hot, inert incinerator offgas is used to dry coal prior to being vented to the atmosphere. The higher sulfur emissions in Case 1 are due to the sulfur contained in the CO₂-rich stream from the Selexol process, which is vented rather than sequestered.

 NO_X emissions are negligible because no CT is used for power generation.

Particulate discharge to the atmosphere is limited to extremely low values by the use of a syngas scrubber and the gas washing effect of the AGR absorber. The particulate emissions represent filterable particulate only.

Ninety five percent of mercury is captured from the syngas by an activated carbon bed. CO_2 emissions represent the uncontrolled (Case 1) and controlled (Case 2) discharge from the process.

The carbon balance for the two cases is shown in Exhibit 4-9. The carbon input to the plant consists of carbon in the air in addition to carbon in the coal. Carbon in the air is not used in the carbon capture equation below, but it is not neglected in the balance since Aspen accounts for air components throughout. Carbon leaves the plant as SNG product, unburned carbon in the slag,

 CO_2 in the coal dryer incinerator stack gas and ASU vent gas, and the CO_2 product (either vented or sequestered). The carbon capture efficiency is presented in two distinct ways. The first way defines capture as the amount of carbon in the CO_2 product for sequestration relative to the amount of carbon in the coal less carbon contained in the slag, and is represented by the following fraction:

(Carbon in Product for Sequestration)/[(Carbon in the Coal)-(Carbon in Slag)] or

Non sequestration (Case 1) 381,246/(614,979-3,075)*100 = 62.3% (Case 2)

The second way does not penalize the production facility for the carbon converted to SNG product, as the end use of the SNG is unknown. In a carbon constrained scenario, the SNG may or may not be used in a scenario where carbon capture and sequestration (CCS) is implemented (or to what extent the capture is accomplished). For this method the burden of carbon mitigation falls on the end-user. The following fraction represents this scenario:

[(Carbon in Product for Sequestration) + (Carbon in SNG Product)]/[(Carbon in the Coal)-

(Carbon in Slag)] or (0 + 215,937)/(614,979 - 3,075)*100 = 35.3% (Case 1) (381,246 + 215,774)/(614,979-3,075)*100 = 97.6% (Case 2)

Cart	oon In, kg/hr ((lb/hr)	Carbon Out, kg/hr (lb/hr)						
	Case 1	Case 2		Case 1	Case 2				
Coal	278,950 (614,979)	278,950 (614,979)	Slag	1,395 (3,075)	1,395 (3,075)				
Air (CO ₂)	214 (472)	214 (473)	SNG Purification Off-Gas	14,062 (31,001)	N/A				
			ASU Vent	201 (442)	200 (442)				
			SNG	97,947 (215,937)	97,874 (215,774)				
			CO ₂ Selexol Vent	138,526 (305,398)	N/A				
			CO ₂ Lock Hopper Vent	21,126 (46,575)	841 (1,855)				
			CO ₂ Product	N/A	172,930 (381,246)				
			Stack	5,907 (13,023)	5,924 (13,061)				
Total	279,164 (615,451)	279,164 (615,451)	Total	279,164 (615,451)	279,164 (615,451)				

Exhibit 4-9 Cases 1 and 2 Carbon Balance

Exhibit 4-10 shows the sulfur balance for the plant. Sulfur input comes solely from the sulfur in the coal. Sulfur output includes the sulfur recovered in the Claus plant, sulfur emitted in the stack gas, and sulfur co-sequestered with the CO_2 product. Sulfur in the slag is considered negligible. The total sulfur capture is represented by the following fraction:

(Sulfur byproduct + Sulfur in CO₂ product)/Sulfur in the coal or (24,003 + 0)/24,181 = 99.3% (Case 1) (24,010 + 157)/24,181 = 99.9% (Case 2)

	Sulfur In, kg/hr	(lb/hr)	Sulfur	Out, kg/hr (l	b/hr)
	Case 1	Case 2		Case 1	Case 2
Coal	10,968 (24,181)	10,968 (24,181)	Elemental Sulfur	10,888 (24,003)	10,891 (24,010)
			SNG	5 (12)	5 (12)
			CO ₂ Vent Streams/Stack	75 (166)	1 (3)
			CO ₂ Product	N/A	71 (157)
Total	10,968 (24,181)	10,968 (24,181)	Total	10,968 (24,181)	10,968 (24,181)

Exhibit 4-10 Cases 1 and 2 Sulfur Balance

Exhibit 4-11 shows the overall water balance for the plant. Water demand represents the total amount of water required for a particular process. Some water is recovered within the process, primarily as syngas condensate, and is re-used as internal recycle. The difference between demand and recycle is raw water withdrawal. Raw water withdrawal is defined as the water removed from the ground or diverted from a surface-water source for use in the plant and was assumed to be provided 50 percent by a POTW and 50 percent from groundwater. Raw water withdrawal can be represented by the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, BFW makeup, quench system makeup, and slag handling makeup. The difference between water withdrawal and process water discharge is defined as water consumption and can be represented by the portion of the raw water withdrawn that is evaporated, transpired, incorporated into products or otherwise not returned to the water source from which it was withdrawn. Water consumption represents the net impact of the plant process on the water source.

	Case 1	Case 2
Water Deman	d, m ³ /min (gpm	
Slag Handling	0.95 (251)	0.95 (251)
Ouench/Wash	4.2 (1,114)	4.2 (1,113)
Condenser Makeup	5.9 (1,548)	5.9 (1,547)
Gasifier Steam	1.0 (274)	1.0 (274)
Shift Steam	4.4 (1,171)	4.4 (1,170)
BFW Makeup	0.39 (103)	0.39 (103)
Cooling Tower	24.3 (6,417)	24.1 (6,370)
Total	35.3 (9,330)	35.1 (9,282)
Internal Recyc	cle, m ³ /min (gpn	n)
Slag Handling	0.95 (251)	0.95 (251)
Quench/Wash	4.2 (1,114)	4.2 (1,113)
Condenser Makeup	0.0 (0)	0.0 (0)
Cooling Tower	3.0 (796)	3.0 (794)
Water from Coal Drying	0.0 (0)	0.0 (0)
BFW Blowdown	0.39 (103)	0.39 (103)
SWS Blowdown	0.71 (187)	0.71 (187)
SWS Excess	1.9 (505)	1.9 (504)
Total	8.2 (2,161)	8.2 (2,159)
Raw Water Withd	rawal, m ³ /min (gpm)
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
Condenser Makeup	5.9 (1,548)	5.9 (1,547)
Gasifier Steam	1.0 (274)	1.0 (274)
Shift Steam	4.4 (1,171)	4.4 (1,170)
BFW Makeup	0.39 (103)	0.39 (103)
Cooling Tower	21.3 (5,621)	21.1 (5,576)
Total	27.1 (7,169)	27.0 (7,123)
Process Water Dise	charge, m ³ /min ((gpm)
SWS Blowdown	0.07 (19)	0.07 (19)
Cooling Tower Blowdown	5.5 (1,443)	5.4 (1,433)
Total	5.5 (1,462)	5.5 (1,451)
Raw Water Consu	mption, m ³ /min	(gpm)
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
SWS Blowdown	-0.07 (-19)	-0.07 (-19)
Condenser Makeup	5.9 (1,548)	5.9 (1,547)
Cooling Tower	15.8 (4,178)	15.7 (4,144)
Total	21.6 (5,708)	21.5 (5,672)

Exhibit 4-11 Cases 1 and 2 Water Balance

Heat and Mass Balance Diagrams

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 4-12 through Exhibit 4-17:

- Coal gasification and ASU
- Syngas cleanup (including sulfur recovery and tail gas recycle)
- Methanation, SNG purification, compression, and power cycle

An overall plant energy balance is provided in tabular form in Exhibit 4-18 for the two cases.

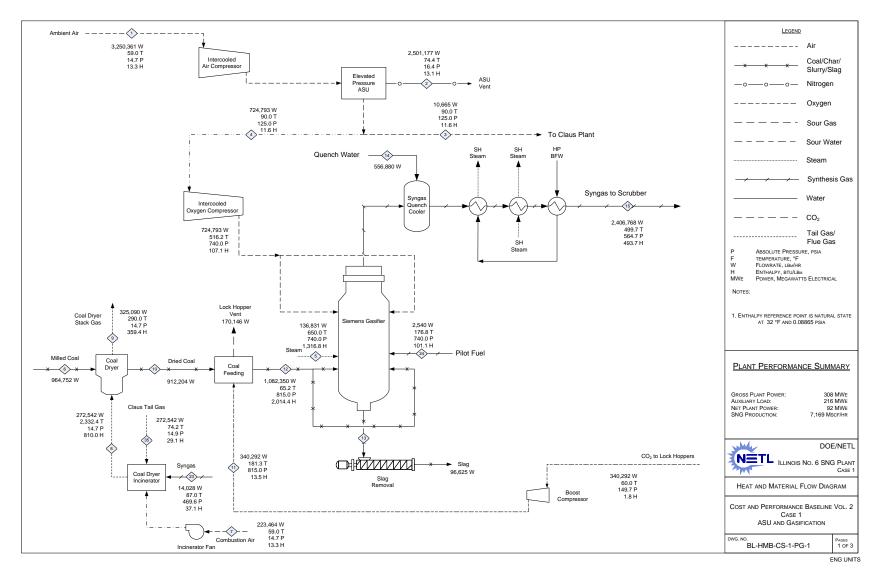


Exhibit 4-12 Case 1 Gasification and ASU Heat and Mass Balance

Exhibit 4-13 Case 1 Gas Cleanup Heat and Mass Balance

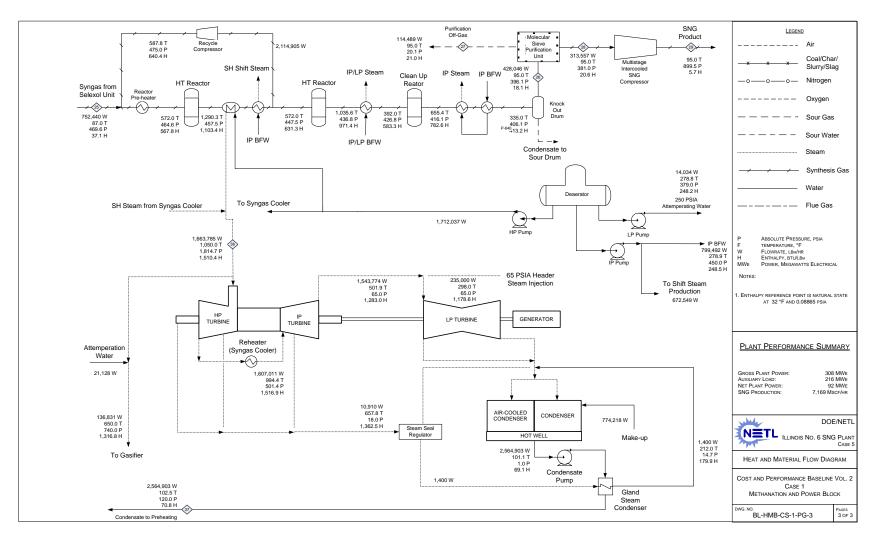


Exhibit 4-14 Case 1 Methanation and Power Block Heat and Mass Balance

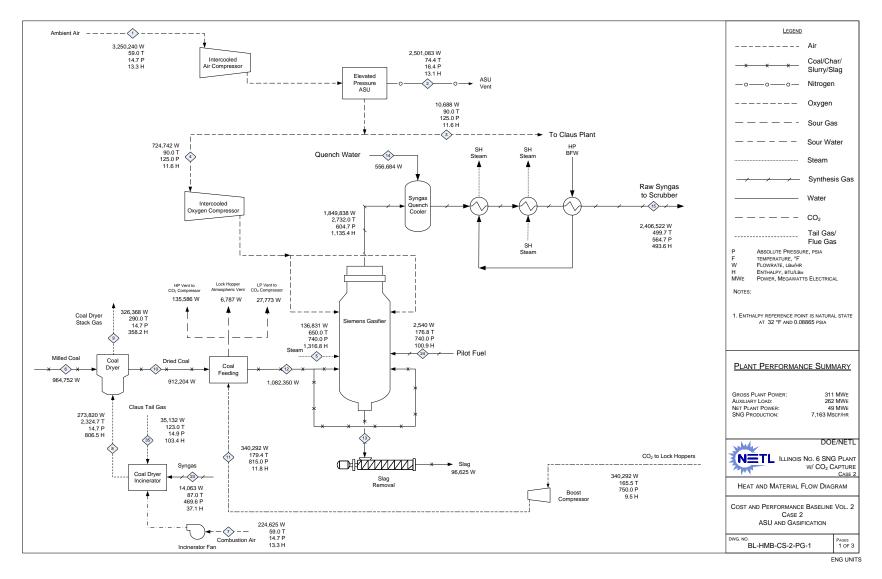


Exhibit 4-15 Case 2 Gasifier and ASU Heat and Mass Balance

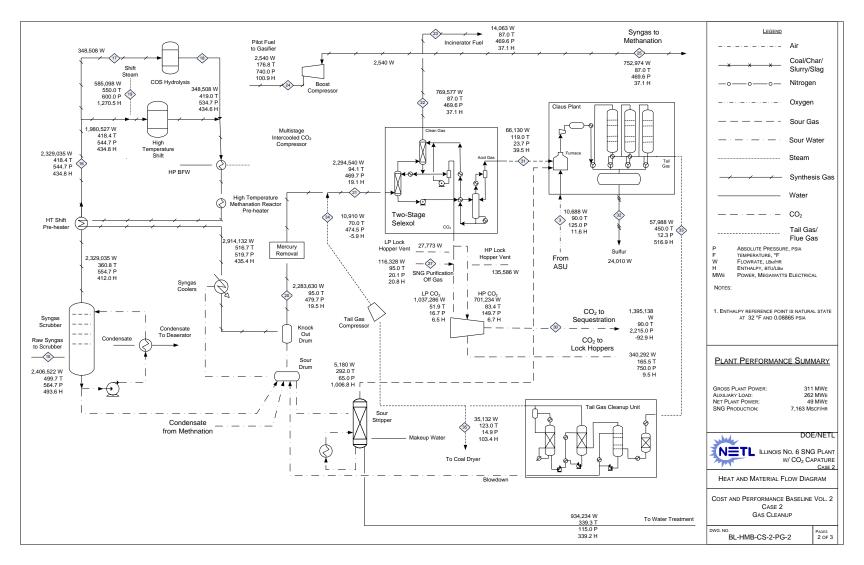


Exhibit 4-16 Case 2 Gas Cleanup Heat and Mass Balance

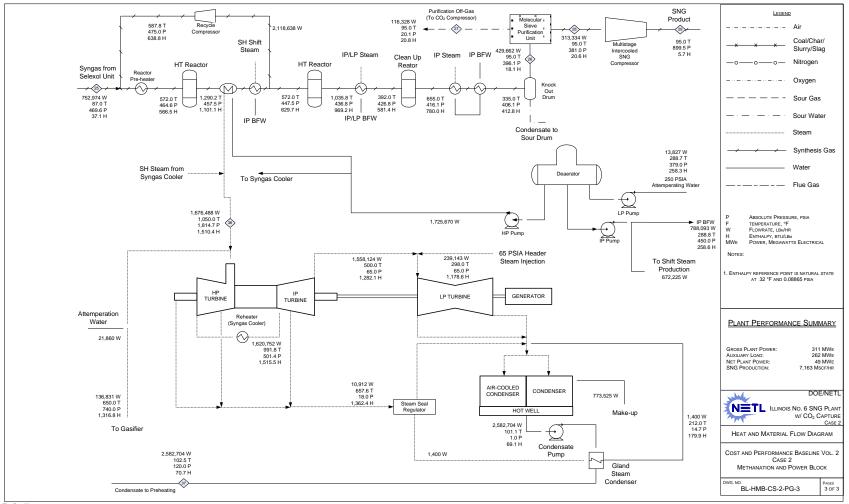


Exhibit 4-17 Case 2 Methanation and Power Block Heat and Mass Balance

To Gasifier

	HH	V	Sensible	e + Latent	Pov	ver	ver Total			
	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2		
Heat In, GJ/hr (MMBtu/hr)										
Coal	11,874 (11,255)	11,874 (11,255)	12.1 (11.5)	12.1 (11.5)	0 (0)	0 (0)	11,887 (11,266)	11,887 (11,266)		
ASU Air	0 (0)	0 (0)	48.7 (46.2)	49.6 (47.0)	0 (0)	0 (0)	49 (46)	50 (47)		
Raw Water Makeup	0 (0)	0 (0)	102.0 (96.7)	101.4 (96.1)	0 (0)	0 (0)	102 (97)	101 (96)		
Auxiliary Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	779 (738)	944 (894)	779 (738)	944 (894)		
Totals	11,874 (11,255)	11,874 (11,255)	162.9 (154.4)	163.1 (154.6)	779 (738)	944 (894)	12,816 (12,147)	12,981 (12,304)		
Heat Out, GJ/hr (MMBtu/hr)										
ASU Intercoolers	0 (0)	0 (0)	325 (308)	325 (308)	0 (0)	0 (0)	325 (308)	325 (308)		
ASU Vent	0 (0)	0 (0)	34.7 (32.9)	34.7 (32.9)	0 (0)	0 (0)	35 (33)	35 (33)		
Slag	46 (43)	46 (43)	79.1 (75.0)	79.1 (75.0)	0 (0)	0 (0)	125 (118)	125 (118)		
Coal Drying Stack Gas	0 (0)	0 (0)	123.3 (116.8)	123.3 (116.9)	0 (0)	0 (0)	123 (117)	123 (117)		
Sulfur	101 (96)	101 (96)	1.2 (1.2)	1.2 (1.2)	0 (0)	0 (0)	102 (97)	102 (97)		
Auxiliary Cooling Loads	0 (0)	0 (0)	882 (836)	842 (798)	0 (0)	0 (0)	882 (836)	842 (798)		
CO ₂	0 (0)	0 (0)	6.5 (6.1)	-136.7 (-129.6)	0 (0)	0 (0)	6 (6)	-137 (-130)		
Cooling Tower Blowdown	0 (0)	0 (0)	40.6 (38.5)	40.3 (38.2)	0 (0)	0 (0)	41 (38)	40 (38)		
SNG	7,272 (6,892)	7,266 (6,887)	1.9 (1.8)	1.9 (1.8)	0 (0)	0 (0)	7,274 (6,894)	7,268 (6,888)		
SNG Purification Off-Gas	0 (0)	0 (0)	3 (2)	3 (2)	0 (0)	0 (0)	3 (2)	3 (2)		
Condenser	0 (0)	0 (0)	1,710 (1,621)	1,727 (1,637)	0 (0)	0 (0)	1,710 (1,621)	1,727 (1,637)		
Process Losses*	0 (0)	0 (0)	1,082 (1,026)	1,410 (1,336)	0 (0)	0 (0)	1,082 (1,026)	1,410 (1,336)		
Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	1,109 (1,051)	1,118 (1,060)	1,109 (1,051)	1,118 (1,060)		
Totals	7,418 (7,031)	7,412 (7,026)	4,289 (4,065)	4,450 (4,218)	1,109 (1,051)	1,118 (1,060)	12,816 (12,147)	12,981 (12,304)		

Exhibit 4-18 Cases 1 and 2 Energy Balance

* Includes other energy losses not explicitly accounted for in the model.

4.1.5 <u>Cases 1 and 2 Equipment Lists</u>

Major equipment items for the Siemens gasifier SNG plant without and with carbon sequestration using Illinois No. 6 coal are shown in the following tables. The accounts used in the equipment list correspond to the account numbers used in the cost estimates in Section 4.1.6. In general, the design conditions include a 10 percent contingency for flows and heat duties and a 21 percent contingency for heads on pumps and fans.

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	2	0	181 tonne (200 ton)	181 tonne (200 ton)
2	Feeder	Belt	2	0	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)
3	Conveyor No. 1	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
4	Transfer Tower No. 1	Enclosed	1	0	N/A	N/A
5	Conveyor No. 2	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
6	As-Received Coal Sampling System	Two-stage	1	0	N/A	N/A
7	Stacker/Reclaimer	Traveling, linear	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
8	Reclaim Hopper	N/A	2	1	91 tonne (100 ton)	91 tonne (100 ton)
9	Feeder	Vibratory	2	1	363 tonne/hr (400 tph)	363 tonne/hr (400 tph)
10	Conveyor No. 3	Belt w/ tripper	1	0	726 tonne/hr (800 tph)	726 tonne/hr (800 tph)
11	Crusher Tower	N/A	1	0	N/A	N/A
12	Coal Surge Bin w/ Vent Filter	Dual outlet	2	0	363 tonne (400 ton)	363 tonne (400 ton)
13	Crusher	Impactor reduction	2	0	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)
14	As-Fired Coal Sampling System	Swing hammer	1	1	N/A	N/A

ACCOUNT 1 COAL HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
15	Conveyor No. 4	Belt w/tripper	1	0	726 tonne/hr (800 tph)	726 tonne/hr (800 tph)
16	Transfer Tower No. 2	Enclosed	1	0	N/A	N/A
17	Conveyor No. 5	Belt w/ tripper	1	0	726 tonne/hr (800 tph)	726 tonne/hr (800 tph)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	3	0	1,633 tonne (1,800 ton)	1,633 tonne (1,800 ton)

ACCOUNT 2 COAL PREPARATION AND FEED

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Feeder	Vibratory	6	0	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)
2	Conveyor No. 6	Belt w/tripper	3	0	163 tonne/hr (180 tph)	163 tonne/hr (180 tph)
3	Roller Mill Feed Hopper	Dual Outlet	3	0	318 tonne (350 ton)	318 tonne (350 ton)
4	Weigh Feeder	Belt	6	0	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)
5	Pulverizer	Rotary	6	0	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	3	0	635,949 liters (168,000 gal)	635,949 liters (168,000 gal)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
2	Condensate Pumps	Vertical canned	2	1	10,751 lpm @ 91 m H ₂ O (2,840 gpm @ 300 ft H ₂ O)	10,826 lpm @ 91 m H ₂ O (2,860 gpm @ 300 ft H ₂ O)
3	Deaerator	Horizontal spray type	2	0	806,034 kg/hr (1,777,000 lb/hr)	806,487 kg/hr (1,778,000 lb/hr)
4	Intermediate Pressure Feedwater Pump	Horizontal centrifugal, single stage	2	1	6,359 lpm @ 341 m H ₂ O (1,680 gpm @ 1120 ft H ₂ O)	6,322 lpm @ 335 m H ₂ O (1,670 gpm @ 1100 ft H ₂ O)
5	High Pressure Feedwater Pump	Barrel type, multi-stage, centrifugal	2	1	HP water: 7,419 lpm @ 1,676 m H ₂ O (1,960 gpm @ 5,500 ft H ₂ O)	HP water: 7,457 lpm @ 1,676 m H ₂ O (1,970 gpm @ 5,500 ft H ₂ O)
6	Auxiliary Boiler	Shop fabricated, water tube	1	0	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)
7	Service Air Compressors	Flooded Screw	3	1	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)
8	Instrument Air Dryers	Duplex, regenerative	3	1	28 m ³ /min (1,000 scfm)	28 m ³ /min (1,000 scfm)
9	Closed Cycle Cooling Heat Exchangers	Plate and frame	2	0	664 GJ/hr (629 MMBtu/hr)	642 GJ/hr (608 MMBtu/hr) each
10	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	2	1	$\begin{array}{c} 238,102 \text{ lpm } @ 21 \text{ m} \\ \text{H}_2\text{O} \\ (62,900 \text{ gpm } @ 70 \text{ ft} \\ \text{H}_2\text{O}) \end{array}$	$\begin{array}{c} 230,153 \ \text{lpm} @ 21 \ \text{m} \\ \text{H}_2\text{O} \\ (60,800 \ \text{gpm} @ 70 \ \text{ft} \\ \text{H}_2\text{O}) \end{array}$

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
11	Engine-Driven Fire Pump	Vertical turbine, diesel engine	1	1	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)
12	Fire Service Booster Pump	Two-stage horizontal centrifugal	1	1	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)
13	Raw Water Pumps	Stainless steel, single suction	2	1	7,533 lpm @ 18 m H ₂ O (1,990 gpm @ 60 ft H ₂ O)	7,457 lpm @ 18 m H ₂ O (1,970 gpm @ 60 ft H ₂ O)
14	Ground Water Pumps	Stainless steel, single suction	4	1	3,748 lpm @ 268 m H ₂ O (990 gpm @ 880 ft H ₂ O)	3,748 lpm @ 268 m H ₂ O (990 gpm @ 880 ft H ₂ O)
15	Filtered Water Pumps	Stainless steel, single suction	2	1	6,095 lpm @ 49 m H ₂ O (1,610 gpm @ 160 ft H ₂ O)	6,095 lpm @ 49 m H ₂ O (1,610 gpm @ 160 ft H ₂ O)
16	Filtered Water Tank	Vertical, cylindrical	2	0	2,933,694 liter (775,000 gal)	2,929,909 liter (774,000 gal)
17	Makeup Water Demineralizer	Anion, cation, and mixed bed	2	0	2,688 lpm (710 gpm)	2,688 lpm (710 gpm)
18	Liquid Waste Treatment System		1	0	10 years, 24-hour storm	10 years, 24-hour storm

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Gasifier	Pressurized dry-feed, entrained bed	6	0	1,905 tonne/day, 4.2 MPa (2,100 tpd, 615 psia)	1,905 tonne/day, 4.2 MPa (2,100 tpd, 615 psia)
2	Synthesis Gas Cooler	Convective spiral- wound tube boiler	6	0	200,034 kg/hr (441,000 lb/hr)	200,034 kg/hr (441,000 lb/hr)
3	Syngas Scrubber Including Sour Water Stripper	Vertical upflow	6	0	200,034 kg/hr (441,000 lb/hr)	200,034 kg/hr (441,000 lb/hr)
4	Raw Gas Coolers	Shell and tube with condensate drain	12	0	415,491 kg/hr (916,000 lb/hr)	415,491 kg/hr (916,000 lb/hr)
5	Raw Gas Knockout Drum	Vertical with mist eliminator	3	0	380,110 kg/hr, 35°C, 3.3 MPa (838,000 lb/hr, 95°F, 485 psia)	379,657 kg/hr, 35°C, 3.3 MPa (837,000 lb/hr, 95°F, 485 psia)
6	Flare Stack	Self- supporting, carbon steel, stainless steel top, pilot ignition	3	0	400,068 kg/hr (882,000 lb/hr) syngas	400,068 kg/hr (882,000 lb/hr) syngas

ACCOUNT 4 GASIFIER, ASU, AND ACCESSORIES INCLUDING LOW TEMPERATURE HEAT RECOVERY

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
7	ASU Main Air Compressor	Centrifugal, multi-stage	3	0	7,391 m ³ /min @ 1.3 MPa (261,000 scfm @ 190 psia)	7,391 m ³ /min @ 1.3 MPa (261,000 scfm @ 190 psia)
8	Cold Box	Vendor design	3	0	2,903 tonne/day (3,200 tpd) of 99% purity oxygen	2,903 tonne/day (3,200 tpd) of 99% purity oxygen
9	Oxygen Compressor	Centrifugal, multi-stage	3	0	1,472 m ³ /min (52,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)	1,472 m ³ /min (52,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)
10	Coal Feed System CO ₂ Compressor	Centrifugal, multi-stage	3	0	510 m ³ /min (18,000 scfm) Suction - 1.0 MPa (150 psia) Discharge - 5.7 MPa (820 psia)	510 m ³ /min (18,000 scfm) Suction - 5.2 MPa (750 psia) Discharge - 5.7 MPa (820 psia)

ACCOUNT 5A SYNGAS CLEANUP

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Mercury Adsorber	Sulfated carbon bed	3	0	380,110 kg/hr (838,000 lb/hr) 35°C (95°F) 3.3 MPa (480 psia)	379,657 kg/hr (837,000 lb/hr) 35°C (95°F) 3.3 MPa (480 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
2	Zinc Oxide Guard Bed	Fixed bed	1	0	450 Nm ³ /min (15,891 acfm)	450 Nm ³ /min (15,877 acfm)
3	Sulfur Plant	Claus type	2	0	144 tonne/day (158 tpd)	144 tonne/day (158 tpd)
4	COS Hydrolysis Reactor	Fixed bed, catalytic	3	0	57,606 kg/hr (127,000 lb/hr) 216°C (420°F) 3.7 MPa (540 psia)	58,060 kg/hr (128,000 lb/hr) 216°C (420°F) 3.7 MPa (540 psia)
5	Water Gas Shift Reactor	Fixed bed, catalytic	3	0	427,284 kg/hr (942,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)	426,830 kg/hr (941,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)
6	Shift Reactor Heat Recovery Exchanger	Shell and Tube	3	0	Exchanger 1: 45 GJ/hr (43 MMBtu/hr) Exchanger 2: 81 GJ/hr (77 MMBtu/hr) Exchanger 3: 18 GJ/hr (17 MMBtu/hr)	Exchanger 1: 45 GJ/hr (43 MMBtu/hr) Exchanger 2: 81 GJ/hr (77 MMBtu/hr) Exchanger 3: 18 GJ/hr (17 MMBtu/hr)
7	Acid Gas Removal Plant	Two-stage Selexol	3	0	381,925 kg/hr (842,000 lb/hr) 34°C (94°F) 3.2 MPa (470 psia)	381,471 kg/hr (841,000 lb/hr) 34°C (94°F) 3.2 MPa (470 psia)
8	Tail Gas Treatment Unit	Proprietary amine, absorber/stri pper	2	0	11,552 kg/hr (25,467 lb/hr) 49°C (120°F) 0.1 MPa (10.6 psia)	11,570 kg/hr (25,508 lb/hr) 49°C (120°F) 0.1 MPa (10.6 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
9	Tail Gas Treatment Incinerator	N/A	2	0	59,021 kg/hr (130,120 lb/hr) 23°C (74°F) 0.1 MPa (14.9 psia)	59,021 kg/hr (130,120 lb/hr) 23°C (74°F) 0.1 MPa (14.9 psia)
10	Tail Gas Recycle Compressor	Centrifugal	2	1	2,807 kg/hr @ 03.3 MPa (6,189 lb/hr @ 475 psia)	2,806 kg/hr @ 03.3 MPa (6,186 lb/hr @ 475 psia)

ACCOUNT 5A SNG PRODUCTION/METHANATION SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Methanation Reactor Preheater	Shell and Tube	3	0	95 GJ/hr (90 MMBtu/hr)	95 GJ/hr (90 MMBtu/hr)
2	Methanation Reactor 1	Fixed Bed, catalytic	3	0	476,726 kg/hr (1,051,000 lb/hr) 699°C (1,290°F) 3.2 MPa (460 psia)	477,633 kg/hr (1,053,000 lb/hr) 699°C (1,290°F) 3.2 MPa (460 psia)
3	Methanation Reactor Intercooler 1	Shell and Tube	3	0	413 GJ/hr (391 MMBtu/hr)	413 GJ/hr (391 MMBtu/hr)
4	Methanation Reactor Intercooler 2	Shell and Tube	3	0	111 GJ/hr (105 MMBtu/hr)	111 GJ/hr (105 MMBtu/hr)
5	Methanation Reactor 2	Fixed Bed, catalytic	3	0	125,191 kg/hr (276,000 lb/hr) 560°C (1040°F) 3.1 MPa (450 psia)	125,191 kg/hr (276,000 lb/hr) 560°C (1040°F) 3.1 MPa (450 psia)
6	Methanation Reactor Intercooler 3	Shell and Tube	3	0	29 GJ/hr (28 MMBtu/hr)	29 GJ/hr (28 MMBtu/hr)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
7	Methanation Reactor 3	Fixed Bed, catalytic	3	0	125,191 kg/hr (276,000 lb/hr) 349°C (660°F) 3.0 MPa (430 psia)	125,191 kg/hr (276,000 lb/hr) 343°C (650°F) 3.0 MPa (430 psia)
8	Methanation Reactor Intercooler 4	Shell and Tube	3	0	41 GJ/hr (39 MMBtu/hr)	41 GJ/hr (39 MMBtu/hr)
9	Methanation Reactor Intercooler 5	Shell and Tube	3	0	66 GJ/hr (63 MMBtu/hr)	66 GJ/hr (62 MMBtu/hr)
10	SNG Purification Condenser 1	Shell and Tube	3	0	55 GJ/hr (52 MMBtu/hr)	55 GJ/hr (52 MMBtu/hr)
11	SNG Purification Condenser 2	Shell and Tube	3	0	33 GJ/hr (31 MMBtu/hr)	33 GJ/hr (32 MMBtu/hr)
12	Methanation Recycle Compressor	Centrifugal	3	1	8,668 m ³ /min (306,100 scfm) Suction - 3.1 MPa (448 psia) Discharge - 3.3 MPa (475 psia)	8,668 m ³ /min (306,100 scfm) Suction - 3.1 MPa (448 psia) Discharge - 3.3 MPa (475 psia)
13	Molecular Sieve Purification Reactor	Fixed bed	6	0	39,463 kg/hr (87,000 lb/hr) 129°C (265°F) 2.8 MPa (401 psia)	39,463 kg/hr (87,000 lb/hr) 129°C (265°F) 2.8 MPa (401 psia)
14	SNG Product Compressor	Centrifugal, Multi-staged	3	1	1,240 m ³ /min (43,800 scfm) 2.6 MPa (381 psia) 6.2 MPa (899 psia)	1,240 m ³ /min (43,800 scfm) 2.6 MPa (381 psia) 6.2 MPa (899 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	CO ₂ Compressor	Integrally geared, multi-stage centrifugal	4	0	N/A	1,572 m ³ /min @ 15.3 MPa (55,500 scfm @ 2,215 psia)

ACCOUNT 6 COMBUSTION TURBINE AND AUXILIARIES

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Combustion Turbine	N/A	N/A	N/A	N/A	N/A
2	Combustion Turbine Generator	N/A	N/A	N/A	N/A	N/A

ACCOUNT 7 DUCTING & STACK

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Stack	CS plate, type 409SS liner	1	0	76 m (250 ft) high x 3.0 m (10 ft) diameter	76 m (250 ft) high x 2.8 m (9 ft) diameter

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Steam Turbine	Commercially available	1	0	324 MW 12.4 MPa/566°C (1800 psig/ 1050°F)	327 MW 12.4 MPa/566°C (1800 psig/ 1050°F)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	1	0	360 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	360 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1	0	1,878 GJ/hr (1,780 MMBtu/hr), Condensing temperature 16°C (60°F), Ambient temperature 11°C (20°F)	1,899 GJ/hr (1,800 MMBtu/hr), Condensing temperature 16°C (60°F), Ambient temperature 11°C (20°F)
4	Air-cooled Condenser		N/A	N/A	N/A	N/A

ACCOUNT 8 STEAM TURBINE GENERATOR AND AUXILIARIES

ACCOUNT 9 COOLING WATER SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Circulating Water Pumps	Vertical, wet pit	2	1	624,593 lpm @ 30 m (165,000 gpm @ 100 ft)	620,808 lpm @ 30 m (164,000 gpm @ 100 ft)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	1	0	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 3,492 GJ/hr (3,310 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 3,461 GJ/hr (3,280 MMBtu/hr) heat duty

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	Slag Quench Tank	Water bath	6	0	151,416 liters (40,000 gal)	151,416 liters (40,000 gal)
2	Slag Crusher	Roll	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
3	Slag Depressurizer	Proprietary	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
4	Slag Receiving Tank	Horizontal, weir	6	0	90,850 liters (24,000 gal)	90,850 liters (24,000 gal)
5	Black Water Overflow Tank	Shop fabricated	6		41,640 liters (11,000 gal)	41,640 liters (11,000 gal)
6	Slag Conveyor	Drag chain	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
7	Slag Separation Screen	Vibrating	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
8	Coarse Slag Conveyor	Belt/bucket	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
9	Fine Ash Settling Tank	Vertical, gravity	6	0	132,489 liters (35,000 gal)	132,489 liters (35,000 gal)
10	Fine Ash Recycle Pumps	Horizontal centrifugal	6	3	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)
11	Grey Water Storage Tank	Field erected	6	0	41,640 liters (11,000 gal)	41,640 liters (11,000 gal)
12	Grey Water Pumps	Centrifugal	6	3	151 lpm @ 433 m H ₂ O (40 gpm @ 1,420 ft H ₂ O)	151 lpm @ 433 m H ₂ O (40 gpm @ 1,420 ft H ₂ O)
13	Slag Storage Bin	Vertical, field erected	6	0	544 tonne (600 tons)	544 tonne (600 tons)

ACCOUNT 10 SLAG RECOVERY AND HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
14	Unloading Equipment	Telescoping chute	2	0	100 tonne/hr (110 tph)	100 tonne/hr (110 tph)

ACCOUNT 11 ACCESSORY ELECTRIC PLANT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	STG Step-up Transformer	Oil-filled	1	0	24 kV/345 kV, 360 MVA, 3-ph, 60 Hz	24 kV/345 kV, 360 MVA, 3-ph, 60 Hz
2	Auxiliary Transformer	Oil-filled	1	1	24 kV/4.16 kV, 239 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 289 MVA, 3-ph, 60 Hz
3	Low Voltage Transformer	Dry ventilated	1	1	4.16 kV/480 V, 36 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 43 MVA, 3-ph, 60 Hz
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	1	1	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz
5	Medium Voltage Switchgear	Metal clad	1	1	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz
6	Low Voltage Switchgear	Metal enclosed	1	0	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz
7	Emergency Diesel Generator	Sized for emergency shutdown	1	0	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz

Equipment No.	Descriptio n	Туре	Operating Qty.	Spares	Case 1 Design Condition	Case 2 Design Condition
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	1	0	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers
2	DCS - Processor	Microprocessor with redundant input/output	1	0	N/A	N/A
3	DCS - Data Highway	Fiber optic	1	0	Fully redundant, 25% spare	Fully redundant, 25% spare

ACCOUNT 12 INSTRUMENTATION AND CONTROLS

4.1.6 Cases 1 and 2 Cost Estimating

The cost estimating methodology was described previously in Section 2.8.

The TPC organized by cost account; owner's costs; TOC; and initial and annual O&M costs for the SNG plant without sequestration using Illinois No. 6 coal (Case 1) are shown in Exhibit 4-19 and Exhibit 4-20. The same data for the SNG plant with carbon sequestration using Illinois No. 6 coal (Case 2) are shown in Exhibit 4-21, and Exhibit 4-22.

The estimated TOC of the SNG plant without carbon sequestration is 3.24 billion dollars and with carbon sequestration is 3.31 billion dollars. Project and process contingencies represent 11.9 and 3.9 percent for the non-sequestration case and 11.9 and 3.8 percent for the sequestration case. The FYCOP is \$19.27/MMBtu for the non-sequestration case and \$20.95/MMBtu for the carbon sequestration case as shown in Exhibit ES-6.

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform	nance Baseli	ne for Fossil	Energy Plan	ts Vol.2					
			TOTAL	. PLANT	COST	SUMM	ARY				
	Case:	Case 1 - Sieme	ens Quench	SNG Product	ion w/o CO2	2					
	Plant Size:	91.65	MW,net	Estimate T	ype:	Conceptua	l	Cos	t Base (Jun)	2007	(\$x1000)
Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Conti	ngencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
1	COAL & SORBENT HANDLING										
1.1	Coal Receive & Unload	\$5,729	\$0	\$2,800	\$0	\$0	\$8,529	\$764	\$0	\$1,859	\$11,152
1.2	Coal Stackout & Reclaim	\$7,404	\$0	\$1,795	\$0	\$0	\$9,198	\$806	\$0	\$2,001	\$12,005
1.3	Coal Conveyors & Yd Crush	\$6,883	\$0	\$1,776	\$0	\$0	\$8,659	\$760	\$0	\$1,884	\$11,303
1.4	Other Coal Handling	\$1,801	\$0	\$411	\$0	\$0	\$2,212	\$194	\$0	\$481	\$2,886
1.5	Sorbent Receive & Unload	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C) \$C
1.6	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C) \$C
1.7	Sorbent Conveyors	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C) \$C
1.8	Other Sorbent Handling	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C) \$C
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$4,054	\$10,138	\$0	\$0	\$14,192	\$1,360	\$0	\$3,110	\$18,662
	SUBTOTAL 1.	\$21,817	\$4,054	\$16,919	\$0	\$0	\$42,790	\$3,884	\$0	\$9,335	\$56,009
2	COAL & SORBENT PREP & FEED										
2.1	Coal Crushing & Drying	\$92,942	\$0	\$13,543	\$0	\$0	\$106,485	\$9,671	\$0	\$23,231	\$139,387
2.2	Prepared Coal Storage & Feed	\$4,402	\$1,053	\$690	\$0	\$0	\$6,146	\$526	\$0	\$1,334	\$8,006
2.3	Dry Coal Injection System	\$144,878	\$1,681	\$13,455	\$0	\$0	\$160,014	\$13,782	\$0	\$34,759	\$208,555
2.4	Misc.Coal Prep & Feed	\$2,421	\$1,762	\$5,282	\$0	\$0	\$9,464	\$870	\$0	\$2,067	\$12,401
2.5	Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0) \$C
2.6	Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
2.7	Sorbent Injection System	\$0	\$0	\$0	\$0			\$0	\$0		
2.8	Booster Air Supply System	\$0	\$0	\$0				\$0	\$0		
2.9	Coal & Sorbent Feed Foundation	\$0	\$9,409	\$7,725	\$0	\$0	\$17,135	\$1,587	\$0	\$3,744	\$22,466
	SUBTOTAL 2.	\$244,643	\$13,906	\$40,695	\$0	\$0	\$299,244	\$26,435	\$0	\$65,136	\$390,814
3	FEEDWATER & MISC. BOP SYSTEMS										
3.1	Feedwater System	\$3,562	\$1,655	\$2,008	\$0	\$0		\$653	\$0	\$1,576	\$9,454
3.2	Water Makeup & Pretreating	\$832	\$87	\$465	\$0	\$0	\$1,385	\$132	\$0	\$455	\$1,971
3.3	Other Feedwater Subsystems	\$3,867	\$1,169	\$1,913	\$0			\$631	\$0	\$1,516	\$9,096
3.4	Service Water Systems	\$476	\$981	\$3,404	\$0			\$474	\$0	1 1 1 1 1	\$6,936
3.5	Other Boiler Plant Systems	\$2,556	\$991	\$2,455	\$0	\$0	\$6,002	\$569	\$0	\$1,314	\$7,885
	FO Supply Sys & Nat Gas	\$102	\$210	\$188	\$0			\$48	\$0		
	Waste Treatment Equipment	\$1,164	\$0	\$710			1 1 1 1	\$182	\$0		
3.8	Misc. Power Plant Equipment	\$1,721	\$230	\$884	\$0			\$274	\$0		
	SUBTOTAL 3.	\$14,281	\$5,323	\$12,026	\$0	\$0	\$31,631	\$2,964	\$0	\$8,121	\$42,715
4	GASIFIER & ACCESSORIES										
4.1	Gasifier, Syngas Cooler & Auxiliaries	\$325,844	\$0	\$150,858	\$0			\$42,340	\$71,505		
	Syngas Cooling	w/4.1	\$0	w/ 4.1	\$0				\$0		
	ASU/Oxidant Compression	\$238,715	\$0	w/equip.	\$0			\$23,139	\$0	1 1 1 1 1	
	LT Heat Recovery & FG Saturation	\$49,590	\$0	\$18,374	\$0			\$6,510	\$0		1.
	Misc. Gasification Equipment	w/4.1&4.2	\$0	w/4.1&4.2	\$0			\$0	\$0		
4.6	Flare Stack System	\$0	\$2,333	\$950	\$0			\$315	\$0		
	CO2 Solid Feed System Compressors	\$10,520	\$2,525	\$3,787	\$0			\$1,683	\$0		
	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2	\$0			\$0	\$0		
4.9	Gasification Foundations	\$0	\$21,143	\$12,064	\$0			\$3,040	\$0	\$9,062	\$45,309
	SUBTOTAL 4.	\$624,669	\$26,001	\$186,032	\$0	\$0	\$836,702	\$77,027	\$71,505	\$143,146	\$1,128,380

Exhibit 4-19 Case 1 Total Plant Cost Details

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Contir	ngencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$125,892	\$0	\$106,823	\$0	\$0	\$232,715	\$22,506	\$46,543	\$60,353	\$362,116
5A.2	Elemental Sulfur Plant	\$16,274	\$3,243	\$20,996	\$0	\$0	\$40,513	\$3,935	\$0	\$8,890	\$53,338
5A.3	Mercury Removal	\$2,454	\$0	\$1,868	\$0	\$0	\$4,322	\$417	\$216	\$991	\$5,947
	Shift Reactors	\$10,461	\$0	\$4,211	\$0	\$0	\$14,672	\$1,407	\$0	\$3,216	\$19,294
5A.4b	COS Hydrolysis	\$1,988	\$0	\$2,596	\$0	\$0	\$4,583	\$446	\$0	\$1,006	\$6,035
5A.5	Methanation	\$28,050	\$11,220	\$16,830	\$0	\$0	\$56,100	\$5,610	\$5,610	\$13,464	\$80,784
5A.6	SNG Purification & Compression	\$19,850	\$7,940	\$11,910	\$0	\$0	\$39,700	\$3,970	\$0	\$8,734	\$52,404
	Fuel Gas Piping	\$0	\$1,753	\$1,228	\$0	\$0	\$2,981	\$276	\$0	\$652	
5A.9	Process Interconnects	\$0	\$12,000	\$18,000	\$0	\$0	\$30,000	\$3,000	\$0	\$6,600	\$39,600
5A.10	HGCU Foundations	\$0	\$1,776	\$1,145	\$0	\$0	\$2,920	\$268	\$0	\$957	\$4,145
5A.11	Zinc Oxide Guard Bed	\$793	\$0	\$146	\$0	\$0	\$939	\$94	\$0	\$207	\$1,239
	SUBTOTAL 5A.	\$205,762	\$37,932	\$185,752	\$0	\$0	\$429,446	\$41,930	\$52,369	\$105,068	\$628,812
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5B.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6	COMBUSTION TURBINE/ACCESSORIES	5									
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
7.1	Heat Recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.3	Ductwork	\$0	\$480	\$343	\$0	\$0	\$823	\$72	\$0	\$179	\$1,074
7.4	Stack	\$1,814	\$0	\$682	\$0	\$0	\$2,496	\$239	\$0	\$274	\$3,009
7.9	HRSG,Duct & Stack Foundations	\$0	\$364	\$349	\$0	\$0	\$713	\$66	\$0	\$234	\$1,013
	SUBTOTAL 7.	\$1,814	\$844	\$1,373	\$0	\$0	\$4,032	\$378	\$0	\$686	\$5,096
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$31,384	\$0	\$5,672	\$0	\$0	\$37,056	\$3,557	\$0	\$4,061	\$44,674
8.2	Turbine Plant Auxiliaries	\$178	\$0	\$520	\$0	\$0	\$698	\$68	\$0	\$77	\$843
8.3	Condenser & Auxiliaries	\$5,445	\$0	\$1,666	\$0	\$0	\$7,111	\$680	\$0	\$779	\$8,570
8.4	Steam Piping	\$5,365	\$0	\$3,774	\$0	\$0		\$785	\$0	\$2,481	
8.9	TG Foundations	\$0	\$1,125	\$1,901	\$0	\$0	\$3,026	\$287	\$0	\$994	\$4,307
	SUBTOTAL 8.	\$42,372	\$1,125	\$13,534	\$0	\$0	\$57,031	\$5,377	\$0	\$8,392	

Exhibit 4-19 Case 1 Total Plant Cost Details (continued)

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Contir	ngencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM										
9.1	Cooling Towers	\$8,833	\$0	\$1,607	\$0	\$0	\$10,440	\$994	\$0	\$1,715	\$13,149
9.2	Circulating Water Pumps	\$2,343	\$0	\$91	\$0	\$0	\$2,434	\$204	\$0	\$396	\$3,034
9.3	Circ.Water System Auxiliaries	\$186	\$0	\$27	\$0	\$0	\$213	\$20	\$0	\$35	\$268
9.4	Circ.Water Piping	\$0	\$7,768	\$2,014	\$0	\$0	\$9,782	\$884	\$0	\$2,133	\$12,800
9.5	Make-up Water System	\$440	\$0	\$629	\$0	\$0	\$1,069	\$103	\$0	\$234	\$1,406
9.6	Component Cooling Water Sys	\$917	\$1,097	\$780	\$0	\$0	\$2,794	\$262	\$0	\$611	\$3,667
9.9	Circ.Water System Foundations	\$0	\$2,850	\$4,844	\$0	\$0	\$7,694	\$729	\$0	\$2,527	\$10,951
	SUBTOTAL 9.	\$12,719	\$11,715	\$9,992	\$0	\$0	\$34,426	\$3,197	\$0	\$7,652	\$45,274
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$36,268	\$0	\$35,772	\$0	\$0	\$72,040	\$6,980	\$0	\$7,902	\$86,922
10.2	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.4	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.5	Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.6	Ash Storage Silos	\$818	\$0	\$890	\$0	\$0	\$1,708	\$166	\$0	\$281	\$2,154
10.7	Ash Transport & Feed Equipment	\$1,097	\$0	\$265	\$0	\$0	\$1,362	\$127	\$0	\$223	\$1,712
	Misc. Ash Handling Equipment	\$1,694	\$2,076	\$620	\$0	\$0	\$4,390	\$418	\$0	\$721	\$5,529
	Ash/Spent Sorbent Foundation	\$0	\$72	\$91	\$0	\$0	\$163	\$15	\$0	\$54	\$232
	SUBTOTAL 10.	\$39,877	\$2,148	\$37,637	\$0	\$0	\$79,662	\$7,706	\$0	\$9,181	\$96,549
11	ACCESSORY ELECTRIC PLANT						-				
11.1	Generator Equipment	\$446	\$0	\$441	\$0	\$0	\$887	\$85	\$0	\$97	\$1,069
11.2	Station Service Equipment	\$5,293	\$0	\$477	\$0	\$0	\$5,770	\$532	\$0	\$630	\$6,933
11.3	Switchgear & Motor Control	\$9,786	\$0	\$1,780	\$0	\$0	\$11,566	\$1,073	\$0	\$1,896	\$14,535
11.4	Conduit & Cable Tray	\$0	\$4,546	\$14,997	\$0	\$0	\$19,543	\$1,890	\$0	\$5,358	\$26,792
	Wire & Cable	\$0	\$8,686	\$5,707	\$0	\$0	\$14,393	\$1,046	\$0	\$3,860	\$19,298
11.6	Protective Equipment	\$0	\$855	\$3,112	\$0	\$0	\$3,967	\$387	\$0	\$653	\$5,008
11.7	Standby Equipment	\$330	\$0	\$322	\$0	\$0	\$652	\$62	\$0	\$107	\$821
11.8	Main Power Transformers	\$8,795	\$0	\$182	\$0	\$0	\$8,977	\$682	\$0	\$1,449	\$11,108
11.9	Electrical Foundations	\$0	\$198	\$518	\$0	\$0	\$716	\$69	\$0	\$235	\$1,020
	SUBTOTAL 11.	\$24,651	\$14,285	\$27,537	\$0	\$0	\$66,472	\$5,825	\$0	\$14,286	\$86,583
12	INSTRUMENTATION & CONTROL										
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$C
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$C
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$C
12.4	Other Major Component Control	\$539	\$0	\$360	\$0	\$0	\$899	\$85	\$45	\$154	\$1,183
	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0		\$0		\$0	
	Control Boards, Panels & Racks	\$358	\$0	\$229	\$0	\$0	\$587	\$56	\$29	\$134	\$806
12.7	Computer & Accessories	\$5,727	\$0	\$183	\$0	\$0	\$5,910	\$542	\$296	\$675	\$7,423
12.8	Instrument Wiring & Tubing	\$0	\$2,901	\$5,930	\$0	\$0	\$8,831	\$749	\$442	\$2,505	\$12,527
	Other I & C Equipment	\$4,270	\$0	\$2,073	\$0	\$0	\$6,343	\$597	\$317	\$1,089	
	SUBTOTAL 12.	\$10,894	\$2,901	\$8,776	\$0	\$0	\$22,571	\$2,029	\$1,129	\$4,558	\$30,286

Exhibit 4-19 Case 1 Total Plant Cost Details (continued)

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Contir	igencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE	, i i i i i i i i i i i i i i i i i i i								•	
13.1	Site Preparation	\$0	\$147	\$3,143	\$0	\$0	\$3,290	\$327	\$0	\$1,085	\$4,702
	Site Improvements	\$0	\$2,615	\$3,476		\$0	\$6,091	\$601	\$0	\$2,008	\$8,700
	Site Facilities	\$4,687	\$0	\$4,946	\$0	\$0		\$950	\$0	\$3,175	\$13,756
	SUBTOTAL 13.	\$4,687	\$2,762	\$11,564	\$0	\$0	\$19,013	\$1,877	\$0	\$6,267	\$27,158
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,691	\$3,834	\$0	\$0	\$6,525	\$600	\$0	\$1,069	\$8,194
14.3	Administration Building	\$0	\$870	\$630		\$0	\$1,500	\$134	\$0	\$245	\$1,879
	Circulation Water Pumphouse	\$0	\$160	\$90		\$0	\$250	\$22	\$0	\$41	\$312
	Water Treatment Buildings	\$0	\$696	\$679	\$0	\$0	\$1,375	\$124	\$0	\$225	\$1,724
	Machine Shop	\$0	\$445	\$305	\$0	\$0		\$67	\$0	\$123	\$939
	Warehouse	\$0	\$726	\$464	\$0	\$0	\$1,190	\$105	\$0	\$194	\$1,489
	Other Buildings & Structures	\$0	\$528	\$411	\$0	\$0	\$940	\$84	\$0	\$205	\$1,229
	Waste Treating Building & Str.	\$0	\$1,181	\$2,258		\$0	\$3,439	\$321	\$0	\$752	\$4,511
	SUBTOTAL 14.	\$0	\$7,297	\$8,671	\$0	\$0	\$15,968	\$1,456	\$0	\$2,853	\$20,277
			<i></i>				,	,		,	
	TOTAL COST	\$1.248.184	\$130,294	\$560,509	\$0	\$0	\$1,938,987	\$180.084	\$125,003	\$384,680	\$2,628,754
	· · · · · · · · · · · · · · · · · · ·				·····	• -					
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor										\$21,523
	1 Month Maintenance Materials										\$3,796
	1 Month Non-fuel Consumables										\$816
	1 Month Waste Disposal										\$577
	25% of 1 Months Fuel Cost at 100% CF										\$3,362
	2% of TPC										\$52,575
	Total	· · · · ·									\$82,649
	Inventory Capital										
60 d	ay supply of fuel and consumables at 100% CF										\$28,184
	0.5% of TPC (spare parts)										\$13,144
	Total	· · · · ·									\$41,328
	Initial Cost for Catalyst and Chemicals										\$16,342
	Land										\$900
	Other Owner's Costs										\$394,313
	Financing Costs										\$70,976
	Total Overnight Costs (TOC)										\$3,235,262
	TASC Multiplier										1.201
	Total As-Spent Cost (TASC)										\$3,885,549
											<i>w0,000,040</i>

Exhibit 4-19 Case 1 Total Plant Cost Details (continued)

INITIAL & ANNUAL		PENSES			Cost Base (Jun):	2007
Case 1 - Siemens Quench SNG Production w/o CO2 SNG (MMbtu/hr):	6892				MWe-net: Capacity Factor (%):	92 90
<u>OPERATING & MAINTENAI</u>		2				90
Operating Labor		-				
Operating Labor Rate(base):	34.65					
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Operating Labor Requirements(O.J.)per Shift: 1	unit/mod.		Plant			
Skilled Operator	2.0		2.0			
Operator	12.0		12.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	18.0		18.0			
					Annual Cost	Annual Unit Cost
					<u>\$</u>	<u>\$/MMBtu</u>
Annual Operating Labor Cost					\$7,102,696	\$0.131
Maintenance Labor Cost					\$27,333,527	\$0.503
Administrative & Support Labor Property Taxes and Insurance					\$8,609,056 \$52,575,070	\$0.158 \$0.968
TOTAL FIXED OPERATING COSTS					\$52,575,070 \$95,620,348	\$0.968 \$1.760
VARIABLE OPERATING COSTS					₩7 0,020,340	φ1.70U
Maintenance Material Cost					\$41,000,290	<u>\$/MMBtu</u> \$0.75453
					\$ \$ \$1,000,270	<i>40.70400</i>
<u>Consumables</u>	<u>Consu</u> Initial Fill	<u>imption</u> /Day	<u>Unit</u> Cost	<u>Initial Fill</u> <u>Cost</u>		
Water(/1000 gallons)	0	5,162	1.08	\$0	\$1,834,102	\$0.03375
Chemicals						
MU & WT Chem. (lb)	0	30,752	0.17	\$0	\$1,748,328	\$0.03217
Carbon (Mercury Removal) (lb)	228,466	391	1.05	\$239,928	\$134,960	\$0.00248
COS Catalyst (m3)	116	0	2,397.36	\$277,521	\$78,053	\$0.00144
Water Gas Shift Catalyst (ft3)	5,515	4.72	498.83	\$2,750,848	\$773,676	\$0.01424
ZnO Sorbent (ton)	12 205		12,574.00	\$1,887,818 \$5,410,004	\$2,123,795	\$0.03908
Methanation Catalyst (ft3)	12,295	9.36 137	440.00 13.40	\$5,410,004 \$5,776,192	\$1,352,501	\$0.02489 \$0.01109
Selexol Solution (gal) SCR Catalyst (m3)	431,115 0	0	0.00	\$5,776,182 \$0	\$602,843 \$0	\$0.00000
Aqueous Ammonia (ton)	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000
Claus Catalyst (ft3)	w/equip	3.75	131.27	\$0 \$0	\$161,773	\$0.00298
Subtotal Chemicals	wedab	0.70		\$16,342,301	\$6,975,929	\$0.12838
Other	0	0	0.00	¢0	¢0	¢0.00000
Supplemental Fuel (MBtu) Supplemental Electricity (for consumption) (MW	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
Gases,N2 etc. (/100scf)	0 0	0 0	61.60 0.00	\$0 \$0	\$0 \$0	\$0.00000
L.P. Steam (/1000 pounds)	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
Subtotal Other	0	0	0.00	\$0	\$0 \$0	\$0.00000
Weste Disease						
Waste Disposal Spent Mercury Catalyst (lb.)	0	201	0.40	¢0	¢E3 500	\$0.00099
Spent ZnO Sorbent (ton)	0	391 0.51	0.42 16.23	\$0 \$0	\$53,599 \$2,740	\$0.00099 \$0.00005
Flyash (ton)	0	0.51	0.00	\$0 \$0	\$2,740 \$0	\$0.00005
Slag (ton)	0	1,160	16.23	\$0 \$0	\$6,180,087	\$0.11373
Subtotal-Waste Disposal	0	1,100	10.20	\$0	\$6,236,427	\$0.11477
By-products & Emissions						
Sulfur (tons)	0	288	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for sale) (MWh)	0	2,200	58.00	\$0	-\$41,908,979	-\$0.77125
Subtotal By-Products	2	,		\$0	-\$41,908,979	-\$0.77125
TOTAL VARIABLE OPERATING COSTS				\$16,342,301	\$14,137,770	\$0.26018
TOTAL VARIABLE OPERATING COSTS				···/··	*	

Exhibit 4-20 Case 1 Initial and Annual O&M Costs

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform			0,						
			TOTA	L PLAN	COST	SUMMA	RY				
	Case:	Case 2 - Sieme	ens Quench S	SNG Productio	n w/ CO2						
	Plant Size:	48.51	MW,net	Estimate Ty	pe:	Conceptual		Co	ost Base (Jun	2007	(\$x1000)
Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Contin	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
1	COAL & SORBENT HANDLING										
	Coal Receive & Unload	\$5.729	\$0	\$2,800	\$0	\$0	\$8.529	\$764	\$(\$1,859	\$11,152
1.2	Coal Stackout & Reclaim	\$7,404	\$0	\$1,795	\$0	\$0	\$9,198	\$806	\$0		\$12,005
1.3	Coal Conveyors & Yd Crush	\$6,883	\$0	\$1,776	\$0	\$0	\$8,659	\$760	\$0) \$1,884	\$11,303
	Other Coal Handling	\$1,801	\$0	\$411	\$0	\$0		\$194	\$0		\$2,886
	Sorbent Receive & Unload	\$0	\$0	\$0	\$0	\$0			\$0		
	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0						
	Sorbent Conveyors	\$0	\$0	\$0	\$0	\$0					
	Other Sorbent Handling	\$0	\$0	\$0	\$0	\$0			\$() \$0	\$0
	Coal & Sorbent Hnd.Foundations	\$0	\$4,054	\$10,138	\$0	\$0	\$14,192	\$1,360	\$0	\$3,110	\$18,662
	SUBTOTAL 1.	\$21,817	\$4,054	\$16,919	\$0	\$0		\$3,884	\$0		
2	COAL & SORBENT PREP & FEED				• -						
	Coal Crushing & Drying	\$92,942	\$0	\$13,543	\$0	\$0	\$106,485	\$9,671	\$0	\$23,231	\$139,387
	Prepared Coal Storage & Feed	\$4,402	\$1,053	\$690	\$0			\$526			
	Dry Coal Injection System	\$144,878	\$1,681	\$13,455	\$0	\$0		\$13,782	\$(
	Misc.Coal Prep & Feed	\$2,421	\$1,762	\$5,282	\$0	\$0	\$9,464	\$870	\$0		\$12,401
	Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0					
	Sorbent Storage & Feed	\$0	\$0		\$0	\$0					
	Sorbent Injection System	\$0	\$0		\$0						
	Booster Air Supply System	\$0	\$0	\$0	\$0				\$(
	Coal & Sorbent Feed Foundation	\$0	\$9,409	\$7,725	\$0			\$1,587	\$(
2.17	SUBTOTAL 2.	\$244,643	\$13,906	\$40,695	\$0	\$0		\$26,435	\$0		
3	FEEDWATER & MISC. BOP SYSTEMS	1211/010	,	1.01010			1-11	+===			+0/0/01
	FeedwaterSystem	\$3,582	\$1,664	\$2,019	\$0	\$0	\$7,265	\$657	\$() \$1,584	\$9,506
	Water Makeup & Pretreating	\$829	\$87	\$463	\$0				\$(
	Other Feedwater Subsystems	\$3,889	\$1,176	\$1,923	\$0	\$0	\$6,988	\$634	\$() \$1,524	
	Service Water Systems	\$474	\$976		\$0			\$472			
	Other Boiler Plant Systems	\$2,545	\$986	1 - 1	\$0			\$567	\$(
	FO Supply Sys & Nat Gas	\$102	\$210	1 1	\$0			\$48			
	Waste Treatment Equipment	\$1,158	\$0		\$0						
	Misc. Power Plant Equipment	\$1,721	\$230		\$0	\$(\$274	\$(
	SUBTOTAL 3.	\$14,299	\$5,330	\$12,016	\$0	\$0		\$2,965	\$0	\$8,120	
4	GASIFIER & ACCESSORIES	, ,		11							· · · · · · · ·
	Gasifier, Syngas Cooler & Auxiliaries	\$325.819	\$0	\$150.846	\$0	\$(\$476.665	\$42.337	\$71,500	\$88,575	\$679.07
	Syngas Cooling	w/4.1	\$0		\$0						
	ASU/Oxidant Compression	\$238,715	\$0		\$0			\$23,139			
	LT Heat Recovery & FG Saturation	\$49,540	\$0	\$18,356	\$0	\$0		\$6,504	\$(
	Misc. Gasification Equipment	w/4.1&4.2	\$0	w/4.1&4.2	\$0	\$0			\$(
	Flare Stack System	\$0	\$2,332	\$949	\$0	\$0		\$315	\$(
	CO2 Solid Feed System Compressors	\$6,696	\$1,607	\$2,411	\$0	\$0		\$1,071	\$(\$14,142
	Major Component Rigging	w/4.1&4.2	\$1,007	w/4.1&4.2	\$0	\$0					
	Gasification Foundations	\$0	\$21,143	\$12,064	\$0	\$0		\$3,040			
т./	SUBTOTAL 4.		\$25,082		\$0 \$0	\$0		\$76,405	\$71,500	1.1	

Exhibit 4-21 Case 2 Total Plant Cost Details

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Conting	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$125,787	\$0	\$106,734	\$0	\$0	\$232,521	\$22,487	\$46,504	\$60,302	\$361,815
5A.2	Elemental Sulfur Plant	\$16,277	\$3,244	\$21,000	\$0	\$0	\$40,521	\$3,936	\$0	\$8,891	\$53,349
5A.3	Mercury Removal	\$2,453	\$0	\$1,867	\$0	\$0	\$4,320	\$417	\$216	\$991	\$5,943
5A.4a	Shift Reactors	\$10,448	\$0	\$4,205	\$0	\$0	\$14,653	\$1,405	\$0	\$3,212	\$19,269
5A.4b	COS Hydrolysis	\$1,999	\$0	\$2,611	\$0	\$0	\$4,610	\$448	\$0	\$1,012	\$6,070
5A.5	Methanation	\$28,050	\$11,220	\$16,830	\$0	\$0	\$56,100	\$5,610	\$5,610	\$13,464	\$80,784
5A.6	SNG Purification & Compression	\$19,850	\$7,940	\$11,910	\$0	\$0	\$39,700	\$3,970	\$0	\$8,734	\$52,404
5A.7	Fuel Gas Piping	\$0	\$1,752	\$1,227	\$0	\$0	\$2,979	\$276	\$0	\$651	\$3,907
5A.9	Process Interconnects	\$0	\$12,000	\$18,000	\$0	\$0	\$30,000	\$3,000	\$0	\$6,600	\$39,600
5A.10	HGCU Foundations	\$0	\$1,774	\$1,144	\$0	\$0	\$2,918	\$268	\$0	\$956	\$4,143
5A.11	Zinc Oxide Guard Bed	\$792	\$0	\$146	\$0	\$0	\$938	\$94	\$0	\$206	\$1,239
	SUBTOTAL 5A.	\$205,656	\$37,931	\$185,674	\$0	\$0	\$429,261	\$41,912	\$52,330	\$105,019	\$628,522
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$34,256	\$0	\$20,173	\$0	\$0	\$54,428	\$5,240	\$0	\$11,934	\$71,602
	SUBTOTAL 5B.	\$34,256	\$0	\$20,173	\$0	\$0	\$54,428	\$5,240	\$0	\$11,934	\$71,602
6	COMBUSTION TURBINE/ACCESSORIES										
	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
	SUBTOTAL 6	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
7.1	Heat Recovery Steam Generator	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	1.1
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	1.1
-	Ductwork	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	1.1
7.4	Stack	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	
7.9	HRSG,Duct & Stack Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
	SUBTOTAL 7.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$31,587	\$0	\$5,484	\$0	\$0	1 . 1 .	\$3,557	\$0	\$4,063	\$44,691
8.2	Turbine Plant Auxiliaries	\$173	\$0	\$504	\$0	\$0		\$66	\$0	\$74	\$817
8.3	Condenser & Auxiliaries	\$5,488	\$0	\$1,616	\$0	\$0	\$7,104	\$679	\$0	\$778	\$8,561
8.4	Steam Piping	\$5,591	\$0	\$3,933	\$0	\$0	\$9,525	\$818	\$0	\$2,586	\$12,929
8.9	TG Foundations	\$0	\$1,091	\$1,844	\$0	\$0	\$2,934	\$278	\$0	\$964	
	SUBTOTAL 8.	\$42,839	\$1,091	\$13,381	\$0	\$0	\$57,310	\$5,399	\$0	\$8,465	\$71,174

Exhibit 4-21 Case 2 Total Plant Cost Details (continued)

Acct		Equipment	Material	Labor		Sales	Bare Erected		Conting	encies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM										
9.1	Cooling Towers	\$8,777	\$0	\$1,597	\$0	\$0	\$10,373	\$988	\$0	\$1,704	\$13,065
9.2	Circulating Water Pumps	\$2,333	\$0	\$88	\$0	\$0	\$2,421	\$203	\$0	\$394	\$3,018
9.3	Circ.Water System Auxiliaries	\$185	\$0	\$26	\$0	\$0	\$212	\$20	\$0	\$35	\$267
9.4	Circ.Water Piping	\$0	\$7,740	\$2,007	\$0	\$0	\$9,747	\$881	\$0	\$2,125	\$12,753
9.5	Make-up Water System	\$438	\$0	\$627	\$0	\$0	\$1,065	\$102	\$0	\$233	\$1,401
9.6	Component Cooling Water Sys	\$914	\$1,093	\$778	\$0	\$0	\$2,784	\$261	\$0	\$609	\$3,654
9.9	Circ.Water System Foundations	\$0	\$2,834	\$4,818	\$0	\$0	\$7,652	\$725	\$0	\$2,513	\$10,891
	SUBTOTAL 9.	\$12,647	\$11,667	\$9,940	\$0	\$0	\$34,254	\$3,181	\$0	\$7,614	\$45,048
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$36,268	\$0	\$35,772	\$0	\$0	\$72,040	\$6,980	\$0	\$7,902	\$86,922
10.2	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.4	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.5	Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
10.6	Ash Storage Silos	\$818	\$0	\$890	\$0	\$0	\$1,708	\$166	\$0	\$281	\$2,154
	Ash Transport & Feed Equipment	\$1,097	\$0	\$265	\$0	\$0	\$1,362	\$127	\$0	\$223	\$1,712
	Misc. Ash Handling Equipment	\$1,694	\$2,076	\$620	\$0	\$0	\$4,390	\$418	\$0	\$721	\$5,529
	Ash/Spent Sorbent Foundation	\$0	\$72	\$91	\$0	\$0		\$15	\$0	\$54	
	SUBTOTAL 10.	\$39,877	\$2,148	\$37,637	\$0	\$0		\$7,706	\$0	\$9,181	\$96,549
11	ACCESSORY ELECTRIC PLANT										
11.1	Generator Equipment	\$435	\$0	\$431	\$0	\$0	\$866	\$83	\$0	\$95	\$1,043
	Station Service Equipment	\$5,740	\$0	\$517	\$0	\$0		\$577	\$0	\$683	\$7,518
	Switchgear & Motor Control	\$10,612	\$0	\$1,930	\$0	\$0		\$1,163	\$0	\$2,056	
	Conduit & Cable Tray	\$0	\$4,930	\$16,263	\$0	\$0		\$2,050	\$0	\$5,811	\$29,053
	Wire & Cable	\$0	\$9,419	\$6,189	\$0	\$0		\$1,134	\$0	\$4,185	
	Protective Equipment	\$0	\$855	\$3,112	\$0	\$0	1	\$387	\$0	\$653	
	Standby Equipment	\$330	\$0	\$322	\$0	\$0		\$62	\$0	\$107	\$821
	Main Power Transformers	\$9,427	\$0	\$182	\$0	\$0		\$729	\$0	\$1,551	\$11,889
	Electrical Foundations	\$0	\$198	\$518	\$0	\$0		\$69	\$0	\$235	
	SUBTOTAL 11.	\$26,544	\$15,402	\$29,464	\$0	\$0		\$6,254	\$0	\$15,377	\$93,041
12	INSTRUMENTATION & CONTROL	+==,=	<i>t</i> ::;::=	+=//	4.	+-	,	<i>to</i> /201		<i>,</i>	<i>•••••••••••••••••••••••••••••••••••••</i>
	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0 \$0	\$0		\$0	\$0	\$0	
	Steam Turbine Control	w/8.1	\$0 \$0	w/8.1	\$0 \$0	\$0		\$0	\$0 \$0	\$0	· · · · · · · · · · · · · · · · · · ·
	Other Major Component Control	\$536	\$0 \$0	\$358	\$0 \$0	\$0		\$85	\$45	\$153	
	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0 \$0	\$0		\$0	\$0	\$0	
	Control Boards, Panels & Racks	\$356	\$0	\$228	\$0 \$0	\$0 \$0		\$55	\$29	\$134	\$802
	Computer & Accessories	\$5,696	\$0 \$0	\$182	\$0 \$0	\$0 \$0		\$540	\$294	\$671	\$7,383
	Instrument Wiring & Tubing	\$0	\$2,885	\$5,899	\$0 \$0	\$0 \$0	1 - 1 -	\$745	\$439	\$2,492	\$12,460
	Other I & C Equipment	\$4,247	\$2,005 \$0	\$2,062	\$0 \$0	\$0 \$0		\$594	\$315	\$2,492	
12.7	SUBTOTAL 12.	\$10,835	\$2,885	\$8,729	\$0 \$0	\$0 \$0		\$2,018	\$1,123	\$4,533	\$30,124

Exhibit 4-21 Case 2 Total Plant Cost Details (continued)

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Conting	encies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE										
13.1	Site Preparation	\$0	\$147	\$3,143	\$0	\$0	\$3,290	\$327	\$0	\$1,085	\$4,702
13.2	Site Improvements	\$0	\$2,615	\$3,476	\$0	\$0	\$6,091	\$601	\$0	\$2,008	\$8,700
13.3	Site Facilities	\$4,687	\$0	\$4,946	\$0	\$0	\$9,632	\$950	\$0	\$3,175	\$13,756
	SUBTOTAL 13.	\$4,687	\$2,762	\$11,564	\$0	\$0	\$19,013	\$1,877	\$0	\$6,267	\$27,158
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,624	\$3,738	\$0	\$0	\$6,361	\$585	\$0	\$1,042	\$7,989
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0	\$1,500	\$134	\$0	\$245	\$1,879
14.4	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$693	\$676	\$0	\$0	\$1,368	\$124	\$0	\$224	\$1,716
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
14.7	Warehouse	\$0	\$726	\$464	\$0	\$0	\$1,190	\$105	\$0	\$194	\$1,489
14.8	Other Buildings & Structures	\$0	\$528	\$411	\$0	\$0	\$940	\$84	\$0	\$205	\$1,229
14.9	Waste Treating Building & Str.	\$0	\$1,181	\$2,258	\$0	\$0	\$3,439	\$321	\$0	\$752	\$4,511
	SUBTOTAL 14.	\$0	\$7,227	\$8,572	\$0	\$0	\$15,798	\$1,441	\$0	\$2,825	\$20,064
	TOTAL COST	\$1,278,871	\$129,485	\$579,389	\$0	\$0	\$1,987,745	\$184,716	\$124,952	\$395,583	\$2,692,997
	Owner's Costs	i									
	Preproduction Costs										
	6 Months All Labor										\$21,750
	1 Month Maintenance Materials										\$3,847
	1 Month Non-fuel Consumables										\$813
	1 Month Waste Disposal										\$577
	25% of 1 Months Fuel Cost at 100% CF										\$3,362
	2% of TPC										\$53,860
	Total										\$84,209
	Inventory Capital										
60 da	ay supply of fuel and consumables at 100% CF										\$28,181
	0.5% of TPC (spare parts)										\$13,465
	Total										\$41,646
	Initial Cost for Catalyst and Chemicals										\$16,327
	Land										\$900
	Other Owner's Costs										\$403,950
	Financing Costs										\$72,711
	Total Overnight Costs (TOC)										\$3,312,740
	TASC Multiplier										1.201
	Total As-Spent Cost (TASC)						······				\$3,978,601

Exhibit 4-21 Case 2 Total Plant Cost Details (continued)

INITIAL & ANNUAL		PENSES			Cost Base (Jun):	2007
Case 2 - Siemens Quench SNG Production w/ CO2 SNG (MMbtu/hr):	6886				MWe-net: Capacity Factor (%):	49 90
OPERATING & MAINTENAN		2				70
Operating Labor						
Operating Labor Rate(base):	34.65 \$	S/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00 %	% of labor				
			T . I . I			
Operating Labor Requirements(O.J.)per Shift: 1	unit/mod.		Total Plant			
Skilled Operator	2.0		2.0			
Operator	12.0		12.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	18.0		18.0			
					Annual Cost	Annual Unit Co
					\$	\$/MMBtu
Innual Operating Labor Cost					\$7,102,696	\$0.131
Naintenance Labor Cost					\$27,697,722	\$0.510
Administrative & Support Labor					\$8,700,105	\$0.160
Property Taxes and Insurance					\$53,859,942	\$0.992
OTAL FIXED OPERATING COSTS					\$97,360,465	\$1.793
ARIABLE OPERATING COSTS						
Aaintenance Material Cost					\$41,546,584	<u>\$/MMBtu</u> \$0.76523
Concurrentias	Concur	mation	llnit			
<u>Consumables</u>	<u>Consu</u> Initial Fill	/Day	<u>Unit</u> Cost	Initial Fill Cost		
-		<u> </u>	COSL	<u>C031</u>		
Water(/1000 gallons)	0	5,129	1.08	\$0	\$1,822,333	\$0.03356
Chemicals						
MU & WT Chem.(lb)	0	30,554	0.17	\$0	\$1,737,110	\$0.03200
Carbon (Mercury Removal) (lb)	228,257	391	1.05	\$239,709	\$134,836	\$0.00248
COS Catalyst (m3)	117	0	2,397.36	\$279,597	\$78,637	\$0.00145
Water Gas Shift Catalyst (ft3)	5,505	4.71	498.83	\$2,746,203	\$772,369	\$0.01423
ZnO Sorbent (ton)	150	0.51	12,574.00	\$1,885,197	\$2,120,847	\$0.03906
Methanation Catalyst (ft3)	12,289	9.35	440.00	\$5,407,162	\$1,351,791	\$0.02490
Selexol Solution (gal)	430,618	137	13.40	\$5,769,523	\$602,148	\$0.01109
SCR Catalyst (m3)	0	0	0.00	\$0	\$0	\$0.00000
Aqueous Ammonia (ton)	0	0	0.00	\$0	\$0	\$0.00000
Claus Catalyst (ft3)	w/equip	3.75	131.27	\$0	\$161,817	\$0.00298
Subtotal Chemicals			:	\$16,327,392	\$6,959,555	\$0.12819
Other						
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for consumption) (MW	0	0	61.60	\$0	\$0	\$0.00000
Gases,N2 etc.(/100scf)	0	0	0.00	\$0	\$0	\$0.00000
L.P. Steam(/1000 pounds)	0	0	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Wests Dispessi						
Waste Disposal	~	001	0.40	*^		¢0.00000
Spent Mercury Catalyst (lb.)	0	391	0.42	\$0 \$0	\$53,551	\$0.00099 \$0.00005
Spent ZnO Sorbent (ton)	0	0.51	16.23 0.00	\$0 \$0	\$2,737	\$0.00005 \$0.00000
Flyash (ton) Slag (ton)	0 0	0 1 160	0.00 16.23	\$0 \$0	\$0 \$6,180,087	\$0.00000 \$0.11383
Slag (lon) Subtotal-Waste Disposal	U	1,160	10.23	\$0 \$0	\$6,180,087	\$0.11383 \$0.11487
Subiolar masic Disposal				4 0	φ0,230,374	φU.1140/
By-products & Emissions						
Sulfur (tons)	0	288	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for sale) (MWh)	0	1,164	58.00	\$0	-\$22,182,265	-\$0.40857
Subtotal By-Products			_	\$0	-\$22,182,265	-\$0.40857
TOTAL VARIABLE OPERATING COSTS				\$16,327,392	\$34,382,582	\$0.63328

Exhibit 4-22 Case 2 Initial and Annual O&M Costs

4.2 SYNTHETIC NATURAL GAS AND AMMONIA CO-PRODUCTION USING ILLINOIS NO. 6 COAL

4.2.1 <u>Process Description</u>

In this section the overall Siemens gasification process for producing SNG and ammonia production is described. All major process systems for coal handling and drying, gasifier, raw gas cooling/particulate removal, syngas scrubbing, and SNG production are the same as previously described for Cases 1 and 2. Only the major process areas for ammonia production and their subsequent integration with the SNG portion of the plant are described in this section. The process BFDs for the Illinois No. 6 coal non-sequestration and sequestration co-production cases are shown in Exhibit 4-23 and Exhibit 4-25. The associated stream tables are shown in Exhibit 4-24 for the non-sequestration case and Exhibit 4-26 for the carbon sequestration case.

Sour Gas Shift for Ammonia Production

Two SGS units are employed to maximize the hydrogen production necessary for ammonia synthesis and to reduce the amount of COS entering the AGR system. A H_2O to CO ratio of 3.0 is maintained to drive the shift reaction to an approximate fractional conversion of 99 percent for CO.

Following the water scrubber, approximately 24 percent of the total raw gas stream is utilized for ammonia production. This raw gas stream (stream 30) is combined with shift steam (stream 31) in the first reactor. The stream exiting the first reactor is cooled to 232°C (450°F) to help further drive the shift reaction in the second reactor. The shifted syngas exits the second reactor with nearly all the available carbon monoxide shifted to hydrogen.

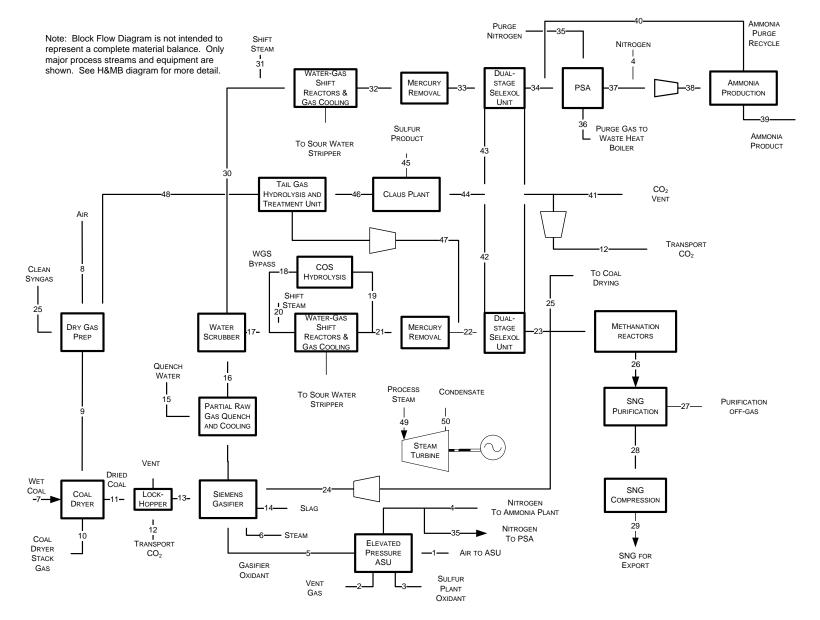
Mercury Removal and Acid Gas Removal

Before the raw gas can be treated in the AGR process, it must be cooled to about $35^{\circ}C$ ($95^{\circ}F$). During this cooling sequence through a series of heat exchangers, most of the water vapor condenses. This water, which contains some NH₃, is sent to the sour water stripper. The cooled syngas (stream 32) then passes through a carbon bed to remove 95 percent of the Hg (Section 3.1.6).

The AGR process is a two stage Selexol process where H_2S is removed in the first stage and CO_2 is removed in the second stage of absorption. The process results in three product streams. A high hydrogen syngas (stream 34) is combined with the purge gas from the ammonia synthesis loop (stream 40) and sent to the PSA process. A CO_2 -rich stream is combined with the CO_2 -rich stream from the SNG production trains and either vented to the atmosphere in the non-sequestration case or compressed for sequestration in the carbon sequestration case. A portion of the CO_2 product stream is withdrawn and further compressed to 5.62 MPa (815 psia) to provide the fluid for coal transport (stream 12). The acid gas stream (stream 43) is combined with its counterpart in the SNG production train (stream 42) and fed to the Claus plant (stream 44). In both cases, the acid gas contains nearly 40 percent H_2S and nearly 50 percent CO_2 , with the balance primarily H_2 and CO.

Pressure Swing Absorption

The PSA unit is used to purify the syngas stream entering the ammonia synthesis loop to acceptable levels of contaminants for the ammonia catalyst as described in Section 3.1.10.


The high hydrogen syngas from the Selexol unit (stream 34) is combined with the ammonia purge gas (stream 40) and feed to the PSA unit at 3.24 MPa (470 psia) and 21°C (69°F). The PSA unit produces a 99 vol% H₂ stream for ammonia synthesis (stream 37). Purge nitrogen (stream 35) enters the PSA beds from the ASU to increase the hydrogen recovery to 94 vol%. The tail gas from the PSA unit (stream 36) is sent to a waste heat recovery boiler.

Ammonia Synthesis Loop

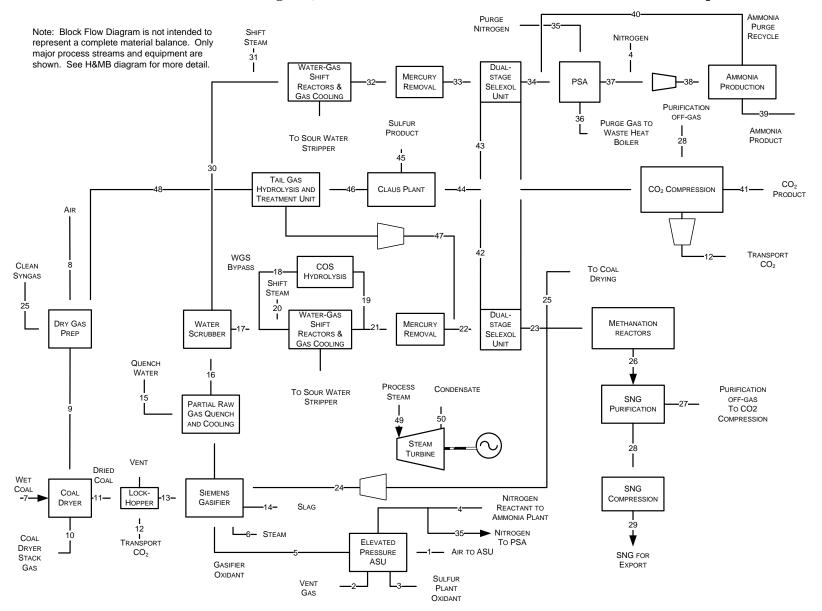
The purified H₂ stream from the PSA unit is combined with additional nitrogen from the ASU (stream 4) to maintain a 3:1 molar ratio of H₂ to N₂ entering the ammonia reactor. The combined stream is compressed to 13.62 MPa (1,975 psia) before being fed into the synthesis loop (stream 38). The ammonia reactor converts H₂ and N₂ into NH₃ at a pressure of 14.0 MPa (2,030 psia) due to further compression within the synthesis loop. The ammonia product is refrigerated to -25° C (-13° F) and sent to storage vessels (stream 39). Approximately five percent of the maximum flow in the ammonia synthesis loop is treated in the PSA unit (stream 40) to keep concentrations of inerts such as CH₄, Ar, and O₂ from building up in the synthesis loop. The ammonia synthesis loop roduces anhydrous ammonia with a purity of 99.5 wt%.

CO₂ Compression, Claus Unit, Power Block

The process parameters are the same as previously discussed in Section 4.1.1.

Exhibit 4-23 Case 3 Block Flow Diagram, Bituminous Coal to SNG and Ammonia without Carbon Sequestration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
V-L Mole Fraction																		
Ar	0.0092	0.0101	0.0101	0.0000	0.0101	0.0000	0.0000	0.0092	0.0084	0.0064	0.0000	0.0001	0.0000	0.0000	0.0000	0.0020	0.0020	0.0020
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0081	0.0010	0.0000	0.0000	0.4205	0.4364	0.4364
CO ₂	0.0003	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.1192	0.0916	0.0000	0.9781	0.1235	0.0000	0.0000	0.0399	0.0415	0.0415
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0005	0.0006	0.0006
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0121	0.6937	0.0000	0.0000	0.1971	0.2046	0.2046
H ₂ O	0.0099	0.0044	0.0000	0.0000	0.0000	1.0000	0.0000	0.0099	0.1710	0.3627	0.0000	0.0014	0.0979	0.0000	1.0000	0.3295	0.3042	0.3042
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0058	0.0060	0.0060
N ₂	0.7732	0.9765	0.0004	1.0000	0.0004	0.0000	0.0000	0.7732	0.6234	0.4793	0.0000	0.0001	0.0171	0.0000	0.0000	0.0046	0.0047	0.0047
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0085	0.9895	0.0000	0.9895	0.0000	0.0000	0.2074	0.0780	0.0600	0.0000	0.0000	0.0668	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	51,682	36,441	151	3,127	10,369	3,442	0	3,538	4,396	5,718	0	3,559	14,094	0	14,055	53,960	39,309	5,856
V-L Flowrate (kg/hr)	1,491,391	1,025,161	4,845	87,594	332,612	62,017	0	102,084	125,819	149,636	0	154,233	158,471	0	253,210	1,095,758	801,642	119,422
Solids Flowrate (kg/hr)	0	0	0	0	0	0	437,263	0	0	0	413,446	0	332,092	43,794	0	0	0	0
Temperature (°C)	15	25	32	72	32	343	15	15	1,260	143	71	83	18	1,500	216	260	214	214
Pressure (MPa, abs)	0.10	0.11	0.86	3.24	0.86	5.10	0.10	0.10	0.10	0.10	0.10	5.62	5.62	4.24	8.274	3.89	3.76	3.76
Enthalpy (kJ/kg)	30.93	32.59	26.94	69.15	26.94	3,177.81		30.93	1,853.88	826.48		31.02	4,689.64		1,017.873	1,152.07	1,014.68	1,014.68
Density (kg/m ³)	1.2 28.857	1.3 28.132	11.0 32.078	31.6 28.013	11.0 32.078	20.1 18.015		1.2 28.857	0.2	0.8 26.169		99.3 43.334	28.4 11.244		782.0 18.015	18.0 20.307	19.1 20.393	19.1 20.393
V-L Molecular Weight	20.007	20.132	32.070	20.013	32.076	16.015		20.007	20.021	20.109		43.334	11.244		16.015	20.307	20.393	20.393
V-L Flowrate (lb _{mol} /hr)	113,940	80.339	333	6.894	22.859	7,589	0	7,799	9.692	12,606	0	7,847	31.073	0	30.987	118.962	86.662	12,910
V-L Flowrate (lb/hr)	3,287,954	2,260,094	10,681	193,111	733,283	136,724	0	225,056	277,383	329,890	0	340,027	349,368	0	558,232	2,415,734	1,767,318	263,281
Solids Flowrate (lb/hr)	0	0	0	0	0	0	964,000	0	0	0	911,493	0	732,139	96,550	000,202	0	0	0
													- /					
Temperature (°F)	59	76	90	162	90	650	59	59	2,300	290	160	181	65	2,732	420	500	418	418
Pressure (psia)	14.7	16.4	125.0	470.0	125.0	740.0	14.7	14.7	14.7	14.7	14.4	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7
Enthalpy (Btu/lb)	13.3	14.0	11.6	29.7	11.6	1,366.2		13.3	797.0	355.3		13.3	2,016.2		437.6	495.3	436.2	436.2
Density (lb/ft ³)	0.076	0.080	0.685	1.973	0.685	1.257		0.076	0.014	0.048		6.197	1.775		48.817	1.125	1.195	1.195
	A - Referen	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA													


Exhibit 4-24 Case 3 Stream Table, Bituminous Coal to SNG and Ammonia without Carbon Sequestration

	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
V-L Mole Fraction																		
Ar	0.0020	0.0000	0.0021	0.0021	0.0030	0.0030	0.0030	0.0105	0.0000	0.0120	0.0120	0.0020	0.0000	0.0018	0.0018	0.0029	0.0000	0.0072
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.8302	0.0000	0.9496	0.9496	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0002
CO	0.4364	0.0000	0.1647	0.1642	0.2372	0.2372	0.2372	0.0000	0.0000	0.0000	0.0000	0.4364	0.0000	0.0037	0.0037	0.0061	0.0000	0.0166
CO ₂	0.0420	0.0000	0.3264	0.3284	0.0366	0.0366	0.0366	0.1253	0.9816	0.0021	0.0021	0.0415	0.0000	0.4192	0.4192	0.0530	0.0000	0.1443
COS	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.2046	0.0000	0.4935	0.4919	0.7160	0.7160	0.7160	0.0070	0.0000	0.0080	0.0080	0.2046	0.0000	0.5636	0.5636	0.9309	0.0000	0.1939
H ₂ O	0.3036	1.0000	0.0018	0.0018	0.0001	0.0001	0.0001	0.0023	0.0184	0.0000	0.0000	0.3042	1.0000	0.0017	0.0017	0.0001	0.0000	0.0004
H ₂ S	0.0066	0.0000	0.0066	0.0067	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0060	0.0000	0.0057	0.0057	0.0000	0.0000	0.0000
N ₂	0.0047	0.0000	0.0049	0.0048	0.0071	0.0071	0.0071	0.0247	0.0000	0.0282	0.0282	0.0047	0.0000	0.0042	0.0042	0.0069	1.0000	0.6195
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0180
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	5,856	10,935	38,282	38,406	26,217	115	645	7,292	917	6,375	6,375	12,685	12,748	14,332	14,332	8,622	1,245	3,164
V-L Flowrate (kg/hr)	119,422	196,998	783,015	788,417	262,604	1,151	6,461	145,836	39,914	105,923	105,923	258,689	229,661	288,176	288,176	40,467	34,881	79,621
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	215	288	35	35	31	80	31	35	35	35	35	214	288	35	35	31	72	21
Pressure (MPa, abs)	3.69	4.14	3.31	3.24	3.24	5.10	3.24	2.73	0.14	2.627	6.202	3.756	4.137	3.37	3.3	3.238	3.241	0.138
Enthalpy (kJ/kg)	1,014.21	3,070.04	44.97	44.66	86.06	234.17	86.06	41.84	48.20	47.750	13.125	,	3,070.036	44.67	44.2	190.221	69.152	24.935
Density (kg/m ³)	18.8	18.2	26.8	26.4	12.7	17.0 10.017	12.7	22.6	2.4	17.9	44.7 16.615	19.1	18.2	27.1	26.5	5.9 4.693	31.6	1.4
V-L Molecular Weight	20.393	18.015	20.454	20.529	10.017	10.017	10.017	20.000	43.532	16.615	10.015	20.393	18.015	20.107	20.107	4.693	28.013	25.164
V-L Flowrate (lbmol/hr)	12.910	24.108	84.396	84.670	57.797	253	1.422	16,076	2,021	14.055	14.055	27.966	28,105	31,597	31.597	19.009	2,745	6,976
V-L Flowrate (lb/hr)	263,281	434,306	1,726,252	1,738,163	578,942	2,538	14,243	321.514	87,994	233,520	233,520	570.311	506.315	635,320	635,320	89.214	76,900	175,534
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	418	550	95	95	87	177	87	95	95	95	95	418	550	95	94	87	162	69
Pressure (psia)	534.7	600.0	479.7	469.7	469.6	740.0	469.6	396.1	20.1	381.0	899.5	544.7	600.0	489.2	479.2	469.6	470.0	20.0
Enthalpy (Btu/lb)	436.0	1,319.9	19.3	19.2	37.0	100.7	37.0	18.0	20.7	20.5	5.6	436.2	1,319.9	19.2	19.0	81.8	29.7	10.7
Density (lb/ft ³)	1.172	1.135	1.675	1.647	0.792	1.063	0.792	1.409	0.148	1.116	2.789	1.195	1.135	1.690	1.657	0.371	1.973	0.089

Exhibit 4-24 Case 3 Stream Table, Bituminous Coal to SNG and Ammonia without Carbon Sequestration (continued)

	37	38	39	40	41	42	43	44	45	46	47	48	49	50
V-L Mole Fraction														
Ar	0.0013	0.0010	0.0005	0.0035	0.0000	0.0005	0.0005	0.0005	0.0000	0.0019	0.0000	0.0034	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0021	0.0480	0.0011	0.0350	0.0000	0.1014	0.0000	0.0060	0.0000	0.0000
CO ₂	0.0000	0.0000	0.0000	0.0000	0.9906	0.4323	0.5377	0.4614	0.0000	0.3385	0.9629	0.5672	0.0000	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0001	0.0017	0.0001	0.0012	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000
H ₂	0.9905	0.7491	0.0030	0.7328	0.0030	0.0917	0.1024	0.0946	0.0000	0.0589	0.0005	0.2694	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.0000	0.0000	0.0041	0.0329	0.0314	0.0325	0.0000	0.4950	0.0059	0.1525	1.0000	1.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.3923	0.3264	0.3741	0.0000	0.0021	0.0306	0.0000	0.0000	0.0000
N ₂	0.0082	0.2499	0.0011	0.2448	0.0000	0.0006	0.0005	0.0006	0.0000	0.0008	0.0000	0.0014	0.0000	0.0000
NH ₃	0.0000	0.0000	0.9954	0.0190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	9,704	12,831	4,898	3,001	13,431	657	252	909	0	1,058	124	604	40,998	76,214
V-L Flowrate (kg/hr)	22,125	109,719	83,324	26,398	587,552	22,772	8,966	31,738	0	28,599	5,403	17,274	738,585	1,373,008
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	10,893	0	0	0	0	0
Temperature (°C)	21	21	-25	-28	5	48	48	48	177	232	35	51	566	39
Pressure (MPa, abs)	3.238	13.614	13.048	3.238	0.115	0.163	0.163	0.163	0.119	0.085	3.272	0.103	12.512	0.827
Enthalpy (kJ/kg)	267.348	68.637	-1,408.059	-99.171	7.544	91.640	87.876	90.577		1,168.962	-1.583	232.751	3,513.235	164.154
Density (kg/m ³) V-L Molecular Weight	3.0 2.280	44.6 8.551	668.8 17.010	13.9 8.796	2.2 43.745	2.1 34.656	2.2 35.628	2.1 34.925	5,281.2	0.5 27.035	67.9 43.530	1.2 28.598	34.9 18.015	993.0 18.015
V-L Molecular Weight	2.200	1 6.00	17.010	0.790	43.745	34.030	33.020	34.925		27.035	43.530	20.090	16.015	16.015
V-L Flowrate (lb _{mol} /hr)	21,394	28.288	10.799	6.616	29.611	1.449	555	2.003	0	2,332	274	1.332	90.384	168.022
V-L Flowrate (lb/hr)	48,777	241,888	183,698	58,197	1,295,330	50,203	19,766	69,969	0	63,051	11,911	38,083	1,628,301	3,026,965
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	24,016	0	0	0	0	0
									,					
Temperature (°F)	69	70	-13	-19	42	119	119	119	351	450	95	123	1,050	102
Pressure (psia)	469.6	1,974.5	1,892.5	469.6	16.7	23.7	23.7	23.7	17.3	12.3	474.5	14.9	1,814.7	120.0
Enthalpy (Btu/lb)	114.9	29.5	-605.4	-42.6	3.2	39.4	37.8	38.9		502.6	-0.7	100.1	1,510.4	70.6
Density (lb/ft ³)	0.186	2.787	41.749	0.865	0.137	0.133	0.137	0.134	329.697	0.034	4.237	0.072	2.177	61.989

Exhibit 4-24 Case 3 Stream Table, Bituminous Coal to SNG and Ammonia without Carbon Sequestration (continued)

Exhibit 4-25 Case 4 Block Flow Diagram, Bituminous Coal to SNG and Ammonia with Carbon Sequestration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0092	0.0101	0.0101	0.0000	0.0101	0.0000	0.0000	0.0092	0.0084	0.0064	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.0020
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0032	0.0004	0.0000	0.0000	0.4206	0.4365
CO ₂	0.0003	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.1204	0.0924	0.0000	0.9918	0.1242	0.0000	0.0000	0.0400	0.0415
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0005	0.0006
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0047	0.6936	0.0000	0.0000	0.1970	0.2044
H ₂ O	0.0099	0.0044	0.0000	0.0000	0.0000	1.0000	0.0000	0.0099	0.1711	0.3635	0.0000	0.0001	0.0978	0.0000	1.0000	0.3295	0.3042
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0058	0.0060
N ₂	0.7732	0.9765	0.0004	1.0000	0.0004	0.0000	0.0000	0.7732	0.6227	0.4782	0.0000	0.0000	0.0172	0.0000	0.0000	0.0046	0.0047
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0085	0.9895	0.0000	0.9895	0.0000	0.0000	0.2074	0.0774	0.0595	0.0000	0.0000	0.0669	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	51,694	36,451	156	3,127	10,366	3,442	0	3,516	4,374	5,696	0	3,525	14,077	0	14,050	53,938	39,291
V-L Flowrate (kg/hr)	1,491,725	1,025,437	4,997	87,591	332,535	62,017	0	101,453	125,255	149,072	0	154,233	158,471	0	253,117	1,095,588	801,497
Solids Flowrate (kg/hr)	0	0	0	0	0	0	437,263	0	0	0	413,446	0	332,092	43,794	0	0	0
Temperature (°C)	15	25	32	117	32	343	15	15	1,265	143	71	82	18	1,500	216	260	214
Pressure (MPa, abs)	0.10	0.11	0.86	3.24	0.86	5.10	0.10	0.10	0.10	0.10	0.10	5.62	5.62	4.24	8.274	3.89	3.76
Enthalpy (kJ/kg)	30.93	32.59	26.94	117.12	26.94	3,177.81		30.93	1,860.19	827.90		27.40	4,694.27		1,017.873	1,151.80	1,014.38
Density (kg/m ³)	1.2	1.3	11.0	27.9	11.0	20.1		1.2	0.2	0.8		101.4	28.5		782.0	18.0	19.2
V-L Molecular Weight	28.857	28.132	32.078	28.013	32.078	18.015		28.857	28.637	26.172		43.759	11.257		18.015	20.312	20.399
	440.005	00.004	0.40	0.000	00.054	7 500	0	7 754	0.040	40.557	0	7 770	04.005	0	00.075	440.040	00.000
V-L Flowrate (lb _{mol} /hr)	113,965	80,361	343	6,893	22,854	7,589	0	7,751	9,643	12,557	0	7,770	31,035	0	30,975	118,912	86,623
V-L Flowrate (lb/hr)	3,288,691 0	2,260,701	11,017 0	193,105 0	733,114 0	136,724 0	0 964,000	223,666 0	276,140 0	328,647 0	0 911,493	340,026 0	349,368	0 96,550	558,027 0	2,415,359	1,766,999 0
Solids Flowrate (lb/hr)	U	U	U	U	U	U	904,000	U	0	U	911,493	U	732,138	90,000	U	U	U
Temperature (°F)	59	76	90	242	90	650	59	59	2,308	290	160	179	65	2,732	420	500	418
Pressure (psia)	14.7	16.4	125.0	470.0	125.0	740.0	14.7	14.7	14.7	14.7	14.4	815.0	815.0	614.7	1,200.0	564.7	544.7
Enthalpy (Btu/lb)	13.3	14.0	11.6	50.4	11.6	1,366.2		13.3	799.7	355.9		11.8	2,018.2		437.6	495.2	436.1
Density (lb/ft ³)	0.076	0.080	0.685	1.739	0.685	1.257		0.076	0.014	0.048		6.328	1.779		48.817	1.125	1.196
	A - Referer	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA												

Exhibit 4-26 Case 4 Stream Table, Bituminous Coal to SNG and Ammonia with Carbon Sequestration

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
V-L Mole Fraction																	
Ar	0.0020	0.0020	0.0000	0.0021	0.0021	0.0030	0.0030	0.0030	0.0105	0.0000	0.0120	0.0120	0.0020	0.0000	0.0018	0.0018	0.0029
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.8300	0.0000	0.9496	0.9496	0.0000	0.0000	0.0000	0.0000	0.0001
CO	0.4365	0.4365	0.0000	0.1647	0.1642	0.2372	0.2372	0.2372	0.0000	0.0000	0.0000	0.0000	0.4365	0.0000	0.0037	0.0037	0.0061
CO ₂	0.0415	0.0421	0.0000	0.3265	0.3285	0.0366	0.0366	0.0366	0.1255	0.9817	0.0022	0.0022	0.0415	0.0000	0.4193	0.4193	0.0530
COS	0.0006	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000	0.0000
H ₂	0.2044	0.2044	0.0000	0.4933	0.4917	0.7160	0.7160	0.7160	0.0070	0.0000	0.0080	0.0080	0.2044	0.0000	0.5634	0.5634	0.9309
H ₂ O	0.3042	0.3036	1.0000	0.0018	0.0018	0.0001	0.0001	0.0001	0.0023	0.0183	0.0000	0.0000	0.3042	1.0000	0.0017	0.0017	0.0001
H₂S	0.0060	0.0066	0.0000	0.0066	0.0068	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0060	0.0000	0.0057	0.0057	0.0000
N ₂	0.0047	0.0047	0.0000	0.0049	0.0048	0.0071	0.0071	0.0071	0.0247	0.0000	0.0282	0.0282	0.0047	0.0000	0.0042	0.0042	0.0069
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	5,852	5,852	10,939	38,269	38,397	26,203	115	654	7,287	918	6,369	6,369	12,679	12,748	14,327	14,327	8,618
V-L Flowrate (kg/hr)	119,381	119,381	197,069	782,967	788,515	262,524	1,151	6,555	145,785	39,955	105,827	105,827	258,642	229,652	288,150	288,150	40,455
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	214	215	288	35	35	31	80	31	35	35	35	35	214	288	35	35	31
Pressure (MPa, abs)	3.76	3.69	4.14	3.31	3.24	3.24	5.10	3.24	2.73	0.14	2.627	6.202	3.756	4.137	3.37	3.3	3.238
Enthalpy (kJ/kg)	1,014.38	1,013.91	2,955.16	44.96	44.63	86.04	234.12	86.04	41.82	48.17	47.750	13.124	1,014.380	,	44.65	44.2	190.183
Density (kg/m ³)	19.2	18.8	18.2	26.8	26.4	12.7	17.0	12.7	22.6	2.4	17.9	44.7	19.2	18.2	27.1	26.6	5.9
V-L Molecular Weight	20.399	20.399	18.015	20.460	20.536	10.019	10.019	10.019	20.006	43.533	16.615	16.615	20.399	18.015	20.112	20	4.694
V-L Flowrate (lbmol/hr)	12,902	12,902	24,116	84,369	84,652	57,768	253	1,442	16,065	2,023	14,042	14,042	27,953	28,104	31,587	31,587	18,999
V-L Flowrate (lb/hr)	263,189	263,189	434,462	1,726,146	1,738,377	578,766	2,538	14,451	321,400	88,085	233,309	233,309	570,209	506,295	635,261	635,261	89,187
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	418	418	550	95	95	87	177	87	95	95	95	95	418	550	95	94	87
Pressure (psia)	544.7	534.7	600.0	479.7	469.7	469.6	740.0	469.6	396.1	20.1	381.0	899.5	544.7	600.0	489.2	479.2	469.6
Enthalpy (Btu/lb)	436.1	435.9	1,270.5	19.3	19.2	37.0	100.7	37.0	18.0	20.7	20.5	5.6	436.1	1,270.5	19.2	19.0	81.8
Density (lb/ft ³)	1.196	1.173	1.135	1.675	1.648	0.792	1.063	0.792	1.410	0.148	1.116	2.789	1.196	1.135	1.690	1.658	0.371

Exhibit 4-26 Case 4 Stream Table, Bituminous Coal to SNG and Ammonia with Carbon Sequestration (continued)

	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
V-L Mole Fraction																
Ar	0.0000	0.0072	0.0013	0.0010	0.0005	0.0035	0.0000	0.0005	0.0005	0.0005	0.0000	0.0020	0.0000	0.0035	0.0000	0.0000
CH ₄	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0166	0.0000	0.0000	0.0000	0.0000	0.0032	0.0477	0.0011	0.0349	0.0000	0.1032	0.0000	0.0057	0.0000	0.0000
CO ₂	0.0000	0.1443	0.0000	0.0000	0.0000	0.0000	0.9918	0.4296	0.5376	0.4594	0.0000	0.3331	0.9316	0.5770	0.0000	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0017	0.0001	0.0012	0.0000	0.0004	0.0001	0.0000	0.0000	0.0000
H ₂	0.0000	0.1938	0.9905	0.7490	0.0030	0.7324	0.0047	0.0910	0.1023	0.0941	0.0000	0.0588	0.0005	0.2585	0.0000	0.0000
H ₂ O	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0001	0.0327	0.0314	0.0323	0.0000	0.4947	0.0059	0.1538	1.0000	1.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3962	0.3265	0.3770	0.0000	0.0020	0.0619	0.0001	0.0000	0.0000
N ₂	1.0000	0.6196	0.0082	0.2500	0.0011	0.2451	0.0000	0.0006	0.0005	0.0006	0.0000	0.0008	0.0000	0.0014	0.0000	0.0000
NH ₃	0.0000	0.0180	0.0000	0.0000	0.9954	0.0190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0049	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	1,245	3,164	9,699	12,825	4,897	3,000	16,002	661	252	913	0	1,066	128	594	40,943	76,182
V-L Flowrate (kg/hr)	34,865	79,621	22,112	109,703	83,295	26,414	700,235	22,915	8,966	31,881	0	28,895	5,548	17,247	737,593	1,372,447
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	10,895	0	0	0	0	0
Temperature (°C)	117	25	25	21	-25	-28	35	48	48	48	177	232	35	51	566	39
Pressure (MPa, abs) Enthalpy (kJ/kg)	3.241 117.116	0.138	3.238 323.138	13.614 68.608	13.048	3.238	15.272	0.163 91.358	0.163 87.862	0.163	0.119	0.085	3.272 -1.733	0.103 229.322	12.512 3.513.235	0.827
Density (kg/m ³)	27.9	1.4	2.9	44.7	668.7	13.9	779.4	2.1	2.2	2.1	5.281.0	0.5	67.5	1.2	34.9	993.0
V-L Molecular Weight	28.013	25.166	2.9	8.554	17.010	8.805	43.759	34.655	35.629	34.923		27.098	43.222	29.027	18.015	18.015
	20.010	20.100	2.200	0.001		0.000	1011 00	0.1000	00.020	011020		2.1000	10.222	20.02.		101010
V-L Flowrate (Ibmol/hr)	2,744	6,975	21,382	28,275	10,795	6,614	35,278	1,458	555	2,013	0	2,351	283	1,310	90,263	167,953
V-L Flowrate (lb/hr)	76,865	175,535	48,749	241,854	183,634	58,232	1,543,753	50,520	19,766	70,286	0	63,702	12,231	38,023	1,626,113	3,025,728
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	24,019	0	0	0	0	0
Temperature (°F)	242	77	77	70	-13	-19	95	119	119	119	351	450	95	123	1,050	102
Pressure (psia)	470.0	20.0	469.6	1,974.5	1,892.5	469.6	2,215.0	23.7	23.7	23.7	17.3	12.3	474.5	14.9	1,814.7	120.0
Enthalpy (Btu/lb)	50.4	13.0	138.9	29.5	-605.4	-42.6	-89.9	39.3	37.8	38.9		501.1	-0.7	98.6	1,510.4	70.6
Density (lb/ft ³)	1.739	0.087	0.183	2.788	41.749	0.866	48.656	0.133	0.137	0.134	329.679	0.034	4.214	0.073	2.177	61.989

Exhibit 4-26 Case 4 Stream Table, Bituminous Coal to SNG and Ammonia with Carbon Sequestration (continued)

4.2.2 Key System Assumptions

System assumptions for Cases 3 and 4, Siemens gasifier using Illinois No. 6 coal with and without carbon sequestration, are compiled in Exhibit 4-27.

Case	Case 3	Case 4
Gasifier Pressure, MPa (psia)	4.2 (615)	4.2 (615)
O_2 :Coal Ratio, kg O_2 /kg dried coal	0.794	0.794
Carbon Conversion, %	99.5	99.5
Syngas HHV at Gasifier Outlet, kJ/Nm ³ (Btu/scf)	10,237 (275)	10,237 (275)
Steam Cycle, MPa/°C (psig/°F)	12.4/566/536 (1800/1050/996)	12.4/566/537 (1800/1050/999)
Condenser Pressure, mm Hg (in Hg)	51 (2.0)	51 (2.0)
Combustion Turbine	N/A	N/A
Gasifier Technology	Siemens	Siemens
Oxidant	99 vol% Oxygen	99 vol% Oxygen
Coal	Illinois No. 6	Illinois No. 6
Coal Feed Moisture Content, %	11.12	11.12
COS Hydrolysis Reactor	Yes	Yes
Water Gas Shift	Yes	Yes
H ₂ S Separation	Selexol (1 st Stage)	Selexol (1 st Stage)
Sulfur Removal, %	99.4	99.9
CO ₂ Separation	Selexol (2 nd Stage)	Selexol (2 nd Stage)
CO ₂ Sequestered, %	N/A	69.0
Sulfur Recovery	Claus Plant with Tail Gas Treatment / Elemental Sulfur	Claus Plant with Tail Gas Treatment / Elemental Sulfur
Methanation System	Based on Haldor Topsoe TREMP TM Process	Based on Haldor Topsoe TREMP TM Process
Ammonia Synthesis Loop	Based on Haldor Topsoe S-300 reactor with KM1R catalyst	Based on Haldor Topsoe S- 300 reactor with KM1R catalyst
Particulate Control	Scrubber and AGR Absorber	Scrubber and AGR Absorber
Mercury Control	Carbon Bed	Carbon Bed
NOx Control	N/A	N/A

Exhibit 4-27 Cases 3 and 4 Plant Study Configuration Matrix

Balance of Plant and Sparing Philosophy

The ammonia system feed and recycle compressors have 100 percent spares and the refrigeration unit is 2×50 percent. Consistent with other sections of the plant, non-rotating equipment is not spared in the ammonia plant.

The remaining balance of plant assumptions and sparing philosophy are common to all cases and are presented in Section 4.1.

4.2.3 Cases 3 and 4 Performance Results

The Siemens SNG and ammonia co-production plant without and with carbon sequestration and using Illinois No. 6 coal produces a net SNG output of 42 Bscf/year (90 percent CF) and 2,204 TPD of ammonia.

Overall performance for the two plants is summarized in Exhibit 4-28, which includes auxiliary power requirements and production values. The ASU accounts for approximately 55 percent of the total auxiliary load in the non-sequestration case and 44 percent in the sequestration case, distributed between the main air compressor, the oxygen compressor, and ASU auxiliaries. CO₂ compression accounts for about 18 percent of the total auxiliary load for the sequestration case. The AGR process accounts for about 11 percent and 9 percent of the auxiliary load for the non-sequestration cases, respectively. The ammonia production process accounts for about 16 percent and 13 percent of the auxiliary loads are less than 3 percent of the total.

POWER SUMMARY		
(Gross Power at Generator Terminals, kWe)	Case 3	Case 4
Steam Turbine Power	292,300	292,300
TOTAL POWER, kWe	292,300	292,300
AUXILIARY LOAD SUMMARY, kWe		
Coal Handling	700	700
Coal Milling	4,500	4,500
Slag Handling	1,140	1,140
Air Separation Unit Auxiliaries	1,000	1,000
Air Separation Unit Main Air Compressor	121,610	121,640
Oxygen Compressor	16,750	16,740
Nitrogen Compressor	9,570	9,570
CO ₂ Solid Feed System Compressors	4,980	240
SNG Compressors	4,680	4,680
Methanation Plant Recycle Compressor	4,390	4,390
Ammonia Plant Compressors	26,290	26,610
Ammonia Plant Refrigeration System	15,590	15,580
Gasifier Pilot Fuel Compressor and Incinerator Air Blower	300	300
CO ₂ Compressor	N/A	56,650
Boiler Feedwater Pumps	5,170	5,170
Condensate Pump	500	500
Quench Water Pump	640	640
Circulating Water Pump	6,200	6,220
Ground Water Pumps	670	680
Cooling Tower Fans	3,610	3,620
Scrubber Pumps	1,000	1,000
Acid Gas Removal	29,050	29,050
Steam Turbine Auxiliaries	100	100
Claus Plant/TGTU Auxiliaries	250	250
Claus Plant TG Recycle Compressor	310	320
Miscellaneous Balance of Plant ²	3,000	3,000
Transformer Losses	1,600	1,740
TOTAL AUXILIARIES, kWe	263,600	316,030
NET POWER, kWe	28,700	-23,730
SNG Production Rate, MNm ³ /hr (Mscf/hr)	150.9 (5,333)	150.8 (5,328)
Ammonia Production Rate, kg/hr (lb/hr)	83,324 (183,698)	83,295 (183,634)
Conversion Efficiency (HHV _{product} /HHV _{coal}), %	61.5%	61.4%
Coal Feed Flow Rate, kg/hr (lb/hr)	437,263 (964,000)	437,263 (964,000)
Thermal Input ¹ , kWth	3,295,885	3,295,885
Condenser Cooling Duty, GJ/hr (MMBtu/hr)	1,772 (1,680)	1,772 (1,680)
Raw Water Withdrawal, m ³ /min (gpm)	28.1 (7,434)	28.2 (7,458)
Raw Water Consumption, m ³ /min (gpm)	22.6 (5,979)	22.7 (5,997)

Exhibit 4-28 Cases 5 and 4 Plant Performance Summary	Exhibit 4-28	Cases 3 and 4 Plant Performance Summary
--	--------------	--

1 - HHV of Illinois No. 6 coal is 27,135 kJ/kg (11,666 Btu/lb) 2 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

Environmental Performance

The environmental targets for emissions of Hg, NOx, SO_2 , and PM were presented in Section 2.5. A summary of the plant air emissions for Cases 3 and 4 is presented in Exhibit 4-29.

		/GJ ⁶ Btu)	(ton/	e/year 'year) icity factor
	Case 3	Case 4	Case 3	Case 4
SO ₂	0.010 (0.023)	0.0002 (0.0006)	920 (1,014)	23 (26)
NO _X	Negligible	Negligible	Negligible	Negligible
Particulates	0.003 (0.0071)	0.003 (0.0071)	286 (315)	286 (315)
Hg	2.46E-7 (5.71E-7)	2.46E-7 (5.71E-7)	0.023 (0.025)	0.023 (0.025)
CO ₂	63.0 (146.5)	4.1 (9.5)	5,891,839 (6,494,641)	384,029 (423,320)

Exhibit 4-29 Cases 3 and 4 Air Emissions

The low level of SO₂ emissions in Case 4 is achieved by capture of the sulfur in the gas by the two-stage Selexol AGR process and co-sequestration with the CO₂ product. The clean syngas exiting the AGR process has a sulfur concentration of approximately 5 ppmv in both cases. The H₂S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The Claus plant tail gas is treated using an amine based system to capture most of the remaining sulfur. The clean syngas from the TGTU is combined with a slipstream of clean syngas from the Selexol process, passed through an incinerator, and the hot, inert incinerator offgas is used to dry coal prior to being vented to the atmosphere. The higher sulfur emissions in Case 3 are due to the sulfur contained in the CO₂-rich stream from the Selexol process, which is vented rather than sequestered.

NO_X emissions are negligible because no CT is used for power generation.

Particulate discharge to the atmosphere is limited to extremely low values by the use of a syngas scrubber and the gas washing effect of the AGR absorber. The particulate emissions represent filterable particulate only.

Ninety five percent of mercury is captured from the syngas by an activated carbon bed. CO_2 emissions represent the uncontrolled (Case 3) and controlled (Case 4) discharge from the process.

The carbon balance for the two cases is shown in Exhibit 4-30. The carbon input to the plant consists of carbon in the air in addition to carbon in the coal. Carbon in the air is not used in the carbon capture equation below, but it is not neglected in the balance since Aspen accounts for air components throughout. Carbon leaves the plant as unburned carbon in the slag,

Car	bon In, kg/hr (l	b/hr)	Carbo	n Out, kg/hr (l	b/hr)
	Case 3	Case 4		Case 3	Case 4
Coal	278,732 (614,499)	278,732 (614,499)	Slag	1,394 (3,072)	1,394 (3,072)
Air (CO ₂)	228 (503)	228 (503)	SNG Purification Off-Gas	10,810 (23,832)	N/A
			ASU Vent	203 (447)	203 (447)
			SNG	72,874 (160,660)	72,809 (160,517)
			CO ₂ Selexol Vent	160,170 (353,115)	N/A
			CO ₂ Lock Hopper Vent	21,082 (46,477)	840 (1,852)
			CO ₂ Product	N/A	191,257 (421,650)
			Stack	6,294 (13,876)	6,324 (13,942)
			PSA Purge Gas	6,133 (13,521)	6,132 (13,519)
Total	278,961 (615,003)	278,960 (615,003)	Total	278,961 (615,003)	278,960 (615,003)

Exhibit 4-30 Cases 3 and 4 Carbon Balance

 CO_2 in the stack gas, waste heat boiler gas, ASU vent gas, SNG product, and the CO_2 product (either vented or sequestered). The carbon capture efficiency is presented in two distinct ways. The first way defines capture as the amount of carbon in the CO_2 product for sequestration relative to the amount of carbon in the coal less carbon contained in the slag, and is represented by the following fraction:

(Carbon in Product for Sequestration)/[(Carbon in the Coal)-(Carbon in Slag)] or Non sequestration (Case 3) (421,650)/(614,499-3,072)*100 = 69.0% (Case 4)

The second way does not penalize the production facility for the carbon converted to SNG product, as the end use of the SNG is unknown. In a carbon constrained scenario, the SNG may or may not be used in a scenario where CCS is implemented. For this method, the burden of carbon mitigation falls on the end-user. The following fraction represents this scenario:

[(Carbon in Product for Sequestration) + (Carbon in SNG Product)]/[(Carbon in the Coal)-(Carbon in Slag)] or (0 + 160,660)/(614,499 - 3,072)*100 = 26.3% (Case 3) (421,650 + 160,517)/(614,499-3,072)*100 = 95.2% (Case 4) Exhibit 4-31 shows the sulfur balance for the plant. Sulfur input comes solely from the sulfur in the coal. Sulfur output includes the sulfur recovered in the Claus plant, sulfur in the SNG product, sulfur emitted in the stack gas, and sulfur co-sequestered with the CO_2 product (Case 4 only). Sulfur in the slag is considered negligible. The total sulfur capture is represented by the following fraction:

(Sulfur byproduct + Sulfur in CO₂ product)/Sulfur in the coal or(24,016 + 0)/24,162 = 99.4 percent (Case 3)(24,019 + 128)/24,162 = 99.9 percent (Case 4)

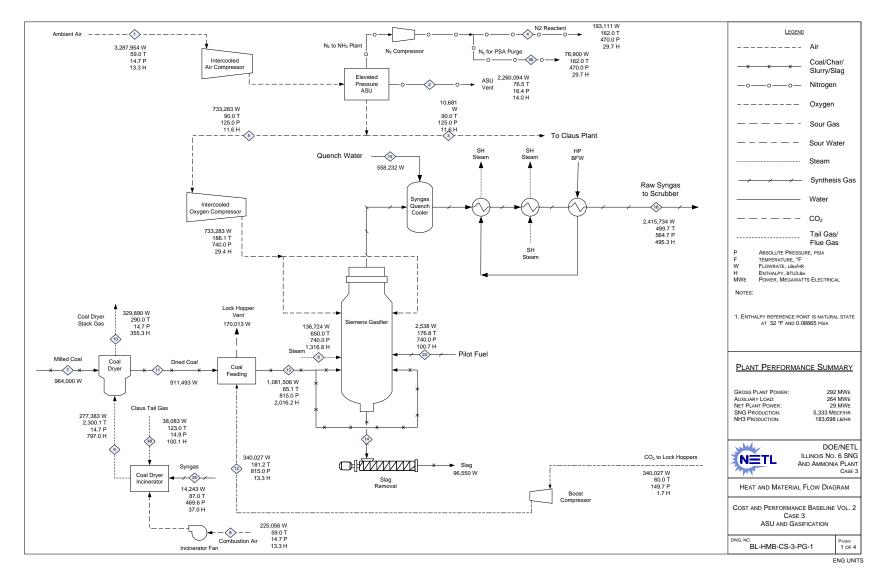

Ş	Sulfur In, kg/hr	(lb/hr)	Sulfur	Out, kg/hr (l	b/hr)
	Case 3	Case 4		Case 3	Case 4
Coal	10,960 (24,162)	10,960 (24,162)	Elemental Sulfur	10,893 (24,016)	10,895 (24,019)
			SNG	4 (9)	4 (9)
			Ammonia	0 (0)	0 (0)
			CO ₂ Vent Streams/Stack	61 (134)	2 (4)
			CO ₂ Product	N/A	58 (128)
			PSA Purge Gas	1 (3)	1 (3)
Total	10,960 (24,162)	10,960 (24,162)	Total	10,960 (24,162)	10,960 (24,162)

Exhibit 4-31 Cases 3 and 4 Sulfur Balance

Exhibit 4-32 shows the overall water balance for the plant. Water demand represents the total amount of water required for a particular process. Some water is recovered within the process, primarily as syngas condensate, and is re-used as internal recycle. The difference between demand and recycle is raw water withdrawal. Raw water withdrawal is defined as the water removed from the ground or diverted from a surface-water source for use in the plant and was assumed to be provided 50 percent by a POTW and 50 percent from groundwater. Raw water withdrawal can be represented by the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, BFW makeup, quench system makeup, and slag handling makeup. The difference between water withdrawal and process water discharge is defined as water consumption and can be represented by the portion of the raw water withdrawn that is evaporated, transpired, incorporated into products or otherwise not returned to the water source from which it was withdrawn. Water consumption represents the net impact of the plant process on the water source balance.

	Case 3	Case 4
Water Deman	$d, m^3/min (gpm)$	
Slag Handling	0.95 (251)	0.95 (251)
Quench/Wash	4.2 (1,116)	4.2 (1,116)
Condenser Makeup	8.5 (2,258)	8.5 (2,258)
Gasifier Steam	1.0 (273)	1.0 (273)
Shift Steam	7.1 (1,881)	7.1 (1,882)
BFW Makeup	0.39 (103)	0.39 (103)
Cooling Tower	24.1 (6,371)	24.2 (6,396)
Total	37.8 (9,996)	37.9 (10,021)
Internal Recyc	cle, m ³ /min (gpn	. , ,
Slag Handling	0.95 (251)	0.95 (251)
Quench/Wash	4.2 (1,116)	4.2 (1,116)
Condenser Makeup	0.0 (0)	0.0 (0)
Cooling Tower	4.5 (1,195)	4.5 (1,196)
Water from Coal Drying	0.0 (0)	0.0 (0)
BFW Blowdown	0.39 (103)	0.39 (103)
SWS Blowdown	0.85 (224)	0.85 (224)
SWS Excess	3.3 (868)	3.3 (869)
Total	9.7 (2,563)	9.7 (2,563)
Raw Water Withd	lrawal, m ³ /min (gpm)
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
Condenser Makeup	8.5 (2,258)	8.5 (2,258)
Gasifier Steam	1.0 (273)	1.0 (273)
Shift Steam	7.1 (1,881)	7.1 (1,882)
BFW Makeup	0.39 (103)	0.39 (103)
Cooling Tower	19.6 (5,176)	19.7 (5,200)
Total	28.1 (7,434)	28.2 (7,458)
Process Water Dis	charge, m³/min (
SWS Blowdown	0.08 (22)	0.08 (22)
Cooling Tower Blowdown	5.4 (1,433)	5.4 (1,438)
Total	5.5 (1,455)	5.5 (1,461)
Raw Water Consu		
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
SWS Blowdown	-0.08 (-22)	-0.08 (-22)
Condenser Makeup	8.5 (2,258)	8.5 (2,258)
Cooling Tower	14.2 (3,743)	14.2 (3,761)
Total	22.6 (5,979)	22.7 (5,997)

Exhibit 4-32 Cases 3 and 4 Water Balance

Exhibit 4-33 Case 3 Gasification and ASU Heat and Mass Balance

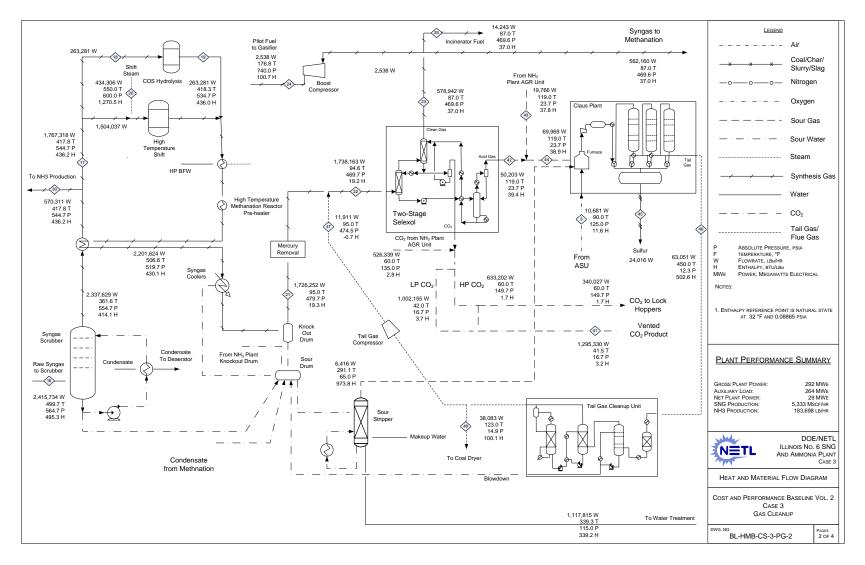


Exhibit 4-34 Case 3 Gas Cleanup Heat and Mass Balance

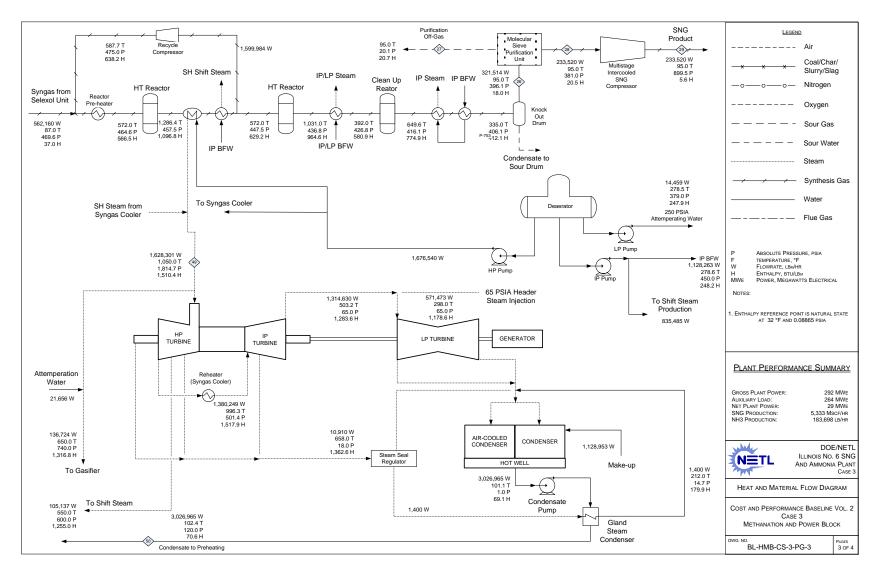


Exhibit 4-35 Case 3 Methanation and Power Block Heat and Mass Balance

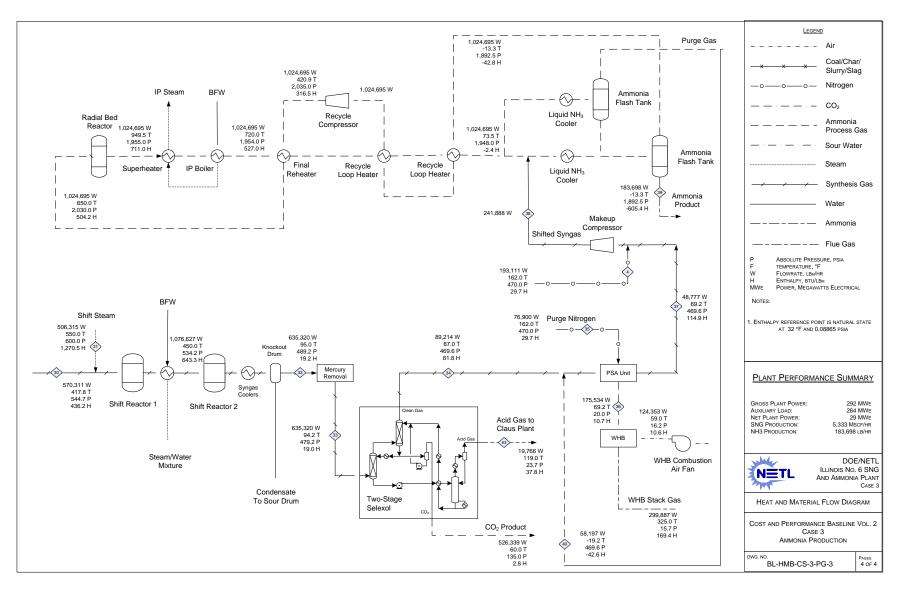


Exhibit 4-36 Case 3 Ammonia Production Heat and Mass Balance

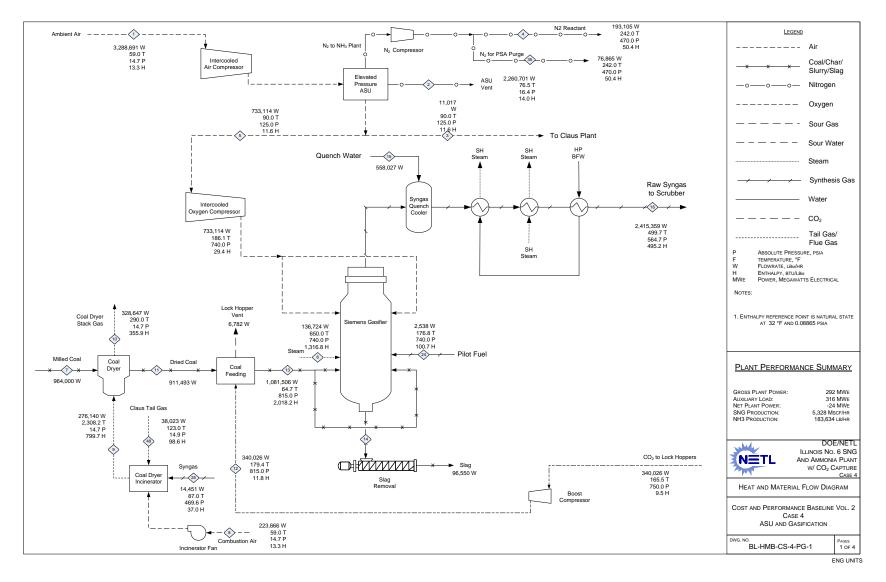


Exhibit 4-37 Case 4 Gasification and ASU Heat and Mass Balance

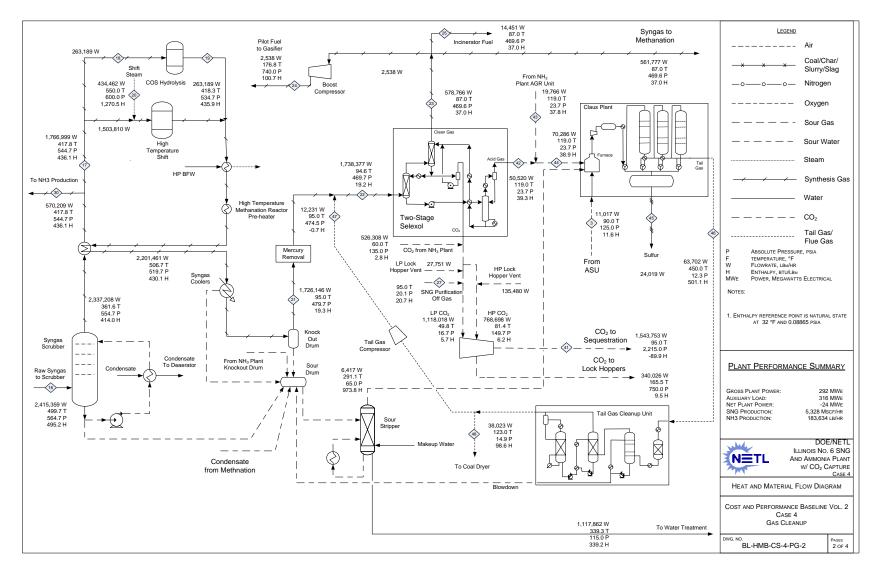


Exhibit 4-38 Case 4 Gas Cleanup Heat and Mass Balance

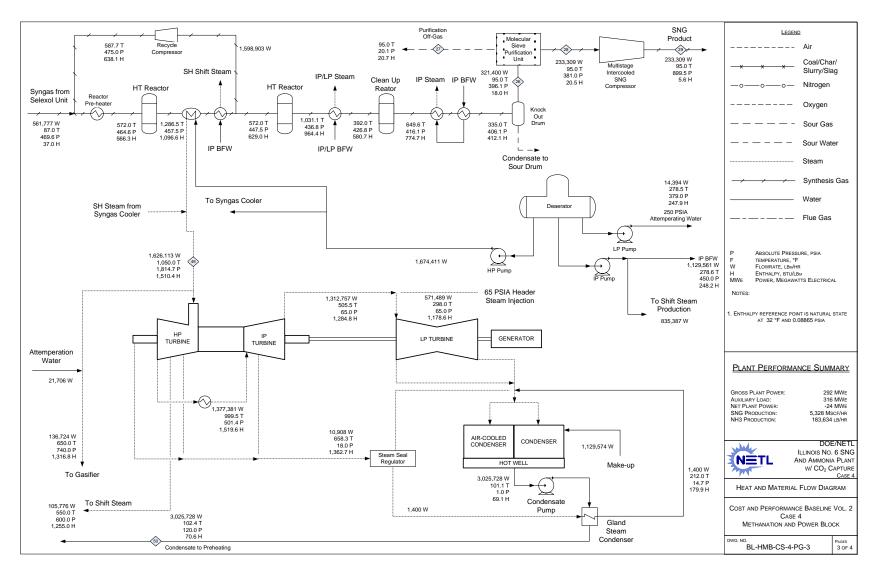


Exhibit 4-39 Case 4 Methanation and Power Block Heat and Mass Balance

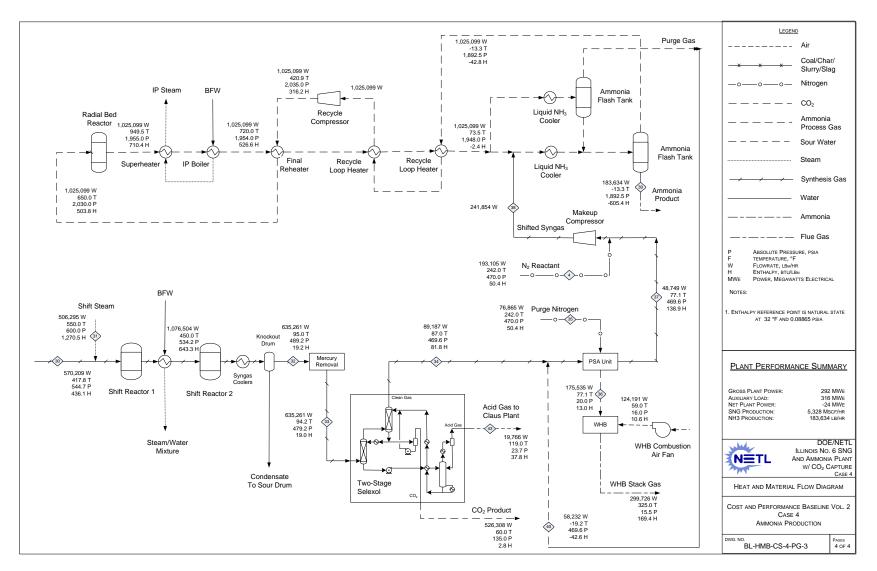


Exhibit 4-40 Case 4 Ammonia Production Heat and Mass Balance

	HE	IV	Sensible	+ Latent	Po	wer	To	otal
	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4
Heat In, GJ/hr (MMBtu/hr))							
Coal	11,865 (11,246)	11,865 (11,246)	12.1 (11.5)	12.1 (11.5)	0 (0)	0 (0)	11,877 (11,257)	11,877 (11,257)
ASU Air	0 (0)	0 (0)	50.7 (48.0)	50.7 (48.0)	0 (0)	0 (0)	51 (48)	51 (48)
Raw Water Makeup	0 (0)	0 (0)	105.8 (100.3)	106.2 (100.6)	0 (0)	0 (0)	106 (100)	106 (101)
Auxiliary Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	949 (899)	1,138 (1,078)	949 (899)	1,138 (1,078)
Totals	11,865 (11,246)	11,865 (11,246)	168.6 (159.8)	168.9 (160.1)	949 (899)	1,138 (1,078)	12,983 (12,305)	13,172 (12,484)
Heat Out, GJ/hr (MMBtu/h	ır)							
ASU/NH ₃ Intercoolers	0 (0)	0 (0)	405 (384)	412 (390)	0 (0)	0 (0)	405 (384)	412 (390)
ASU Vent	0 (0)	0 (0)	33 (32)	33 (32)	0 (0)	0 (0)	33 (32)	33 (32)
Slag	46 (43)	46 (43)	79 (75)	79 (75)	0 (0)	0 (0)	125 (118)	125 (118)
Coal Drying Stack Gas	0 (0)	0 (0)	123.7 (117.2)	123.4 (117.0)	0 (0)	0 (0)	124 (117)	123 (117)
Sulfur	101 (96)	101 (96)	1.2 (1.2)	1.2 (1.2)	0 (0)	0 (0)	102 (97)	102 (97)
CO ₂ Intercoolers	0 (0)	0 (0)	0.0 (0.0)	345 (327)	0 (0)	0 (0)	0 (0)	345 (327)
CO ₂	0 (0)	0 (0)	4.4 (4.2)	-146 (-139)	0 (0)	0 (0)	4 (4)	-146 (-139)
Cooling Tower Blowdown	0 (0)	0 (0)	40 (38)	40 (38)	0 (0)	0 (0)	40 (38)	40 (38)
SNG	5,409 (5,127)	5,404 (5,122)	1.4 (1.3)	1.4 (1.3)	0 (0)	0 (0)	5,410 (5,128)	5,405 (5,123)
SNG Purification Off-Gas	0 (0)	0 (0)	2 (2)	0 (0)	0 (0)	0 (0)	2 (2)	0 (0)
Ammonia	1,871 (1,773)	1,870 (1,773)	-117 (-111)	-117 (-111)	0 (0)	0 (0)	1,754 (1,662)	1,753 (1,661)
Ammonia WHB Off-Gas	0 (0)	0 (0)	54 (51)	54 (51)	0 (0)	0 (0)	54 (51)	54 (51)
Condenser	0 (0)	0 (0)	1,777 (1,684)	1,776 (1,684)	0 (0)	0 (0)	1,777 (1,684)	1,776 (1,684)
Auxiliary Cooling Loads	0 (0)	0 (0)	700 (664)	707 (670)	0 (0)	0 (0)	700 (664)	707 (670)
Process Losses*	0 (0)	0 (0)	1,400 (1,327)	1,390 (1,317)	0 (0)	0 (0)	1,400 (1,327)	1,390 (1,317)
Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	1,052 (997)	1,052 (997)	1,052 (997)	1,052 (997)
Totals	7,426 (7,039)	7,421 (7,034)	4,504 (4,269)	4,699 (4,454)	1,052 (997)	1,052 (997)	12,983 (12,305)	13,172 (12,484)

Exhibit 4-41 Cases 3 and 4 Energy Balance

* Includes other energy losses not explicitly accounted for in the model.

4.2.4 Cases 3 and 4 Equipment Lists

Major equipment items for the Siemens gasifier SNG and ammonia co-production plant without and with carbon sequestration using Illinois No. 6 coal are shown in the following tables. The accounts used in the equipment list correspond to the account numbers used in the cost estimates in Section 4.2.5. In general, the design conditions include a 10 percent contingency for flows and heat duties and a 21 percent contingency for heads on pumps and fans.

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	2	0	181 tonne (200 ton)	181 tonne (200 ton)
2	Feeder	Belt	2	0	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)
3	Conveyor No. 1	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
4	Transfer Tower No. 1	Enclosed	1	0	N/A	N/A
5	Conveyor No. 2	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
6	As-Received Coal Sampling System	Two-stage	1	0	N/A	N/A
7	Stacker/Reclaimer	Traveling, linear	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
8	Reclaim Hopper	N/A	2	1	91 tonne (100 ton)	91 tonne (100 ton)
9	Feeder	Vibratory	2	1	363 tonne/hr (400 tph)	363 tonne/hr (400 tph)
10	Conveyor No. 3	Belt w/ tripper	1	0	726 tonne/hr (800 tph)	726 tonne/hr (800 tph)
11	Crusher Tower	N/A	1	0	N/A	N/A
12	Coal Surge Bin w/ Vent Filter	Dual outlet	2	0	363 tonne (400 ton)	363 tonne (400 ton)
13	Crusher	Impactor reduction	2	0	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)
14	As-Fired Coal Sampling System	Swing hammer	1	1	N/A	N/A

ACCOUNT 1 COAL HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
15	Conveyor No. 4	Belt w/tripper	1	0	726 tonne/hr (800 tph)	726 tonne/hr (800 tph)
16	Transfer Tower No. 2	Enclosed	1	0	N/A	N/A
17	Conveyor No. 5	Belt w/ tripper	1	0	726 tonne/hr (800 tph)	726 tonne/hr (800 tph)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	3	0	1,633 tonne (1,800 ton)	1,633 tonne (1,800 ton)

ACCOUNT 2 COAL PREPARATION AND FEED

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Feeder	Vibratory	6	0	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)
2	Conveyor No. 6	Belt w/tripper	3	0	163 tonne/hr (180 tph)	163 tonne/hr (180 tph)
3	Roller Mill Feed Hopper	Dual Outlet	3	0	318 tonne (350 ton)	318 tonne (350 ton)
4	Weigh Feeder	Belt	6	0	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)
5	Pulverizer	Rotary	6	0	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	3	0	726,799 liters (192,000 gal)	726,799 liters (192,000 gal)
2	Condensate Pumps	Vertical canned	2	1	12,681 lpm @ 91 m H ₂ O (3,350 gpm @ 300 ft H ₂ O)	12,681 lpm @ 91 m H ₂ O (3,350 gpm @ 300 ft H ₂ O)
3	Deaerator	Horizontal spray type	2	0	920,793 kg/hr (2,030,000 lb/hr)	920,793 kg/hr (2,030,000 lb/hr)
4	Intermediate Pressure Feedwater Pump	Horizontal centrifugal, single stage	2	1	8,479 lpm @ 341 m H ₂ O (2,240 gpm @ 1120 ft H ₂ O)	8,517 lpm @ 341 m H ₂ O (2,250 gpm @ 1120 ft H ₂ O)
5	High Pressure Feedwater Pump	Barrel type, multi-stage, centrifugal	2	1	HP water: 7,268 lpm @ 1,676 m H ₂ O (1,920 gpm @ 5,500 ft H ₂ O)	HP water: 7,230 lpm @ 1,676 m H ₂ O (1,910 gpm @ 5,500 ft H ₂ O)
6	Auxiliary Boiler	Shop fabricated, water tube	1	0	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)
7	Service Air Compressors	Flooded Screw	3	1	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)
8	Instrument Air Dryers	Duplex, regenerative	3	1	28 m ³ /min (1,000 scfm)	28 m ³ /min (1,000 scfm)
9	Closed Cycle Cooling Heat Exchangers	Plate and frame	2	0	608 GJ/hr (576 MMBtu/hr) each	615 GJ/hr (583 MMBtu/hr)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
10	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	2	1	$\begin{array}{c c} 218,\!040 \text{ lpm @ } 21 \text{ m} \\ H_2\text{O} \\ (57,\!600 \text{ gpm @ } 70 \text{ ft} \\ H_2\text{O}) \end{array}$	220,690 lpm @ 21 m H ₂ O (58,300 gpm @ 70 ft H ₂ O)
11	Engine-Driven Fire Pump	Vertical turbine, diesel engine	1	1	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)
12	Fire Service Booster Pump	Two-stage horizontal centrifugal	1	1	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)
13	Raw Water Pumps	Stainless steel, single suction	2	1	7,798 lpm @ 18 m H ₂ O (2,060 gpm @ 60 ft H ₂ O)	7,836 lpm @ 18 m H ₂ O (2,070 gpm @ 60 ft H ₂ O)
14	Ground Water Pumps	Stainless steel, single suction	6	1	2,612 lpm @ 268 m H ₂ O (690 gpm @ 880 ft H ₂ O)	2,612 lpm @ 268 m H ₂ O (690 gpm @ 880 ft H ₂ O)
15	Filtered Water Pumps	Stainless steel, single suction	2	1	7,647 lpm @ 49 m H ₂ O (2,020 gpm @ 160 ft H ₂ O)	7,647 lpm @ 49 m H ₂ O (2,020 gpm @ 160 ft H ₂ O)
16	Filtered Water Tank	Vertical, cylindrical	2	0	3,660,493 liter (967,000 gal)	3,660,493 liter (967,000 gal)
17	Makeup Water Demineralizer	Anion, cation, and mixed bed	5	0	1,703 lpm (450 gpm)	1,703 lpm (450 gpm)
18	Liquid Waste Treatment System		1	0	10 years, 24-hour storm	10 years, 24-hour storm

Equipment No.	Description	Туре	Operating Qty.	Spare s	Case 3 Design Condition	Case 4 Design Condition
1	Gasifier	Pressurized dry- feed, entrained bed	6	0	1,905 tonne/day, 4.2 MPa (2,100 tpd, 615 psia)	1,905 tonne/day, 4.2 MPa (2,100 tpd, 615 psia)
2	Synthesis Gas Cooler	Convective spiral-wound tube boiler	6	0	200,941 kg/hr (443,000 lb/hr)	200,941 kg/hr (443,000 lb/hr)
3	Syngas Scrubber Including Sour Water Stripper	Vertical upflow	6	0	200,941 kg/hr (443,000 lb/hr)	200,941 kg/hr (443,000 lb/hr)
4	Raw Gas Coolers	Shell and tube with condensate drain	12	0	414,583 kg/hr (914,000 lb/hr)	414,583 kg/hr (914,000 lb/hr)
5	Raw Gas Knockout Drum	Vertical with mist eliminator	3	0	287,124 kg/hr, 35°C, 3.3 MPa (633,000 lb/hr, 95°F, 485 psia)	287,124 kg/hr, 35°C, 3.3 MPa (633,000 lb/hr, 95°F, 485 psia)
6	Flare Stack	Self-supporting, carbon steel, stainless steel top, pilot ignition	3	0	401,883 kg/hr (886,000 lb/hr) syngas	401,883 kg/hr (886,000 lb/hr) syngas
7	ASU Main Air Compressor	Centrifugal, multi-stage	3	0	7,476 m ³ /min @ 1.3 MPa (264,000 scfm @ 190 psia)	7,476 m ³ /min @ 1.3 MPa (264,000 scfm @ 190 psia)
8	Cold Box	Vendor design	3	0	2,994 tonne/day (3,300 tpd) of 99% purity oxygen	2,994 tonne/day (3,300 tpd) of 99% purity oxygen

ACCOUNT 4 GASIFIER, ASU, AND ACCESSORIES INCLUDING LOW TEMPERATURE HEAT RECOVERY

Equipment No.	Description	Туре	Operating Qty.	Spare s	Case 3 Design Condition	Case 4 Design Condition
9	Oxygen Compressor	Centrifugal, multi-stage	3	0	1,501 m ³ /min (53,000 scfm) Suction - 0.9 MPa 130 psia) Discharge - 5.1 MPa (740 psia)	1,501 m ³ /min (53,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)
10	Coal Feed System CO ₂ Compressor	Centrifugal, multi-stage	3	0	510 m ³ /min (18,000 scfm) Suction - 1.0 MPa (150 psia) Discharge - 5.7 MPa (820 psia)	510 m ³ /min (18,000 scfm) Suction - 5.2 MPa (750 psia) Discharge - 5.7 MPa (820 psia)

ACCOUNT 5A SYNGAS CLEANUP

Equipment No.	Description	Туре	Operating Qty.	Spare s	Case 3 Design Condition	Case 4 Design Condition
1	Mercury Adsorber	Sulfated carbon bed	3	0	392,811 kg/hr (866,000 lb/hr) 35°C (95°F) 3.3 MPa (480 psia)	392,811 kg/hr (866,000 lb/hr) 35°C (95°F) 3.3 MPa (480 psia)
2	Zinc Oxide Guard Bed	Fixed bed	1	0	335 Nm ³ /min (11,827 acfm)	335 Nm ³ /min (11,817 acfm)
3	Sulfur Plant	Claus type	2	0	144 tonne/day (159 tpd)	144 tonne/day (159 tpd)
4	SNG Plant COS Hydrolysis Reactor	Fixed bed, catalytic	2	0	65,771 kg/hr (145,000 lb/hr) 216°C (420°F) 3.7 MPa (540 psia)	65,771 kg/hr (145,000 lb/hr) 216°C (420°F) 3.7 MPa (540 psia)

Equipment No.	Description	Туре	Operating Qty.	Spare s	Case 3 Design Condition	Case 4 Design Condition
5	SNG Plant Water Gas Shift Reactor	Fixed bed, catalytic	2	0	483,529 kg/hr (1,066,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)	483,529 kg/hr 1,066,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)
6	Shift Reactor Heat Recovery Exchanger	Shell and Tube	2 each	0	Exchanger 1: 34 GJ/hr (32 MMBtu/hr) Exchanger 2: 61 GJ/hr (57 MMBtu/hr) Exchanger 3: 17 GJ/hr (16 MMBtu/hr)	Exchanger 1: 34 GJ/hr (32 MMBtu/hr) Exchanger 2: 61 GJ/hr (57 MMBtu/hr) Exchanger 3: 17 GJ/hr (16 MMBtu/hr)
7	Ammonia Plant Water Gas Shift Reactors	Fixed bed, catalytic	2	0	268,527 kg/hr (592,000 lb/hr) 249°C (480°F) 3.7 MPa (540 psia)	268,527 kg/hr (592,000 lb/hr) 249°C (480°F) 3.7 MPa (540 psia)
8	Ammonia Plant Shift Reactor Heat Recovery Exchanger	Shell and Tube	1	0	227 GJ/hr (215 MMBtu/hr)	227 GJ/hr (215 MMBtu/hr)
9	Acid Gas Removal Plant	Two-stage Selexol	3	0	394,625 kg/hr (870,000 lb/hr) 35°C (95°F) 3.2 MPa (470 psia)	394,625 kg/hr (870,000 lb/hr) 35°C (95°F) 3.2 MPa (470 psia)
10	Tail Gas Treatment Unit	Proprietary amine, absorber/strippe r	2	0	12,561 kg/hr (27,692 lb/hr) 49°C (120°F) 0.1 MPa (10.6 psia)	12,625 kg/hr (27,833 lb/hr) 49°C (120°F) 0.1 MPa (10.6 psia)

Equipment No.	Description	Туре	Operating Qty.	Spare s	Case 3 Design Condition	Case 4 Design Condition
11	Tail Gas Treatment Incinerator	N/A	2	0	69,200 kg/hr (152,561 lb/hr) 24°C (75°F) 0.1 MPa (14.9 psia)	68,890 kg/hr (151,877 lb/hr) 24°C (74°F) 0.1 MPa (14.9 psia)
12	Tail Gas Recycle Compressor	Centrifugal	2	0	3,060 kg/hr @ 3.3 MPa (6,746 lb/hr @ 475 psia)	3,139 kg/hr @ 3.3 MPa (6,920 lb/hr @ 475 psia)

ACCOUNT 5A SNG PRODUCTION/METHANATION SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Methanation Reactor Preheater	Shell and Tube	2	0	106 GJ/hr (101 MMBtu/hr)	106 GJ/hr (100 MMBtu/hr)
2	Methanation Reactor 1	Fixed Bed, catalytic	2	0	539,321 kg/hr (1,189,000 lb/hr) 699°C (1,290°F) 3.2 MPa (460 psia)	538,868 kg/hr (1,188,000 lb/hr) 699°C (1290°F) 3.2 MPa (460 psia)
3	Methanation Reactor Intercooler 1	Shell and Tube	2	0	462 GJ/hr (437 MMBtu/hr)	461 GJ/hr (437 MMBtu/hr)
4	Methanation Reactor Intercooler 2	Shell and Tube	2	0	125 GJ/hr (119 MMBtu/hr)	125 GJ/hr (119 MMBtu/hr)
5	Methanation Reactor 2	Fixed Bed, catalytic	2	0	140,160 kg/hr (309,000 lb/hr) 554°C (1,030°F) 3.1 MPa (450 psia)	140,160 kg/hr (309,000 lb/hr) 554°C (1,030°F) 3.1 MPa (450 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
6	Methanation Reactor Intercooler 3	Shell and Tube	2	0	33 GJ/hr (31 MMBtu/hr)	33 GJ/hr (31 MMBtu/hr)
7	Methanation Reactor 3	Fixed Bed, catalytic	2	0	140,160 kg/hr (309,000 lb/hr) 343°C (650°F) 3.0 MPa (430 psia)	140,160 kg/hr (309,000 lb/hr) 343°C (650°F) 3.0 MPa (430 psia)
8	Methanation Reactor Intercooler 4	Shell and Tube	2	0	45 GJ/hr (43 MMBtu/hr)	45 GJ/hr (43 MMBtu/hr)
9	Methanation Reactor Intercooler 5	Shell and Tube	2	0	73 GJ/hr (70 MMBtu/hr)	73 GJ/hr (69 MMBtu/hr)
10	SNG Purification Condenser 1	Shell and Tube	2	0	62 GJ/hr (59 MMBtu/hr)	62 GJ/hr (59 MMBtu/hr)
11	SNG Purification Condenser 2	Shell and Tube	2	0	37 GJ/hr (35 MMBtu/hr)	37 GJ/hr (35 MMBtu/hr)
12	Methanation Recycle Compressor	Centrifugal	2	1	9,781 m ³ /min (345,400 scfm) Suction - 3.1 MPa (448 psia) Discharge - 3.3 MPa (475 psia)	9,772 m ³ /min (345,100 scfm) Suction - 3.1 MPa (448 psia) Discharge - 3.3 MPa (475 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
13	Molecular Sieve Purification Reactor	Fixed bed	8	0	22,226 kg/hr (49,000 lb/hr) 129°C (265°F) 2.8 MPa (401 psia)	22,226 kg/hr (49,000 lb/hr) 129°C (265°F) 2.8 MPa (401 psia)
14	SNG Product Compressor	Centrifugal, Multi- staged	2	1	1,385 m ³ /min (48,900 scfm) 2.6 MPa (381 psia) 6.2 MPa (900 psia)	1,382 m ³ /min (48,800 scfm) 2.6 MPa (381 psia) 6.2 MPa (900 psia)

ACCOUNT 5A AMMONIA SYNTHESIS LOOP

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Ammonia Converter Preheater 1	Shell and Tube	1	0	511,199 kg/hr (1,127,000 lb/hr) 76°C (169°F) 13.4 MPa (1,949 psia) 107 MMBtu/hr	511,652 kg/hr (1,128,000 lb/hr) 76°C (169°F) 13.4 MPa (1,949 psia) 107 MMBtu/hr
2	Ammonia Converter Preheater 2	Shell and Tube	1	0	511,199 kg/hr (1,127,000 lb/hr) 250°C (482°F) 13.4 MPa (1,949 psia) 278 MMBtu/hr	511,652 kg/hr (1,128,000 lb/hr) 250°C (482°F) 13.4 MPa (1,949 psia) 278 MMBtu/hr
3	Ammonia Converter Preheater 3	Shell and Tube	1	0	511,199 kg/hr (1,127,000 lb/hr) 382°C (720°F) 14.0 MPa (2,035 psia) 212 MMBtu/hr	511,652 kg/hr (1,128,000 lb/hr) 382°C (720°F) 14.0 MPa (2,035 psia) 211 MMBtu/hr

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
4	Ammonia Synthesis Loop Superheater	Shell and Tube	1	0	511,199 kg/hr (1,127,000 lb/hr) 510°C (949°F) 13.5 MPa (1,955 psia) 154 MMBtu/hr	511,652 kg/hr (1,128,000 lb/hr) 510°C (949°F) 13.5 MPa (1,955 psia) 153 MMBtu/hr
5	Ammonia Synthesis Loop BFW Heater	Shell and Tube	1	0	511,199 kg/hr (1,127,000 lb/hr) 416°C (780°F) 13.5 MPa (1,955 psia) 54 MMBtu/hr	511,652 kg/hr (1,128,000 lb/hr) 416°C (780°F) 13.5 MPa (1,955 psia) 54 MMBtu/hr
6	Ammonia Converter	Haldor Topsoe S- 300 Radial Flow	1	0	511,199 kg/hr 1,127,000 lb/hr) 510°C (949°F) 14.0 MPa (2,030 psia)	511,652 kg/hr 1,128,000 lb/hr) 510°C (949°F) 14.0 MPa (2,030 psia)
7	Refrigeratio n System	Ammonia- Based	2	0	26,025 kW refrigeration (7,400 tons refrigeration)	26,025 kW refrigeration (7,400 tons refrigeration)
8	Primary Ammonia Separator	Refrigerated	1	0	602,824 kg/hr (1,329,000 lb/hr) -25°C (-13°F) 13.3 MPa (1,928 psia)	603,278 kg/hr (1,330,000 lb/hr) -25°C (-13°F) 13.3 MPa (1,928 psia)
9	Purge Separator	Refrigerated	1	0	35,834 kg/hr (79,000 lb/hr) -25°C (-13°F) 13.4 MPa (1,948 psia)	35,834 kg/hr (79,000 lb/hr) -25°C (-13°F) 13.4 MPa (1,948 psia)
10	Ammonia System Feed Compressor	Centrifugal, Multi- Staged	1	1	5,573 m ³ /min (196,800 scfm) Suction - 3.24MPa (470 psia) Discharge - 13.6 MPa (1,975 psia)	5,570 m ³ /min (196,700 scfm) Suction - 3.24MPa (470 psia) Discharge - 13.6 MPa (1,975 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
11	Ammonia System Recycle Compressor	Centrifugal	1	1	22,999 m ³ /min (812,200 scfm) Suction - 13.0 MPa (1,892 psia) Discharge - 14.0 MPa (2,035 psia)	22,990 m ³ /min (811,900 scfm) Suction - 13.0 MPa (1,892 psia) Discharge - 14.0 MPa (2,035 psia)
12	Pressure Swing Absorption System	Fixed bed	1	0	8 MM SCMD (280 MM SCFD) 21°C (69°F) 3.2 MPa (470 psia)	8 MM SCMD (280 MM SCFD) 25°C (77°F) 3.2 MPa (470 psia)
13	Ammonia Storage Vessel	Cylindrical, Refrigerated	2	0	32,683 tonnes (36,000 tons) Stored at -23°C (-10°F) 0.1 MPa (15 psia)	32,683 tonnes (36,000 tons) Stored at -23°C (-10°F) 0.1 MPa (15 psia)
14	Waste Heat Boiler	Shop fabricated, water tube	1	0	149,685 kg/hr (330,000 lb/hr) 1012°C (1,853°F) 0.1 MPa (20 psia)	149,685 kg/hr (330,000 lb/hr) 1014°C (1,857°F) 0.1 MPa (20 psia)

ACCOUNT 5B CO₂ COMPRESSION

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	CO ₂ Compressor	Integrally geared, multi-stage centrifugal	4	0	N/A	1,739 m ³ /min @ 15.3 MPa (61,400 scfm @ 2,215 psia)

ACCOUNT 6 COMBUSTION TURBINE AND AUXILIARIES

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Combustion Turbine	N/A	N/A	N/A	N/A	N/A
2	Combustion Turbine Generator	N/A	N/A	N/A	N/A	N/A

ACCOUNT 7 DUCTING & STACK

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Stack	CS plate, type 409SS liner	1	0	76 m (250 ft) high x 3.0 m (10 ft) diameter	76 m (250 ft) high x 2.4 m (8 ft) diameter

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Steam Turbine	Commercially available	1	0	308 MW 12.4 MPa/566°C (1800 psig/ 1050°F)	308 MW 12.4 MPa/566°C (1800 psig/ 1050°F)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	1	0	340 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	340 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1	0	1,952 GJ/hr (1,850 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1,952 GJ/hr (1,850 MMBtu/hr), Condensing temperature 16°C (60°F), Ambient temperature 11°C (20°F)
4	Air-cooled Condenser		N/A	N/A	N/A	N/A

ACCOUNT 8 STEAM TURBINE GENERATOR AND AUXILIARIES

ACCOUNT 9 COOLING WATER SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Circulating Water Pumps	Vertical, wet pit	2	1	620,808 lpm @ 30 m (164,000 gpm @ 100 ft)	624,593 lpm @ 30 m (165,000 gpm @ 100 ft)
2	Cooling Tower	Evaporative, mechanical draft, multi- cell	1	0	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 3,461 GJ/hr (3,280 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 3,482 GJ/hr (3,300 MMBtu/hr) heat duty

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	Slag Quench Tank	Water bath	6	0	151,416 liters (40,000 gal)	151,416 liters (40,000 gal)
2	Slag Crusher	Roll	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
3	Slag Depressuriz er	Proprietary	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
4	Slag Receiving Tank	Horizontal, weir	6	0	90,850 liters (24,000 gal)	90,850 liters (24,000 gal)
5	Black Water Overflow Tank	Shop fabricated	6	0	41,640 liters (11,000 gal)	41,640 liters (11,000 gal)
6	Slag Conveyor	Drag chain	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
7	Slag Separation Screen	Vibrating	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
8	Coarse Slag Conveyor	Belt/bucket	6	0	8 tonne/hr (9 tph)	8 tonne/hr (9 tph)
9	Fine Ash Settling Tank	Vertical, gravity	6	0	132,489 liters (35,000 gal)	132,489 liters (35,000 gal)

ACCOUNT 10 SLAG RECOVERY AND HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
10	Fine Ash Recycle Pumps	Horizontal centrifugal	6	3	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)
11	Grey Water Storage Tank	Field erected	6	0	41,640 liters (11,000 gal)	41,640 liters (11,000 gal)
12	Grey Water Pumps	Centrifugal	6	3	151 lpm @ 433 m H ₂ O (40 gpm @ 1,420 ft H ₂ O)	151 lpm @ 433 m H ₂ O (40 gpm @ 1,420 ft H ₂ O)
13	Slag Storage Bin	Vertical, field erected	6	0	544 tonne (600 tons)	544 tonne (600 tons)
14	Unloading Equipment	Telescoping chute	2	0	100 tonne/hr (110 tph)	100 tonne/hr (110 tph)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	STG Step-up Transformer	Oil-filled	1	0	24 kV/345 kV, 340 MVA, 3-ph, 60 Hz	24 kV/345 kV, 340 MVA, 3-ph, 60 Hz
2	Auxiliary Transformer	Oil-filled	1	1	24 kV/4.16 kV, 291 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 349 MVA, 3-ph, 60 Hz
3	Low Voltage Transformer	Dry ventilated	1	1	4.16 kV/480 V, 44 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 52 MVA, 3-ph, 60 Hz
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	1	0	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz
5	Medium Voltage Switchgear	Metal clad	1	1	24 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz
6	Low Voltage Switchgear	Metal enclosed	1	1	4.16 kV, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz
7	Emergency Diesel Generator	Sized for emergency shutdown	1	0	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz

ACCOUNT 11 ACCESSORY ELECTRIC PLANT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 3 Design Condition	Case 4 Design Condition
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	1	0	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers
2	DCS - Processor	Microprocessor with redundant input/output	1	0	N/A	N/A
3	3 DCS - Data Highway	Fiber optic	1	0	Fully redundant, 25% spare	Fully redundant, 25% spare

ACCOUNT 12 INSTRUMENTATION AND CONTROLS

4.2.5 Cases 3 and 4 Cost Estimating

The cost estimating methodology was described previously in Section 2.8.

The TPC organized by cost account, owner's costs, TOC, and initial and annual O&M costs for the SNG and ammonia co-production plant without sequestration using Illinois No. 6 coal (Case 3) are shown in Exhibit 4-42 and Exhibit 4-43, respectively. The same data for the SNG and ammonia co-production plant with sequestration using Illinois No. 6 coal (Case 4) are shown in Exhibit 4-44 and Exhibit 4-45.

The estimated TOC of the co-production plant without carbon sequestration is 3.74 billion dollars and with carbon sequestration is 3.83 billion dollars. Project and process contingencies represent 11.7 and 3.3 percent for both the non-sequestration and sequestration cases. The FYCOP for SNG is \$15.82/MMBtu for the non-sequestration case and \$17.85/MMBtu for the sequestration case, with a consequential selling price of ammonia of \$799/ton and \$828/ton for the non-sequestration and sequestration and sequestration cases.

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform									
		-	TOTAL F	PLANT C	COST S	UMMA	RY				
	Case:	Case 3 - Sieme	ens Quench S	NG & Ammo	nia Product	ion w/o CO2	2				
	Plant Size:	28.7	MW,net	Estimate Ty	/pe:	Conceptua	I	Cos	t Base (Jun)	2007	(\$x1000)
Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM		ngencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
	COAL & SORBENT HANDLING										
1.1	Coal Receive & Unload	\$5,727	\$0	\$2,798	\$0	\$0		\$764	\$0	1 1 1 1 1 1	\$11,146
1.2	Coal Stackout & Reclaim	\$7,400	\$0	\$1,794	\$0	\$0		\$806	\$0		\$12,000
	Coal Conveyors & Yd Crush	\$6,880	\$0	\$1,775	\$0	\$0		\$760	\$0		\$11,298
	Other Coal Handling	\$1,800	\$0	\$411	\$0	\$0		\$193	\$0		\$2,885
1.5	Sorbent Receive & Unload	\$0	\$0	\$0	\$0	\$0		\$0	\$0		
1.6	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0	\$0		\$0			
1.7	Sorbent Conveyors	\$0	\$0	\$0	\$0	\$0		\$0	\$0		
1.8	Other Sorbent Handling	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$4,052	\$10,133	\$0	\$0		\$1,360	\$0		
	SUBTOTAL 1.	\$21,806	\$4,052	\$16,911	\$0	\$0	\$42,769	\$3,882	\$0	\$9,330	\$55,982
2	COAL & SORBENT PREP & FEED										
2.1	Coal Crushing & Drying	\$92,894	\$0	\$13,536	\$0	\$0	\$106,430	\$9,666	\$0	\$23,219	\$139,315
2.2	Prepared Coal Storage & Feed	\$4,400	\$1,053	\$690	\$0	\$0	\$6,143	\$525	\$0	\$1,334	\$8,002
2.3	Dry Coal Injection System	\$144,803	\$1,681	\$13,448	\$0	\$0	\$159,932	\$13,775	\$0	\$34,741	\$208,448
2.4	Misc.Coal Prep & Feed	\$2,420	\$1,761	\$5,279	\$0	\$0	\$9,459	\$869	\$0	\$2,066	\$12,394
2.5	Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.6	Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.7	Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.8	Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.9	Coal & Sorbent Feed Foundation	\$0	\$9,405	\$7,721	\$0	\$0	\$17,126	\$1,586	\$0	\$3,742	\$22,454
	SUBTOTAL 2.	\$244,517	\$13,899	\$40,674	\$0	\$0	\$299,090	\$26,421	\$0	\$65,102	\$390,613
3	FEEDWATER & MISC. BOP SYSTEMS										
3.1	Feedwater System	\$3,508	\$1,630	\$1,977	\$0	\$0	\$7,115	\$643	\$0	\$1,552	\$9,310
3.2	Water Makeup & Pretreating	\$854	\$89	\$477	\$0	\$0	\$1,421	\$135	\$0	\$467	\$2,023
3.3	Other Feedwater Subsystems	\$3,808	\$1,151	\$1,884	\$0	\$0	\$6,843	\$621	\$0	\$1,493	\$8,958
3.4	Service Water Systems	\$489	\$1,006	\$3,493	\$0	\$0	\$4,988	\$487	\$0	\$1,643	\$7,118
3.5	Other Boiler Plant Systems	\$2,623	\$1,016	\$2,519	\$0	\$0	\$6,158	\$584	\$0	\$1,348	\$8,091
3.6	FO Supply Sys & Nat Gas	\$102	\$210	\$188	\$0	\$0	\$500	\$48	\$0	\$110	\$658
3.7	Waste Treatment Equipment	\$1,194	\$0	\$728	\$0	\$0	\$1,922	\$187	\$0	\$633	\$2,742
3.8	Misc. Power Plant Equipment	\$1,721	\$230	\$883	\$0	\$0	\$2,834	\$274	\$0	\$932	\$4,040
	SUBTOTAL 3.	\$14,298	\$5,334	\$12,150	\$0	\$0	\$31,782	\$2,980	\$0	\$8,177	\$42,939
4	GASIFIER & ACCESSORIES										
4.1	Gasifier, Syngas Cooler & Auxiliaries	\$326,034	\$0	\$150,944	\$0	\$0	\$476,977	\$42,364	\$71,547	\$88,633	\$679,521
4.2	Syngas Cooling	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3	ASU/Oxidant Compression	\$250,140	\$0	w/equip.	\$0	\$0	\$250,140	\$24,246	\$0	\$27,439	\$301,825
4.4	LT Heat Recovery & FG Saturation	\$55,465	\$0	\$20,551	\$0	\$0	\$76,016	\$7,282	\$0	\$16,660	\$99,958
	Misc. Gasification Equipment	w/4.1&4.2	\$0	w/4.1&4.2	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Flare Stack System	\$0	\$2,332	\$949	\$0	\$0	\$3,282	\$315	\$0	\$719	\$4,315
	CO2 Solid Feed System Compressors	\$10,514	\$2,523	\$3,785	\$0	\$0	\$16,822	\$1,682	\$0	\$3,701	\$22,205
	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2	\$0	\$0		\$0	\$0		
	Gasification Foundations	\$0	\$21,135	\$12,059	\$0	\$0		\$3,039	\$0		
	SUBTOTAL 4.	\$642,153		\$188,288	\$0	\$0			\$71,547	\$146,210	

Exhibit 4-42 Case 3 Total Plant Cost Details

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Contir	ngencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$128,808	\$0	\$109,297	\$0	\$0	\$238,105	\$23,027	\$47,621	\$61,751	\$370,504
5A.2	Elemental Sulfur Plant	\$16,279	\$3,245	\$21,003	\$0	\$0	\$40,527	\$3,937	\$0	\$8,893	\$53,357
5A.3	Mercury Removal	\$2,499	\$0	\$1,902	\$0	\$0	\$4,401	\$425	\$220	\$1,009	\$6,056
5A.4a	Shift Reactors	\$11,793	\$0	\$4,747	\$0	\$0	\$16,540	\$1,586	\$0	\$3,625	\$21,751
5A.4b	COS Hydrolysis	\$1,494	\$0	\$1,951	\$0	\$0	\$3,445	\$335	\$0	\$756	\$4,536
5A.5	Methanation	\$21,900	\$8,760	\$13,140	\$0	\$0	\$43,800	\$4,380	\$4,380	\$10,512	\$63,072
5A.6	SNG Purification & Compression	\$17,050	\$6,820	\$10,230	\$0	\$0	\$34,100	\$3,410	\$0	\$7,502	\$45,012
5A.7	Fuel Gas Piping	\$0	\$1,749	\$1,225	\$0	\$0	\$2,974	\$276	\$0	\$650	\$3,900
5A.8	Ammonia Production	\$171,774	\$44,276	\$88,551	\$0	\$0	\$304,601	\$30,460	\$0	\$50,259	\$385,320
5A.9	Process Interconnects	\$0	\$18,400	\$27,600	\$0	\$0	\$46,000	\$4,600	\$0	\$10,120	\$60,720
5A.10	HGCU Foundations	\$0	\$1,771	\$1,142	\$0	\$0	\$2,913	\$268	\$0	\$954	\$4,135
5A.11	Zinc Oxide Guard Bed	\$664	\$0	\$122	\$0	\$0	\$786	\$79	\$0	\$173	\$1,038
	SUBTOTAL 5A.	\$372,262	\$85,021	\$280,911	\$0	\$0	\$738,194	\$72,782	\$52,221	\$156,204	\$1,019,401
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5B.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6	COMBUSTION TURBINE/ACCESSORIES										
6.1	Combustion Turbine Generator	\$0	\$0	\$0		\$0				\$0	
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
	Heat Recovery Steam Generator	\$0	\$0	\$0		\$0			\$0	\$0	
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.3	Ductwork	\$0	\$503	\$359	\$0	\$0	\$863	\$76	\$0	\$188	\$1,126
7.4	Stack	\$1,814	\$0	\$682	\$0	\$0	\$2,496	\$239	\$0	\$274	\$3,009
7.9	HRSG,Duct & Stack Foundations	\$0	\$364	\$349	\$0	\$0	\$713	\$66	\$0	\$234	\$1,013
	SUBTOTAL 7.	\$1,814	\$867	\$1,390	\$0	\$0	\$4,071	\$381	\$0	\$695	\$5,147
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$30,291	\$0	\$5,224	\$0	\$0	\$35,514	\$3,408	\$0	\$3,892	\$42,814
8.2	Turbine Plant Auxiliaries	\$163	\$0	\$482	\$0	\$0	\$645	\$63	\$0	\$71	\$780
8.3	Condenser & Auxiliaries	\$5,594	\$0	\$1,578	\$0	\$0	\$7,172	\$685	\$0	\$786	\$8,643
8.4	Steam Piping	\$5,482	\$0	\$3,856	\$0	\$0	\$9,338	\$802	\$0	\$2,535	\$12,675
8.9	TG Foundations	\$0	\$1,043	\$1,764	\$0	\$0	\$2,807	\$266	\$0	\$922	\$3,995
	SUBTOTAL 8.	\$41,530	\$1,043	\$12,905	\$0	\$0	\$55,477	\$5,225	\$0	\$8,206	\$68,908

Exhibit 4-42 Case 3 Total Plant Cost Details (continued)

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Conti	ngencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM									_	
9.1	Cooling Towers	\$8,777	\$0	\$1,597	\$0	\$0	\$10,373	\$988	\$0	\$1,704	\$13,065
9.2	Circulating Water Pumps	\$2,333	\$0	\$85	\$0	\$0	\$2,417	\$203	\$0	\$393	\$3,013
	Circ.Water System Auxiliaries	\$185	\$0	\$26	\$0	\$0	\$212	\$20	\$0	\$35	\$267
	Circ.Water Piping	\$0	\$7,740	\$2,007	\$0	\$0	\$9,747	\$881	\$0	\$2,125	\$12,753
9.5	Make-up Water System	\$450	\$0	\$643	\$0	\$0	\$1,093	\$105	\$0	\$239	\$1,437
9.6	Component Cooling Water Sys	\$914	\$1,093	\$778	\$0	\$0	\$2,784	\$261	\$0	\$609	\$3,654
	Circ.Water System Foundations	\$0	\$2,834	\$4,818	\$0	\$0		\$725	\$0		\$10,891
	SUBTOTAL 9.	\$12,658	\$11,667	\$9,953	\$0	\$0	\$34,278	\$3,183	\$0	\$7,619	\$45,080
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$36,250	\$0	\$35,754	\$0	\$0	\$72,004	\$6,977	\$0	\$7,898	\$86,879
	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0		\$0	\$0		
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$C	\$0
10.4	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
	Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$C	\$0
	Ash Storage Silos	\$817	\$0	\$889	\$0	\$0		\$166		\$281	\$2,153
	Ash Transport & Feed Equipment	\$1,096	\$0	\$265	\$0	\$0		\$127	\$0	\$223	\$1,711
	Misc. Ash Handling Equipment	\$1,693	\$2,075	\$620	\$0	\$0		\$418	\$0	\$721	\$5,526
	Ash/Spent Sorbent Foundation	\$0	\$72	\$91	\$0	\$0		\$15			
	SUBTOTAL 10.	\$39,857	\$2,147	\$37,618	\$0	\$0		\$7,702			\$96,502
11	ACCESSORY ELECTRIC PLANT										
11.1	Generator Equipment	\$420	\$0	\$416	\$0	\$0	\$836	\$80	\$0	\$92	\$1,007
	Station Service Equipment	\$5,754	\$0	\$519	\$0	\$0		\$578			
11.3	Switchgear & Motor Control	\$10,637	\$0	\$1,935	\$0	\$0	\$12,572	\$1,166	\$0	\$2,061	\$15,799
	Conduit & Cable Tray	\$0	\$4,941	\$16,302	\$0	\$0		\$2,055		\$5,824	\$29,122
11.5	Wire & Cable	\$0	\$9,441	\$6,203	\$0	\$0		\$1,137			\$20,977
11.6	Protective Equipment	\$0	\$855	\$3,111	\$0	\$0		\$387	\$0		
	Standby Equipment	\$330	\$0	\$322	\$0	\$0		\$62	\$0	\$107	\$821
11.8	Main Power Transformers	\$9,274	\$0	\$182	\$0	\$0		\$718	\$0	\$1,526	\$11,700
11.9	Electrical Foundations	\$0	\$197	\$518	\$0	\$0		\$68	\$0		
	SUBTOTAL 11.	\$26,415	\$15,435	\$29,506	\$0	\$0		\$6,251	\$0	\$15,378	\$92,985
12	INSTRUMENTATION & CONTROL										
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$C	\$0
	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0					
	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0		\$0	1.1		
	Other Major Component Control	\$536	\$0	\$358	\$0	\$0		\$85			
	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0		\$0			
	Control Boards, Panels & Racks	\$356	\$0	\$228	\$0	\$0		\$55			\$802
	Computer & Accessories	\$5,694	\$0	\$182	\$0	\$0		\$539			\$7,380
	Instrument Wiring & Tubing	\$0	\$2,884	\$5,896	\$0	\$0		\$745			\$12,454
	Other I & C Equipment	\$4,245	\$0	\$2,061	\$0	\$0		\$593			
,	SUBTOTAL 12.	\$10,830	\$2,884	\$8,725	\$0	\$0		\$2,017		\$4,531	\$30,110

Exhibit 4-42 Case 3 Total Plant Cost Details (continued)

Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	Contir	igencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE										
13.1	Site Preparation	\$0	\$147	\$3,142	\$0	\$0	\$3,289	\$326	\$0	\$1,085	\$4,700
13.2	Site Improvements	\$0	\$2,614	\$3,474	\$0	\$0	\$6,089	\$601	\$0	\$2,007	\$8,696
	Site Facilities	\$4,685	\$0	\$4,944	\$0	\$0	\$9,629	\$949	\$0	\$3,173	\$13,751
	SUBTOTAL 13.	\$4,685	\$2,761	\$11,560	\$0	\$0	\$19,006	\$1,877	\$0	\$6,265	\$27,148
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,530	\$3,604	\$0	\$0	\$6,134	\$564	\$0	\$1,005	\$7,703
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0	\$1,500	\$134	\$0	\$245	\$1,879
14.4	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$785	\$766	\$0	\$0	\$1,552	\$140	\$0	\$254	\$1,945
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
	Warehouse	\$0	\$762	\$487	\$0	\$0	\$1,249	\$111	\$0	\$204	\$1,564
14.8	Other Buildings & Structures	\$0	\$528	\$411	\$0	\$0	\$940	\$84	\$0	\$205	\$1,228
14.9	Waste Treating Building & Str.	\$0	\$1,299	\$2,483	\$0	\$0	\$3,782	\$353	\$0	\$827	\$4,961
	SUBTOTAL 14.	\$0	\$7,379	\$8,777	\$0	\$0	\$16,156	\$1,474	\$0	\$2,902	\$20,532
	TOTAL COST	\$1,432,827	\$178,481	\$659,367	\$0	\$0	\$2,270,675	\$213,101	\$124,890	\$439,797	\$3,048,463
	Owner's Costs										
	Preproduction Costs										.
	6 Months All Labor										\$23,796
	1 Month Maintenance Materials										\$4,247
	1 Month Non-fuel Consumables										\$819
	1 Month Waste Disposal										\$577
	25% of 1 Months Fuel Cost at 100% CF										\$3,359
	2% of TPC										\$60,969
	Total										\$93,767
	Inventory Capital										
	60 day supply of fuel and consumables at 100% CF										\$28,158
	0.5% of TPC (spare parts)										\$15,242
	Total										\$43,400
	Initial Operation Operation of Operations										¢40.000
	Initial Cost for Catalyst and Chemicals										\$16,303
	Land										\$900
	Other Owner's Costs										\$457,269
	Financing Costs										\$82,309
	Total Overnight Costs (TOC)	1					1	1			\$3,742,411
	TASC Multiplier							<u> </u>			1.201
	Total As-Spent Cost (TASC)						•				\$4,494,636

Exhibit 4-42 Case 3 Total Plant Cost Details (continued)

INITIAL & ANNUAL		PENSES			Cost Base (Jun):	2007
Case 3 - Siemens Quench SNG & Ammonia Production SNG (MMbtu/hr):		nmonia (lb/hr):	183,698		MWe-net: Capacity Factor (%):	29 90
OPERATING & MAINTENAN		. ,				
Operating Labor						
Operating Labor Rate (base):		\$/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
	2.0		2.0			
Skilled Operator	2.0 13.0		2.0 13.0			
Operator Foreman	1.0		13.0			
Lab Tech's, etc.	1.0 <u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	<u>3.0</u> 19.0		<u>3.0</u> 19.0			
TOTAL-0.J.S	19.0		19.0		Annual Cost	
					<u>\$</u>	
nnual Operating Labor Cost laintenance Labor Cost					\$7,497,290 \$20,575,025	
Idministrative & Support Labor					\$30,575,935	
roperty Taxes and Insurance					\$9,518,306 \$60,969,265	
OTAL FIXED OPERATING COSTS					\$60,969,265 \$108,560,796	
ARIABLE OPERATING COSTS						
laintenance Material Cost					\$45,863,903	
<u>Consumables</u>	Cons	sumption	<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water(/1000 gallons)	C	5,352	1.08	\$0	\$1,901,899	
Chemicals						
MU & WT Chem. (lb)	0	31,889	0.17	\$0	\$1,812,954	
Carbon (Mercury Removal) (lb)	234,445	401	1.05	\$246,207	\$138,492	
COS Catalyst (m3)	88	0.1	2,397.36	\$210,486	\$59,199	
Water Gas Shift Catalyst (ft3)	8,501	7.5	498.83	\$4,240,751	\$1,222,008	
ZnO Sorbent (ton)	113	0.4	12,574.00	\$1,419,605	\$1,597,055	
Methanation Catalyst (ft3)	9,191	6.99	440.00	\$4,044,122	\$1,011,030	
Selexol Solution (gal)	449,546	143	13.40	\$6,023,125	\$630,285	
SCR Catalyst (m3)	C	0	0.00	\$0	\$0	
Aqueous Ammonia (ton)	0) 0	0.00	\$0	\$0	
Ammonia Catalyst (ft3)	69.74	0.6	1,701.00	\$118,628	\$314,201	
Claus Catalyst (ft3)	w/equip	3.75	131.27	\$0	\$161,850	
Subtotal Chemicals				\$16,302,923	\$6,947,076	
Other						
Supplemental Fuel (MBtu)	C		0.00	\$0	\$0	
Supplemental Electricity (for consumption) (MWh)	0		61.60	\$0	\$0	
Gases, N2 etc. (/100scf)	0		0.00	\$0	\$0	
L.P. Steam (/1000 pounds) Subtotal Other	C) 0	0.00	\$0 \$0	\$0 \$0	
				• -		
Waste Disposal Spent Mercury Catalyst (lb.)	C	401	0.42	\$0	\$55,002	
Spent ZnO Sorbent (ton)	(16.23	\$0 \$0	\$55,002 \$2,061	
Flyash (ton)	C C		0.00	\$0 \$0	\$2,001 \$0	
Fiyash (ton) Slag (ton)	(16.23	\$U \$0	₅ں \$6,175,272\$	
Subtotal-Waste Disposal	(, 1,109	10.23	\$0 \$0	\$6,232,335	
				**		
By-products & Emissions Sulfur (tons)	C	288	0.00	\$0	\$0	
Supplemental Electricity (for sale) (MWh)	(58.00	\$0 \$0	-\$13,123,706	
Subtotal By-Products	C C			\$0	-\$13,123,706	
OTAL VARIABLE OPERATING COSTS				\$16,302,923	\$47,821,506	
Fuel (ton)) 11,568	38.18	\$0	\$145,104,505	

Exhibit 4-43 Case 3 Initial and Annual O&M Costs

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform			0,						
			TOTAL	PLANT	COST	SUMM.	ARY				
	Case:	Case 4 - Sieme	ns Quench S	NG & Ammo	nia Producti	on w/ CO2					
	Plant Size:	-23.73	MW,net	Estimate Ty	ype:	Conceptua	i	Cos	t Base (Jun)	2007	(\$x1000)
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM		ngencies	Total Plant Cos
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
	COAL & SORBENT HANDLING										
	Coal Receive & Unload	\$5,727	\$0	\$2,798	\$0	\$0		\$764			
	Coal Stackout & Reclaim	\$7,400	\$0	\$1,794	\$0	\$0		\$806			
1.3	Coal Conveyors & Yd Crush	\$6,880	\$0	\$1,775	\$0	\$0		\$760		\$1,883	\$\$11,29
	Other Coal Handling	\$1,800	\$0	\$411	\$0	\$0		\$193			\$2,88
	Sorbent Receive & Unload	\$0	\$0	\$0	\$0	\$0					
	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0	\$0					
	Sorbent Conveyors	\$0	\$0	\$0	\$0	\$0					
	Other Sorbent Handling	\$0	\$0	\$0		\$0					
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$4,052	\$10,133	\$0	\$0		\$1,360		1.1.1	
	SUBTOTAL 1.	\$21,806	\$4,052	\$16,911	\$0	\$0	\$42,769	\$3,882	\$0	\$9,330	\$55,98
2	COAL & SORBENT PREP & FEED										
	Coal Crushing & Drying	\$92,894	\$0	\$13,536	\$0	\$0		\$9,666			
2.2	Prepared Coal Storage & Feed	\$4,400	\$1,053	\$690	\$0	\$0		\$525	\$0	\$1,334	\$8,00
2.3	Dry Coal Injection System	\$144,803	\$1,681	\$13,448	\$0	\$0		\$13,775	\$0	\$34,741	\$208,44
2.4	Misc.Coal Prep & Feed	\$2,420	\$1,761	\$5,279	\$0	\$0	\$9,459	\$869	\$0	\$2,066	\$12,39
2.5	Sorbent Prep Equipment	\$0	\$0	\$0		\$0					
	Sorbent Storage & Feed	\$0	\$0	\$0		\$0					
	Sorbent Injection System	\$0	\$0	\$0		\$0	1.1				
	Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	1.1		+ -		•
2.9	Coal & Sorbent Feed Foundation	\$0	\$9,405	\$7,721	\$0	\$0	\$17,126	\$1,586	\$0	\$3,742	\$22,45
	SUBTOTAL 2.	\$244,517	\$13,899	\$40,674	\$0	\$0	\$299,090	\$26,421	\$0	\$65,102	\$390,61
	FEEDWATER & MISC. BOP SYSTEMS										
3.1	Feedwater System	\$3,504	\$1,629	\$1,975	\$0	\$0		\$642			
	Water Makeup & Pretreating	\$856	\$89	\$478	\$0	\$0		\$136			
	Other Feedwater Subsystems	\$3,805	\$1,150	\$1,882	\$0	\$0		\$621			
3.4	Service Water Systems	\$490	\$1,009	\$3,501	\$0	\$0		\$488	\$0		
	Other Boiler Plant Systems	\$2,629	\$1,019	\$2,525	\$0			\$585			
	FO Supply Sys & Nat Gas	\$102	\$210	\$188	\$0			\$48			
	Waste Treatment Equipment	\$1,197	\$0	\$730	\$0	\$0		\$188			
3.8	Misc. Power Plant Equipment	\$1,721	\$230	\$883	\$0	\$0	· · ·	\$274			
	SUBTOTAL 3.	\$14,303	\$5,336	\$12,163	\$0	\$0	\$31,803	\$2,982	\$0	\$8,184	\$42,96
	GASIFIER & ACCESSORIES										
4.1	Gasifier, Syngas Cooler & Auxiliaries	\$326,007	\$0	\$150,932	\$0	\$0		\$42,361		\$88,626	
	Syngas Cooling	w/4.1	\$0	w/ 4.1	\$0						
	ASU/Oxidant Compression	\$250,140	\$0	w/equip.	\$0	\$0					
	LT Heat Recovery & FG Saturation	\$55,463	\$0	\$20,550	\$0	\$0	1 111 1	\$7,281	\$0	1	
	Misc. Gasification Equipment	w/4.1	\$0	w/4.1&4.2	\$0	\$0					
	Flare Stack System	\$0	\$2,332	\$949	\$0	\$0		\$315	\$0	\$719	
	CO2 Solid Feed System Compressors	\$6,692	\$1,606	\$2,409	\$0	\$0	1 11 1	\$1,071	\$0		
4.8	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2	\$0	\$0		\$0	\$0	\$0) \$
4.9	Gasification Foundations	\$0	\$21,135	\$12,059	\$0	\$0	\$33,194	\$3,039	\$0	\$9,058	\$45,29
	SUBTOTAL 4.	\$638,302	\$25.072	\$186,899	\$0	\$0	\$850,274	\$78.312	\$71,541	\$144,856	\$1,144,98

Exhibit 4-44 Case 4 Total Plant Cost Details

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$128,808	\$0	\$109,297	\$0	\$0	\$238,105	\$23,027	\$47,621	\$61,751	\$370,504
5A.2	Elemental Sulfur Plant	\$16,281	\$3,245	\$21,005	\$0	\$0	\$40,531	\$3,937	\$0	\$8,894	\$53,361
5A.3	Mercury Removal	\$2,499	\$0	\$1,901	\$0	\$0	\$4,400	\$425	\$220	\$1,009	\$6,054
5A.4a	Shift Reactors	\$11,791	\$0	\$4,746	\$0	\$0	\$16,537	\$1,585	\$0	\$3,625	\$21,747
5A.4b	COS Hydrolysis	\$1,493	\$0	\$1,950	\$0	\$0	\$3,443	\$335	\$0	\$756	\$4,533
5A.5	Methanation	\$21,900	\$8,760	\$13,140	\$0	\$0	\$43,800	\$4,380	\$4,380	\$10,512	\$63,072
5A.6	SNG Purification & Compression	\$17,050	\$6,820	\$10,230	\$0	\$0	\$34,100	\$3,410	\$0	\$7,502	\$45,012
5A.7	Fuel Gas Piping	\$0	\$1,749	\$1,224	\$0	\$0	\$2,973	\$276	\$0	\$650	\$3,898
5A.8	Ammonia Production	\$171,733	\$44,261	\$88,523	\$0	\$0	\$304,517	\$30,452	\$0	\$50,245	\$385,214
5A.9	Process Interconnects	\$0	\$18,400	\$27,600	\$0	\$0	\$46,000	\$4,600	\$0	\$10,120	\$60,720
5A.10	HGCU Foundations	\$0	\$1,771	\$1,142	\$0	\$0	\$2,912	\$268	\$0	\$954	\$4,134
5A.11	Zinc Oxide Guard Bed	\$664	\$0	\$122	\$0	\$0	\$786	\$79	\$0	\$173	\$1,038
	SUBTOTAL 5A.	\$372,219	\$85,005	\$280,881	\$0	\$0	\$738,105	\$72,773	\$52,221	\$156,189	\$1,019,288
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$38,073	\$0	\$22,420	\$0	\$0	\$60,493	\$5,824	\$0	\$13,263	\$79,581
	SUBTOTAL 5B.	\$38,073	\$0	\$22,420	\$0	\$0	\$60,493	\$5,824	\$0	\$13,263	\$79,581
6	COMBUSTION TURBINE/ACCESSORIES										
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
7.1	Heat Recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.3	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.4	Stack	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
	SUBTOTAL 7.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$30,291	\$0	\$5,224	\$0	\$0	\$35,514	\$3,408	\$0	\$3,892	\$42,814
8.2	Turbine Plant Auxiliaries	\$163	\$0	\$482	\$0	\$0	\$645	\$63	\$0		\$779
8.3	Condenser & Auxiliaries	\$5,594	\$0	\$1,580	\$0	\$0	\$7,174	\$685	\$0	\$786	\$8,645
8.4	Steam Piping	\$5,477	\$0	\$3,853		\$0		\$801	\$0		
	TG Foundations	\$0	\$1,043	\$1,764	\$0	\$0		\$266			
	SUBTOTAL 8.	\$41,524	\$1,043	\$12,902	\$0	\$0		\$5,224	\$0	\$8,204	

Exhibit 4-44 Case 4 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM										
9.1	Cooling Towers	\$7,345	\$0	\$1,603	\$0	\$0	\$8,949	\$853	\$0	\$1,470	\$11,272
9.2	Circulating Water Pumps	\$2,343	\$0	\$85	\$0	\$0	\$2,427	\$204	\$0	\$395	\$3,026
9.3	Circ.Water System Auxiliaries	\$186	\$0	\$27	\$0	\$0	\$213	\$20	\$0	\$35	\$268
9.4	Circ.Water Piping	\$0	\$7,768	\$2,014	\$0	\$0	\$9,782	\$884	\$0	\$2,133	\$12,800
9.5	Make-up Water System	\$451	\$0	\$644	\$0	\$0	\$1,095	\$105	\$0	\$240	\$1,440
9.6	Component Cooling Water Sys	\$917	\$1,097	\$780	\$0	\$0	\$2,794	\$262	\$0	\$611	\$3,667
9.9	Circ.Water System Foundations	\$0	\$2,845	\$4,836	\$0	\$0	\$7,680	\$728	\$0	\$2,523	\$10,931
	SUBTOTAL 9.	\$11,242	\$11,710	\$9,989	\$0	\$0	\$32,940	\$3,056	\$0	\$7,407	\$43,403
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$36,250	\$0	\$35,754	\$0	\$0	\$72,004	\$6,977	\$0	\$7,898	\$86,879
10.2	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.6	Ash Storage Silos	\$817	\$0	\$889	\$0	\$0	\$1,707	\$166	\$0	\$281	\$2,153
10.7	Ash Transport & Feed Equipment	\$1,096	\$0	\$265	\$0	\$0	\$1,361	\$127	\$0	\$223	\$1,711
	Misc. Ash Handling Equipment	\$1,693	\$2,075	\$620	\$0	\$0	\$4,388	\$418	\$0	\$721	\$5,526
	Ash/Spent Sorbent Foundation	\$0	\$72	\$91	\$0	\$0	\$163	\$15	\$0	\$54	\$232
	SUBTOTAL 10.	\$39,857	\$2,147	\$37,618	\$0	\$0	\$79,623	\$7,702	\$0	\$9,177	\$96,502
11	ACCESSORY ELECTRIC PLANT										
11.1	Generator Equipment	\$420	\$0	\$416	\$0	\$0	\$836	\$80	\$0	\$92	\$1,007
11.2	Station Service Equipment	\$6,219	\$0	\$560	\$0	\$0	\$6,780	\$625	\$0	\$740	\$8,145
	Switchgear & Motor Control	\$11,498	\$0	\$2,091	\$0	\$0	\$13,589	\$1,260	\$0	\$2,227	\$17,076
11.4	Conduit & Cable Tray	\$0	\$5,341	\$17,620	\$0	\$0	\$22,961	\$2,221	\$0	\$6,295	\$31,477
11.5	Wire & Cable	\$0	\$10,205	\$6,705	\$0	\$0	\$16,910	\$1,228	\$0	\$4,535	\$22,673
11.6	Protective Equipment	\$0	\$855	\$3,111	\$0	\$0	\$3,965	\$387	\$0	\$653	\$5,005
11.7	Standby Equipment	\$330	\$0	\$322	\$0	\$0	\$651	\$62	\$0	\$107	\$821
	Main Power Transformers	\$9,977	\$0	\$182	\$0	\$0	\$10,159	\$771	\$0	\$1,639	\$12,569
11.9	Electrical Foundations	\$0	\$197	\$518	\$0	\$0	\$716	\$68	\$0	\$235	\$1,019
	SUBTOTAL 11.	\$28,443	\$16,598	\$31,524	\$0	\$0	\$76,565	\$6,703	\$0	\$16,524	\$99,792
12	INSTRUMENTATION & CONTROL										
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$532	\$0	\$355	\$0	\$0	\$888	\$84	\$44	\$152	\$1,169
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Control Boards, Panels & Racks	\$353	\$0	\$227	\$0	\$0	\$580	\$55	\$29	\$133	\$797
12.7	Computer & Accessories	\$5,657	\$0	\$181	\$0	\$0	\$5,838	\$536	\$292	\$667	\$7,333
	Instrument Wiring & Tubing	\$0	\$2,866	\$5,858	\$0	\$0	\$8,724	\$740	\$436	\$2,475	\$12,375
	Other I & C Equipment	\$4,218	\$0	\$2,048	\$0	\$0	\$6,266	\$590	\$313	\$1,075	\$8,244
	SUBTOTAL 12.	\$10,761	\$2,866	\$8,669	\$0	\$0	\$22,296	\$2,004	\$1,115	\$4,502	\$29,917

Exhibit 4-44 Case 4 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	jencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE									-	
13.1	Site Preparation	\$0	\$147	\$3,142	\$0	\$0	\$3,289	\$326	\$0	\$1,085	\$4,700
13.2	Site Improvements	\$0	\$2,614	\$3,474	\$0	\$0	\$6,089	\$601	\$0	\$2,007	\$8,696
13.3	Site Facilities	\$4,685	\$0	\$4,944	\$0	\$0	\$9,629	\$949	\$0	\$3,173	\$13,751
	SUBTOTAL 13.	\$4,685	\$2,761	\$11,560	\$0	\$0	\$19,006	\$1,877	\$0	\$6,265	\$27,148
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,530	\$3,604	\$0	\$0	\$6,134	\$564	\$0	\$1,005	\$7,703
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0	\$1,500	\$134	\$0	\$245	\$1,879
14.4	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$787	\$768	\$0	\$0	\$1,555	\$140	\$0	\$254	\$1,950
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
	Warehouse	\$0	\$762	\$487	\$0	\$0	\$1,249	\$111	\$0	\$204	\$1,564
14.8	Other Buildings & Structures	\$0	\$528	\$411	\$0	\$0	\$940	\$84	\$0	\$205	\$1,228
14.9	Waste Treating Building & Str.	\$0	\$1,299	\$2,483	\$0	\$0	\$3,782	\$353	\$0	\$827	\$4,961
	SUBTOTAL 14.	\$0	\$7,381	\$8,778	\$0	\$0	\$16,159	\$1,474	\$0	\$2,903	\$20,536
	TOTAL COST	\$1,465,733	\$177,872	\$680,989	\$0	\$0	\$2,324,594	\$218,235	\$124,877	\$451,906	\$3,119,611
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor										\$24,443
	1 Month Maintenance Materials										\$4,391
	1 Month Non-fuel Consumables										\$1,890
	1 Month Waste Disposal										\$577
	25% of 1 Months Fuel Cost at 100% CF										\$3,359
	2% of TPC										\$62,392
	Total										\$97,052
	Inventory Capital										
60 d	ay supply of fuel and consumables at 100% CF										\$28,163
	0.5% of TPC (spare parts)										\$15,598
	Total										\$43,761
	Initial Cost for Catalyst and Chemicals										\$16,321
	Land										\$900
	Other Owner's Costs										\$467,942
	Financing Costs										\$84,230
	Total Overnight Costs (TOC)										\$3,829,817
	TASC Multiplier										1.201
	Total As-Spent Cost (TASC)										\$4,599,610

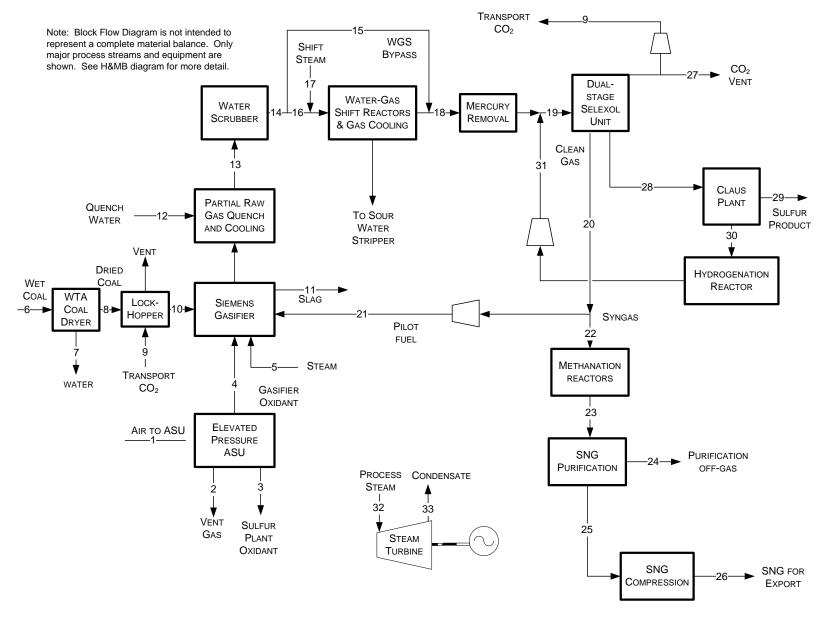
Exhibit 4-44 Case 4 Total Plant Cost Details (continued)

INITIAL & ANNUA	L O&M E	XPENSES			Cost Base (Jun):	2007
Case 4 - Siemens Quench SNG & Ammonia Produ					MWe-net:	-24
SNG (MMbtu/hr): <u>OPERATING & MAINTEN</u>		nmonia (lb/hr):	183,634		Capacity Factor (%):	90
Operating Labor	ANCE LAD					
Operating Labor Rate (base):	34.65	\$/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
5						
			Total			
Skilled Operator	2.0		2.0			
Skilled Operator Operator	2.0 13.0		2.0 13.0			
Foreman	13.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	<u>3.0</u> 19.0		<u> </u>			
10 ME 0.3.3	17.0		17.0		Annual Cost	
					<u>\$</u>	
Annual Operating Labor Cost					\$7,497,290	
Maintenance Labor Cost					\$31,612,112	
Administrative & Support Labor					\$9,777,351	
Property Taxes and Insurance					\$62,392,230	
TOTAL FIXED OPERATING COSTS VARIABLE OPERATING COSTS					\$111,278,983	
VANABLE OF ERATING COSTS						
Maintenance Material Cost					\$47,418,169	
<u>Consumables</u>	Cons	sumption	<u>Unit</u>	Initial Fill		
<u>oonsumbbies</u>	Initial Fill	<u>/Day</u>	Cost	Cost		
Water(/1000 gallons)	0	5,370	1.08	\$0	\$1,908,039	
Chemicals						
MU & WT Chem.(lb)	0	31,991	0.17	\$0	\$1,818,807	
Carbon (Mercury Removal) (lb)	234,364	401	1.05	\$246,122	\$138,444	
COS Catalyst (m3)	88		2,397.36	\$210,355	\$59,162	
Water Gas Shift Catalyst (ft3)	8,499	7.5	498.83	\$4,239,732	\$1,221,706	
ZnO Sorbent (ton)	115	0.4	12,574.00	\$1,442,149	\$1,622,417	
Methanation Catalyst (ft3)	9,183	6.99	440.00	\$4,040,718	\$1,010,180	
Selexol Solution (gal)	449,563	143	13.40	\$6,023,353	\$630,308	
SCR Catalyst (m3)	0	0	0.00	\$0	\$0	
Aqueous Ammonia (ton)	0	0	0.00	\$0	\$0	
Ammonia Catalyst (ft3)	69.74	0.6	1,701.00	\$118,628	\$314,201	
Claus Catalyst (ft3)	w/equip	3.75	131.27	\$0	\$161,869	
Subtotal Chemicals				\$16,321,057	\$6,977,094	
Other						
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0	
Supplemental Electricity (for consumption) (MV			61.60	\$0	\$11,524,579	
Gases, N2 etc.(/100scf)	0	0	0.00	\$0	\$0	
L.P. Steam (/1000 pounds)	0	0	0.00	\$0	\$0	
Subtotal Other			_	\$0	\$11,524,579	
Waste Disposal						
Spent Mercury Catalyst (lb.)	0	401	0.42	\$0	\$54,983	
Spent ZnO Sorbent (ton)	0		16.23	\$0 \$0	\$2,094	
Flyash (ton)	0		0.00	\$0	\$0	
Slag (ton)	0		16.23	\$0	\$6,175,271	
Subtotal-Waste Disposal	-	,		\$0	\$6,232,347	
By products & Emissions						
By-products & Emissions Sulfur (tons)	0	288	0.00	\$0	\$0	
Supplemental Electricity (for sale) (MWh)	0		58.00	\$0 \$0	\$0 \$0	
Subtotal By-Products	0	0	30.00	\$0 \$0	\$0 \$0	
TOTAL VARIABLE OPERATING COSTS				\$16,321,057	\$74,060,228	
Fuel (ton)	0	11,568	38.18	\$0	\$145,104,475	

Exhibit 4-45 Case 4 Initial and Annual O&M Costs

5. LOW RANK COAL CASES

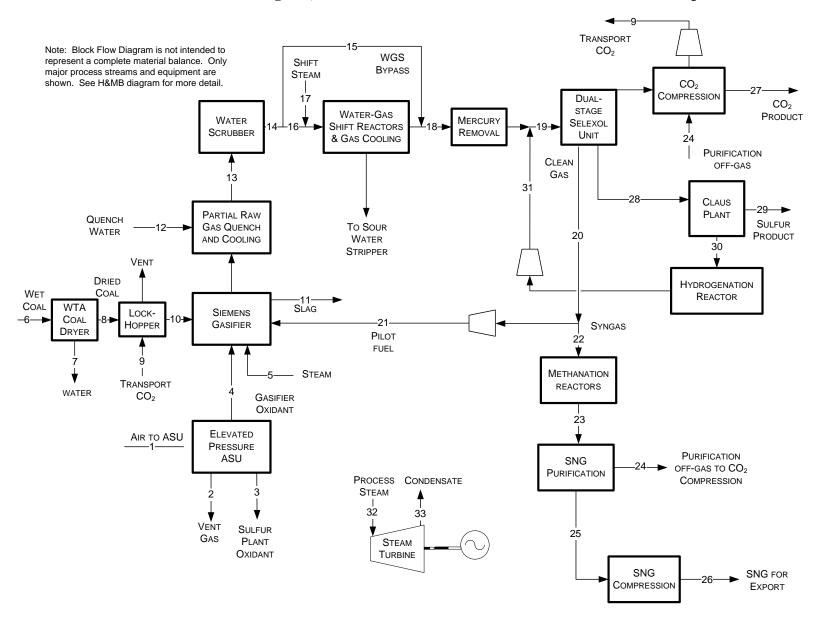
5.1 SYNTHETIC NATURAL GAS PRODUCTION USING ROSEBUD PRB COAL


5.1.1 <u>Process Description</u>

In this section the overall Siemens gasification process for SNG production using Montana Rosebud PRB coal is described. The plant configurations are similar to Cases 1 and 2, with the exception of the coal type utilized and coal drying method. Only the major process areas that differ from Cases 1 and 2 are described below. Since the carbon content of the subbituminous coal used is lower than that of the bituminous coal, the coal feed rate is significantly increased. The process BFDs for the PRB coal non-sequestration and sequestration cases are shown in Exhibit 5-1 and Exhibit 5-3. The associated stream tables are shown in Exhibit 5-2 for the non-sequestration case and Exhibit 5-4 for the sequestration case.

Coal Drying

The WTA coal drying process includes a water-heated-, horizontal-, rotary-kiln coal pre-heater, a fluidized bed coal dryer and a water-cooled-, horizontal-, rotary-kiln coal cooler. The moisture driven from the coal in the fluid bed dryer passes through a baghouse for particulate removal and then is split into two streams. The smaller of the two streams is compressed and used as the fluidizing medium in the coal dryer. The bulk of the removed moisture is compressed to approximately 0.77 MPa (112 psia) and the temperature is raised to about 406°C (763°F) in the process. The high temperature vapor passes through internal coils in the dryer to provide the heat to drive off the coal moisture and then exits the dryer as liquid water. The warm water is used in the coal pre-heater before being used as cooling tower makeup water (stream 7). The vapor compressor consumes the vast majority of the WTA process auxiliary load.



	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0093	0.0091	0.0101	0.0101	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0020	0.0021	0.0021	0.0021	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0106	0.0014	0.0000	0.0000	0.4342	0.4497	0.4497	0.4497	0.0000
CO ₂	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9765	0.1307	0.0000	0.0000	0.0560	0.0580	0.0580	0.0580	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0002	0.0002	0.0002	0.0002	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0113	0.6295	0.0000	0.0000	0.1836	0.1901	0.1901	0.1901	0.0000
H ₂ O	0.0064	0.0026	0.0000	0.0000	1.0000	0.0000	1.0000	0.0000	0.0013	0.0985	0.0000	1.0000	0.3188	0.2945	0.2945	0.2945	1.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0022	0.0023	0.0023	0.0023	0.0000
N ₂	0.7759	0.9803	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0096	0.0000	0.0000	0.0029	0.0030	0.0030	0.0030	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2081	0.0076	0.9895	0.9895	0.0000	0.0000	0.0000	0.0000	0.0000	0.1302	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	51,342	40,633	74	10,414	2,754	0	6,669	0	4,090	15,275	0	12,518	52,503	50,698	6,569	44,129	15,436
V-L Flowrate (kg/hr)	1,483,532	1,143,127	2,361	334,053	49,619	0	120,139	0	177,211	202,764	0	225,516	1,102,187	1,069,647	138,592	931,055	278,087
Solids Flowrate (kg/hr)	0	0	0	0	0	571,223	0	451,084	0	336,925	48,199	0	0	0	0	0	0
Temperature (°C)	6	26	32	32	343	6	34	71	76	18	1,427	216	260	214	214	214	288
Pressure (MPa, abs)	0.09	0.11	0.86	0.86	5.10	0.10	0.60	0.09	5.62	5.62	4.24	8.27	3.89	3.756	3.76	3.76	4.14
Enthalpy (kJ/kg)	15.71	30.53	26.94	26.94	3,177.81		152.37		22.14	3,807.88		1,017.87	1,091.95	959.483	959.48	959.48	3,070.04
Density (kg/m ³)	1.1	1.3	11.0	11.0	20.1		985.3		103.2	33.8		782.0	18.6	19.8	19.8	19.8	18.2
V-L Molecular Weight	28.895	28.133	32.078	32.078	18.015		18.015		43.330	13.275		18.015	20.993	21.099	21.099	21.099	18.015
V-L Flowrate (lb _{mol} /hr)	113,190	89.581	162	22,959	6.072	0	14,702	0	9.017	33,675	0	27.598	115.750	111.769	14.482	97,287	34,031
V-L Flowrate (lb/hr)	3,270,629	2,520,163	5,205	736,460	109,392	0	264,861	0	390,684	447,019	0	497,178	2,429,905	2,358,168	305,544	2,052,624	613,077
Solids Flowrate (lb/hr)	0	0	0	0	0	1,259,331	0	994,470	0	742,793	106,261	0	0	2,000,100	0	0	0
		-				1 1		, .		,					-	-	
Temperature (°F)	42	78	90	90	650	42	92	160	168	64	2,600	420	500	417	417	417	550
Pressure (psia)	13.0	16.4	125.0	125.0	740.0	13.8	86.7	13.5	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7	544.7	600.0
Enthalpy (Btu/lb)	6.8	13.1	11.6	11.6	1,366.2		65.5		9.5	1,637.1		437.6	469.5	412.5	412.5	412.5	1,319.9
Density (lb/ft ³)	0.070	0.080	0.685	0.685	1.257		61.508		6.441	2.111		48.817	1.162	1.238	1.238	1.238	1.135
	A - Referer	nce conditio	ns are 32.0	02 F & 0.08	9 PSIA												

Exhibit 5-2 Case 5 Stream Table, Subbituminous Rosebud Coal to SNG without Carbon Sequestration

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
V-L Mole Fraction																
Ar	0.0021	0.0021	0.0031	0.0031	0.0031	0.0109	0.0000	0.0126	0.0126	0.0000	0.0007	0.0000	0.0016	0.0022	0.0000	0.0000
CH ₄	0.0001	0.0001	0.0001	0.0001	0.0001	0.8283	0.0000	0.9595	0.9595	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1606	0.1589	0.2361	0.2361	0.2361	0.0000	0.0000	0.0000	0.0000	0.0024	0.0594	0.0000	0.0851	0.0073	0.0000	0.0000
CO ₂	0.3487	0.3537	0.0405	0.0405	0.0405	0.1364	0.9832	0.0024	0.0024	0.9909	0.5950	0.0000	0.4846	0.7989	0.0000	0.0000
COS	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0018	0.0000	0.0003	0.0000	0.0000	0.0000
H ₂	0.4812	0.4779	0.7156	0.7156	0.7156	0.0064	0.0000	0.0075	0.0075	0.0024	0.1138	0.0000	0.0549	0.1856	0.0000	0.0000
H ₂ O	0.0018	0.0017	0.0001	0.0001	0.0001	0.0023	0.0168	0.0000	0.0000	0.0042	0.0413	0.0000	0.3702	0.0009	1.0000	1.0000
H ₂ S	0.0025	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1873	0.0000	0.0014	0.0041	0.0000	0.0000
N ₂	0.0030	0.0030	0.0045	0.0045	0.0045	0.0156	0.0000	0.0180	0.0180	0.0000	0.0005	0.0000	0.0007	0.0010	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	50,536	51,104	33,915	149	33,766	9,681	1,323	8,358	8,358	12,415	684	0	803	568	43,734	60,796
V-L Flowrate (kg/hr)	1,066,602	1,087,054	342,281	1,508	340,773	195,747	57,660	138,086	138,086	543,371	24,191	0	24,674	20,452	787,876	1,095,261
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	4,095	0	0	0	0
Temperature (°C)	35	34	31	80	31	35	35	35	35	5	48	175	232	21	566	33
Pressure (MPa, abs)	3.34	3.27	3.24	5.10	3.24	2.77	0.14	2.627	6.202	0.115	0.16	0.1	0.085	3.341	12.512	0.827
Enthalpy (kJ/kg)	42.82	41.44	85.34	232.30	85.34	40.71	46.43	47.903	12.710	7.664	101.63		845.516	-8.120	3,495.174	120.842
Density (kg/m ³)	28.0	27.8	12.8	17.2	12.8	23.2	2.4	17.8	44.5	2.2	2.2	5,285.9	0.6	56.5	34.9	995.1
V-L Molecular Weight	21.106	21.271	10.092	10.092	10.092	20.220	43.574	16.522	16.522	43.766	35.361		30.719	36.012	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	111.414	112.666	74.770	329	74.440	21.342	2.917	18.425	18.425	27.371	1.508	0	1.771	1.252	96.416	134.033
V-L Flowrate (lb/hr)	,	2,396,544	754,601	3.325	751,276	431,548	127,119	304,428	304.428	1,197,927	53,332	0	54,397	45,090	1,736,970	2,414,637
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	9,028	0	0	0	0
	-					-						- /				
Temperature (°F)	95	94	87	177	87	95	95	95	95	42	119	347	450	69	1,050	91
Pressure (psia)	484.7	474.7	469.6	740.0	469.6	401.1	20.1	381.0	899.5	16.7	23.7	17.3	12.3	484.5	1,814.7	120.0
Enthalpy (Btu/lb)	18.4	17.8	36.7	99.9	36.7	17.5	20.0	20.6	5.5	3.3	43.7		363.5	-3.5	1,502.7	52.0
Density (lb/ft ³)	1.751	1.733	0.798	1.071	0.798	1.446	0.148	1.110	2.778	0.137	0.136	330	0.039	3.528	2.177	62.123

Exhibit 5-2 Case 5 Stream Table, Subbituminous Rosebud Coal to SNG without Carbon Sequestration (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0093	0.0091	0.0101	0.0101	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0020	0.0021	0.0021	0.0021	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0041	0.0005	0.0000	0.0000	0.4343	0.4497	0.4497	0.4497	0.0000
CO ₂	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9914	0.1316	0.0000	0.0000	0.0561	0.0581	0.0581	0.0581	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0002	0.0002	0.0002	0.0002	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0043	0.6293	0.0000	0.0000	0.1833	0.1898	0.1898	0.1898	0.0000
H ₂ O	0.0064	0.0026	0.0000	0.0000	1.0000	0.0000	1.0000	0.0000	0.0001	0.0985	0.0000	1.0000	0.3189	0.2946	0.2946	0.2946	1.0000
H₂S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0022	0.0023	0.0023	0.0023	0.0000
N ₂	0.7759	0.9803	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0096	0.0000	0.0000	0.0029	0.0030	0.0030	0.0030	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2081	0.0076	0.9895	0.9895	0.0000	0.0000	0.0000	0.0000	0.0000	0.1304	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000		0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	54.000	40.000	70	10.110	0.754	0	0.000		4.040	45.054	<u>^</u>	10 511	50.470	50.070	0.504	44.400	45.400
V-L Flowrate (kg _{mol} /hr)	51,336	40,628	73	10,413	2,754	0	6,669	0	4,049	15,254	0	12,514	52,479	50,673	6,564	44,109	15,439
V-L Flowrate (kg/hr)	1,483,363	1,142,996 0	2,343 0	334,032 0	49,619 0	0 571.223	120,139	0 451.084	177,211 0	202,764	0 48,199	225,439 0	1,102,088	1,069,598	138,555 0	931,043 0	278,144 0
Solids Flowrate (kg/hr)	0	0	0	0	0	5/1,223	0	451,084	0	336,925	48,199	0	0	0	0	0	0
Temperature (°C)	6	26	32	32	343	6	34	71	75	18	1,427	216	260	214	214	214	288
Pressure (MPa, abs)	0.09	0.11	0.86	0.86	5.10	0.09	0.55	0.09	5.62	5.62	4.24	8.27	3.89	3.756	3.76	3.76	4.14
Enthalpy (kJ/kg)	15.71	30.53	26.94	26.94	3,177.81		152.81		18.45	3,812.95		1,017.87	1,091.75	959.191	959.19	959.19	3,070.04
Density (kg/m ³)	1.1	1.3	11.0	11.0	20.1		985.2		105.5	33.9		782.0	18.6	19.8	19.8	19.8	18.2
V-L Molecular Weight	28.895	28.133	32.078	32.078	18.015		18.015		43.764	13.292		18.015	21.001	21.108	21.108	21.108	18.015
V-L Flowrate (Ib _{mol} /hr)	113.177	89.570	161	22.957	6.072	0	14,702	0	8.927	33.630	0	27.588	115.695	111.715	14.472	97,244	34,038
V-L Flowrate (lb/hr)	- /	2,519,876	5,166	736,415	109,392	0	264,860	0	390,684	447,019	0	497,007	2,429,689	2,358,061	305,462	2,052,598	613,203
Solids Flowrate (lb/hr)	0	0	0	0	0	1,259,331	0	994,470	0	742,793	106,261	0	0	0	0	0	0
Temperature (°F)	42	78	90	90	650	42	93	160	166	64	2,600	420	500	417	417	417	550
Pressure (psia)	13.0	16.4	125.0	125.0	740.0	13.0	80.3	12.7	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7	544.7	600.0
Enthalpy (Btu/lb)	6.8	13.1	11.6	11.6	1,366.2		65.7		7.9	1,639.3		437.6	469.4	412.4	412.4	412.4	1,319.9
Density (lb/ft ³)	0.070	0.080	0.685	0.685	1.257		61.501		6.587	2.116		48.817	1.162	1.238	1.238	1.238	1.135
	A - Referen	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA												

Exhibit 5-4 Case 6 Stream Table, Subbituminous Rosebud PRB Coal to SNG with Carbon Sequestration

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
V-L Mole Fraction																
Ar	0.0021	0.0021	0.0031	0.0031	0.0031	0.0109	0.0000	0.0126	0.0126	0.0001	0.0007	0.0000	0.0016	0.0022	0.0000	0.0000
CH ₄	0.0001	0.0001	0.0001	0.0001	0.0001	0.8276	0.0000	0.9590	0.9590	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1606	0.1589	0.2361	0.2361	0.2361	0.0000	0.0000	0.0000	0.0000	0.0041	0.0594	0.0000	0.0846	0.0074	0.0000	0.0000
CO ₂	0.3490	0.3540	0.0406	0.0406	0.0406	0.1367	0.9833	0.0024	0.0024	0.9914	0.5957	0.0000	0.4861	0.7981	0.0000	0.0000
COS	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0018	0.0000	0.0003	0.0000	0.0000	0.0000
H ₂	0.4810	0.4777	0.7155	0.7155	0.7155	0.0069	0.0000	0.0080	0.0080	0.0043	0.1139	0.0000	0.0552	0.1871	0.0000	0.0000
H ₂ O	0.0017	0.0017	0.0001	0.0001	0.0001	0.0023	0.0167	0.0000	0.0000	0.0001	0.0410	0.0000	0.3696	0.0009	1.0000	1.0000
H ₂ S	0.0025	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1869	0.0000	0.0014	0.0033	0.0000	0.0000
N ₂	0.0030	0.0030	0.0045	0.0045	0.0045	0.0155	0.0000	0.0180	0.0180	0.0000	0.0005	0.0000	0.0007	0.0009	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	50,513	51,082	33,890	149	33,740	9,680	1,326	8,354	8,354	15,652	683	0	802	569	43,615	60,862
V-L Flowrate (kg/hr)	1,066,572	1,087,014	342,095	1,508	340,587	195,732	57,763	137,969	137,969	684,975	24,177	0	24,640	20,441	785,734	1,096,442
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	4,098	0	0	0	0
Temperature (°C)	35	34	31	80	31	35	35	35	35	35	48	175	232	21	566	33
Pressure (MPa, abs)	3.38	3.31	3.24	5.10	3.24	2.77	0.14	2.627	6.202	15.272	0.163	0.12	0.1	3.341	12.512	0.827
Enthalpy (kJ/kg)	42.63	41.26	85.32	232.24	85.32	40.72	46.40	47.945	12.775	-208.887	101.201		844.6	-8.013	3,513.235	138.901
Density (kg/m ³)	28.4	28.1	12.8	17.2	12.8	23.2	2.4	17.8	44.5	778.9	2.2	5,286.0	0.6	56.4	34.9	995.1
V-L Molecular Weight	21.115	21.280	10.094	10.094	10.094	20.221	43.574	16.515	16.515	43.764	35.372		31	35.955	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	111.362	112,615	74,714	329	74,384	21,340	2.922	18,418	18,418	34,506	1.507	0	1.768	1.253	96,154	134,177
V-L Flowrate (lb/hr)	2,351,389	2,396,455	754,191	3,325	750,866	431,516	127,346	304,170	304,170	1,510,111	53,301	0	54,322	45,065		2,417,240
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	9,034	0	0	0	0
				-	-				-			- 1		-		
Temperature (°F)	95	94	87	177	87	95	95	95	95	95	119	347	450	69	1,050	91
Pressure (psia)	489.7	479.7	469.6	740.0	469.6	401.1	20.1	381.0	899.5	2,215.0	23.7	17.3	12.3	484.5	1,814.7	120.0
Enthalpy (Btu/lb)	18.3	17.7	36.7	99.8	36.7	17.5	19.9	20.6	5.5	-89.8	43.5		363.1	-3.4	1,510.4	59.7
Density (lb/ft ³)	1.770	1.752	0.799	1.072	0.799	1.446	0.148	1.110	2.776	48.625	0.136	329.997	0.039	3.520	2.177	62.123

Exhibit 5-4 Case 6 Stream Table, Subbituminous Rosebud PRB Coal to SNG with Carbon Sequestration (continued)

5.1.2 Key System Assumptions

System assumptions for Cases 5 and 6, Siemens gasifier using Rosebud PRB coal with and without carbon sequestration, are compiled in Exhibit 5-5.

Case	Case 5	Case 6
Gasifier Pressure, MPa (psia)	4.2 (615)	4.2 (615)
O_2 :Coal Ratio, kg O_2 /kg dry coal	0.731	0.731
Carbon Conversion, %	99.9	99.9
Syngas HHV at Gasifier Outlet, kJ/Nm ³ (Btu/scf)	9,746 (263)	9,746 (263)
Steam Cycle, MPa/°C/°C	12.4/566/539	12.4/566/539
(psig/°F/°F)	(1800/1050/1002)	(1800/1050/1002)
Condenser Pressure, mm Hg (in Hg)	36 (1.4)	36 (1.4)
СТ	N/A	N/A
Gasifier Technology	Siemens	Siemens
Oxidant	99 vol% Oxygen	99 vol% Oxygen
Coal	Rosebud PRB	Rosebud PRB
Coal Feed Moisture Content, %	25.77	25.77
COS Hydrolysis Reactor	No	No
WGS	Yes	Yes
H ₂ S Separation	Selexol (1 st Stage)	Selexol (1 st Stage)
Sulfur Removal, %	98.5	99.9
CO ₂ Separation	Selexol (2 nd Stage)	Selexol (2 nd Stage)
CO ₂ Sequestration, %	N/A	65.8
Sulfur Recovery	Claus Plant with Tail Gas Treatment / Elemental Sulfur	Claus Plant with Tail Gas Treatment / Elemental Sulfur
Methanation System	Haldor Topsoe TREMP TM Process	Haldor Topsoe TREMP TM Process
Particulate Control	Scrubber and AGR Absorber	Scrubber and AGR Absorber
Mercury Control	Carbon Bed	Carbon Bed
NOx Control	N/A	N/A

Exhibit 5-5 Cases 5 and 6 Plant Study Configuration Matrix

Balance of Plant and Sparing Philosophy

The balance of plant assumptions and sparing philosophy are common to all cases and are presented in Section 4.1.3.

5.1.3 Cases 5 and 6 Performance Results

The Siemens SNG plant without and with carbon sequestration and using Rosebud PRB coal produces a net output of 61 Bscf/year at 100 percent capacity.

Overall performance for the two plants is summarized in Exhibit 5-6, which includes auxiliary power requirements and production values. The ASU accounts for approximately 59 percent of the total auxiliary load in non-sequestration case and 49 percent in the sequestration case, distributed between the main air compressor, the oxygen compressor, and ASU auxiliaries. CO_2 compression accounts for about 19 percent in the sequestration case. The AGR process accounts for approximately 12 percent and 10 percent of the auxiliary load for the non-sequestration and sequestration cases, respectively. The WTA coal drying process accounts for 8 percent in the non-sequestration case and 7 percent in the sequestration case. All other individual auxiliary loads are less than 3 percent of the total. Both Case 5 and Case 6 are net power producers, but the net power production of Case 6 is very small. This is due to the auxiliary power required for CO_2 compression.

POWER SUMMARY (Gross Power at Generator Terminals, kWe)	Case 5	Case 6
Steam Turbine Power	302,000	302,000
TOTAL POWER, kWe	302,000	302,000
AUXILIARY LOAD SUMMARY, kWe		
Coal Handling	840	840
Coal Milling	5,870	5,870
Slag Handling	1,250	1,250
WTA Coal Dryer Compressor	20,050	20,060
WTA Coal Dryer Auxiliaries	880	880
Air Separation Unit Auxiliaries	1,000	1,000
Air Separation Unit Main Air Compressor	124,170	124,160
Oxygen Compressor	21,250	21,250
CO_2 Compressor	0	56,730
CO ₂ Solid Feed System Compressor	5,580	270
SNG Compressors	6,040	6,040
Methanation Plant Recycle Compressor	4,720	4,650
Gasifier Pilot Fuel Compressor	60	60
Boiler Feedwater Pumps	5,020	5,020
Condensate Pump	400	400
Quench Water Pump	570	570
Circulating Water Pump	4,550	5,190
Ground Water Pumps	440	500
Cooling Tower Fans	2,970	3,380
Air Cooled Condenser Fans	3,640	3,630
Scrubber Pumps	980	980
Acid Gas Removal	30,240	30,250
Steam Turbine Auxiliaries	100	100
Claus Plant/TGTU Auxiliaries	250	250
Claus Plant TG Recycle Compressor	2,120	2,130
Miscellaneous Balance of Plant ²	3,000	3,000
Transformer Losses	1,580	1,730
TOTAL AUXILIARIES, kWe	247,570	300,190
NET POWER, kWe	54,430	1,810
SNG Production Rate, MNm ³ /hr (Mscf/hr)	197.9 (6,992)	197.8 (6,989)
Capacity Factor	90%	90%
Net Exported Power Efficiency (HHV)	1.7%	0.1%
SNG Conversion Efficiency (HHV _{product} /HHV _{coal}), %	63.1%	63.1%
Coal to SNG Product Yield, MNm ³ _{SNG} /tonne _{coal} (Mscf _{SNG} /ton _{coal})	0.33 (11.1)	0.33 (11.1)
Coal Feed Flow Rate, kg/hr (lb/hr)	571,223 (1,259,331)	571,223 (1,259,331)
Thermal Input, ¹ kWth	3,160,745	3,160,745
Condenser Cooling Duty, GJ/hr (MMBtu/hr)	1,614 (1,530)	1,625 (1,540)
Raw Water Withdrawal, m ³ /min (gpm)	18.4 (4,853)	20.9 (5,509)
Raw Water Consumption, m ³ /min (gpm)	14.3 (3,783)	16.2 (4,291)

1 - HHV of Rosebud PRB coal is 19,920 kJ/kg (8,564 Btu/lb)

2 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

Environmental Performance

The environmental targets for emissions of Hg, NOx, SO_2 , and PM were presented in Section 2.5. A summary of the plant air emissions for Cases 5 and 6 is presented in Exhibit 5-7.

		/GJ ⁶ Btu)	Tonne/year (ton/year) 90% capacity factor			
	Case 5 Case 6		Case 5	Case 6		
SO ₂	0.009 (0.022)	0.000 (0.000)	840 (926)	0 (0)		
NO _X	Negligible	Negligible	Negligible	Negligible		
Particulates	0.003 (0.0071)	0.003 (0.0071)	274 (302)	274 (302)		
Hg	1.51E-7 (3.51E-7)	1.51E-7 (3.51E-7)	0.014 (0.015)	0.014 (0.015)		
CO ₂	60.3 (140.3)	0.3 (0.7)	5,412,955 (5,966,762)	27,781 (30,624)		

Exhibit 5-7 Cases 5 and 6 Air Emissions

The low level of SO₂ emissions in Case 6 is achieved by capture of the sulfur in the gas by the two-stage Selexol AGR process and co-sequestration with the CO₂ product. Because the WTA coal drying process does not include combustion of SNG, there are no SO₂ emissions associated with drying. Just as in the non-capture cases, the SO₂ emissions are significantly less than the environmental targets of Section 2.5. The clean syngas exiting the AGR process has a sulfur concentration of approximately 2 ppmv in both cases. The H₂S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The tail gas is hydrogenated and recycled to the AGR unit. The higher sulfur emissions in Case 5 are due to the sulfur contained in the CO₂-rich stream from the Selexol process, which is vented rather than sequestered.

NO_X emissions are negligible because no CT is used for power generation.

Particulate discharge to the atmosphere is limited to extremely low values by the use of a syngas scrubber and the gas washing effect of the AGR absorber. The particulate emissions represent filterable particulate only.

Ninety five percent of mercury is captured from the syngas by an activated carbon bed.

 CO_2 emissions represent the uncontrolled (Case 5) and controlled (Case 6) discharge from the process. The carbon balance for the two cases is shown in Exhibit 5-8.

The carbon input to the plant consists of carbon in the air in addition to carbon in the coal. Carbon in the air is not used in the carbon capture equation below, but it is not neglected in the balance since Aspen accounts for air components throughout. Carbon leaves the plant as unburned carbon in the slag, ASU vent gas, SNG product, and the CO_2 product (either vented or sequestered). The carbon capture efficiency is presented in two distinct ways. The first way defines capture as the amount of carbon in the CO_2 product for sequestration relative to the amount of carbon in the coal less carbon contained in the slag, and is represented by the following fraction:

(Carbon in Product for Sequestration)/[(Carbon in the Coal)-(Carbon in Slag)] or

Non sequestration (Case 5)

(412,575)/(630,524-3,153)*100 = 65.8% (Case 6)

Carl	oon In, kg/hr ((lb/hr)	Carbor	Out, kg/hr (l	lb/hr)
	Case 5	Case 6		Case 5	Case 6
Coal	286,001 (630,524)	286,001 (630,524)	Slag	1,430 (3,153)	1,430 (3,153)
Air (CO ₂)	202 (446)	202 (446)	SNG Purification Off-Gas	15,627 (34,452)	0 (0)
			ASU Vent	202 (446)	202 (446)
			SNG	96,555 (212,866)	96,464 (212,667)
			CO ₂ Vent	148,142 (326,598)	187,141 (412,575)
			CO ₂ Feed Vent	24,247 (53,455)	966 (2,129)
Total	286,203 (630,969)	286,203 (630,969)	Total	286,203 (630,969)	286,203 (630,969)

Exhibit 5-8 Cases 5 and 6 Carbon Balance

The second way does not penalize the production facility for the carbon converted to SNG product, as the end use of the SNG is unknown. In a carbon constrained scenario, the SNG may or may not be used in a scenario where CCS is implemented. For this method, the burden of carbon mitigation falls on the end-user. This method is represented by the following fraction:

[(Carbon in Product for Sequestration) + (Carbon in SNG Product)]/[(Carbon in the Coal)-(Carbon in Slag)] or

$$(0 + 212,866)/(630,524 - 3,153)*100 = 33.9\%$$
 (Case 5)

(412,575 + 212,866)/(630,524-3,153)*100 = 99.7% (Case 6)

Exhibit 5-9 shows the sulfur balance for the plant. Sulfur input comes solely from the sulfur in the coal. Sulfur output includes the sulfur recovered in the Claus plant, sulfur emitted in the

stack gas, sulfur co-sequestered with the CO_2 product, and sulfur remaining in the SNG product. Sulfur in the slag is considered negligible. The total sulfur capture is represented by the following fraction:

> (Sulfur byproduct + Sulfur in CO₂ product)/Sulfur in the coal or (9,028 + 0)/9,161 = 98.5% (Case 5) (9,033 + 123)/9,161 = 99.9% (Case 6)

	Sulfur In, kg/hr	(lb/hr)	Sulfur Out, kg/hr (lb/hr)					
	Case 5 Case 6			Case 5	Case 6			
Coal	4,155 (9,161)	4,155 (9,161)	Elemental Sulfur	4,095 (9,028)	4,097 (9,033)			
			SNG	2 (4)	2 (4)			
			CO ₂ Vent Streams/Stack	58 (128)	0.3 (1)			
			CO ₂ Product	N/A	56 (123)			
Total	4,155 (9,161)	4,155 (9,161)	Total	4,155 (9,161)	4,155 (9,161)			

Exhibit 5-9 Cases 5 and 6 Sulfur Balance

Exhibit 5-10 shows the overall water balance for the plant. Water demand represents the total amount of water required for a particular process. Some water is recovered within the process, primarily as syngas condensate, and is re-used as internal recycle. The difference between demand and recycle is raw water withdrawal. Raw water withdrawal is defined as the water removed from the ground or diverted from a surface-water source for use in the plant and was assumed to be provided 50 percent by a POTW and 50 percent from groundwater. Raw water withdrawal can be represented by the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, BFW makeup, quench system makeup, and slag handling makeup. The difference between water withdrawal and process water discharge is defined as water consumption and can be represented by the portion of the raw water withdrawn that is evaporated, transpired, incorporated into products or otherwise not returned to the water source from which it was withdrawn. Water consumption represents the net impact of the plant process on the water source.

	Case 5	Case 6
Water Deman	id, m ³ /min (gpm	
Slag Handling	1.04 (276)	1.04 (276)
Quench/Wash	3.8 (994)	3.8 (994)
Condenser Makeup	5.7 (1,507)	5.7 (1,507)
Gasifier Steam	0.83 (219)	0.83 (219)
Shift Steam	4.6 (1,226)	4.6 (1,226)
BFW Makeup	0.23 (62)	0.23 (62)
Cooling Tower	17.7 (4,679)	20.2 (5,334)
Total	28.2 (7,456)	30.7 (8,111)
Internal Recyc	cle, m ³ /min (gpn	· · · · ·
Slag Handling	1.04 (276)	1.04 (276)
Quench/Wash	3.8 (994)	3.8 (994)
Condenser Makeup	0.0 (0)	0.0 (0)
Cooling Tower	5.0 (1,332)	5.0 (1,332)
Water from Coal Drying	2.0 (530)	2.0 (530)
BFW Blowdown	0.23 (62)	0.23 (62)
SWS Blowdown	0.69 (183)	0.69 (183)
SWS Excess	2.1 (558)	2.1 (558)
Total	9.9 (2,602)	9.8 (2,602)
Raw Water Withd	lrawal, m ³ /min (gpm)
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
Condenser Makeup	5.7 (1,507)	5.7 (1,507)
Gasifier Steam	0.83 (219)	0.83 (219)
Shift Steam	4.6 (1,226)	4.6 (1,226)
BFW Makeup	0.23 (62)	0.23 (62)
Cooling Tower	12.7 (3,347)	15.1 (4,002)
Total	18.4 (4,853)	20.9 (5,509)
Process Water Dis	charge, m ³ /min (
SWS Blowdown	0.07 (18)	0.07 (18)
Cooling Tower Blowdown	4.0 (1,052)	4.5 (1,200)
Total	4.1 (1,071)	4.6 (1,218)
Raw Water Consu	mption, m ³ /min	(gpm)
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
SWS Blowdown	-0.07 (-18)	-0.07 (-18)
Condenser Makeup	5.7 (1,507)	5.7 (1,507)
Cooling Tower	8.7 (2,295)	10.6 (2,803)
Total	14.3 (3,783)	16.2 (4,291)

Exhibit 5-10 Cases 5 and 6 Water Balance

Heat and Mass Balance Diagrams

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 5-11 through Exhibit 5-16:

- Coal gasification and ASU
- Syngas cleanup (including sulfur recovery and tail gas recycle)
- Methanation, SNG purification, SNG compression, and power cycle

An overall plant energy balance is provided in tabular form in Exhibit 5-17 for the two cases.

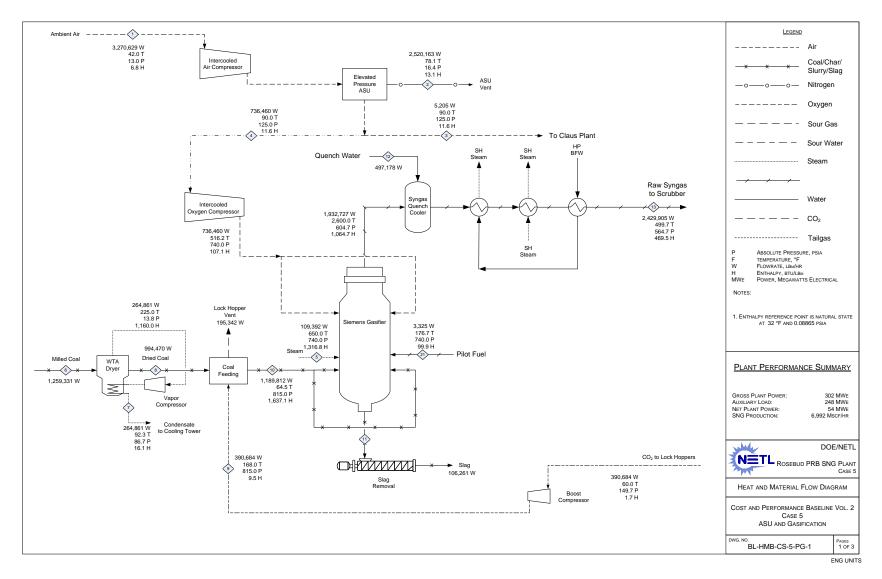


Exhibit 5-11 Case 5 Gasification and ASU Heat and Mass Balance

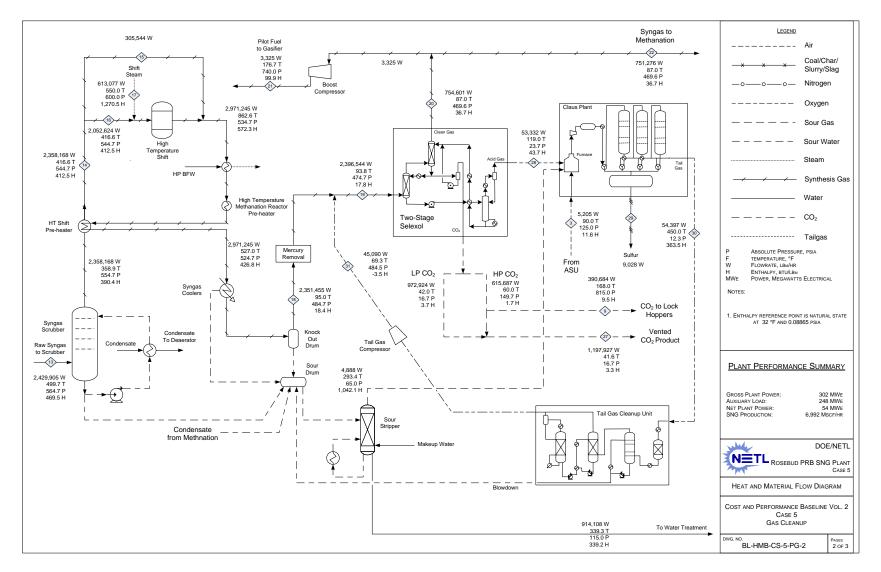


Exhibit 5-12 Case 5 Gas Cleanup Heat and Mass Balance

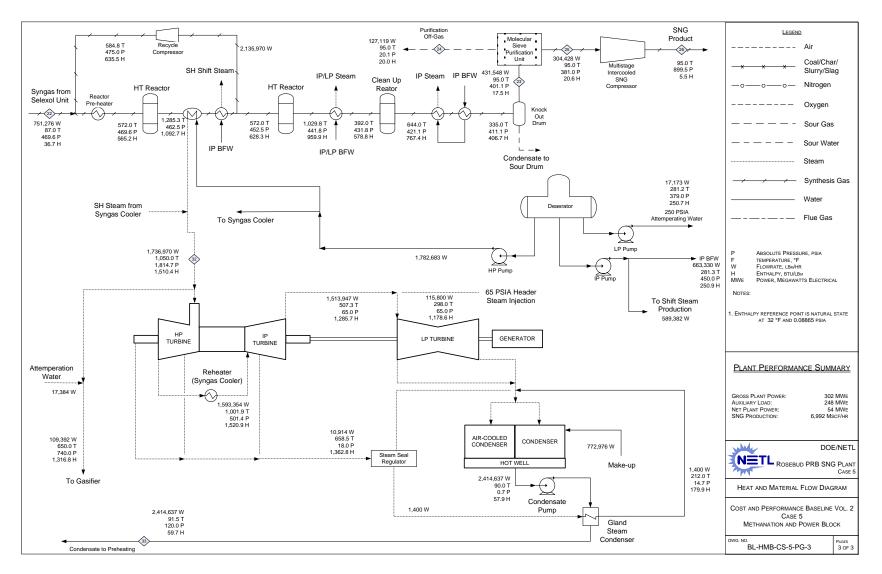


Exhibit 5-13 Case 5 Methanation and Power Block Heat and Mass Balance

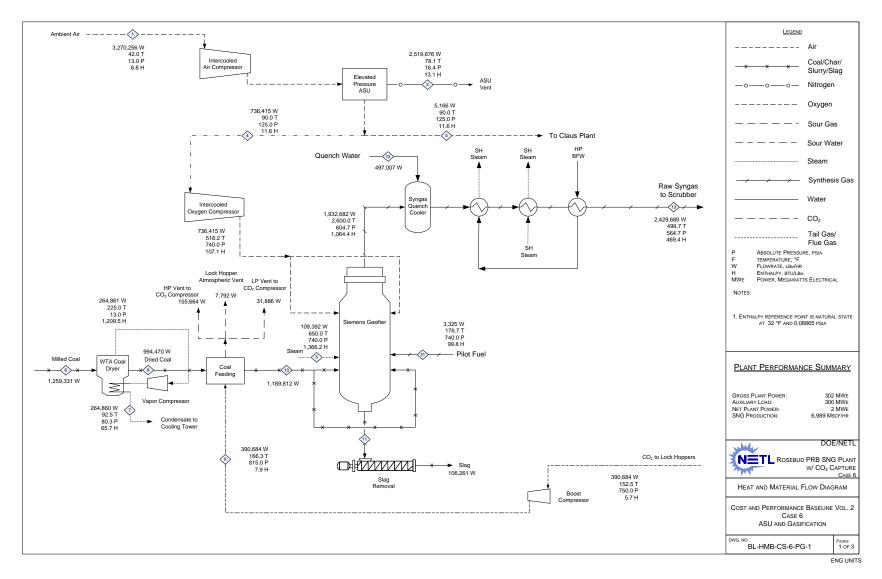


Exhibit 5-14 Case 6 Gasification and ASU Heat and Mass Balance

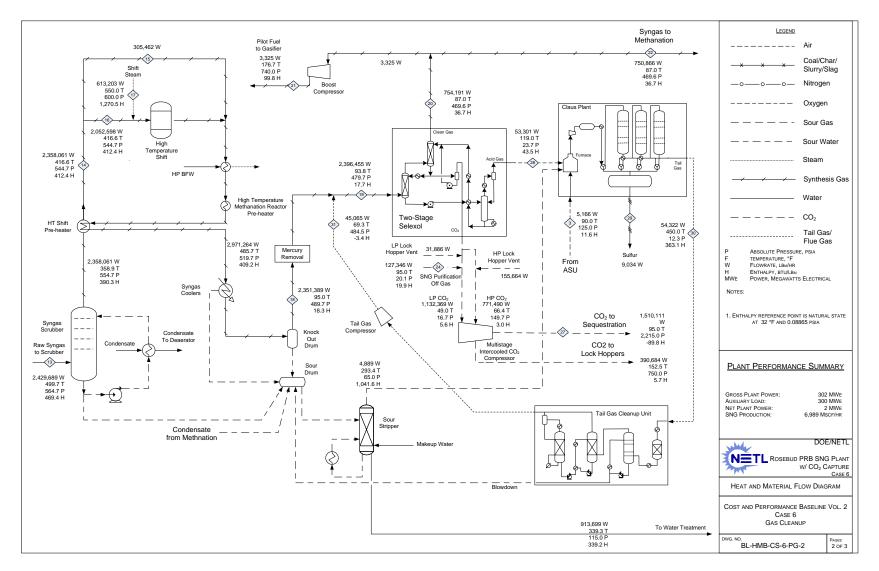


Exhibit 5-15 Case 6 Gas Cleanup Heat and Mass Balance

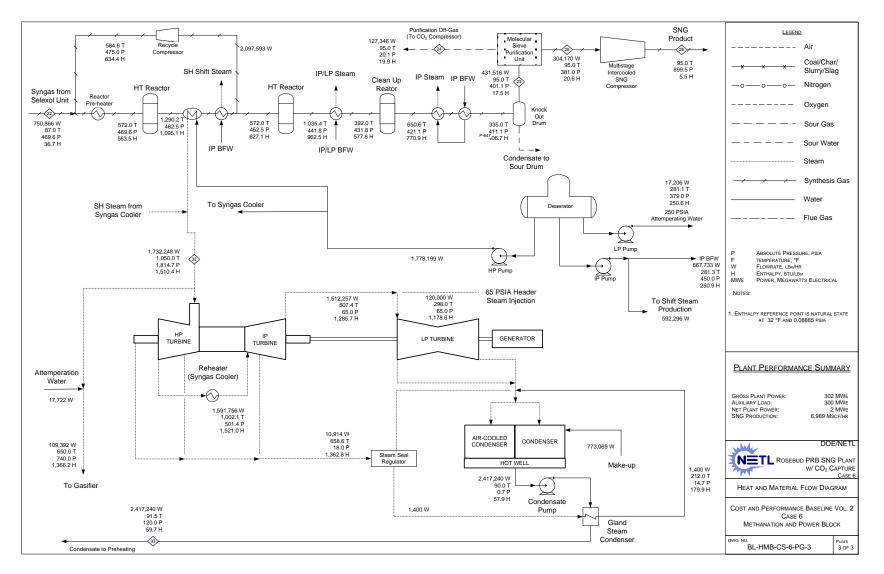


Exhibit 5-16 Case 6 Methanation and Power Block Heat and Mass Balance

	HI	IV	Sensible	e + Latent	Po	wer	To	otal
	Case 5	Case 6	Case 5	Case 6	Case 5	Case 6	Case 5	Case 6
Heat In, GJ/hr (MMBtu/hr)		•	<u>.</u>	-		•	<u>*</u>
Coal	11,379 (10,785)	11,379 (10,785)	5.8 (5.5)	5.8 (5.5)	0 (0)	0 (0)	11,385 (10,790)	11,385 (10,790)
ASU Air	0 (0)	0 (0)	23.3 (22.1)	23.3 (22.1)	0 (0)	0 (0)	23 (22)	23 (22)
Raw Water Makeup	0 (0)	0 (0)	25.6 (24.2)	29.0 (27.5)	0 (0)	0 (0)	26 (24)	29 (27)
Auxiliary Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	891 (845)	1,081 (1,024)	891 (845)	1,081 (1,024)
Totals	11,379 (10,785)	11,379 (10,785)	54.7 (51.9)	58.2 (55.1)	891 (845)	1,081 (1,024)	12,325 (11,682)	12,518 (11,864)
Heat Out, GJ/hr (MMBtu/h	ır)							
ASU Intercoolers	0 (0)	0 (0)	325 (308)	325 (308)	0 (0)	0 (0)	325 (308)	325 (308)
ASU Vent	0 (0)	0 (0)	34.9 (33.1)	34.9 (33.1)	0 (0)	0 (0)	35 (33)	35 (33)
Slag	47 (44)	47 (44)	81.4 (77.1)	81.4 (77.1)	0 (0)	0 (0)	128 (122)	128 (122)
Sulfur	38 (36)	38 (36)	0.5 (0.4)	0.5 (0.4)	0 (0)	0 (0)	38 (36)	38 (36)
CO ₂ Intercoolers	0 (0)	0 (0)	0.0 (0.0)	343.7 (325.8)	0 (0)	0 (0)	0 (0)	344 (326)
CO_2	0 (0)	0 (0)	2.0 (1.9)	-143.1 (-135.6)	0 (0)	0 (0)	2 (2)	-143 (-136)
Cooling Tower Blowdown	0 (0)	0 (0)	22.2 (21.0)	25.3 (24.0)	0 (0)	0 (0)	22 (21)	25 (24)
SNG	7,163 (6,789)	7,158 (6,784)	1.8 (1.7)	1.8 (1.7)	0 (0)	0 (0)	7,165 (6,791)	7,160 (6,786)
SNG Purification Off-Gas	0 (0)	0 (0)	3 (3)	0 (0)	0 (0)	0 (0)	3 (3)	0 (0)
Condenser	0 (0)	0 (0)	1,618 (1,533)	1,620 (1,536)	0 (0)	0 (0)	1,618 (1,533)	1,620 (1,536)
Non-Condenser Cooling Tower Loads*	0 (0)	0 (0)	902 (855)	1,224 (1,160)	0 (0)	0 (0)	902 (855)	1,224 (1,160)
Process Losses*	0 (0)	0 (0)	1,000 (947)	674 (639)	0 (0)	0 (0)	1,000 (947)	674 (639)
Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	1,087 (1,030)	1,087 (1,030)	1,087 (1,030)	1,087 (1,030)
Totals	7,248 (6,870)	7,243 (6,865)	3,989 (3,781)	4,188 (3,969)	1,087 (1,030)	1,087 (1,030)	12,325 (11,682)	12,518 (11,864)

Exhibit 5-17 Cases 5 and 6 Energy Balance

* Includes other energy losses not explicitly accounted for in the model

5.1.4 Cases 5 and 6 Equipment Lists

Major equipment items for the Siemens gasifier SNG plant without and with carbon sequestration using PRB coal are shown in the following tables. The accounts used in the equipment list correspond to the account numbers used in the cost estimates in Section 5.1.5. In general, the design conditions include a 10 percent contingency for flows and heat duties and a 21 percent contingency for heads on pumps and fans.

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	2	0	181 tonne (200 ton)	181 tonne (200 ton)
2	Feeder	Belt	2	0	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)
3	Conveyor No. 1	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
4	Transfer Tower No. 1	Enclosed	1	0	N/A	N/A
5	Conveyor No. 2	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
6	As-Received Coal Sampling System	Two-stage	1	0	N/A	N/A
7	Stacker/Reclaimer	Traveling, linear	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
8	Reclaim Hopper	N/A	2	1	118 tonne (130 ton)	118 tonne (130 ton)
9	Feeder	Vibratory	2	1	472 tonne/hr (520 tph)	472 tonne/hr (520 tph)
10	Conveyor No. 3	Belt w/ tripper	1	0	943 tonne/hr (1,040 tph)	943 tonne/hr (1,040 tph)
11	Crusher Tower	N/A	1	0	N/A	N/A
12	Coal Surge Bin w/ Vent Filter	Dual outlet	2	0	472 tonne (520 ton)	472 tonne (520 ton)
13	Crusher	Impactor reduction	2	0	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)
14	As-Fired Coal Sampling System	Swing hammer	1	1	N/A	N/A

ACCOUNT 1 COAL HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
15	Conveyor No. 4	Belt w/tripper	1	0	943 tonne/hr (1,040 tph)	943 tonne/hr (1,040 tph)
16	Transfer Tower No. 2	Enclosed	1	0	N/A	N/A
17	Conveyor No. 5	Belt w/ tripper	1	0	943 tonne/hr (1,040 tph)	943 tonne/hr (1,040 tph)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	3	0	2,087 tonne (2,300 ton)	2,087 tonne (2,300 ton)

ACCOUNT 2 COAL PREPARATION AND FEED

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Feeder	Vibratory	6	0	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)
2	Conveyor No. 6	Belt w/tripper	3	0	209 tonne/hr (230 tph)	209 tonne/hr (230 tph)
3	Roller Mill Feed Hopper	Dual Outlet	3	0	417 tonne (460 ton)	417 tonne (460 ton)
4	Weigh Feeder	Belt	6	0	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)
5	Pulverizer	Rotary	6	0	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)
6	Coal Dryer Feed Hopper	Vertical Hopper	3	0	417 tonne (460 ton)	417 tonne (460 ton)
7	Coal Preheater	Water Heated Horizontal Rotary Kiln	3	0	Coal feed: 209 tonne/hr (230 tph) Heat duty: 23.3 GJ/hr (22.1 MMBtu/hr)	Coal feed: 209 tonne/hr (230 tph) Heat duty: 23.3 GJ/hr (22.1 MMBtu/hr)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
8	Coal Dryer	Fluidized Bed with Internal Coils	3	0	Coal feed: 209 tonne/hr (230 tph) Heat duty: 117 GJ/hr (111 MMBtu/hr) Bed diameter: 14.9 m (49 ft)	Coal feed: 209 tonne/hr (230 tph) Heat duty: 117 GJ/hr (111 MMBtu/hr) Bed diameter: 14.9 m (49 ft)
9	Steam Compressor	Reciprocating, Multi-Stage	3	0	878 m ³ /min (30,990 scfm) Suction - 0.10 MPa (13.8 psia) Discharge - 0.77 MPa (112 psia)	878 m ³ /min (30,990 scfm) Suction - 0.09 MPa (13 psia) Discharge - 0.73 MPa (105 psia)
10	Dryer Exhaust Filter	Hot Baghouse	3	0	Steam - 44,044 kg/hr (97,100 lb/hr) Temperature - 107°C (225°F)	Steam - 44,044 kg/hr (97,100 lb/hr) Temperature - 107°C (225°F)
11	Dry Coal Cooler	Water Cooled Horizontal Rotary Kiln	3	0	165 tonne/hr (182 tph) Heat duty - 10 GJ/hr (9 MMBtu/hr)	165 tonne/hr (182 tph) Heat duty - 10 GJ/hr 9 MMBtu/hr)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	3	0	605,666 liters (160,000 gal)	605,666 liters (160,000 gal)
2	Condensate Pumps	Vertical canned	2	1	10,107 lpm @ 91 m H ₂ O (2,670 gpm @ 300 ft H ₂ O)	10,107 lpm @ 91 m H ₂ O (2,670 gpm @ 300 ft H ₂ O)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
3	Deaerator	Horizontal spray type	2	0	769,293 kg/hr (1,696,000 lb/hr)	770,200 kg/hr (1,698,000 lb/hr)
4	Intermediate Pressure Feedwater Pump	Horizontal centrifugal, single stage	2	1	5,413 lpm @ 341 m H ₂ O (1,430 gpm @ 1,120 ft H ₂ O)	5,451 lpm @ 341 m H ₂ O (1,440 gpm @ 1,120 ft H ₂ O)
5	High Pressure Feedwater Pump	Barrel type, multi-stage, centrifugal	2	1	HP water: 7,722 lpm @ 1,676 m H ₂ O (2,040 gpm @ 5,500 ft H ₂ O)	HP water: 7,684 lpm @ 1,676 m H ₂ O (2,030 gpm @ 5,500 ft H ₂ O)
6	Auxiliary Boiler	Shop fabricated, water tube	1	0	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)
7	Service Air Compressors	Flooded Screw	3	1	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)
8	Instrument Air Dryers	Duplex, regenerative	3	1	28 m ³ /min (1,000 scfm)	28 m ³ /min (1,000 scfm)
9	Closed Cycle Cooling Heat Exchangers	Plate and frame	2	0	675 GJ/hr (639 MMBtu/hr) each	852 GJ/hr (808 MMBtu/hr) each
10	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	2	1	241,888 lpm @ 21 m H ₂ O (63,900 gpm @ 70 ft H ₂ O)	305,483 lpm @ 21 m H ₂ O (80,700 gpm @ 70 ft H ₂ O)
11	Engine-Driven Fire Pump	Vertical turbine, diesel engine	1	1	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
12	Fire Service Booster Pump	Two-stage horizontal centrifugal	1	1	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)
13	Raw Water Pumps	Stainless steel, single suction	2	1	5,110 lpm @ 18 m H ₂ O (1,350 gpm @ 60 ft H ₂ O)	5,792 lpm @ 18 m H ₂ O (1,530 gpm @ 60 ft H ₂ O)
14	Ground Water Pumps	Stainless steel, single suction	3	1	3,407 lpm @ 268 m H ₂ O (900 gpm @ 880 ft H ₂ O)	3,861 lpm @ 268 m H ₂ O (1,020 gpm @ 880 ft H ₂ O)
15	Filtered Water Pumps	Stainless steel, single suction	2	1	5,905 lpm @ 49 m H ₂ O (1,560 gpm @ 160 ft H ₂ O)	5,905 lpm @ 49 m H ₂ O (1,560 gpm @ 160 ft H ₂ O)
16	Filtered Water Tank	Vertical, cylindrical	2	0	2,831,488 liter (748,000 gal)	2,831,488 liter (748,000 gal)
17	Makeup Water Demineralizer	Anion, cation, and mixed bed	4	0	1,401 lpm (370 gpm)	1,401 lpm (370 gpm)
18	Liquid Waste Treatment System		1	0	10 years, 24-hour storm	10 years, 24-hour storm

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Gasifier	Pressurized dry- feed, entrained bed	6	0	2,540 tonne/day, 4.2 MPa (2,800 tpd, 615 psia)	2,540 tonne/day, 4.2 MPa (2,800 tpd, 615 psia)
2	Synthesis Gas Cooler	Convective spiral-wound tube boiler	6	0	201,849 kg/hr (445,000 lb/hr)	201,849 kg/hr (445,000 lb/hr)
3	Syngas Scrubber Including Sour Water Stripper	Vertical upflow	6	0	201,849 kg/hr (445,000 lb/hr)	201,849 kg/hr (445,000 lb/hr)
4	Raw Gas Coolers	Shell and tube with condensate drain	12	0	423,655 kg/hr (934,000 lb/hr)	423,655 kg/hr (934,000 lb/hr)
5	Raw Gas Knockout Drum	Vertical with mist eliminator	3	0	390,997 kg/hr, 35°C, 3.4 MPa (862,000 lb/hr, 95°F, 490 psia)	390,997 kg/hr, 35°C, 3.4 MPa (862,000 lb/hr, 95°F, 495 psia)
6	Flare Stack	Self-supporting, carbon steel, stainless steel top, pilot ignition	3	0	404,151 kg/hr (891,000 lb/hr) syngas	404,151 kg/hr (891,000 lb/hr) syngas
7	ASU Main Air Compressor	Centrifugal, multi-stage	3	0	7,419 m ³ /min @ 1.3 MPa (262,000 scfm @ 190 psia)	7,419 m ³ /min @ 1.3 MPa (262,000 scfm @ 190 psia)

ACCOUNT 4 GASIFIER, ASU, AND ACCESSORIES INCLUDING LOW TEMPERATURE HEAT RECOVERY

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
8	Cold Box	Vendor design	3	0	2,994 tonne/day (3,300 tpd) of 99% purity oxygen	2,994 tonne/day (3,300 tpd) of 99% purity oxygen
9	Oxygen Compressor	Centrifugal, multi-stage	3	0	1,501 m ³ /min (53,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)	1,501 m ³ /min (53,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)
10	CO ₂ Solid Feed System Compressor	Centrifugal, multi-stage	3	0	595 m ³ /min (21,000 scfm) Suction - 1.0 MPa (150 psia) Discharge - 5.7 MPa (820 psia)	595 m ³ /min (21,000 scfm) Suction - 5.2 MPa (750 psia) Discharge - 5.7 MPa (820 psia)

ACCOUNT 5A SYNGAS CLEANUP

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Mercury Adsorber	Sulfated carbon bed	3	0	390,997 kg/hr (862,000 lb/hr) 35°C (95°F) 3.3 MPa (485 psia)	390,997 kg/hr (862,000 lb/hr) 35°C (95°F) 3.4 MPa (490 psia)
2	ZnO Guard Bed	Fixed bed			444 Nm ³ /min (15,684 acfm)	444 Nm ³ /min (15,672 acfm)
3	Sulfur Plant	Claus type	2	0	54 tonne/day (60 tpd)	54 tonne/day (60 tpd)
4	Water Gas Shift Reactor	Fixed bed, catalytic	3	0	443,160 kg/hr (977,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)	443,160 kg/hr (977,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
5	Shift Reactor Heat Recovery Exchanger	Shell and Tube	3 each	0	Exchanger 1: 62 GJ/hr (58 MMBtu/hr) Exchanger 2: 82 GJ/hr (78 MMBtu/hr) Exchanger 3: 17 GJ/hr (16 MMBtu/hr)	Exchanger 1: 62 GJ/hr (58 MMBtu/hr) Exchanger 2: 82 GJ/hr (78 MMBtu/hr) Exchanger 3: 17 GJ/hr (16 MMBtu/hr)
6	Acid Gas Removal Plant	Two-stage Selexol	3	0	398,708 kg/hr (879,000 lb/hr) 34°C (94°F) 3.3 MPa (475 psia)	398,708 kg/hr (879,000 lb/hr) 34°C (94°F) 3.3 MPa (480 psia)
7	Hydrogenati on Reactor	Fixed bed, catalytic	2	0	13,571 kg/hr (29,919 lb/hr) 232°C (450°F) 0.1 MPa (12.3 psia)	13,555 kg/hr (29,883 lb/hr) 232°C (450°F) 0.1 MPa (12.3 psia)
8	Tail Gas Recycle Compressor	Centrifugal	2	0	11,284 kg/hr (24,878 lb/hr)	11,279 kg/hr (24,865 lb/hr)

ACCOUNT 5B CO₂ COMPRESSION

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	CO ₂ Compressor	Integrally geared, multi-stage centrifugal	4	0	N/A	1,699 m3/min @ 15.3 MPa (60,000 scfm @ 2,215 psia)

ACCOUNT 6	COMBUSTION TURBINE AND AUXILIARIES

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Combustion Turbine	N/A	N/A	N/A	N/A	N/A
2	Combustion Turbine Generator	N/A	N/A	N/A	N/A	N/A

ACCOUNT 7 DUCTING & STACK

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Stack	CS plate, type 409SS liner	1	0	76 m (250 ft) high x 2.1 m (7 ft) diameter	76 m (250 ft) high x 0.6 m (2 ft) diameter

ACCOUNT 8 STEAM TURBINE GENERATOR AND AUXILIARIES

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Steam Turbine	Commercially available	1	0	318 MW 12.4 MPa/ /566°C (1800 psig/ 1050°F)	318 MW 12.4 MPa/ 566°C (1800 psig/ 1050°F)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	1	0	350 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	350 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1	0	886 GJ/hr (840 MMBtu/hr), Condensing temperature 32°C (90°F), I nlet water temperature 9°C (48°F), Water temperature rise 11°C (20°F)	886 GJ/hr (840 MMBtu/hr), Condensing temperature 32°C (90°F), Inlet water temperature 9°C (48°F), Water temperature rise 11°C (20°F)
4	Air-cooled Condenser		1	0	886 GJ/hr (840 MMBtu/hr), Condensing temperature 32°C (90°F), Ambient temperature 6°C (42°F)	886 GJ/hr (840 MMBtu/hr), Condensing temperature 32°C (90°F), Ambient temperature 6°C (42°F)

ACCOUNT 9 COOLING WATER SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Circulating Water Pumps	Vertical, wet pit	2	1	454,249 lpm @ 30 m (120,000 gpm @ 100 ft)	518,601 lpm @ 30 m (137,000 gpm @ 100 ft)
2	Cooling Tower	Evaporative, mechanical draft, multi- cell	1	0	3°C (37°F) wet bulb / 9°C (48°F) CWT / 20°C (68°F) HWT / 2,543 GJ/hr (2,410 MMBtu/hr) heat duty	3°C (37°F) wet bulb / 9°C (48°F) CWT / 20°C (68°F) HWT / 2,901 GJ/hr (2,750 MMBtu/hr) heat duty

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Slag Quench Tank	Water bath	6	0	170,344 liters (45,000 gal)	170,344 liters (45,000 gal)
2	Slag Crusher	Roll	6	0	9 tonne/hr (10 tph)	9 tonne/hr (10 tph)
3	Slag Depressurizer	Proprietary	6	0	9 tonne/hr (10 tph)	9 tonne/hr (10 tph)
4	Slag Receiving Tank	Horizontal, weir	6	0	102,206 liters (27,000 gal)	102,206 liters (27,000 gal)
5	Black Water Overflow Tank	Shop fabricated	6	0	45,425 liters (12,000 gal)	45,425 liters (12,000 gal)
6	Slag Conveyor	Drag chain	6	0	9 tonne/hr (10 tph)	9 tonne/hr (10 tph)
7	Slag Separation Screen	Vibrating	6	0	9 tonne/hr (10 tph)	9 tonne/hr (10 tph)
8	Coarse Slag Conveyor	Belt/bucket	6	0	9 tonne/hr (10 tph)	9 tonne/hr (10 tph)
9	Fine Ash Settling Tank	Vertical, gravity	6	0	143,846 liters (38,000 gal)	143,846 liters (38,000 gal)
10	Fine Ash Recycle Pumps	Horizontal centrifugal	6	3	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)
11	Grey Water Storage Tank	Field erected	6	0	45,425 liters (12,000 gal)	45,425 liters (12,000 gal)
12	Grey Water Pumps	Centrifugal	6	3	151 lpm @ 433 m H ₂ O (40 gpm @ 1,420 ft H ₂ O)	151 lpm @ 433 m H ₂ O (40 gpm @ 1,420 ft H ₂ O)
13	Slag Storage Bin	Vertical, field erected	6	0	635 tonne (700 tons)	635 tonne (700 tons)

ACCOUNT 10 SLAG RECOVERY AND HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
14	Unloading Equipment	Telescoping chute	2	0	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)

ACCOUNT 11 SNG PRODUCTION/METHANATION SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	Methanation Reactor Preheater	Shell and Tube	3	0	95 GJ/hr (90 MMBtu/hr)	95 GJ/hr (90 MMBtu/hr)
2	Methanation Reactor 1	Fixed Bed, catalytic	3	0	480,354 kg/hr (1,059,000 lb/hr) 699°C (1,290°F) 3.2 MPa (470 psia)	474,004 kg/hr (1,045,000 lb/hr) 699°C (1,290°F) 3.2 MPa (470 psia)
3	Methanation Reactor Superheater 1	Shell and Tube	3	0	433 GJ/hr (410 MMBtu/hr)	431 GJ/hr (408 MMBtu/hr)
4	Methanation Reactor Intercooler 2	Shell and Tube	3	0	86 GJ/hr (82 MMBtu/hr)	85 GJ/hr (81 MMBtu/hr)
5	Methanation Reactor 2	Fixed Bed, catalytic	3	0	124,738 kg/hr (275,000 lb/hr) 554°C (1,030°F) 3.1 MPa (psia)	124,738 kg/hr (275,000 lb/hr) 560°C (1,040°F) 3.1 MPa (psia)
6	Methanation Reactor Intercooler 3	Shell and Tube	3	0	29 GJ/hr (28 MMBtu/hr)	29 GJ/hr (28 MMBtu/hr)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
7	Methanation Reactor 3	Fixed Bed, catalytic	3	0	124,738 kg/hr (275,000 lb/hr) 338°C (640°F) 3.0 MPa (440 psia)	124,738 kg/hr (275,000 lb/hr) 343°C (650°F) 3.0 MPa (440 psia)
8	Methanation Reactor Intercooler 4	Shell and Tube	3	0	39 GJ/hr (37 MMBtu/hr)	40 GJ/hr (38 MMBtu/hr)
9	Methanation Reactor Intercooler 5	Shell and Tube	3	0	66 GJ/hr (62 MMBtu/hr)	66 GJ/hr (62 MMBtu/hr)
10	SNG Purification Condenser 1	Shell and Tube	3	0	54 GJ/hr (51 MMBtu/hr)	54 GJ/hr (51 MMBtu/hr)
11	SNG Purification Condenser 2	Shell and Tube	3	0	33 GJ/hr (31 MMBtu/hr)	33 GJ/hr (31 MMBtu/hr)
12	Methanation Recycle Compressor	Centrifugal	3	1	8,634 m ³ /min (304,900 scfm) Suction - 3.1 MPa (453 psia) Discharge - 3.3 MPa 475 psia)	8,506 m ³ /min (300,400 scfm) Suction - 3.1 MPa (453 psia) Discharge - 3.3 MPa (475 psia)
13	Molecular Sieve Purification Reactor	Fixed bed	6	0	35,834 kg/hr (79,000 lb/hr) 35°C (95°F) 2.8 MPa (401 psia)	35,834 kg/hr (79,000 lb/hr) 35°C (95°F) 2.8 MPa (401 psia)
14	SNG Product Compressor	Centrifugal, Multi-staged	3	1	1,209 m ³ /min (42,700 scfm) 2.6 MPa (381 psia) 6.2 MPa (900 psia)	1,209 m ³ /min (42,700 scfm) 2.6 MPa (381 psia) 6.2 MPa (900 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	STG Step-up Transformer	Oil-filled	1	0	24 kV/345 kV, 350 MVA, 3-ph, 60 Hz	345 kV/24 kV, 350 MVA, 3-ph, 60 Hz
2	Auxiliary Transformer	Oil-filled	1	1	24 kV/4.16 kV, 273 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 332 MVA, 3-ph, 60 Hz
3	Low Voltage Transformer	Dry ventilated	1	1	4.16 kV/480 V, 41 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 50 MVA, 3-ph, 60 Hz
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	1	0	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz
5	Medium Voltage Switchgear	Metal clad	1	1	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz
6	Low Voltage Switchgear	Metal enclosed	1	1	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz
7	Emergency Diesel Generator	Sized for emergency shutdown	1	0	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz

ACCOUNT 12 ACCESSORY ELECTRIC PLANT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 5 Design Condition	Case 6 Design Condition
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	1	0	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers
2	DCS - Processor	Microprocessor with redundant input/output	1	0	N/A	N/A
3	DCS - Data Highway	Fiber optic	1	0	Fully redundant, 25% spare	Fully redundant, 25% spare

ACCOUNT 13 INSTRUMENTATION AND CONTROLS

5.1.5 <u>Cases 5 and 6 Cost Estimating</u>

The cost estimating methodology was described previously in Section 2.8.

The TPC organized by cost account; owner's costs; TOC; and initial and annual O&M costs for the SNG plant without sequestration using Montana Rosebud PRB coal (Case 5) are shown in Exhibit 5-18 and Exhibit 5-19, respectively. The same data for the SNG plant with sequestration using Montana Rosebud PRB coal (Case 6) are shown in Exhibit 5-20 and Exhibit 5-21.

The estimated TOC of the SNG plant without carbon sequestration is 3.35 billion dollars and with carbon sequestration is 3.44 billion dollars. Project and process contingencies represent 12.0 and 3.7 percent for both cases. The FYCOP is \$19.15/MMBtu for the non-sequestration case and \$21.01/MMBtu for the sequestration case as shown in Exhibit ES-6.

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform			0,						
				. PLANT			ARY				
	Case:	Case 5 - Sieme		NG Production	on w/o CO2						
	Plant Size:	54.43	MW,net	Estimate Ty	/pe:	Conceptua	1	Cos	t Base (Jun)	2007	(\$x1000)
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM		igencles	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
	COAL & SORBENT HANDLING										
	Coal Receive & Unload	\$6,758	\$0	\$3,303	\$0			\$901	\$0	\$2,192	
	Coal Stackout & Reclaim	\$8,733	\$0	\$2,117	\$0			\$951	\$0	\$2,360	
	Coal Conveyors & Yd Crush	\$8,120	\$0	\$2,095	\$0				\$0	\$2,222	
	Other Coal Handling	\$2,124	\$0	\$485	\$0				\$0	\$567	
	Sorbent Receive & Unload	\$0	\$0	\$0	\$0		1.1		\$0	\$0	
	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0		1.1		\$0	\$0	
	Sorbent Conveyors	\$0	\$0	\$0	\$0				\$0	\$0	
	Other Sorbent Handling	\$0	\$0	\$0	\$0				\$0	\$0	
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$4,782	\$11,959	\$0			\$1,605	\$0	\$3,669	
	SUBTOTAL 1.	\$25,736	\$4,782	\$19,958	\$0	\$0	\$50,477	\$4,582	\$0	\$11,012	\$66,071
	COAL & SORBENT PREP & FEED										
	Coal Crushing & Drying	\$110,813	\$0	\$16,147	\$0			\$11,530	\$0	\$27,698	
	Prepared Coal Storage & Feed	\$5,249	\$1,256	\$823	\$0				\$0	\$1,591	\$9,545
	Dry Coal Injection System	\$172,735	\$2,005	\$16,042	\$0			\$16,432	\$0	\$41,443	\$248,656
	Misc.Coal Prep & Feed	\$2,886	\$2,100	\$6,297	\$0			\$1,037	\$0	\$2,464	
	Sorbent Prep Equipment	\$0	\$0	\$0	\$0				\$0	\$C	
	Sorbent Storage & Feed	\$0	\$0	\$0	\$0					\$C	
	Sorbent Injection System	\$0	\$0	\$0	\$0					\$C	
	Booster Air Supply System	\$0	\$0	\$0	\$0				\$0	\$C	
2.9	Coal & Sorbent Feed Foundation	\$0	\$11,219	\$9,211	\$0				\$0	\$4,464	
	SUBTOTAL 2.	\$291,682	\$16,580	\$48,520	\$0	\$0	\$356,782	\$31,518	\$0	\$77,660	\$465,959
	FEEDWATER & MISC. BOP SYSTEMS										
	Feedwater System	\$3,669	\$1,705	\$2,068	\$0			\$673	\$0	\$1,623	
	Water Makeup & Pretreating	\$631	\$66	\$353	\$0		1 1 1 1 1 1	\$100		\$345	
	Other Feedwater Subsystems	\$3,983	\$1,204	\$1,970	\$0			\$650	\$0	\$1,561	\$9,368
3.4	Service Water Systems	\$361	\$744	\$2,581	\$0			\$360	\$0	\$1,213	
	Other Boiler Plant Systems	\$1,938	\$751	\$1,861	\$0				\$0	\$996	
	FO Supply Sys & Nat Gas	\$102	\$210	\$188	\$0			\$48	\$0	\$110	
	Waste Treatment Equipment	\$882	\$0	\$538	\$0				\$0	\$468	
3.8	Misc. Power Plant Equipment	\$1,679	\$225	\$862	\$0				\$0	\$910	
	SUBTOTAL 3.	\$13,244	\$4,904	\$10,420	\$0	\$0	\$28,568	\$2,667	\$0	\$7,225	\$38,460
	GASIFIER & ACCESSORIES										
4.1	Gasifier, Syngas Cooler & Auxiliaries	\$324,959	\$0	\$150,456	\$0				\$71,312	\$88,343	
	Syngas Cooling	w/4.1	\$0	w/ 4.1	\$0				\$0	\$0	
	ASU/Oxidant Compression	\$241,072	\$0	w/equip.	\$0				\$0		
	LT Heat Recovery & FG Saturation	\$50,885	\$0	\$18,854	\$0				\$0	\$15,284	
	Misc. Gasification Equipment	w/4.1&4.2	\$0	w/4.1&4.2	\$0				\$0	\$0	
	Flare Stack System	\$0	\$2,286	\$930	\$0			\$308	\$0	\$705	
	CO2 Solid Feed System Compressors	\$11,668	\$2,800	\$4,200	\$0		1		\$0	\$4,107	
4.8	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2	\$0	\$0	\$0	\$0	\$0	\$0	
4.9	Gasification Foundations	\$0	\$24,156	\$13,784	\$0	\$0	\$37,940	\$3,473	\$0	\$10,353	\$51,760
	SUBTOTAL 4.	\$628,583	\$29.242	\$188,224	\$0	\$0	\$846,050	\$77.921	\$71,312	\$145,236	\$1,140,519

Exhibit 5-18 Case 5 Total Plant Cost Details

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$129,739	\$0	\$110,087	\$0	\$0	\$239,827	\$23,194	\$47,965	\$62,197	\$373,183
5A.2	Elemental Sulfur Plant	\$8,452	\$1,685	\$10,905	\$0	\$0	\$21,041	\$2,044	\$0	\$4,617	\$27,702
5A.3	Mercury Removal	\$2,420	\$0	\$1,841	\$0	\$0	\$4,261	\$412	\$213	\$977	\$5,863
5A.4	Shift Reactors	\$10,589	\$0	\$4,262	\$0	\$0	\$14,851	\$1,424	\$0	\$3,255	\$19,529
5A.5	Methanation	\$27,900	\$11,160	\$16,740	\$0	\$0	\$55,800	\$5,580	\$5,580	\$13,392	\$80,352
5A.6	SNG Purification & Compression	\$19,150	\$7,660	\$11,490	\$0	\$0	\$38,300	\$3,830	\$0	\$8,426	\$50,556
5A.7	Fuel Gas Piping	\$0	\$1,711	\$1,198	\$0	\$0	\$2,910	\$270	\$0	\$636	\$3,815
5A.9	Process Interconnects	\$0	\$12,000	\$18,000	\$0	\$0	\$30,000	\$3,000	\$0	\$6,600	\$39,600
5A.10	HGCU Foundations	\$0	\$1,733	\$1,117	\$0	\$0	\$2,850	\$262	\$0	\$934	\$4,046
5A.11	Zinc Oxide Guard Bed	\$787	\$0	\$145	\$0	\$0	\$932	\$93	\$0	\$205	\$1,230
	SUBTOTAL 5A.	\$199,036	\$35,949	\$175,786	\$0	\$0	\$410,771	\$40,108	\$53,758	\$101,239	\$605,876
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5B.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6	COMBUSTION TURBINE/ACCESSORIES										
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
7.1	Heat Recovery Steam Generator	\$0	\$0	\$0	1.1	\$0		\$0	\$0		
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
7.3	Ductwork	\$0	\$334	\$238	\$0	\$0	\$572	\$50	\$0	\$124	\$746
7.4	Stack	\$1,465	\$0	\$550	\$0	\$0		\$193	\$0	\$221	\$2,429
7.9	HRSG, Duct & Stack Foundations	\$0	\$293	\$282	\$0	\$0		\$54	\$0	\$189	\$818
	SUBTOTAL 7.	\$1,465	\$627	\$1,070	\$0	\$0	\$3,162	\$297	\$0	\$534	\$3,993
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$30,976	\$0	\$5,362	\$0	\$0	\$36,338	\$3,487	\$0	\$3,982	\$43,807
8.2	Turbine Plant Auxiliaries	\$170	\$0	\$494	\$0	\$0	\$664	\$65	\$0	\$73	\$802
8.3a	Condenser & Auxiliaries	\$3,219	\$0	\$1,583	\$0	\$0	\$4,802	\$461	\$0	\$526	\$5,790
8.3b	Air Cooled Condenser	\$29,498	\$0	\$5,914	\$0	\$0	\$35,412	\$3,541	\$0	\$7,791	\$46,744
8.4	Steam Piping	\$5,733	\$0	\$4,033	\$0	\$0	\$9,765	\$839	\$0	\$2,651	\$13,255
8.9	TG Foundations	\$0	\$1,069	\$1,806	\$0	\$0	\$2,875	\$273	\$0	\$944	\$4,092
	SUBTOTAL 8.	\$69,595	\$1,069	\$19,192	\$0	\$0	\$89,856	\$8,666	\$0	\$15,968	\$114,489

Exhibit 5-18 Case 5 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM										
9.1	Cooling Towers	\$7,073	\$0	\$1,287	\$0	\$0	\$8,360	\$796	\$0	\$1,373	\$10,530
9.2	Circulating Water Pumps	\$1,875	\$0	\$87	\$0	\$0	\$1,961	\$165	\$0	\$319	\$2,445
9.3	Circ.Water System Auxiliaries	\$154	\$0	\$22	\$0	\$0	\$176	\$17	\$0	\$29	\$221
9.4	Circ.Water Piping	\$0	\$6,417	\$1,664	\$0	\$0	\$8,081	\$730	\$0	\$1,762	\$10,573
9.5	Make-up Water System	\$348	\$0	\$498	\$0	\$0	\$846	\$81	\$0	\$185	\$1,113
9.6	Component Cooling Water Sys	\$757	\$906	\$645	\$0	\$0	\$2,308	\$216	\$0	\$505	\$3,029
9.9	Circ.Water System Foundations	\$0	\$2,356	\$4,005	\$0	\$0	\$6,360	\$603	\$0	\$2,089	\$9,052
	SUBTOTAL 9.	\$10,207	\$9,679	\$8,206	\$0	\$0	\$28,092	\$2,608	\$0	\$6,263	\$36,963
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$38,544	\$0	\$38,016	\$0	\$0	\$76,559	\$7,418	\$0	\$8,398	\$92,375
10.2	Gasifier Ash Depressurization	w/10.1	\$0	w/10.1	\$0	\$0	\$0	\$0	\$0	\$C	\$0
	Cleanup Ash Depressurization	w/10.1	\$0	w/10.1	\$0	\$0	\$0	\$0	\$0	\$C	\$0
10.4	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
10.5	Other Ash Rrecovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.6	Ash Storage Silos	\$862	\$0	\$938	\$0	\$0	\$1,800	\$175	\$0	\$296	\$2,271
10.7	Ash Transport & Feed Equipment	\$1,156	\$0	\$279	\$0	\$0	\$1,435	\$134	\$0	\$235	\$1,805
10.8	Misc. Ash Handling Equipment	\$1,786	\$2,188	\$654	\$0	\$0	\$4,628	\$440	\$0	\$760	\$5,828
	Ash/Spent Sorbent Foundation	\$0	\$76	\$96	\$0	\$0	\$172	\$16	\$0	\$56	
	SUBTOTAL 10.	\$42,348	\$2,265	\$39,982	\$0	\$0	\$84,594	\$8,183	\$0	\$9,746	\$102,524
11	ACCESSORY ELECTRIC PLANT							_			
11.1	Generator Equipment	\$428	\$0	\$424	\$0	\$0	\$852	\$81	\$0	\$93	\$1,026
11.2	Station Service Equipment	\$5,579	\$0	\$503	\$0	\$0	\$6,082	\$561	\$0	\$664	
11.3	Switchgear & Motor Control	\$10,315	\$0	\$1,876	\$0	\$0	\$12,191	\$1,131	\$0	\$1,998	\$15,319
11.4	Conduit & Cable Tray	\$0	\$4,792	\$15,807	\$0	\$0	\$20,598	\$1,992	\$0	\$5,648	\$28,238
11.5	Wire & Cable	\$0	\$9,155	\$6,015	\$0	\$0	\$15,170	\$1,102	\$0	\$4,068	\$20,340
11.6	Protective Equipment	\$0	\$830	\$3,021	\$0	\$0	\$3,851	\$376	\$0	\$634	\$4,861
11.7	Standby Equipment	\$323	\$0	\$315	\$0	\$0	\$639	\$61	\$0	\$105	\$804
11.8	Main Power Transformers	\$9,154	\$0	\$177	\$0	\$0	\$9,331	\$708	\$0	\$1,506	\$11,545
11.9	Electrical Foundations	\$0	\$192	\$503	\$0	\$0	\$695	\$67	\$0	\$228	\$990
	SUBTOTAL 11.	\$25,800	\$14,968	\$28,640	\$0	\$0	\$69,408	\$6,079	\$0	\$14,945	\$90,432
12	INSTRUMENTATION & CONTROL										
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$C) \$C
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$C) \$C
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$C) \$C
12.4	Other Major Component Control	\$528	\$0	\$353	\$0	\$0	\$881	\$83	\$44	\$151	\$1,160
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$351	\$0	\$225	\$0	\$0	\$576	\$54	\$29	\$132	\$791
12.7	Computer & Accessories	\$5,617	\$0	\$180	\$0	\$0	\$5,797	\$532	\$290	\$662	\$7,280
12.8	Instrument Wiring & Tubing	\$0	\$2,845	\$5,816	\$0	\$0	\$8,661	\$735	\$433	\$2,457	\$12,286
	Other I & C Equipment	\$4,188	\$0	\$2,034	\$0	\$0	\$6,221	\$585		\$1,068	
	SUBTOTAL 12.	\$10,684	\$2,845	\$8,608	\$0	\$0	\$22,137	\$1,990	\$1,107	\$4,470	

Exhibit 5-18 Case 5 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	encies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE									-	
13.1	Site Preparation	\$0	\$144	\$3,080	\$0	\$0	\$3,224	\$320	\$0	\$1,063	\$4,607
	Site Improvements	\$0	\$2,563	\$3,406	\$0	\$0	\$5,969	\$589	\$0	\$1,967	\$8,525
13.3	Site Facilities	\$4,593	\$0	\$4,846	\$0	\$0	\$9,439	\$931	\$0	\$3,111	\$13,481
	SUBTOTAL 13.	\$4,593	\$2,707	\$11,332	\$0	\$0	\$18,632	\$1,840	\$0	\$6,141	\$26,613
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,580	\$3,675	\$0	\$0	\$6,255	\$576	\$0	\$1,025	\$7,855
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0		\$134	\$0	\$245	\$1,879
14.4	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$527	\$515	\$0	\$0	\$1,042	\$94	\$0	\$170	\$1,307
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
	Warehouse	\$0	\$726	\$464	\$0	\$0	\$1,190	\$105	\$0	\$194	\$1,489
14.8	Other Buildings & Structures	\$0	\$521	\$406	\$0	\$0	\$927	\$83	\$0	\$202	\$1,212
	Waste Treating Building & Str.	\$0	\$1,165	\$2,226	\$0	\$0	\$3,391	\$316	\$0	\$741	\$4,448
	SUBTOTAL 14.	\$0	\$6,994	\$8,311	\$0	\$0	\$15,304	\$1,396	\$0	\$2,741	\$19,441
			_								
	TOTAL COST	\$1,322,974	\$132,611	\$568,248	\$0	\$0	\$2,023,833	\$187,854	\$126,177	\$403,179	\$2,741,044
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor										\$21,718
	1 Month Maintenance Materials										\$3,840
	1 Month Non-fuel Consumables										\$575
	1 Month Waste Disposal										\$634
	25% of 1 Months Fuel Cost at 100% CF										\$1,749
	2% of TPC										\$54,821
	Total										\$83,337
	Inventory Capital										
60 d	ay supply of fuel and consumables at 100% CF										\$14,910
	0.5% of TPC (spare parts)										\$13,705
	Total										\$28,615
	Initial Cost for Catalyst and Chemicals										\$15,381
	Land										\$900
	Other Owner's Costs										\$411,157
	Financing Costs										\$74,008
	Total Overnight Costs (TOC)										\$3,354,442
	TASC Multiplier		1								1.201
	Total As-Spent Cost (TASC)				· · · · · ·						\$4,028,684
											+ .,,

Exhibit 5-18 Case 5 Total Plant Cost Details (continued)

INITIAL & ANNUA		VPENSES			Cost Base (Jun):	2007
Case 5 - Siemens Quench SNG Production w/o CC SNG (MMbtu/hr):	02 6789				MWe-net: Capacity Factor (%):	54 90
OPERATING & MAINTENA		R				90
Operating Labor		_				
Operating Labor Rate(base):	34.65	\$/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Operating Labor Requirements(O.J.)per Shift:	1 unit/mod.		Plant			
Skilled Operator	2.0		2.0			
Operator	12.0		12.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	18.0		18.0			
					Annual Cost	Annual Unit Cos
					<u>\$</u>	\$/MMBtu
Annual Operating Labor Cost					\$7,102,696	\$0.133 \$0.514
Maintenance Labor Cost Administrative & Support Labor					\$27,646,499	\$0.516 \$0.162
Property Taxes and Insurance					\$8,687,299 \$54,820,873	\$0.162 \$1.024
TOTAL FIXED OPERATING COSTS					\$98,257,367	\$1.024 \$1.836
VARIABLE OPERATING COSTS					\$70,207,007	\$1.000
Maintenance Material Cost					\$41,469,749	<u>\$/MMBtu</u> \$0.77474
<u>Consumables</u>	<u>Consı</u> Initial Fill	<u>mption</u> /Day	<u>Unit</u> Cost	<u>Initial Fill</u> <u>Cost</u>		
Water(/1000 gallons)	0	3,494	1.08	\$0	\$1,241,581	\$0.02320
Chamlanda						
Chemicals MU & WT Chem. (lb)	0	20,817	0.17	\$0	\$1,183,517	\$0.02211
Carbon (Mercury Removal) (lb)	223,863	383	1.05	\$235,094	\$132,241	\$0.00247
COS Catalyst (m3)	0		2,397.36	\$0	\$0	\$0.00000
Water Gas Shift Catalyst (ft3)	5,564	4.76	498.83	\$2,775,453	\$780,596	\$0.01458
ZnO Sorbent (ton)	58	0.20	12,574.00	\$723,651	\$814,107	\$0.01521
Methanation Catalyst (ft3)	12,183	9.27	440.00	\$5,360,314	\$1,340,078	\$0.02504
Selexol Solution (gal)	469,206	149	13.40	\$6,286,534	\$656,108	\$0.01226
SCR Catalyst (m3)	0	0	0.00	\$0	\$0	\$0.00000
Aqueous Ammonia (ton)	0	0	0.00	\$0	\$0	
Claus Catalyst (ft3)	w/equip	1.53	131.27	\$0	\$66,023	
Subtotal Chemicals				\$15,381,047	\$4,972,671	\$0.09290
Other						
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for consumption) (MM	0	0	61.60	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0	0	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0	0	0.00	\$0 \$0	\$0	
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Spent Mercury Catalyst (lb.)	0	383	0.42	\$0	\$52,520	\$0.00098
Spent ZnO Sorbent (ton)	0		16.23	\$0	\$1,051	\$0.00002
Flyash (ton)	0		0.00	\$0	\$0	
Slag (ton)	0	1,275	16.23	\$0	\$6,796,412	
Subtotal-Waste Disposal				\$0	\$6,849,982	\$0.12797
By-products & Emissions						
Sulfur (tons)	0		0.00	\$0	\$0	
Supplemental Electricity (for sale) (MWh) Subtotal By-Products	0	1,306	58.00	\$0 \$0	-\$24,889,315 - \$24,889,315	-\$0.46498 - \$0.46498
TOTAL VARIABLE OPERATING COSTS				\$0 \$15,381,047	\$29,644,668	\$0.55382
Fuel (ton)	0	15,112	15.22	\$0	\$75,540,499	\$1.41125

Exhibit 5-19 Case 5 Initial and Annual O&M Costs

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform			0,						
			TOTAL	PLAN	COST	SUMM	IARY				
	Case:	Case 6 - Sieme	ens Quench S	SNG Product	ion w/ CO2						
	Plant Size:	1.81	MW,net	Estimate T	ype:	Conceptua	d.	Cos	st Base (Jun)	2007	(\$x1000)
A 4		F	Madaalal			0	Dama Franka d	En ala OM	0		Takal Diana Oran
Acct No.	Item/Description	Equipment Cost	Material Cost	Lat Direct	Indirect	Sales Tax	Bare Erected Cost \$	Eng'g CM H.O.& Fee	Process	ngencies Project	Total Plant Cost \$
	COAL & SORBENT HANDLING	COSI	COSI	Direct	mairect	187	COSLA	n.O.& ree	Process	Projeci	*
	Coal & SORBENT HANDLING	\$6,758	\$0	\$3,303	\$0	\$0	\$10,061	\$901	\$0	\$2,192	\$13,155
	Coal Stackout & Reclaim	\$8,733	\$0 \$0	\$3,303		\$0 \$0		\$901	\$0		
			\$0 \$0	\$2,117		\$0 \$0	1 1111	\$951	\$0 \$0		
	Coal Conveyors & Yd Crush	\$8,120									\$13,334
	Other Coal Handling	\$2,124	\$0	\$485		\$0 \$0	\$2,609	\$228			\$3,405
	Sorbent Receive & Unload	\$0	\$0	\$0		\$0 \$0	\$0 \$0	\$0 \$0			
	Sorbent Stackout & Reclaim	\$0	\$0	\$0 \$0		\$0 \$0	\$0				
	Sorbent Conveyors	\$0	\$0					\$0			· · · · · · · · · · · · · · · · · · ·
	Other Sorbent Handling	\$0	\$0	\$0		\$0		\$0			· · · · · · · · · · · · · · · · · · ·
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$4,782	\$11,959		\$0		\$1,605			
0	SUBTOTAL 1.	\$25,736	\$4,782	\$19,958	\$0	\$0	\$50,477	\$4,582	\$0	\$11,012	\$66,071
	COAL & SORBENT PREP & FEED	#110.010	¢0	¢1 (1 47	¢0	¢0	¢10/ 0/0	¢11 500	¢0	¢07 (00	¢1// 100
	Coal Crushing & Drying	\$110,813	\$0	\$16,147		\$0	\$126,960	\$11,530			
	Prepared Coal Storage & Feed	\$5,249	\$1,256	\$823		\$0	\$7,328	\$627	\$0	1.11	\$9,545
	Dry Coal Injection System	\$172,735	\$2,005	\$16,042		\$0	\$190,781	\$16,432			
	Misc.Coal Prep & Feed	\$2,886	\$2,100	\$6,297		\$0	\$11,284	\$1,037		1 1 1 1 1 1	
	Sorbent Prep Equipment	\$0	\$0	\$0		\$0	\$0	\$0			
	Sorbent Storage & Feed	\$0	\$0	\$0		\$0	\$0	\$0		1.1	
	Sorbent Injection System	\$0	\$0	\$0		\$0					
	Booster Air Supply System	\$0	\$0	\$0		\$0	\$0	\$0			
2.9	Coal & Sorbent Feed Foundation	\$0	\$11,219	\$9,211	\$0	\$0	\$20,429	\$1,892		1.11.1.1	
	SUBTOTAL 2.	\$291,682	\$16,580	\$48,520	\$0	\$0	\$356,782	\$31,518	\$0	\$77,660	\$465,959
	FEEDWATER & MISC. BOP SYSTEMS										
	Feedwater System	\$3,662	\$1,702	\$2,064		\$0	\$7,428	\$671	\$0		
	Water Makeup & Pretreating	\$690	\$72	\$386		\$0	\$1,148	\$109			\$1,635
	Other Feedwater Subsystems	\$3,976	\$1,202	\$1,966		\$0	\$7,144	\$649		1 1	
	Service Water Systems	\$395	\$814	\$2,824		\$0	\$4,032	\$393		+ . / • = •	
	Other Boiler Plant Systems	\$2,120	\$822	\$2,036		\$0	\$4,978	\$472			
	FO Supply Sys & Nat Gas	\$102	\$210	\$188		\$0	\$500	\$48			
	Waste Treatment Equipment	\$965	\$0	\$589		\$0	\$1,554	\$151	\$0		
3.8	Misc. Power Plant Equipment	\$1,679	\$225	\$862		\$0	\$2,765	\$267	\$0		
	SUBTOTAL 3.	\$13,589	\$5,046	\$10,915	\$0	\$0	\$29,550	\$2,761	\$0	\$7,504	\$39,816
	GASIFIER & ACCESSORIES										
	Gasifier, Syngas Cooler & Auxiliaries	\$324,934	\$0	\$150,445		\$0	\$475,379	\$42,223	\$71,307	\$88,336	
	Syngas Cooling	w/4.1	\$0	w/ 4.1	\$0	\$0	\$0	\$0			
	ASU/Oxidant Compression	\$241,072	\$0	w/equip.	\$0	\$0	\$241,072	\$23,367	\$0		\$290,883
	LT Heat Recovery & FG Saturation	\$50,884	\$0	\$18,854	\$0	\$0	\$69,738	\$6,680		1 11 11	\$91,702
	Misc. Gasification Equipment	w/4.1	\$0	w/4.1&4.2		\$0		\$0			
	Other Gasification Equipment	\$0	\$2,285	\$930		\$0	\$3,215	\$308			
	CO2 Solid Feed System Compressors	\$7,427	\$1,782	\$2,674		\$0	\$11,883	\$1,188			\$15,685
	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2		\$0		\$0			
4.9	Gasification Foundations	\$0	\$24,156	\$13,784	\$0	\$0		\$3,473		1	
	SUBTOTAL 4.	\$624,317	\$28,224	\$186,685	\$0	\$0	\$839,226	\$77,240	\$71,307	\$143,736	\$1,131,508

Exhibit 5-20 Case 6 Total Plant Cost Details

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$129,739	\$0	\$110,087	\$0	\$0	\$239,826	\$23,194	\$47,965	\$62,197	\$373,182
5A.2	Elemental Sulfur Plant	\$8,455	\$1,685	\$10,909	\$0	\$0	\$21,049	\$2,045	\$0	\$4,619	\$27,713
5A.3	Mercury Removal	\$2,401	\$0	\$1,827	\$0	\$0	\$4,229	\$408	\$211	\$970	\$5,818
5A.4	Shift Reactors	\$10,434	\$0	\$4,200	\$0	\$0	\$14,633	\$1,403	\$0	\$3,207	\$19,243
5A.5	Methanation	\$27,400	\$10,960	\$16,440	\$0	\$0	\$54,800	\$5,480	\$5,480	\$13,152	\$78,912
5A.6	SNG Purification & Compression	\$19,150	\$7,660	\$11,490	\$0	\$0	\$38,300	\$3,830	\$0	\$8,426	\$50,556
5A.7	Fuel Gas Piping	\$0	\$1,710	\$1,198	\$0	\$0	\$2,908	\$270	\$0	\$635	\$3,813
5A.9	Process Interconnects	\$0	\$12,000	\$18,000	\$0	\$0	\$30,000	\$3,000	\$0	\$6,600	\$39,600
5A.10	HGCU Foundations	\$0	\$1,732	\$1,117	\$0	\$0	\$2,848	\$262	\$0	\$933	\$4,043
5A.11	Zinc Oxide Guard Bed	\$786	\$0	\$145	\$0	\$0	\$931	\$93	\$0	\$205	\$1,229
	SUBTOTAL 5A.	\$198,366	\$35,747	\$175,412	\$0	\$0	\$409,525	\$39,984	\$53,657	\$100,944	\$604,110
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$36,117	\$0	\$21,269	\$0	\$0	\$57,386	\$5,525	\$0	\$12,582	\$75,493
	SUBTOTAL 5B.	\$36,117	\$0	\$21,269	\$0	\$0	\$57,386	\$5,525	\$0	\$12,582	\$75,493
6	COMBUSTION TURBINE/ACCESSORIES	5									
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
	Heat Recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.3	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.4	Stack	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.9	HRSG, Duct & Stack Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 7.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$30,976	\$0	\$5,362	\$0	\$0	\$36,338	\$3,487	\$0	\$3,982	\$43,807
8.2	Turbine Plant Auxiliaries	\$169	\$0	\$494	\$0	\$0	\$663	\$65	\$0	\$73	\$801
8.3a	Condenser & Auxiliaries	\$3,219	\$0	\$1,583	\$0	\$0	\$4,802	\$461	\$0	\$526	\$5,790
8.3b	Air Cooled Condenser	\$29,498	\$0	\$5,914	\$0	\$0	\$35,412	\$3,541	\$0	\$7,791	\$46,744
8.4	Steam Piping	\$5,722	\$0	\$4,025	\$0	\$0	\$9,747	\$837	\$0	\$2,646	\$13,230
8.9	TG Foundations	\$0	\$1,069	\$1,806	\$0	\$0	\$2,875	\$273	\$0	\$944	\$4,092
	SUBTOTAL 8.	\$69,584	\$1,069	\$19,184	\$0	\$0	\$89,837	\$8,664	\$0	\$15,963	\$114,464

Exhibit 5-20 Case 6 Total Plant Cost Details (continued)

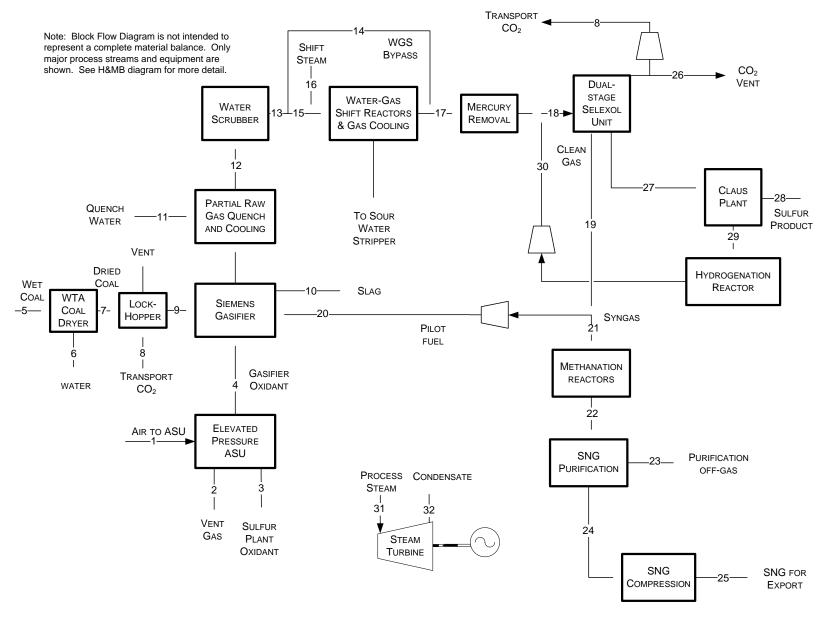
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM										
9.1	Cooling Towers	\$7,758	\$0	\$1,411	\$0	\$0	\$9,169	\$873	\$0	\$1,506	\$11,549
9.2	Circulating Water Pumps	\$2,057	\$0	\$87	\$0	\$0	\$2,143	\$180	\$0	\$349	\$2,672
9.3	Circ.Water System Auxiliaries	\$166	\$0	\$24	\$0	\$0	\$190	\$18	\$0	\$31	\$240
9.4	Circ.Water Piping	\$0	\$6,948	\$1,801	\$0	\$0	\$8,749	\$791	\$0	\$1,908	\$11,448
9.5	Make-up Water System	\$376	\$0	\$537	\$0	\$0	\$913	\$88	\$0	\$200	\$1,200
9.6	Component Cooling Water Sys	\$820	\$981	\$698	\$0	\$0	\$2,499	\$234	\$0	\$547	\$3,280
9.9	Circ.Water System Foundations	\$0	\$2,550	\$4,335	\$0	\$0	\$6,884	\$653	\$0	\$2,261	\$9,798
	SUBTOTAL 9.	\$11,177	\$10,479	\$8,893	\$0	\$0	\$30,549	\$2,836	\$0	\$6,802	\$40,187
	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$38,544	\$0	\$38,016	\$0	\$0	\$76,559	\$7,418	\$0	\$8,398	\$92,375
10.2	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	
10.4	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.5	Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.6	Ash Storage Silos	\$862	\$0	\$938	\$0	\$0	\$1,800	\$175	\$0	\$296	\$2,271
10.7	Ash Transport & Feed Equipment	\$1,156	\$0	\$279	\$0	\$0	\$1,435	\$134	\$0	\$235	\$1,805
	Misc. Ash Handling Equipment	\$1,786	\$2,188	\$654	\$0	\$0	\$4,628	\$440	\$0	\$760	
10.9	Ash/Spent Sorbent Foundation	\$0	\$76	\$96	\$0	\$0	\$172	\$16	\$0	\$56	\$245
	SUBTOTAL 10.	\$42,348	\$2,265	\$39,982	\$0	\$0	\$84,594	\$8,183	\$0	\$9,746	\$102,524
	ACCESSORY ELECTRIC PLANT										
	Generator Equipment	\$428	\$0	\$424	\$0	\$0	\$852	\$81	\$0	\$93	\$1,026
	Station Service Equipment	\$6,060	\$0	\$546	\$0	\$0	\$6,606	\$609	\$0	\$721	\$7,936
	Switchgear & Motor Control	\$11,203	\$0	\$2,037	\$0	\$0	\$13,240	\$1,228	\$0	\$2,170	
	Conduit & Cable Tray	\$0	\$5,204	\$17,168	\$0	\$0	\$22,372	\$2,164	\$0	\$6,134	
	Wire & Cable	\$0	\$9,943	\$6,533	\$0	\$0	\$16,476	\$1,197	\$0	\$4,418	
	Protective Equipment	\$0	\$830	\$3,021	\$0	\$0	\$3,851	\$376	\$0	\$634	
	Standby Equipment	\$323	\$0	\$315	\$0	\$0	\$639	\$61	\$0	\$105	
	Main Power Transformers	\$9,866	\$0	\$177	\$0	\$0	\$10,043	\$762	\$0	\$1,621	\$12,425
11.9	Electrical Foundations	\$0	\$192	\$503	\$0	\$0	\$695	\$67	\$0	\$228	
	SUBTOTAL 11.	\$27,880	\$16,169	\$30,724	\$0	\$0	\$74,773	\$6,544	\$0	\$16,125	\$97,443
	INSTRUMENTATION & CONTROL										
	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0		\$C	
	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0			\$C	
	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$C	
	Other Major Component Control	\$525	\$0	\$351	\$0	\$0	\$876	\$83		\$150	
	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	· · · · · · · · · · · · · · · · · · ·
	Control Boards, Panels & Racks	\$349	\$0	\$223	\$0	\$0	\$572	\$54	\$29	\$131	\$786
	Computer & Accessories	\$5,579	\$0	\$179	\$0	\$0	\$5,758	\$529	\$288	\$657	\$7,232
	Instrument Wiring & Tubing	\$0	\$2,826	\$5,778	\$0	\$0	\$8,604	\$730	\$430	\$2,441	\$12,205
12.9	Other I & C Equipment	\$4,160	\$0	\$2,020	\$0	\$0	\$6,180	\$581	\$309	\$1,061	\$8,131
	SUBTOTAL 12.	\$10,613	\$2,826	\$8,550	\$0	\$0	\$21,989	\$1,977	\$1,099	\$4,440	\$29,505

Exhibit 5-20 Case 6 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE										
13.1	Site Preparation	\$0	\$144	\$3,080	\$0	\$0	\$3,224	\$320	\$0	\$1,063	\$4,607
13.2	Site Improvements	\$0	\$2,563	\$3,406	\$0	\$0	\$5,969	\$589	\$0	\$1,967	\$8,525
13.3	Site Facilities	\$4,593	\$0	\$4,846	\$0	\$0	\$9,439	\$931	\$0	\$3,111	\$13,481
	SUBTOTAL 13.	\$4,593	\$2,707	\$11,332	\$0	\$0	\$18,632	\$1,840	\$0	\$6,141	\$26,613
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,580	\$3,675	\$0	\$0	\$6,255	\$576	\$0	\$1,025	\$7,855
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0	\$1,500	\$134	\$0	\$245	\$1,879
14.4	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$577	\$563	\$0	\$0	\$1,140	\$103	\$0	\$186	\$1,430
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
14.7	Warehouse	\$0	\$726	\$464	\$0	\$0	\$1,190	\$105	\$0	\$194	\$1,489
14.8	Other Buildings & Structures	\$0	\$521	\$406	\$0	\$0	\$927	\$83	\$0	\$202	\$1,212
	Waste Treating Building & Str.	\$0	\$1,165	\$2,226	\$0	\$0	\$3,391	\$316	\$0	\$741	\$4,448
	SUBTOTAL 14.	\$0	\$7,043	\$8,359	\$0	\$0	\$15,403	\$1,405	\$0	\$2,757	\$19,564
	TOTAL COST	\$1,356,002	\$132,937	\$589,783	\$0	\$0	\$2,078,723	\$193,059	\$126,063	\$415,413	\$2,813,258
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor										\$21,702
	1 Month Maintenance Materials										\$3,836
	1 Month Non-fuel Consumables										\$630
	1 Month Waste Disposal										\$634
	25% of 1 Months Fuel Cost at 100% CF										\$1,749
	2% of TPC										\$56,265
	Total										\$84,817
	Inventory Capital										
60 da	ay supply of fuel and consumables at 100% CF										\$14,989
	0.5% of TPC (spare parts)										\$14,066
	Total										\$29,055
	Initial Cost for Catalyst and Chemicals										\$16,334
	Land										\$900
	Other Owner's Costs										\$421,989
	Financing Costs										\$75,958
	Total Overnight Costs (TOC)										\$3,442,310
	TASC Multiplier										1.201
	Total As-Spent Cost (TASC)										\$4,134,215

Exhibit 5-20 Case 6 Total Plant Cost Details (continued)

INITIAL & ANNUAL	O&M EXI	PENSES			Cost Base (Jun):	2007
Case 6 - Siemens Quench SNG Production w/ CO					MWe-net:	2
SNG (MMbtu/hr):	6784				Capacity Factor (%):	90
OPERATING & MAINTENAM	NCE LABOR					
Operating Labor	244E ¢	/hour				
Operating Labor Rate(base):	34.65 \$					
Operating Labor Burden:	30.00 %					
Labor O-H Charge Rate:	25.00 %	of labor				
			Total			
Operating Lober Deguirements(O, L)per Shift	1 unit/mod		Total Plant			
	<u>1 unit/mod.</u>					
Skilled Operator	2.0		2.0			
Operator	12.0		12.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	18.0		18.0			
					Annual Cost	Annual Unit Cost
					<u>\$</u>	<u>\$/MMBtu</u>
Annual Operating Labor Cost					\$7,102,696	\$0.133
Maintenance Labor Cost					\$27,620,931	\$0.516
Administrative & Support Labor					\$8,680,907	\$0.162
Property Taxes and Insurance					\$56,265,151	\$1.052
TOTAL FIXED OPERATING COSTS					\$99,669,685	\$1.863
VARIABLE OPERATING COSTS						
						<u>\$/MMBtu</u>
Maintenance Material Cost					\$41,431,397	\$0.77459
- · · ·						
<u>Consumables</u>	<u>Consum</u>		<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	<u>Cost</u>		
Water(/1000 gallons)	0	3,966	1.08	\$0	\$1,409,411	\$0.02635
Chemicals						
MU & WT Chem.(lb)	0	23,631	0.17	\$0	\$1,343,498	\$0.02512
Carbon (Mercury Removal) (lb)	221,425	379	1.05	\$232,533	\$130,800	\$0.00245
COS Catalyst (m3)	0	0	2,397.36	\$0	\$0	\$0.00000
Water Gas Shift Catalyst (ft3)	7,553	6.47	498.83	\$3,767,548	\$1,059,623	\$0.01981
ZnO Sorbent (ton)	57	0.20	12,574.00	\$721,842	\$812,073	\$0.01518
Methanation Catalyst (ft3)	12,102	9.21	440.00	\$5,324,846	\$1,331,211	\$0.02489
Selexol Solution (gal)	469,270	149	13.40	\$6,287,392	\$656,198	\$0.01227
SCR Catalyst (m3)	0	0	0.00	\$0	\$0	\$0.00000
Aqueous Ammonia (ton)	0	0	0.00	\$0	\$0	\$0.00000
Claus Catalyst (ft3)	w/equip	1.53	131.27	\$0	\$66,058	\$0.00124
Subtotal Chemicals			-	\$16,334,162	\$5,399,462	\$0.10095
Other						
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for consumption) (M)	0	0	61.60	\$0	\$0	\$0.00000
Gases,N2 etc.(/100scf)	0	0	0.00	\$0	\$0	\$0.00000
L.P. Steam(/1000 pounds)	0	0	0.00	\$0	\$0	\$0.00000
Subtotal Other	Ŭ	0		\$0	\$0	\$0.00000
				**	40	
Waste Disposal						
Spent Mercury Catalyst (lb.)	0	379	0.42	\$0	\$51,948	\$0.00097
Spent ZnO Sorbent (ton)	0	0.20	16.23	\$0 \$0	\$1,048	\$0.00002
Flyash (ton)	0	0.20	0.00	\$0 \$0	\$0	\$0.00002
Slag (ton)	0	1,275	16.23	\$0 \$0	\$6,796,412	\$0.12706
Subtotal-Waste Disposal	U	1,273	10.23	\$0 \$0	\$6,849,407	\$0.12708 \$0.12805
Subiolai-Wasie Disposal				4U	<i>40,047,401</i>	40.12000
By-products & Emissions					¢o	\$0.00000
By-products & Emissions	0	100	0.00			
Sulfur (tons)	0	108	0.00	\$0 \$0	\$0 \$64 709	
Sulfur (tons) Supplemental Electricity (for sale) (MWh)	0 0	108 43	0.00 58.00	\$0	-\$827,662	-\$0.01547
Sulfur (tons)						
Sulfur (tons) Supplemental Electricity (for sale) (MWh) Subtotal By-Products			58.00	\$0 \$0	-\$827,662 -\$827,662	-\$0.01547 -\$0.01547
Sulfur (tons) Supplemental Electricity (for sale) (MWh)			58.00	\$0	-\$827,662	-\$0.01547


Exhibit 5-21 Case 6 Initial and Annual O&M Costs

5.2 SYNTHETIC NATURAL GAS PRODUCTION USING NORTH DAKOTA LIGNITE COAL

5.2.1 <u>Process Description</u>

In this section the overall Siemens gasification process for SNG production using NDL coal is described. The plant configurations are similar to Cases 5 and 6, with the exception of the coal type utilized. Since the carbon content of the lignite coal used is lower than that of the bituminous coal and subbituminous, the coal feed rate is significantly increased. The process BFDs for the lignite coal non-sequestration and sequestration cases are shown in Exhibit 5-22 and Exhibit 5-24. The associated stream tables are shown in Exhibit 5-23 for the non-sequestration case.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0093	0.0091	0.0101	0.0101	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0021	0.0022	0.0022	0.0022	0.0000	0.0022
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0097	0.0013	0.0000	0.0000	0.4252	0.4405	0.4405	0.4405	0.0000	0.1549
CO ₂	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.9785	0.1363	0.0000	0.0000	0.0718	0.0744	0.0744	0.0744	0.0000	0.3705
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0003	0.0003	0.0003	0.0003	0.0000	0.0001
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0103	0.5349	0.0000	0.0000	0.1607	0.1665	0.1665	0.1665	0.0000	0.4644
H ₂ O	0.0064	0.0026	0.0000	0.0000	0.0000	1.0000	0.0000	0.0013	0.1899	0.0000	1.0000	0.3344	0.3103	0.3103	0.3103	1.0000	0.0018
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0025	0.0025	0.0025	0.0000	0.0027
N ₂	0.7759	0.9803	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000	0.0088	0.0000	0.0000	0.0032	0.0033	0.0033	0.0033	0.0000	0.0033
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2081	0.0076	0.9895	0.9895	0.0000	0.0000	0.0000	0.0000	0.1288	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	52,805	41,791	79	10,707	0	10,782	0	5,042	18,101	0	12,568	51,888	50,077	5,789	44,288	14,233	49,085
V-L Flowrate (kg/hr)	1,525,805	1,175,700	2,547	343,453	0	194,238	0	218,763	269,759	0	226,410	1,125,307	1,092,655	126,310	966,345	256,405	1,074,648
Solids Flowrate (kg/hr)	0	0	0	0	709,841	0	515,603	0	355,226	71,414	0	0	0	0	0	0	0
Temperature (°C)	6	26	32	32	4	33	71	76	18	1,427	216	260	215	215	215	288	35
Pressure (MPa, abs)	0.09	0.11	0.86	0.86	0.10	0.35	0.09	5.62	5.62	4.24	8.27	3.89	3.756	3.76	3.76	4.14	3.34
Enthalpy (kJ/kg)	15.71	30.53	26.94	26.94		147.56		21.89	4,183.74		1,017.87	1,092.44	964.077	964.08	964.08	3,070.04	40.47
Density (kg/m ³)	1.1	1.3	11.0	11.0		986.2		103.4	42.2		782.0	19.3	20.5	20.5	20.5	18.2	29.2
V-L Molecular Weight	28.895	28.133	32.078	32.078		18.015		43.389	14.903		18.015	21.687	21.820	21.820	21.820	18.015	21.894
V-L Flowrate (lb _{mol} /hr)	116,415	92,133	175	23,605	0	23,770	0	11,115	39,906	0	27,707	114,394	110,400	12,762	97,638	31,378	108,214
	, ,	2,591,975	5,614	757,185	0	428,222	0	482,290	594,716	0	499,149	2,480,878	2,408,892	278,465	2,130,426	565,276	2,369,194
Solids Flowrate (lb/hr)	0	0	0	0	1,564,932	0	1,136,710	0	783,138	157,442	0	0	0	0	0	0	0
Temperature (°F)	42	78	90	90	40	91	160	168	65	2.600	420	500	418	418	418	550	95
Pressure (psia)	13.0	16.4	125.0	125.0	13.8	50.3	13.5	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7	544.7	600.0	484.7
Enthalpy (Btu/lb)	6.8	13.1	11.6	11.6		63.4		9.4	1,798.7		437.6	469.7	414.5	414.5	414.5	1,319.9	17.4
Density (lb/ft ³)	0.070	0.080	0.685	0.685		61.569		6.457	2.635		48.817	1.203	1.282	1.282	1.282	1.135	1.822
	A - Referer	nce conditic	ons are 32.0	02 F & 0.08	9 PSIA												

Exhibit 5-23 Case 7 Stream Table, North Dakota Lignite Coal to SNG without Carbon Sequestration

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
V-L Mole Fraction															
Ar	0.0022	0.0034	0.0034	0.0034	0.0118	0.0000	0.0138	0.0138	0.0000	0.0007	0.0000	0.0016	0.0024	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.8145	0.0000	0.9559	0.9559	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1532	0.2348	0.2348	0.2348	0.0000	0.0000	0.0000	0.0000	0.0017	0.0543	0.0000	0.0861	0.0065	0.0000	0.0000
CO ₂	0.3756	0.0444	0.0444	0.0444	0.1478	0.9845	0.0026	0.0026	0.9925	0.5987	0.0000	0.4846	0.8126	0.0000	0.0000
COS	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0019	0.0000	0.0003	0.0000	0.0000	0.0000
H ₂	0.4610	0.7121	0.7121	0.7121	0.0059	0.0000	0.0069	0.0069	0.0016	0.1041	0.0000	0.0507	0.1663	0.0000	0.0000
H ₂ O	0.0018	0.0001	0.0001	0.0001	0.0023	0.0155	0.0000	0.0000	0.0041	0.0394	0.0000	0.3691	0.0009	1.0000	1.0000
H ₂ S	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2003	0.0000	0.0014	0.0103	0.0000	0.0000
N ₂	0.0033	0.0051	0.0051	0.0051	0.0176	0.0000	0.0207	0.0207	0.0000	0.0005	0.0000	0.0007	0.0009	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0054	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
								-							
V-L Flowrate (kg _{mol} /hr)	49,657	31,944	183	31,762	9,214	1,363	7,851	7,851	11,969	701	0	820	572	40,826	56,932
V-L Flowrate (kg/hr)	1,095,675	327,418	1,874	325,544	189,733	59,420	130,313	130,313	524,399	25,095	0	25,423	21,027	735,487	1,025,654
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	4,382	0	0	0	0
Temperature (°C)	34	31	80	31	35	35	35	35	5	48	175	232	21	566	33
Pressure (MPa, abs)	3.27	3.24	5.10	3.24	2.77	0.14	2.627	6.202	0.115	0.16	0.1	0.085	3.341	12.512	0.827
Enthalpy (kJ/kg)	39.13	83.91	228.57	83.91	39.74	45.04	47.668	12.706	7.673	98.02		836.767	-9.442	3,495.174	121.037
Density (kg/m ³)	28.9	13.0	17.4	13.0	23.6	2.4	17.9	44.7	2.2	2.2	5,285.7	0.6	58.2	34.9	995.1
V-L Molecular Weight	22.065	10.250	10.250	10.250	20.592	43.606	16.597	16.597	43.812	35.777		30.993	36.771	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	109,475	70,425	403	70,022	20,314	3,004	17,309	17,309	26,388	1,546	0	1,808	1,261	90,005	125,515
V-L Flowrate (lb/hr)	2,415,550	721,834	4,131	717,703	418,290	130,998	287,291	287,291	1,156,103	55,324	0	56,047	46,356	1,621,472	2,261,180
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	9,660	0	0	0	0
Temperature (°F)	94	87	177	87	95	95	95	95	42	119	347	450	69	1,050	92
Pressure (psia)	474.7	469.6	740.0	469.6	401.1	20.1	381.0	899.5	16.7	23.7	17.3	12.3	484.5	1,814.7	120.0
Enthalpy (Btu/lb)	16.8	36.1	98.3	409.0 36.1	17.1	19.4	20.5	5.5	3.3	42.1		359.7	-4.1	1,502.7	52.0
Density (lb/ft ³)	1.803	0.811	1.088	0.811	1.473	0.148	1.115	2.789	0.137	0.137	330	0.039	3.636	2.177	62.122
	1.003	0.011	1.000	0.011	1.473	0.140	1.113	2.109	0.137	0.157	550	0.059	3.000	2.177	02.122

Exhibit 5-23 Case 7 Stream Table, North Dakota Lignite Coal to SNG without Carbon Sequestration (continued)

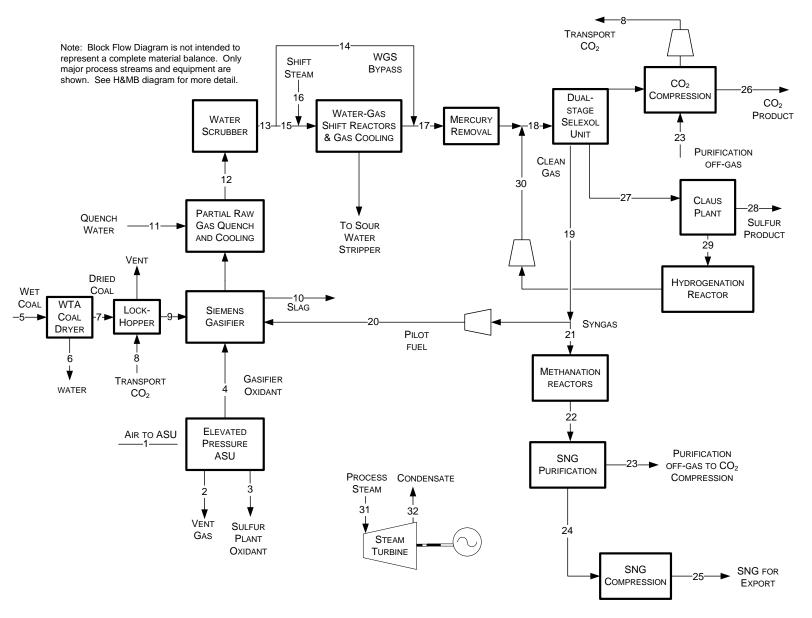


Exhibit 5-24 Case 8 Block Flow Diagram, North Dakota Lignite to SNG with Carbon Sequestration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0093	0.0091	0.0101	0.0101	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0021	0.0022	0.0022	0.0022	0.0000	0.0022
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0037	0.0005	0.0000	0.0000	0.4252	0.4406	0.4406	0.4406	0.0000	0.1549
CO ₂	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.9921	0.1371	0.0000	0.0000	0.0720	0.0746	0.0746	0.0746	0.0000	0.3708
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0003	0.0003	0.0003	0.0003	0.0000	0.0001
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0039	0.5346	0.0000	0.0000	0.1604	0.1663	0.1663	0.1663	0.0000	0.4642
H ₂ O	0.0064	0.0026	0.0000	0.0000	0.0000	1.0000	0.0000	0.0001	0.1900	0.0000	1.0000	0.3344	0.3103	0.3103	0.3103	1.0000	0.0018
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0025	0.0025	0.0025	0.0000	0.0027
N ₂	0.7759	0.9803	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000	0.0088	0.0000	0.0000	0.0032	0.0033	0.0033	0.0033	0.0000	0.0033
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2081	0.0076	0.9895	0.9895	0.0000	0.0000	0.0000	0.0000	0.1289	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	52,781	41,772	75	10,706	0	10,782	0	4,996	18,078	0	12,563	51,861	50,047	5,784	44,263	14,236	49,057
V-L Flowrate (kg/hr)	1,525,100	1,175,157	2,411	343,429	0	194,238	0	218,763	269,759	0	226,325	1,125,197	1,092,505	126,252	966,253	256,473	1,074,531
Solids Flowrate (kg/hr)	0	0	0	0	709,841	0	515,603	0	355,226	71,414	0	0	0	0	0	0	0
Temperature (°C)	6	26	32	32	4	33	71	75	18	1,427	216	260	215	215	215	288	35
Pressure (MPa, abs)	0.09	0.11	0.86	0.86	0.10	0.35	0.09	5.62	5.62	4.24	8.27	3.89	3.756	3.76	3.76	4.14	3.38
Enthalpy (kJ/kg)	15.71	30.53	26.94	26.94		147.56		18.43	4,187.50		1,017.87	1,092.18	963.754	963.75	963.75	2,937.10	40.27
Density (kg/m ³)	1.1	1.3	11.0	11.0		986.2		105.6	42.3		782.0	19.3	20.5	20.5	20.5	18.2	29.5
V-L Molecular Weight	28.895	28.133	32.078	32.078		18.015		43.785	14.922		18.015	21.696	21.830	21.830	21.830	18.015	21.904
V-L Flowrate (lb _{mol} /hr)	116,361	92,091	166	23,603	0	23,770	0	11,015	39,856	0	27.697	114,334	110,335	12,750	97,584	31,386	108,153
V-L Flowrate (lb/hr)	3,362,271	2,590,777	5,316	23,603 757,131	0	428,222	0	482,290	594,716	0	498,960	2,480,636	2,408,561	278,337	2,130,224		2,368,935
Solids Flowrate (lb/hr)	0	2,590,777	0	0	1,564,932	420,222	1,136,710	402,290	783,138	157,442	498,960	2,400,030	2,406,561	0	2,130,224	0	2,300,935
	U	0	0	0	1,304,332	0	1,130,710	0	705,150	107,442	0	U	0	0	0	0	0
Temperature (°F)	42	78	90	90	40	91	160	166	64	2,600	420	500	418	418	418	550	95
Pressure (psia)	13.0	16.4	125.0	125.0	13.8	50.3	13.5	815.0	815.0	614.7	1,200.0	564.7	544.7	544.7	544.7	600.0	489.7
Enthalpy (Btu/lb)	6.8	13.1	11.6	11.6		63.4		7.9	1,800.3		437.6	469.6	414.3	414.3	414.3	1,262.7	17.3
Density (lb/ft ³)	0.070	0.080	0.685	0.685		61.569		6.593	2.642		48.817	1.204	1.282	1.282	1.282	1.135	1.842
	A - Referen	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA												

Exhibit 5-25 Case 8 Stream Table, North Dakota Lignite Coal to SNG with Carbon Sequestration

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
V-L Mole Fraction															
Ar	0.0022	0.0034	0.0034	0.0034	0.0118	0.0000	0.0138	0.0138	0.0001	0.0007	0.0000	0.0016	0.0023	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.8138	0.0000	0.9552	0.9552	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1532	0.2348	0.2348	0.2348	0.0000	0.0000	0.0000	0.0000	0.0037	0.0545	0.0000	0.0832	0.0072	0.0000	0.0000
CO ₂	0.3758	0.0444	0.0444	0.0444	0.1479	0.9845	0.0026	0.0026	0.9921	0.6020	0.0000	0.4928	0.8058	0.0000	0.0000
COS	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0019	0.0000	0.0003	0.0000	0.0000	0.0000
H ₂	0.4609	0.7121	0.7121	0.7121	0.0065	0.0000	0.0077	0.0077	0.0039	0.1045	0.0000	0.0519	0.1788	0.0000	0.0000
H ₂ O	0.0017	0.0001	0.0001	0.0001	0.0023	0.0155	0.0000	0.0000	0.0001	0.0393	0.0000	0.3670	0.0009	1.0000	1.0000
H ₂ S	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1964	0.0000	0.0015	0.0041	0.0000	0.0000
N ₂	0.0033	0.0051	0.0051	0.0051	0.0176	0.0000	0.0207	0.0207	0.0000	0.0005	0.0000	0.0007	0.0009	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	49,634	31,923	183	31,740	9,214	1,364	7,850	7,850	15,705	698	0	813	576	40,673	58,897
V-L Flowrate (kg/hr)	1,095,450	327,218	1,874	325,344	189,670	59,465	130,205	130,205	687,644	24,974	0	25,168	20,919	732,739	1,061,040
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	4,385	0	0	0	0
Temperature (°C)	34	31	80	31	35	35	35	35	35	48	175	232	21	566	33
Pressure (MPa, abs)	3.31	3.24	5.10	3.24	2.77	0.14	2.627	6.202	15.272	0.16	0.1	0.085	3.306	12.512	0.827
Enthalpy (kJ/kg)	38.97 29.2	83.90	228.55 17.4	83.90	39.77 23.6	45.02 2.4	47.726 17.8	12.794	-209.181	97.84 2.2		834.709	-8.186 56.4	3,495.174	120.935
Density (kg/m ³) V-L Molecular Weight	29.2	13.0 10.250	17.4	13.0 10.250	23.6	2.4 43.607	16.587	44.6 16.587	780.4 43.785	2.2 35.794	5,286.1	0.6 30.956	36.297	34.9 18.015	995.1 18.015
	22.071	10.230	10.230	10.230	20.300	43.007	10.307	10.307	45.705	55.734		30.930	30.237	10.013	10.015
V-L Flowrate (lb _{mol} /hr)	109,424	70,378	403	69,975	20,313	3,006	17,306	17,306	34,623	1,538	0	1,792	1,271	89,669	129,845
V-L Flowrate (lb/hr)	2,415,054	721,392	4,131	717,261	418,150	131,097	287,053	287,053	1,515,996	55,059	0	55,485	46,119	1,615,412	2,339,194
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	9,667	0	0	0	0
Temperature (°F)	94	87	177	87	95	95	95	95	95	119	347	450	69	1,050	91
Pressure (psia)	479.5	469.6	740.0	469.6	401.1	20.1	381.0	899.5	2,215.0	23.7	17.3	12.3	479.5	1,814.7	120.0
Enthalpy (Btu/lb)	16.8	36.1	98.3	36.1	17.1	19.4	20.5	5.5	-89.9	42.1		358.9	-3.5	1,502.7	52.0
Density (lb/ft ³)	1.822	0.811	1.089	0.811	1.473	0.148	1.114	2.787	48.716	0.137	330	0.039	3.524	2.177	62.123

Exhibit 5-25 Case 8 Stream Table, North Dakota Lignite Coal to SNG with Carbon Sequestration (continued)

5.2.2 Key System Assumptions

System assumptions for Cases 7 and 8, Siemens gasifier using NDL coal with and without carbon sequestration, are compiled in Exhibit 5-26.

Case	Case 7	Case 8
Gasifier Pressure, MPa (psia)	4.2 (615)	4.2 (615)
O ₂ :Coal Ratio, kg O ₂ /kg dry coal	0.657	0.657
Carbon Conversion, %	99.9	99.9
Syngas HHV at Gasifier Outlet, kJ/Nm ³ (Btu/scf)	9,350 (251)	9,350 (251)
Steam Cycle, MPa/°C/°C	12.4/566/536	12.4/566/536
(psig/°F/°F)	(1800/1050/997)	(1800/1050/997)
Condenser Pressure, mm Hg (in Hg)	36 (1.4)	36 (1.4)
Combustion Turbine	N/A	N/A
Gasifier Technology	Siemens	Siemens
Oxidant	99 vol% Oxygen	99 vol% Oxygen
Coal	ND Lignite	ND Lignite
Coal Feed Moisture Content, %	36.08	36.08
COS Hydrolysis	No	No
Water Gas Shift	Yes	Yes
H ₂ S Separation	Selexol (1 st Stage)	Selexol (1 st Stage)
Sulfur Removal, %	98.5	99.9
CO ₂ Separation	Selexol (2 nd Stage)	Selexol (2 nd Stage)
CO ₂ Sequestration, %	N/A	67.2
Sulfur Recovery	Claus Plant with Tail Gas Treatment / Elemental Sulfur	Claus Plant with Tail Gas Treatment / Elemental Sulfur
Methanation System	Based on Haldor Topsoe TREMP TM Process	Based on Haldor Topsoe TREMP TM Process
Particulate Control	Scrubber and AGR Absorber	Scrubber and AGR Absorber
Mercury Control	Carbon Bed	Carbon Bed
NOx Control	N/A	N/A

Exhibit 5-26 Cases 7 and 8 Plant Study Configuration Matrix

Balance of Plant and Sparing Philosophy

The balance of plant assumptions and sparing philosophy are common to all cases and are presented in Section 4.1.3.

5.2.3 Cases 7 and 8 Performance Results

The Siemens SNG plant without and with carbon sequestration and using NDL coal produces a net output of 52 Bscf/year at 90 percent capacity. The HHV conversion efficiency of both the non-sequestration case and the sequestration case is 61.5 percent.

Overall performance for the two plants is summarized in Exhibit 5-27, which includes auxiliary power requirements and production values. The ASU accounts for approximately 58 percent of the total auxiliary load in non-sequestration case and 48 percent in the sequestration case, distributed between the main air compressor, the oxygen compressor, and ASU auxiliaries. CO₂ compression accounts for about 19 percent of the auxiliary load in Case 8. The AGR process accounts for about 12 percent and 10 percent of the auxiliary load for the non-sequestration and sequestration cases, respectively. The WTA coal drying process accounts for 10 percent in the non-sequestration case and 8 percent in the sequestration case. All other individual auxiliary loads are less than 3 percent of the total.

POWER SUMMARY	a -	C O
(Gross Power at Generator Terminals, kWe)	Case 7	Case 8
Steam Turbine Power	305,800	310,500
TOTAL POWER, kWe	305,800	310,500
AUXILIARY LOAD SUMMARY, kWe		
Coal Handling	990	990
Coal Milling	7,300	7,300
Slag Handling	1,860	1,860
WTA Coal Dryer Compressor	25,020	25,020
WTA Coal Dryer Auxiliaries	880	880
Air Separation Unit Auxiliaries	1,000	1,000
Air Separation Unit Main Air Compressor	127,710	127,650
Oxygen Compressor	21,850	21,850
CO ₂ Compressor	0	58,880
CO ₂ Solid Feed System Compressor	6,880	330
SNG Compressors	5,680	5,680
Methanation Plant Recycle Compressor	4,420	4,340
Gasifier Pilot Fuel Compressor	80	80
Boiler Feedwater Pumps	4,700	4,730
Condensate Pump	370	390
Quench Water Pump	570	570
Circulating Water Pump	4,550	5,250
Ground Water Pumps	400	460
Cooling Tower Fans	2,790	3,420
Air Cooled Condenser Fans	3,440	3,820
Scrubber Pumps	940	940
Acid Gas Removal	31,200	31,200
Steam Turbine Auxiliaries	100	100
Claus Plant/TGTU Auxiliaries	250	250
Claus Plant TG Recycle Compressor	2,130	2,150
Miscellaneous Balance of Plant ²	3,000	3,000
Transformer Losses	1,630	1,790
TOTAL AUXILIARIES, kWe	259,740	313,930
NET POWER, kWe	46,060	-3,430
SNG Production Rate, MNm ³ /hr (Mscf/hr)	185.9 (6,568)	185.9 (6,568)
Capacity Factor	90%	90%
Net Exported Power Efficiency (HHV)	1.5%	-0.1%
SNG Conversion Efficiency (HHV _{product} /HHV _{coal}), %	61.5%	61.5%
Coal to SNG Product Yield, MNm ³ _{SNG} /tonne _{coal} (Mscf _{SNG} /ton _{coal})	0.25 (8.4)	0.25 (8.4)
Coal Feed Flow Rate, kg/hr (lb/hr)	709,841 (1,564,932)	709,841 (1,564,932)
Thermal Input, ¹ kWth	3,034,796	3,034,796
Condenser Cooling Duty, GJ/hr (MMBtu/hr)	1,635 (1,550)	1,699 (1,610)
Raw Water Withdrawal, m ³ /min (gpm)	16.7 (4,421)	19.4 (5,131)
Raw Water Consumption, m ³ /min (gpm)	12.7 (3,350)	14.8 (3,901)

1 - HHV of NDL coal is 15,391 kJ/kg (6,617 Btu/lb)

2 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

Environmental Performance

The environmental targets for emissions of Hg, NOx, SO_2 , and PM were presented in Section 2.5. A summary of the plant air emissions for Cases 7 and 8 is presented in Exhibit 5-28.

		/GJ ⁶ Btu)	Tonne/year (ton/year) 90% capacity factor			
	Case 7	Case 8	Case 7	Case 8		
SO ₂	0.010 (0.024)	0.000 (0.000)	886 (977)	0 (0)		
NO _X	Negligible	Negligible	Negligible	Negligible		
Particulates	0.003 (0.0071)	0.003 (0.0071)	263 (290)	263 (290)		
Hg	2.41E-7 (5.60E-7)	2.41E-7 (5.60E-7)	0.021 (0.023)	0.021 (0.023)		
CO ₂	63.2 (147.0)	0.4 (0.9)	5,443,126 (6,000,019)	34,303 (37,813)		

Exhibit 5-28	Cases 7	and 8 Air	Emissions
--------------	---------	-----------	-----------

The low level of SO₂ emissions in Case 8 is achieved by capture of the sulfur in the gas by the two-stage Selexol AGR process and co-sequestration with the CO₂ product. Because the WTA coal drying process does not include combustion of SNG, there are no SO₂ emissions associated with drying. The clean syngas exiting the AGR process has a sulfur concentration of approximately 2 ppmv in both cases. The H₂S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The tail gas is hydrogenated and recycled to the AGR system. The higher sulfur emissions in Case 7 are due to the sulfur contained in the CO₂-rich stream from the Selexol process, which is vented rather than sequestered.

NO_X emissions are negligible because no CT is used for power generation.

Particulate discharge to the atmosphere is limited to extremely low values by the use of a syngas scrubber and the gas washing effect of the AGR absorber. The particulate emissions represent filterable particulate only.

Ninety five percent of mercury is captured from the syngas by an activated carbon bed. CO_2 emissions represent the uncontrolled (Case 7) and controlled (Case 8) discharge from the process.

The carbon balance for the two cases is shown in Exhibit 5-29. The carbon input to the plant consists of carbon in the air in addition to carbon in the coal. Carbon in the air is not used in the carbon capture equation below, but it is not neglected in the balance since Aspen accounts for air components throughout. Carbon leaves the plant as unburned carbon in the slag, CO_2 in the stack gas, ASU vent gas, SNG product, and the CO_2 product (either vented or sequestered).

Carl	oon In, kg/hr (lb/hr)	Carbon	o Out, kg/hr (l	b/hr)
	Case 7	Case 8		Case 7	Case 8
Coal	280,768 (618,988)	280,768 (618,988)	Slag	1,404 (3,095)	1,404 (3,095)
Air (CO ₂)	208 (458)	208 (458)	SNG Purification Off-Gas	16,113 (35,522)	0 (0)
			ASU Vent	208 (458)	208 (458)
			SNG	90,390 (199,276)	90,309 (199,098)
			CO ₂ Vent	142,939 (315,126)	187,863 (414,167)
			CO ₂ Feed Vent	29,923 (65,969)	1,192 (2,628)
			Stack	N/A	0 (0)
Total	280,976 (619,447)	280,976 (619,447)	Total	280,976 (619,447)	280,976 (619,447)

Exhibit 5-29 Cases 7 and 8 Carbon Balance

The carbon capture efficiency is presented in two distinct ways. The first way defines capture as the amount of carbon in the CO_2 product for sequestration relative to the amount of carbon in the coal less carbon contained in the slag, and is represented by the following fraction:

(Carbon in Product for Sequestration)/[(Carbon in the Coal)-(Carbon in Slag)] or

Non sequestration (Case 7)

(414,167)/(618,988 - 3,095)*100 = 67.2% (Case 8)

The second way does not penalize the production facility for the carbon converted to SNG product, as the end use of the SNG is unknown. In a carbon constrained scenario, the SNG may or may not be used in a scenario where CCS is implemented. For this method, the burden of carbon mitigation falls on the end-user. This method is represented by the following fraction:

[(Carbon in Product for Sequestration) + (Carbon in SNG Product)]/[(Carbon in the Coal)-(Carbon in Slag)] or

$$(0 + 199,276)/(618,988 - 3,095)*100 = 32.4\%$$
 (Case 7)

(414,167 + 199,098)/(618,988 - 3,095)*100 = 99.6% (Case 8)

Exhibit 5-30 shows the sulfur balance for the plant. Sulfur input comes solely from the sulfur in the coal. Sulfur output includes the sulfur recovered in the Claus plant, sulfur in the SNG

product, sulfur emitted in the stack gas, and sulfur co-sequestered with the CO_2 product. Sulfur in the slag is considered negligible. The total sulfur capture is represented by the following fraction:

(Sulfur byproduct + Sulfur in CO_2 product)/Sulfur in the coal or (9,660 + 0)/9,803 = 98.5 percent (Case 7) (9,667 + 130)/9,803 = 99.9 percent (Case 8)

	Sulfur In, kg/hr	(lb/hr)	Sulfur	Out, kg/hr (lb	o/hr)
	Case 7	Case 8		Case 7	Case 8
Coal	4,447 (9,803)	4,447 (9,803)	Elemental Sulfur	4,382 (9,660)	4,385 (9,667)
			SNG	2 (5)	2 (5)
			CO ₂ Vent Streams/Stack	63 (138)	0.4 (1)
			CO ₂ Product	N/A	59 (130)
Total	4,447 (9,803)	4,447 (9,803)	Total	4,447 (9,803)	4,447 (9,803)

Exhibit 5-30 Cases 7 and 8 Sulfur Balance

Exhibit 5-31 shows the overall water balance for the plant. Water demand represents the total amount of water required for a particular process. Some water is recovered within the process, primarily as syngas condensate, and is re-used as internal recycle. The difference between demand and recycle is raw water withdrawal. Raw water withdrawal is defined as the water removed from the ground or diverted from a surface-water source for use in the plant and was assumed to be provided 50 percent by a POTW and 50 percent from groundwater. Raw water withdrawal can be represented by the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, BFW makeup, quench system makeup, and slag handling makeup. The difference between water withdrawal and process water discharge is defined as water consumption and can be represented by the portion of the raw water withdrawn that is evaporated, transpired, incorporated into products or otherwise not returned to the water source from which it was withdrawn. Water consumption represents the net impact of the plant process on the water source.

	Case 7	Case 8
Water Deman	d, m ³ /min (gpm	
Slag Handling	1.5 (409)	1.5 (409)
Ouench/Wash	3.8 (998)	3.8 (998)
Condenser Makeup	4.5 (1,189)	4.5 (1,191)
Gasifier Steam	0.0 (0)	0.0 (0)
Shift Steam	4.3 (1,131)	4.3 (1,131)
BFW Makeup	0.22 (59)	0.23 (60)
Cooling Tower	17.7 (4,683)	20.4 (5,392)
Total	27.6 (7,279)	30.2 (7,990)
Internal Recyc	cle, m ³ /min (gpn	n)
Slag Handling	1.5 (409)	1.5 (409)
Quench/Wash	3.8 (998)	3.8 (998)
Condenser Makeup	0.0 (0)	0.0 (0)
Cooling Tower	5.5 (1,451)	5.5 (1,452)
Water from Coal Drying	3.2 (856)	3.2 (856)
BFW Blowdown	0.22 (59)	0.23 (60)
SWS Blowdown	0.67 (177)	0.67 (177)
SWS Excess	1.4 (359)	1.4 (359)
Total	10.8 (2,858)	10.8 (2,859)
Raw Water Withd	lrawal, m ³ /min (gpm)
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
Condenser Makeup	4.5 (1,189)	4.5 (1,191)
Gasifier Steam	0.0 (0)	0.0 (0)
Shift Steam	4.3 (1,131)	4.3 (1,131)
BFW Makeup	0.22 (59)	0.23 (60)
Cooling Tower	12.2 (3,232)	14.9 (3,940)
Total	16.7 (4,421)	19.4 (5,131)
Process Water Dise		
SWS Blowdown	0.07 (18)	0.07 (18)
Cooling Tower Blowdown	4.0 (1,053)	4.6 (1,213)
Total	4.1 (1,071)	4.7 (1,230)
Raw Water Consu		
Slag Handling	0.0 (0)	0.0 (0)
Quench/Wash	0.0 (0)	0.0 (0)
SWS Blowdown	-0.07 (-18)	-0.07 (-18)
Condenser Makeup	4.5 (1,189)	4.5 (1,191)
Cooling Tower	8.2 (2,179)	10.3 (2,728)
Total	12.7 (3,350)	14.8 (3,901)

Exhibit 5-31 Cases 7 and 8 Water Balance

Heat and Mass Balance Diagrams

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 5-32 through Exhibit 5-37:

- Coal gasification and ASU
- ,Syngas cleanup (including sulfur recovery and tail gas recycle)
- Methanation, SNG purification, SNG compression and power cycle

An overall plant energy balance is provided in tabular form in Exhibit 5-38 for the two cases.

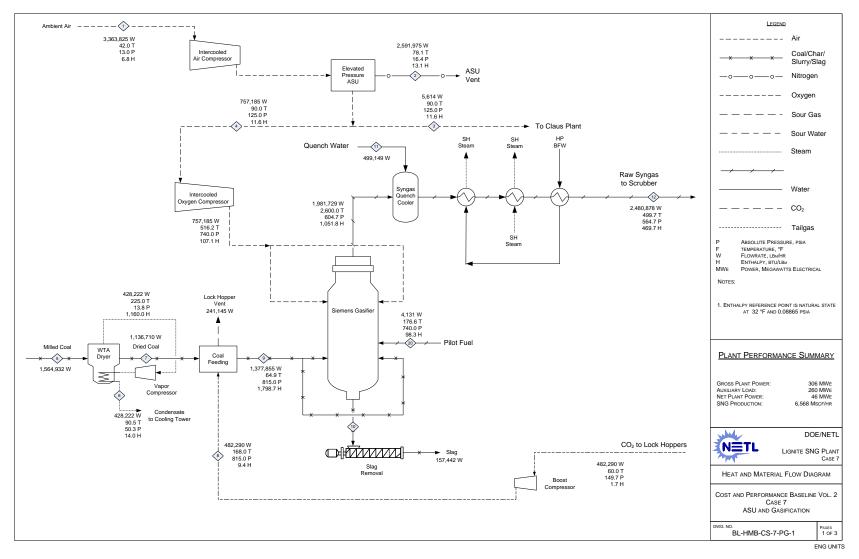


Exhibit 5-32 Case 7 Gasification and ASU Heat and Mass Balance

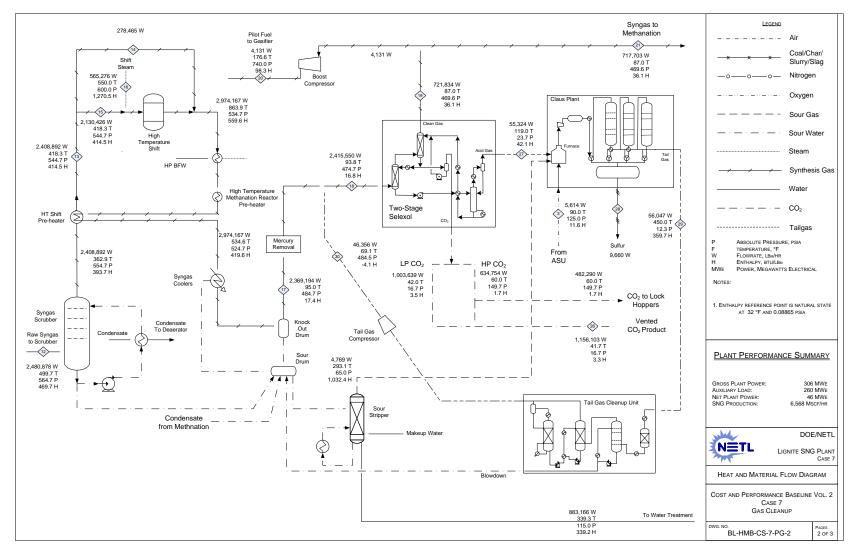


Exhibit 5-33 Case 7 Gas Cleanup Heat and Mass Balance

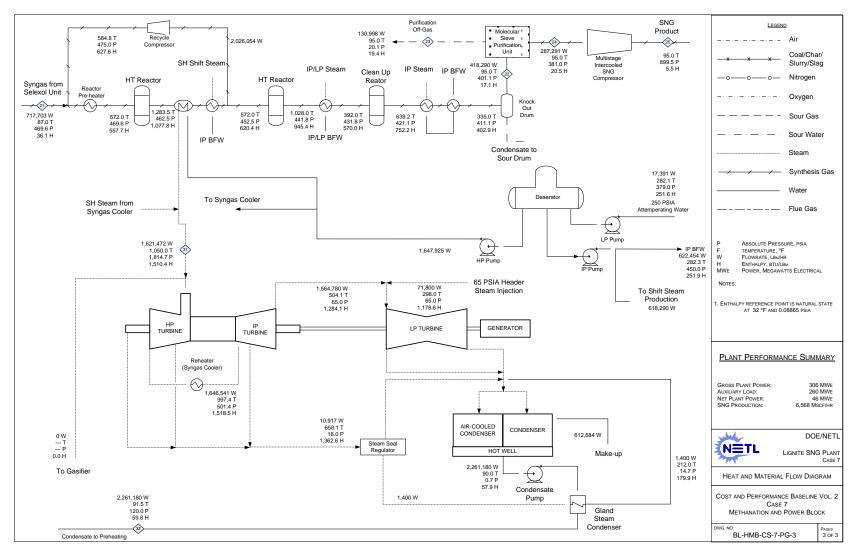


Exhibit 5-34 Case 7 Methanation and Power Block Heat and Mass Balance

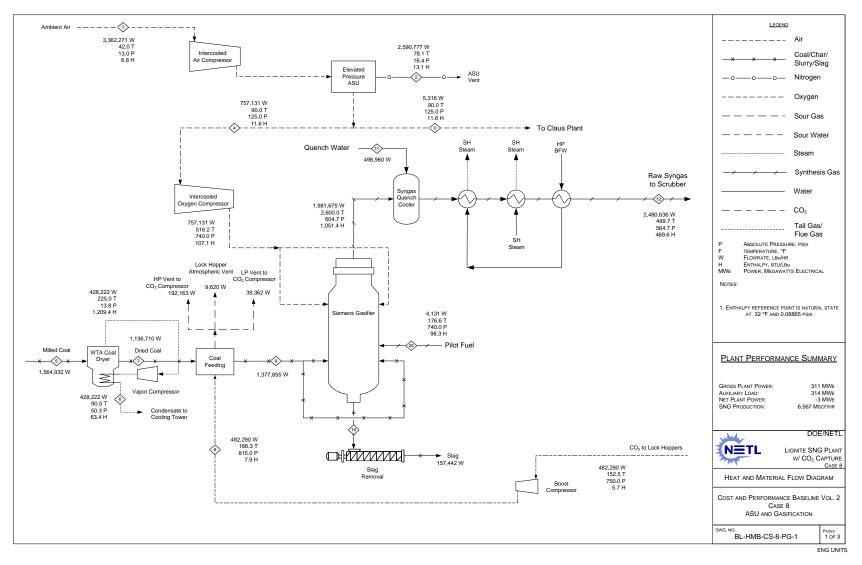


Exhibit 5-35 Case 8 Gasification and ASU Heat and Mass Balance

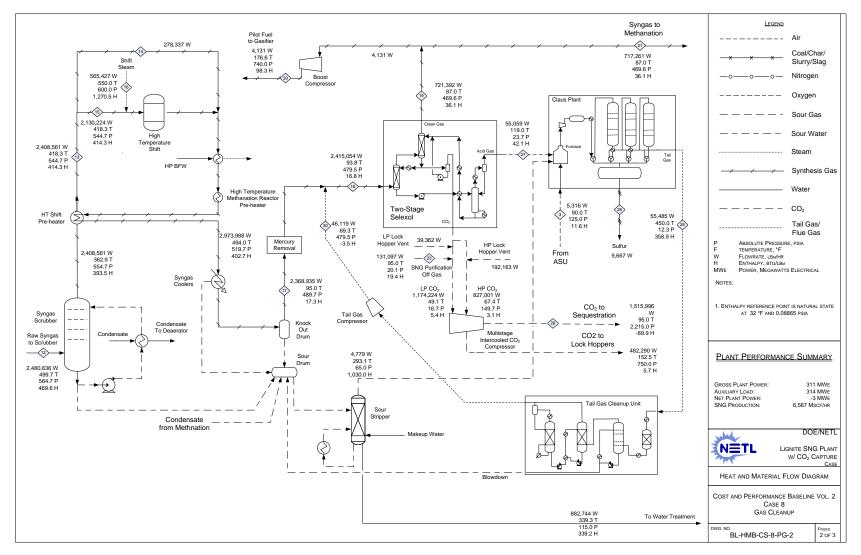


Exhibit 5-36 Case 8 Gas Cleanup Heat and Mass Balance

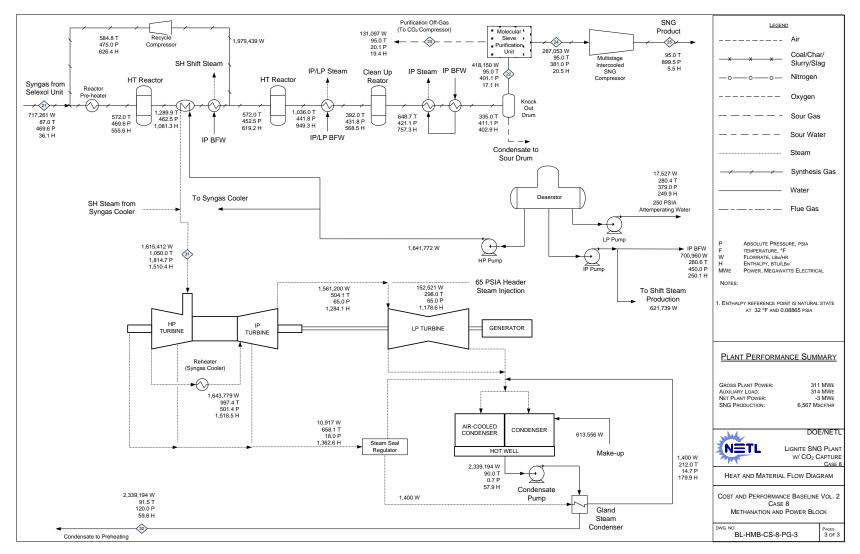


Exhibit 5-37 Case 8 Methanation and Power Block Heat and Mass Balance

	HI	HV	Sensible	e + Latent	Po	wer	То	tal
	Case 7	Case 8	Case 7	Case 8	Case 7	Case 8	Case 7	Case 8
Heat In, GJ/hr (MM	(Btu/hr)							
Coal	10,925 (10,355)	10,925 (10,355)	6.3 (6.0)	7.9 (7.5)	0 (0)	0 (0)	10,932 (10,361)	10,933 (10,363)
ASU Air	0 (0)	0 (0)	24.0 (22.7)	24.0 (22.7)	0 (0)	0 (0)	24 (23)	24 (23)
Raw Water Makeup	0 (0)	0 (0)	18.6 (17.6)	27.0 (25.6)	0 (0)	0 (0)	19 (18)	27 (26)
Auxiliary Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	935 (886)	1,130 (1,071)	935 (886)	1,130 (1,071)
Totals	10,925 (10,355)	10,925 (10,355)	48.9 (46.4)	58.9 (55.8)	935 (886)	1,130 (1,071)	11,909 (11,288)	12,114 (11,482)
	-	-	Heat	Out, GJ/hr (MMB	tu/hr)			
ASU Intercoolers	0 (0)	0 (0)	334 (317)	334 (317)	0 (0)	0 (0)	334 (317)	334 (317)
ASU Vent	0 (0)	0 (0)	35.9 (34.0)	35.9 (34.0)	0 (0)	0 (0)	36 (34)	36 (34)
Slag	46 (44)	46 (44)	120.5 (114.2)	120.5 (114.2)	0 (0)	0 (0)	167 (158)	167 (158)
Sulfur	41 (38)	41 (39)	0.5 (0.5)	0.5 (0.5)	0 (0)	0 (0)	41 (39)	41 (39)
CO ₂ Intercoolers	0 (0)	0 (0)	0 (0)	351.7 (333.4)	0 (0)	0 (0)	0 (0)	352 (333)
CO ₂	0 (0)	0 (0)	2.4 (2.3)	-143.8 (-136.3)	0 (0)	0 (0)	2 (2)	-144 (-136)
Cooling Tower Blowdown	0 (0)	0 (0)	21.6 (20.5)	25.6 (24.2)	0 (0)	0 (0)	22 (20)	26 (24)
SNG	6,703 (6,353)	6,699 (6,349)	1.7 (1.6)	1.7 (1.6)	0 (0)	0 (0)	6,705 (6,355)	6,700 (6,351)
SNG Purification Off-Gas	0 (0)	0 (0)	3 (3)	3 (3)	0 (0)	0 (0)	3 (3)	3 (3)
Condenser	0 (0)	0 (0)	1,631 (1,546)	1,703 (1,614)	0 (0)	0 (0)	1,631 (1,546)	1,703 (1,614)
Non-Condenser Cooling Loads	0 (0)	0 (0)	879 (833)	1,194 (1,131)	0 (0)	0 (0)	879 (833)	1,194 (1,131)
Process Losses*	0 (0)	0 (0)	989 (938	586 (555)	0 (0)	0 (0)	989 (938)	586 (555)
Power	0 (0)	0 (0)	0.0 (0.0)	0.0 (0.0)	1,101 (1,043)	1,118 (1,059)	1,101 (1,043)	1,118 (1,059)
Totals	6,790 (6,435)	6,785 (6,431)	4,019 (3,809)	4,211 (3,991)	1,101 (1,043)	1,118 (1,059)	11,909 (11,288)	12,114 (11,482)

Exhibit 5-38 Cases 7 and 8 Energy Balance

* Includes other energy losses not explicitly accounted for in the model.

5.2.4 Cases 7 and 8 Equipment Lists

Major equipment items for the Siemens gasifier SNG plant without and with carbon sequestration using NDL coal are shown in the following tables. The accounts used in the equipment list correspond to the account numbers used in the cost estimates in Section 5.2.5. In general, the design conditions include a 10 percent contingency for flows and heat duties and a 21 percent contingency for heads on pumps and fans.

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	2	0	181 tonne (200 ton)	181 tonne (200 ton)
2	Feeder	Belt	2	0	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)
3	Conveyor No. 1	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
4	Transfer Tower No. 1	Enclosed	1	0	N/A	N/A
5	Conveyor No. 2	Belt	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
6	As-Received Coal Sampling System	Two-stage	1	0	N/A	N/A
7	Stacker/Reclaimer	Traveling, linear	1	0	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)
8	Reclaim Hopper	N/A	2	1	145 tonne (160 ton)	145 tonne (160 ton)
9	Feeder	Vibratory	2	1	590 tonne/hr (650 tph)	590 tonne/hr (650 tph)
10	Conveyor No. 3	Belt w/ tripper	1	0	1,170 tonne/hr (1,290 tph)	1,170 tonne/hr (1,290 tph)
11	Crusher Tower	N/A	1	0	N/A	N/A
12	Coal Surge Bin w/ Vent Filter	Dual outlet	2	0	590 tonne (650 ton)	590 tonne (650 ton)
13	Crusher	Impactor reduction	2	0	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)	8 cm x 0 - 3 cm x 0 (3" x 0 - 1-1/4" x 0)

ACCOUNT 1 COAL HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
14	As-Fired Coal Sampling System	Swing hammer	1	1	N/A	N/A
15	Conveyor No. 4	Belt w/tripper	1	0	1,170 tonne/hr (1,290 tph)	1,170 tonne/hr (1,290 tph)
16	Transfer Tower No. 2	Enclosed	1	0	N/A	N/A
17	Conveyor No. 5	Belt w/ tripper	1	0	1,170 tonne/hr (1,290 tph)	1,170 tonne/hr (1,290 tph)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	3	0	2,631 tonne (2,900 ton)	2,631 tonne (2,900 ton)

ACCOUNT 2 COAL PREPARATION AND FEED

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Feeder	Vibratory	6	0	127 tonne/hr (140 tph)	127 tonne/hr (140 tph)
2	Conveyor No. 6	Belt w/tripper	3	0	263 tonne/hr (290 tph)	263 tonne/hr (290 tph)
3	Roller Mill Feed Hopper	Dual Outlet	3	0	517 tonne (570 ton)	517 tonne (570 ton)
4	Weigh Feeder	Belt	6	0	127 tonne/hr (140 tph)	127 tonne/hr (140 tph)
5	Pulverizer	Rotary	6	0	127 tonne/hr (140 tph)	127 tonne/hr (140 tph)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
6	Coal Dryer Feed Hopper	Vertical Hopper	3	0	517 tonne (570 ton)	517 tonne (570 ton)
7	Coal Preheater	Water Heated Horizontal Rotary Kiln	3	0	Coal feed: 263 tonne/hr (290 tph) Heat duty: 32.1 GJ/hr (30.5 MMBtu/hr)	Coal feed: 263 tonne/hr (290 tph) Heat duty: 32.1 GJ/hr (30.5 MMBtu/hr)
8	Coal Dryer	Fluidized Bed with Internal Coils	3	0	Coal feed: 263 tonne/hr (290 tph) Heat duty: 186 GJ/hr (177 MMBtu/hr) Bed diameter: 16.5 m (54 ft)	Coal feed: 263 tonne/hr (290 tph) Heat duty: 186 GJ/hr (177 MMBtu/hr) Bed diameter: 16.5 m (54 ft)
9	Steam Compressor	Reciprocating, Multi-Stage	3	0	1,419 m ³ /min (50,110 scfm) Suction - 0.10 MPa (13.8 psia) Discharge - 0.52 MPa (75.3 psia)	1,419 m ³ /min (50,110 scfm) Suction - 0.10 MPa (13.8 psia) Discharge - 0.52 MPa (75.3 psia)
10	Dryer Exhaust Filter	Hot Baghouse	3	0	Steam - 71,214 kg/hr (157,000 lb/hr) Temperature - 107°C (225°F)	Steam - 71,214 kg/hr (157,000 lb/hr) Temperature - 107°C (225°F)
11	Dry Coal Cooler	Water Cooled Horizontal Rotary Kiln	3	0	189 tonne/hr (208 tph) Heat duty - 12 GJ/hr (11 MMBtu/hr)	189 tonne/hr (208 tph) Heat duty - 12 GJ/hr (11 MMBtu/hr)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	3	0	575,383 liters (152,000 gal)	590,524 liters (156,000 gal)
2	Condensate Pumps	Vertical canned	2	1	9,464 lpm @ 91 m H ₂ O (2,500 gpm @ 300 ft H ₂ O)	9,804 lpm @ 91 m H ₂ O (2,590 gpm @ 300 ft H ₂ O)
3	Deaerator	Horizontal spray type	2	0	732,098 kg/hr (1,614,000 lb/hr)	751,603 kg/hr (1,657,000 lb/hr)
4	Intermediate Pressure Feedwater Pump	Horizontal centrifugal, single stage	2	1	5,375 lpm @ 341 m H ₂ O (1,420 gpm @ 1120 ft H ₂ O)	5,716 lpm @ 341 m H ₂ O (1,510 gpm @ 1120 ft H ₂ O)
5	High Pressure Feedwater Pump	Barrel type, multi-stage, centrifugal	2	1	HP water: 7,117 lpm @ 1,676 m H ₂ O (1,880 gpm @ 5,500 ft H ₂ O)	HP water: 7,117 lpm @ 1,676 m H ₂ O (1,880 gpm @ 5,500 ft H ₂ O)
6	Auxiliary Boiler	Shop fabricated, water tube	1	0	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)
7	Service Air Compressors	Flooded Screw	3	1	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)
8	Instrument Air Dryers	Duplex, regenerative	3	1	28 m ³ /min (1,000 scfm)	28 m ³ /min (1,000 scfm)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
9	Closed Cycle Cooling Heat Exchangers	Plate and frame	2	0	667 GJ/hr (632 MMBtu/hr) each	840 GJ/hr (796 MMBtu/hr) each
10	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	2	1	239,238 lpm @ 21 m H ₂ O (63,200 gpm @ 70 ft H ₂ O)	301,319 lpm @ 21 m H ₂ O (79,600 gpm @ 70 ft H ₂ O)
11	Engine-Driven Fire Pump	Vertical turbine, diesel engine	1	1	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)
12	Fire Service Booster Pump	Two-stage horizontal centrifugal	1	1	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)
13	Raw Water Pumps	Stainless steel, single suction	2	1	4,656 lpm @ 18 m H ₂ O (1,230 gpm @ 60 ft H ₂ O)	5,413 lpm @ 18 m H ₂ O (1,430 gpm @ 60 ft H ₂ O)
14	Ground Water Pumps	Stainless steel, single suction	3	1	3,104 lpm @ 268 m H ₂ O (820 gpm @ 880 ft H ₂ O)	3,596 lpm @ 268 m H ₂ O (950 gpm @ 880 ft H ₂ O)
15	Filtered Water Pumps	Stainless steel, single suction	2	1	5,527 lpm @ 49 m H ₂ O (1,460 gpm @ 160 ft H ₂ O)	5,527 lpm @ 49 m H ₂ O (1,460 gpm @ 160 ft H ₂ O)
16	Filtered Water Tank	Vertical, cylindrical	2	0	2,649,788 liter (700,000 gal)	2,653,574 liter (701,000 gal)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
17	Makeup Water Demineralizer	Anion, cation, and mixed bed	4	0	1,287 lpm (340 gpm)	1,287 lpm (340 gpm)
18	Liquid Waste Treatment System		1	0	10 years, 24-hour storm	10 years, 24-hour storm

ACCOUNT 4 GASIFIER, ASU, AND ACCESSORIES INCLUDING LOW TEMPERATURE HEAT RECOVERY

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Gasifier	Pressurized dry-feed, entrained bed	6	0	3,084 tonne/day, 4.2 MPa (3,400 tpd, 615 psia)	3,084 tonne/day, 4.2 MPa (3,400 tpd, 615 psia)
2	Synthesis Gas Cooler	Convective spiral-wound tube boiler	6	0	206,385 kg/hr (455,000 lb/hr)	206,385 kg/hr (455,000 lb/hr)
3	Syngas Scrubber Including Sour Water Stripper	Vertical upflow	6	0	206,385 kg/hr (455,000 lb/hr)	206,385 kg/hr (455,000 lb/hr)
4	Raw Gas Coolers	Shell and tube with condensate drain	12	0	424,109 kg/hr (935,000 lb/hr)	424,109 kg/hr (935,000 lb/hr)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
5	Raw Gas Knockout Drum	Vertical with mist eliminator	3	0	394,172 kg/hr, 35°C, 3.4 MPa (869,000 lb/hr, 95°F, 490 psia)	394,172 kg/hr, 35°C, 3.4 MPa (869,000 lb/hr, 95°F, 495 psia)
6	Saturation Water Economizers	Shell and tube	3	0	494,869 kg/hr (1,091,000 lb/hr)	494,416 kg/hr (1,090,000 lb/hr)
7	Flare Stack	Self- supporting, carbon steel, stainless steel top, pilot ignition	3	0	412,769 kg/hr (910,000 lb/hr) syngas	412,769 kg/hr (910,000 lb/hr) syngas
8	ASU Main Air Compressor	Centrifugal, multi-stage	3	0	7,646 m ³ /min @ 1.3 MPa (270,000 scfm @ 190 psia)	7,646 m ³ /min @ 1.3 MPa (270,000 scfm @ 190 psia)
9	Cold Box	Vendor design	3	0	3,084 tonne/day (3,400 tpd) of 99% purity oxygen	3,084 tonne/day (3,400 tpd) of 99% purity oxygen
10	Oxygen Compressor	Centrifugal, multi-stage	3	0	1,557 m ³ /min (55,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)	1,557 m ³ /min (55,000 scfm) Suction - 0.9 MPa (130 psia) Discharge - 5.1 MPa (740 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
11	Coal Feed System CO ₂ Compressor	Centrifugal, multi-stage	3	0	736 m ³ /min (26,000 scfm) Suction - 1.0 MPa (150 psia) Discharge - 5.7 MPa (820 psia)	736 m ³ /min (26,000 scfm) Suction - 5.2 MPa (750 psia) Discharge - 5.7 MPa (820 psia)

ACCOUNT 5A SYNGAS CLEANUP

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Mercury Adsorber	Sulfated carbon bed	3	0	394,172 kg/hr (869,000 lb/hr) 35°C (95°F) 3.3 MPa (485 psia)	394,172 kg/hr (869,000 lb/hr) 35°C (95°F) 3.4 MPa (490 psia)
2	ZnO Guard Bed	Fixed bed	1	0	418 Nm ³ /min (14,750 acfm)	417 Nm ³ /min (14,740 acfm)
3	Sulfur Plant	Claus type	2	0	58 tonne/day (64 tpd)	58 tonne/day (64 tpd)
4	Water Gas Shift Reactor	Fixed bed, catalytic	3	0	448,149 kg/hr (988,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)	448,149 kg/hr (988,000 lb/hr) 232°C (450°F) 3.7 MPa (540 psia)
5	Shift Reactor Heat Recovery Exchanger	Shell and Tube	3 each	0	Exchanger 1: 61 GJ/hr (58 MMBtu/hr) Exchanger 2: 77 GJ/hr (73 MMBtu/hr) Exchanger 3: 17 GJ/hr (16 MMBtu/hr)	Exchanger 1: 61 GJ/hr (58 MMBtu/hr) Exchanger 2: 77 GJ/hr (73 MMBtu/hr) Exchanger 3: 17 GJ/hr (16 MMBtu/hr)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
6	Acid Gas Removal Plant	Two-stage Selexol	3	0	401,883 kg/hr (886,000 lb/hr) 34°C (94°F) 3.3 MPa (475 psia)	401,883 kg/hr (886,000 lb/hr) 34°C (94°F) 3.3 MPa (480 psia)
7	Hydrogenation Reactor	Fixed bed, catalytic	2	0	13,982 kg/hr (30,826 lb/hr) 232°C (450°F) 0.1 MPa (12.3 psia)	13,842 kg/hr (30,517 lb/hr) 232°C (450°F) 0.1 MPa (12.3 psia)
8	Tail Gas Recycle Compressor	Centrifugal	2	0	11,601 kg/hr @ 3.3 MPa (25,575 lb/hr @ 485 psia)	11,542 kg/hr @ 3.3 MPa (25,445 lb/hr @ 485 psia)

ACCOUNT 5B CO₂ COMPRESSION

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	CO ₂ Compressor	Integrally geared, multi-stage centrifugal	4	0	N/A	1,705 m ³ /min @ 15.3 MPa (60,200 scfm @ 2,215 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Combustion Turbine	N/A	N/A	N/A	N/A	N/A
2	Combustion Turbine Generator	N/A	N/A	N/A	N/A	N/A

ACCOUNT 6 COMBUSTION TURBINE AND AUXILIARIES

ACCOUNT 7 DUCTING & STACK

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Stack	CS plate, type 409SS liner	1	0	76 m (250 ft) high x 2.2 m (7 ft) diameter	76 m (250 ft) high x 0.7 m (2 ft) diameter

ACCOUNT 8 STEAM TURBINE GENERATOR AND AUXILIARIES

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Steam Turbine	Commercially available	1	0	322 MW 12.4 MPa/ 566°C (1800 psig/ 1050°F)	327 MW 12.4 MPa/ 566°C (1800 psig/ 1050°F)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	1	0	360 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	360 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1	0	897 GJ/hr (850 MMBtu/hr), Condensing temperature 32°C (90°F), Inlet water temperature 8°C (47°F), Water temperature rise 11°C (20°F)	939 GJ/hr (890 MMBtu/hr), Condensing temperature 32°C (90°F), Inlet water temperature 9°C (48°F), Water temperature rise 11°C (20°F)
4	Air-cooled Condenser		1	0	897 GJ/hr (850 MMBtu/hr), Condensing temperature 32°C (90°F), Ambient temperature 4°C (40°F)	939 GJ/hr (890 MMBtu/hr), Condensing temperature 32°C (90°F), Ambient temperature 6°C (42°F)

ACCOUNT 9 COOLING WATER SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Circulating Water Pumps	Vertical, wet pit	2	1	458,035 lpm @ 30 m (121,000 gpm @ 100 ft)	526,172 lpm @ 30 m (139,000 gpm @ 100 ft)
2	Cooling Tower	Evaporative, mechanical draft, multi- cell	1	0	2°C (36°F) wet bulb / 8°C (47°F) CWT / 19°C (67°F) HWT / 2,543 GJ/hr (2,410 MMBtu/hr) heat duty	3°C (37°F) wet bulb / 9°C (48°F) CWT / 20°C (68°F) HWT / 2,933 GJ/hr (2,780 MMBtu/hr) heat duty

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Slag Quench Tank	Water bath	6	0	249,837 liters (66,000 gal)	249,837 liters (66,000 gal)
2	Slag Crusher	Roll	6	0	13 tonne/hr (14 tph)	13 tonne/hr (14 tph)
3	Slag Depressurizer	Proprietary	6	0	13 tonne/hr (14 tph)	13 tonne/hr (14 tph)
4	Slag Receiving Tank	Horizontal, weir	6	0	151,416 liters (40,000 gal)	151,416 liters (40,000 gal)
5	Black Water Overflow Tank	Shop fabricated	6	0	68,137 liters (18,000 gal)	68,137 liters (18,000 gal)
6	Slag Conveyor	Drag chain	6	0	13 tonne/hr (14 tph)	13 tonne/hr (14 tph)
7	Slag Separation Screen	Vibrating	6	0	13 tonne/hr (14 tph)	13 tonne/hr (14 tph)
8	Coarse Slag Conveyor	Belt/bucket	6	0	13 tonne/hr (14 tph)	13 tonne/hr (14 tph)
9	Fine Ash Settling Tank	Vertical, gravity	6	0	211,983 liters (56,000 gal)	211,983 liters (56,000 gal)
10	Fine Ash Recycle Pumps	Horizontal centrifugal	6	3	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)	38 lpm @ 14 m H ₂ O (10 gpm @ 46 ft H ₂ O)
11	Grey Water Storage Tank	Field erected	6	0	68,137 liters (18,000 gal)	68,137 liters (18,000 gal)
12	Grey Water Pumps	Centrifugal	6	3	227 lpm @ 433 m H ₂ O (60 gpm @ 1,420 ft H ₂ O)	227 lpm @ 433 m H ₂ O (60 gpm @ 1,420 ft H ₂ O)

ACCOUNT 10 SLAG RECOVERY AND HANDLING

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
13	Slag Storage Bin	Vertical, field erected	6	0	907 tonne (1,000 tons)	907 tonne (1,000 tons)
14	Unloading Equipment	Telescoping chute	2	0	163 tonne/hr (180 tph)	163 tonne/hr (180 tph)

ACCOUNT 11 SNG PRODUCTION/METHANATION SYSTEM

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	Methanation Reactor Preheater	Shell and Tube	3	0	90 GJ/hr (85 MMBtu/hr)	90 GJ/hr (85 MMBtu/hr)
2	Methanation Reactor 1	Fixed Bed, catalytic	3	0	456,314 kg/hr (1,006,000 lb/hr) 693°C (1,280°F) 3.2 MPa (470 psia)	448,603 kg/hr (989,000 lb/hr) 699°C (1,290°F) 3.2 MPa (470 psia)
3	Methanation Reactor Intercooler 1	Shell and Tube	3	0	381 GJ/hr (362 MMBtu/hr)	380 GJ/hr (360 MMBtu/hr)
4	Methanation Reactor Intercooler 2	Shell and Tube	3	0	104 GJ/hr (99 MMBtu/hr)	102 GJ/hr (97 MMBtu/hr)
5	Methanation Reactor 2	Fixed Bed, catalytic	3	0	119,295 kg/hr (263,000 lb/hr) 554°C (1030°F) 3.1 MPa (450 psia)	119,295 kg/hr (263,000 lb/hr) 560°C (1040°F) 3.1 MPa (450 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
6	Methanation Reactor Intercooler 3	Shell and Tube	3	0	27 GJ/hr (26 MMBtu/hr)	27 GJ/hr (26 MMBtu/hr)
7	Methanation Reactor 3	Fixed Bed, catalytic	3	0	119,295 kg/hr (263,000 lb/hr) 338°C (640°F) 3.0 MPa (440 psia)	119,295 kg/hr (263,000 lb/hr) 343°C (650°F) 3.0 MPa (440 psia)
8	Methanation Reactor Intercooler 4	Shell and Tube	3	0	36 GJ/hr (34 MMBtu/hr)	38 GJ/hr (36 MMBtu/hr)
9	Methanation Reactor Intercooler 5	Shell and Tube	3	0	61 GJ/hr (58 MMBtu/hr)	61 GJ/hr (58 MMBtu/hr)
10	SNG Purification Condenser 1	Shell and Tube	3	0	51 GJ/hr (49 MMBtu/hr)	51 GJ/hr (49 MMBtu/hr)
11	SNG Purification Condenser 2	Shell and Tube	3	0	31 GJ/hr (30 MMBtu/hr)	31 GJ/hr (30 MMBtu/hr)
12	Methanation Recycle Compressor	Centrifugal	3	1	8,084 m ³ /min (285,500 scfm) Suction - 3.1 MPa (453 psia) Discharge - 3.3 MPa (475 psia)	7,926 m ³ /min (279,900 scfm) Suction - 3.1 MPa (453 psia) Discharge - 3.3 MPa (475 psia)

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
13	Molecular Sieve Purification Reactor	Fixed bed	6	0	34,927 kg/hr (77,000 lb/hr) 35°C (95°F) 2.8 MPa (401 psia)	34,927 kg/hr (77,000 lb/hr) 35°C (95°F) 2.8 MPa (401 psia)
14	SNG Product Compressor	Centrifugal, Multi-staged	3	1	1,136 m ³ /min (40,100 scfm) 2.6 MPa (381 psia) 6.2 MPa (900 psia)	1,136 m ³ /min (40,100 scfm) 2.6 MPa (381 psia) 6.2 MPa (900 psia)

ACCOUNT 12 ACCESSORY ELECTRIC PLANT

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	STG Step-up Transformer	Oil-filled	1	0	24 kV/345 kV, 360 MVA, 3-ph, 60 Hz	345 kV/24 kV, 360 MVA, 3-ph, 60 Hz
2	Auxiliary Transformer	Oil-filled	1	1	24 kV/4.16 kV, 287 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 347 MVA, 3-ph, 60 Hz
3	Low Voltage Transformer	Dry ventilated	1	1	4.16 kV/480 V, 43 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 52 MVA, 3-ph, 60 Hz
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	1	0	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz
5	Medium Voltage Switchgear	Metal clad	1	1	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
6	Low Voltage Switchgear	Metal enclosed	1	1	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz
7	Emergency Diesel Generator	Sized for emergency shutdown	1	0	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz

ACCOUNT 13 INSTRUMENTATION AND CONTROLS

Equipment No.	Description	Туре	Operating Qty.	Spares	Case 7 Design Condition	Case 8 Design Condition
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	1	0	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers
2	DCS - Processor	Microprocessor with redundant input/output	1	0	N/A	N/A
3	DCS - Data Highway	Fiber optic	1	0	Fully redundant, 25% spare	Fully redundant, 25% spare

5.2.5 <u>Cases 7 and 8 Cost Estimating</u>

The cost estimating methodology was described previously in Section 2.8.

The TPC organized by cost account; owner's costs; TOC; and initial and annual O&M costs for the SNG plant without sequestration using NDL coal (Case 7) are shown in Exhibit 5-39 and Exhibit 5-40, respectively. The same data for the SNG plant with sequestration using NDL coal (Case 8) are shown in Exhibit 5-41 and Exhibit 5-42.

The estimated TOC of the SNG plant without carbon sequestration using NDL coal is 3.50 billion dollars and with carbon sequestration is 3.60 billion dollars. Project and process contingencies represent 12.0 and 3.6 percent for both cases. The FYCOP is \$21.27/MMBtu for the non-sequestration case and \$23.24/MMBtu for the sequestration case as shown in Exhibit ES-6.

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perforn	nance Baselir	ne for Fossil E	Energy Plant	s Vol.2					
			TOTAL	PLANT	COST	SUMM.	ARY				
	Case:	Case 7 - Sieme	ens Quench S	SNG Product	on w/o CO2						
	Plant Size:	46.06	MW,net	Estimate T	/pe:	Conceptua	I	Co	st Base (Jun)	2007	(\$x1000)
Acct		Equipment	Material	Lab	~	Sales	Bare Erected	Eng'g CM	Contin	igencles	Total Plant Cost
No.	Item/Description	Equipment Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	s
	COAL & SORBENT HANDLING		0000	Dirott	manoot	Tun	00017		1100000	110,000	•
	Coal Receive & Unload	\$7.733	\$0	\$3,779	\$0	\$0	\$11.512	\$1.031	\$0	\$2,509	\$15.052
	Coal Stackout & Reclaim	\$9,993	\$0	\$2,423	\$0	\$0	1 11		\$0	1 1 1 1 1	\$16,204
	Coal Conveyors & Yd Crush	\$9,291	\$0	\$2,397	\$0	\$0			\$0		\$15,256
	Other Coal Handling	\$2,431	\$0	\$555	\$0				\$0	1 10 00	
	Sorbent Receive & Unload	\$0	\$0	\$0	\$0				\$0		
	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0	\$0			\$0		
	Sorbent Conveyors	\$0	\$0	\$0	\$0	\$0			\$0		
	Other Sorbent Handling	\$0	\$0	\$0	\$0				\$0		
	Coal & Sorbent Hnd.Foundations	\$0	\$5,472	\$13,683	\$0				\$0		
,	SUBTOTAL 1.	\$29,447	\$5,472	\$22,836	\$0	\$0	\$57,755		\$0		
2	COAL & SORBENT PREP & FEED	+=>,	.	+,							
	Coal Crushing & Drying	\$127,899	\$0	\$18,636	\$0	\$0	\$146,535	\$13,308	\$0	\$31.969	\$191,811
	Prepared Coal Storage & Feed	\$6,058	\$1,450	\$950	\$0				\$0		
	Dry Coal Injection System	\$199,367	\$2,314	\$18,515	\$0			\$18,965	\$0		\$286,994
	Misc.Coal Prep & Feed	\$3,331	\$2,424	\$7,268	\$0				\$0		
	Sorbent Prep Equipment	\$0	\$0	\$0	\$0				\$0		
	Sorbent Storage & Feed	\$0	\$0	\$0	\$0			1.1	\$0		
	Sorbent Injection System	\$0	\$0	\$0	\$0				\$0		
	Booster Air Supply System	\$0	\$0	\$0	\$0			1.1	\$0		
	Coal & Sorbent Feed Foundation	\$0	\$12.948	\$10.631	\$0				\$0		+ -
2.7	SUBTOTAL 2.	\$336,655	\$19,136	\$56,001	\$0	\$0			\$0		\$537,802
3	FEEDWATER & MISC. BOP SYSTEMS	+000,000	<i></i>	400,001	**		<i>•••••••••••••••••••••••••••••••••••••</i>	<i><i>tee</i>,<i>e</i>,<i>r</i>,</i>	+•	<i>407,001</i>	4007,001
	Feedwater System	\$3,463	\$1,610	\$1,952	\$0	\$0	\$7,025	\$635	\$0	\$1,532	\$9,192
	Water Makeup & Pretreating	\$591	\$62	\$330	\$0				\$0		
	Other Feedwater Subsystems	\$3,760	\$1,137	\$1,860	\$0				\$0		
	Service Water Systems	\$338	\$696	\$2,415	\$0				\$0		
	Other Boiler Plant Systems	\$1,814	\$703	\$1,742	\$0		1.11.1.1		\$0		
	FO Supply Sys & Nat Gas	\$102	\$210	\$188	\$0		1 11 1 2		\$0		
	Waste Treatment Equipment	\$826	\$0	\$504	\$0				\$0		
	Misc. Power Plant Equipment	\$1,639	\$219	\$841	\$0				\$0		
0.0	SUBTOTAL 3.	\$12,532	\$4,636	\$9,832	\$0	\$0		\$2,521	\$0		
4	GASIFIER & ACCESSORIES	<i>•••••••</i>	<i></i>	<i>†</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			+==,===	+=,0=:		40,002	+00,000
	Gasifier, Syngas Cooler & Auxiliaries	\$325,384	\$0	\$150,649	\$0	\$0	\$476,033	\$42,281	\$71,405	\$88,458	\$678,176
	Syngas Cooling	w/4.1	w/4.1	w/ 4.1	\$0						
	ASU/Oxidant Compression	\$246,271	\$0	w/equip.	\$0			\$23,871	\$0		
	LT Heat Recovery & FG Saturation	\$51,285	\$0	\$19,002	\$0 \$0	\$0			\$0	1 11	\$92,425
	Misc. Gasification Equipment	w/4.1&4.2	\$0 \$0	w/4.1&4.2	\$0	\$0			\$0		
	Flare Stack System	\$0	\$2,261	\$920	\$0				\$0		\$4,184
	CO2 Solid Feed System Compressors	\$13,665	\$3,280	\$4,919	\$0 \$0	\$0			\$0		
	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2	\$0 \$0				\$0	1	
	Gasification Foundations	\$0	\$26,928	\$15.365	\$0 \$0				\$0		\$57,706
T. /	SUBTOTAL 4.	\$636,605	1 1 1	\$190,856	\$0 \$0	\$0 \$0	\$859,930		\$71,405		

Exhibit 5-39 Case 7 Total Plant Cost Details

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	encies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$130,462	\$0	\$110,700	\$0	\$0	\$241,162	\$23,323	\$48,232	\$62,543	\$375,260
5A.2	Elemental Sulfur Plant	\$8,844	\$1,763	\$11,410	\$0	\$0	\$22,017	\$2,139	\$0	\$4,831	\$28,986
5A.3	Mercury Removal	\$2,366	\$0	\$1,800	\$0	\$0	\$4,166	\$402	\$208	\$955	\$5,732
5A.4	Shift Reactors	\$10,266	\$0	\$4,132	\$0	\$0	\$14,398	\$1,380	\$0	\$3,156	\$18,934
5A.5	Methanation	\$26,500	\$10,600	\$15,900	\$0	\$0	\$53,000	\$5,300	\$5,300	\$12,720	\$76,320
5A.6	SNG Purification & Compression	\$18,600	\$7,440	\$11,160	\$0	\$0	\$37,200	\$3,720	\$0	\$8,184	\$49,104
5A.7	Fuel Gas Piping	\$0	\$1,631	\$1,142	\$0	\$0	\$2,773	\$257	\$0	\$606	\$3,636
5A.9	Process Interconnects	\$0	\$12,000	\$18,000	\$0	\$0	\$30,000	\$3,000	\$0	\$6,600	\$39,600
5A.10	HGCU Foundations	\$0	\$1,651	\$1,065	\$0	\$0	\$2,716	\$250	\$0	\$890	\$3,856
5A.11	Zinc Oxide Guard Bed	\$758	\$0	\$140	\$0	\$0	\$898	\$90	\$0	\$198	\$1,185
	SUBTOTAL 5A.	\$197,795	\$35,085	\$175,449	\$0	\$0	\$408,330	\$39,861	\$53,741	\$100,683	\$602,614
5B	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
5B.2	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
	SUBTOTAL 5B.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6	COMBUSTION TURBINE/ACCESSORIES										
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
7.1	Heat Recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C	\$0
7.3	Ductwork	\$0	\$335	\$239	\$0	\$0	\$573	\$50	\$0	\$125	\$748
7.4	Stack	\$1,465	\$0	\$550	\$0	\$0	\$2,015	\$193	\$0	\$221	\$2,429
7.9	HRSG,Duct & Stack Foundations	\$0	\$293	\$282	\$0	\$0	\$575	\$54	\$0	\$189	
	SUBTOTAL 7.	\$1,465	\$628	\$1,071	\$0	\$0	\$3,164	\$297	\$0	\$534	\$3,995
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	\$31,248	\$0	\$5,416	\$0	\$0	\$36,664	\$3,518	\$0	\$4,018	\$44,200
8.2	Turbine Plant Auxiliaries	\$169	\$0	\$498	\$0	\$0	\$668	\$66	\$0	\$73	\$807
8.3a	Condenser & Auxiliaries	\$3,246	\$0	\$1,521	\$0	\$0	\$4,767	\$458	\$0	\$522	\$5,747
8.3b	Air Cooled Condenser	\$29,744	\$0	\$5,963	\$0	\$0	\$35,707	\$3,571	\$0	\$7,855	\$47,133
8.4	Steam Piping	\$5,463	\$0	\$3,843	\$0	\$0	\$9,306	\$799	\$0	\$2,526	\$12,632
8.9	TG Foundations	\$0	\$1,078	\$1,823	\$0	\$0	\$2,901	\$275	\$0	\$953	\$ \$4,129
	SUBTOTAL 8.	\$69,869	\$1,078	\$19,065	\$0	\$0	\$90,013	\$8,687	\$0	\$15,949	\$114,648

Exhibit 5-39 Case 7 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	jencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM										
9.1	Cooling Towers	\$7,073	\$0	\$1,287	\$0	\$0	\$8,360	\$796	\$0	\$1,373	\$10,530
9.2	Circulating Water Pumps	\$1,885	\$0	\$87	\$0	\$0	\$1,973	\$166	\$0	\$321	\$2,460
9.3	Circ.Water System Auxiliaries	\$155	\$0	\$22	\$0	\$0	\$177	\$17	\$0	\$29	\$222
9.4	Circ.Water Piping	\$0	\$6,449	\$1,672	\$0	\$0	\$8,121	\$734	\$0	\$1,771	\$10,626
9.5	Make-up Water System	\$329	\$0	\$471	\$0	\$0	\$800	\$77	\$0	\$175	\$1,052
9.6	Component Cooling Water Sys	\$761	\$911	\$648	\$0	\$0	\$2,320	\$217	\$0	\$507	\$3,044
9.9	Circ.Water System Foundations	\$0	\$2,356	\$4,005	\$0	\$0	\$6,360	\$603	\$0	\$2,089	\$9,052
	SUBTOTAL 9.	\$10,204	\$9,715	\$8,191	\$0	\$0	\$28,111	\$2,610	\$0	\$6,266	\$36,987
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$49,571	\$0	\$48,892	\$0	\$0	\$98,463	\$9,540	\$0	\$10,800	\$118,804
10.2	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.5	Other Ash Rrecovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Ash Storage Silos	\$1,072	\$0	\$1,167	\$0	\$0			\$0	\$368	\$2,825
	Ash Transport & Feed Equipment	\$1,438	\$0	\$347	\$0	\$0			\$0	\$293	
	Misc. Ash Handling Equipment	\$2,221	\$2,722	\$813	\$0	\$0	\$5,756	\$548	\$0	\$946	\$7,250
	Ash/Spent Sorbent Foundation	\$0	\$95	\$119	\$0	\$0			\$0	\$70	
	SUBTOTAL 10.	\$54,303	\$2,817	\$51,338	\$0	\$0		\$10,492	\$0	\$12,477	
11	ACCESSORY ELECTRIC PLANT			• - • •		• -					
	Generator Equipment	\$431	\$0	\$427	\$0	\$0	\$858	\$82	\$0	\$94	\$1,034
	Station Service Equipment	\$5,673	\$0	\$511	\$0	\$0	\$6,184		\$0	\$675	
	Switchgear & Motor Control	\$10,487	\$0	\$1,907	\$0	\$0			\$0	\$2,032	
	Conduit & Cable Tray	\$0	\$4,872	\$16,071	\$0	\$0			\$0	\$5,742	
	Wire & Cable	\$0	\$9,308	\$6,116	\$0	\$0			\$0	\$4,136	
	Protective Equipment	\$0	\$826	\$3,006	\$0	\$0			\$0	\$631	
	Standby Equipment	\$317	\$0	\$309	\$0	\$0			\$0	\$103	
	Main Power Transformers	\$9,424	\$0	\$172	\$0	\$0			\$0	\$1,549	
	Electrical Foundations	\$0	\$186	\$489	\$0	\$0			\$0	\$222	
	SUBTOTAL 11.	\$26,332	\$15,192	\$29,008	\$0	\$0			\$0	\$15,184	
12	INSTRUMENTATION & CONTROL						,				
	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0		· · · · · ·		\$0	
	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0			\$0	\$0	
	Other Major Component Control	\$520	\$0	\$347	\$0	\$0	1.1	1.1	\$43	\$149	
	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0			\$0	\$0	
	Control Boards, Panels & Racks	\$345	\$0 \$0	\$221	\$0 \$0	\$0			\$28	\$130	
	Computer & Accessories	\$5,524	\$0 \$0	\$177	\$0 \$0	\$0		\$523	\$285	\$651	
	Instrument Wiring & Tubing	\$0	\$2,798	\$5,720	\$0 \$0	\$0 \$0			\$426	\$2,417	
	Other I & C Equipment	\$4,118	\$2,770	\$2,000	\$0 \$0	\$0 \$0			\$306	\$1,050	
12.7	SUBTOTAL 12.	\$10,507	\$2,798	\$8,465	\$0 \$0	\$0 \$0		\$1,957	\$1,088	\$4,396	

Exhibit 5-39 Case 7 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	encies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE										
13.1	Site Preparation	\$0	\$141	\$3,021	\$0	\$0	\$3,162	\$314	\$0	\$1,043	\$4,519
13.2	Site Improvements	\$0	\$2,514	\$3,341	\$0	\$0	\$5,855	\$578	\$0	\$1,930	\$8,362
	Site Facilities	\$4,505	\$0	\$4,754	\$0	\$0	\$9,259	\$913	\$0	\$3,051	\$13,223
	SUBTOTAL 13.	\$4,505	\$2,655	\$11,115	\$0	\$0	\$18,276	\$1,804	\$0	\$6,024	\$26,104
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,599	\$3,703	\$0	\$0	\$6,302	\$580	\$0	\$1,032	\$7,914
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0	\$1,500	\$134	\$0	\$245	\$1,879
	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$494	\$482	\$0	\$0	\$975	\$88	\$0	\$160	\$1,223
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
14.7	Warehouse	\$0	\$726	\$464	\$0	\$0	\$1,190	\$105	\$0	\$194	\$1,489
14.8	Other Buildings & Structures	\$0	\$514	\$400	\$0	\$0	\$914	\$82	\$0	\$199	\$1,195
14.9	Waste Treating Building & Str.	\$0	\$1,149	\$2,196	\$0	\$0	\$3,346	\$312	\$0	\$732	\$4,389
	SUBTOTAL 14.	\$0	\$6,957	\$8,270	\$0	\$0	\$15,227	\$1,389	\$0	\$2,725	\$19,341
	TOTAL COST	\$1,390,220	\$138,640	\$591,498	\$0	\$0	\$2,120,358	\$196,659	\$126,234	\$421,228	\$2,864,478
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor										\$22,173
	1 Month Maintenance Materials										\$3,941
	1 Month Non-fuel Consumables										\$615
	1 Month Waste Disposal										\$937
	25% of 1 Months Fuel Cost at 100% CF										\$1,559
	2% of TPC										\$57,290
	Total										\$86,515
	Inventory Capital										
60	day supply of fuel and consumables at 100% CF										\$13,495
	0.5% of TPC (spare parts)										\$14,322
	Total										\$27,817
	Initial Cost for Catalyst and Chemicals										\$17,540
	Land										\$900
	Other Owner's Costs										\$429,672
	Financing Costs										\$77,341
	Total Overnight Costs (TOC)										\$3,504,262
	TASC Multiplier										1.201
	Total As-Spent Cost (TASC)										\$4,208,619

Exhibit 5-39 Case 7 Total Plant Cost Details (continued)

INITIAL & ANNUA		PENSES			Cost Base (Jun):	2007
Case 7 - Siemens Quench SNG Production w/o Co SNG (MMbtu/hr):	O2 6353				MWe-net: Capacity Factor (%):	46 90
OPERATING & MAINTENA		R				90
Operating Labor		<u> </u>				
Operating Labor Rate(base):	34.65	\$/hour				
Operating Labor Burden:	30.00	% of base				
Labor O-H Charge Rate:	25.00	% of labor				
J. J						
			Total			
Operating Labor Requirements(O.J.)per Shift:	1 unit/mod.		Plant			
Skilled Operator	2.0		2.0			
Operator	12.0		12.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		<u>3.0</u>			
TOTAL-O.J.'s	18.0		18.0			
					Annual Cost	Annual Unit Cos
					<u>\$</u>	<u>\$/MMBtu</u>
Annual Operating Labor Cost					\$7,102,696	\$0.142
Maintenance Labor Cost					\$28,373,931	\$0.566
Administrative & Support Labor					\$8,869,157	\$0.177
Property Taxes and Insurance					\$57,289,567	\$1.144
TOTAL FIXED OPERATING COSTS					\$101,635,351	\$2.029
VARIABLE OPERATING COSTS						
						<u>\$/MMBtu</u>
Maintenance Material Cost					\$42,560,897	\$0.84968
<u>Consumables</u>		mption	<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	<u>Cost</u>		
Water(/1000 gallene)	0	2 1 0 2	1.00	¢0	¢1 121 0E0	¢0.000E0
Water(/1000 gallons)	0	3,183	1.08	\$0	\$1,131,059	\$0.02258
Chemicals						
MU & WT Chem. (lb)	0	18,964	0.17	\$0	\$1,078,164	\$0.02152
Carbon (Mercury Removal) (lb)	216,740	371	1.05	\$227,614	\$128,033	\$0.00256
COS Catalyst (m3)	210,740	0	2,397.36	\$0	\$120,033	\$0.00000
Water Gas Shift Catalyst (ft3)	10,021	8.58	498.83	\$4,998,731	\$1,405,893	\$0.02807
ZnO Sorbent (ton)	63		12,574.00	\$792,321	\$891,361	\$0.02007
Methanation Catalyst (ft3)	11,443	8.71	440.00	\$5,035,097	\$1,258,774	\$0.02513
Selexol Solution (gal)	484,076	154	13.40	\$6,485,766	\$676,901	\$0.02313
SCR Catalyst (m3)		154	0.00			
Aqueous Ammonia (ton)	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
Claus Catalyst (ft3)		1.63		\$0 \$0	\$0 \$70,246	
Subtotal Chemicals	w/equip	1.03	131.27	\$17,539,529	\$5,509,373	\$0.00140 \$0.10999
Subtotal Chemicals				\$17,039,029	\$0,009,373	\$0.10999
Other						
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for consumption) (M		0	61.60	\$0 \$0	\$0 \$0	\$0.00000
Gases,N2 etc. (/100scf)	0	0	01.00	\$0 \$0	\$0 \$0	\$0.00000
L.P. Steam (/1000 pounds)	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000
Subtotal Other	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000
				¥0	ΨŬ	+ 3.00000
Waste Disposal						
Spent Mercury Catalyst (lb.)	0	371	0.42	\$0	\$50,848	\$0.00102
Spent ZnO Sorbent (ton)	0	0.22	16.23	\$0	\$1,150	\$0.00002
Flyash (ton)	0	0	0.00	\$0	\$0	\$0.00000
Slag (ton)	0	1,889	16.23	\$0	\$10,069,904	\$0.20103
Subtotal-Waste Disposal	5	.,,		\$0	\$10,121,902	\$0.20207
·····				÷-		
By-products & Emissions						
Sulfur (tons)	0	116	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for sale) (MWh)	0	1,105	58.00	\$0	-\$21,061,948	-\$0.42048
Subtotal By-Products			-	\$0	-\$21,061,948	-\$0.42048
-						
TOTAL VARIABLE OPERATING COSTS				\$17,539,529	\$38,261,284	\$0.76384
Fuel (ton)	0	18,779	10.92	\$0	\$67,361,980	\$1.34480
	0	.0,777	.0.72	**	÷;,;;;;,,00	÷

Exhibit 5-40 Case 7 Initial and Annual O&M Costs

	Client:	USDOE/NETL								Report Date:	2010-Feb-18
	Project:	Cost & Perform			0,						
				. PLANT		SUMM	ARY				
	Case:	Case 8 - Siem		SNG Producti	on w/ CO2						
	Plant Size:	-3.43	MW,net	Estimate Ty	/pe:	Conceptua	l	Cost	t Base (Jun)	2007	(\$x1000)
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM		ngencles	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
	COAL & SORBENT HANDLING										
	Coal Receive & Unload	\$7,733	\$0	\$3,779	\$0			\$1,031	\$0	1 1 1 1 1	
	Coal Stackout & Reclaim	\$9,993	\$0	\$2,423	\$0			\$1,088		1 1 1	\$16,204
	Coal Conveyors & Yd Crush	\$9,291	\$0	\$2,397	\$0			\$1,026			
	Other Coal Handling	\$2,431	\$0	\$555	\$0			\$261	\$0		
	Sorbent Receive & Unload	\$0	\$0	\$0	\$0			\$0			
	Sorbent Stackout & Reclaim	\$0	\$0	\$0	\$0			\$0			
	Sorbent Conveyors	\$0	\$0	\$0	\$0			\$0			
	Other Sorbent Handling	\$0	\$0	\$0	\$0	\$0		\$0			
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$5,472	\$13,683	\$0	\$0		\$1,836			
	SUBTOTAL 1.	\$29,447	\$5,472	\$22,836	\$0	\$0	\$57,755	\$5,243	\$0	\$12,600	\$75,598
	COAL & SORBENT PREP & FEED										
	Coal Crushing & Drying	\$127,899	\$0	\$18,636	\$0	\$0		\$13,308			
	Prepared Coal Storage & Feed	\$6,058	\$1,450	\$950	\$0			\$723			
	Dry Coal Injection System	\$199,367	\$2,314	\$18,515	\$0			\$18,965		1 . 1	
	Misc.Coal Prep & Feed	\$3,331	\$2,424	\$7,268	\$0	\$0		\$1,197			
	Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0		\$0			
	Sorbent Storage & Feed	\$0	\$0	\$0	\$0			\$0			
	Sorbent Injection System	\$0	\$0	\$0	\$0			\$0			
	Booster Air Supply System	\$0	\$0	\$0	\$0	\$0		\$0			
2.9	Coal & Sorbent Feed Foundation	\$0	\$12,948	\$10,631	\$0			\$2,184	\$0		
	SUBTOTAL 2.	\$336,655	\$19,136	\$56,001	\$0	\$0	\$411,792	\$36,377	\$0	\$89,634	\$537,802
3	FEEDWATER & MISC. BOP SYSTEMS										
	Feedwater System	\$3,454	\$1,605	\$1,947	\$0	\$0	1 1 1 1 1 1	\$633		1 1 1 1	
	Water Makeup & Pretreating	\$656	\$69	\$367	\$0	+ -		\$104	\$0		
	Other Feedwater Subsystems	\$3,750	\$1,134	\$1,855	\$0			\$612			
	Service Water Systems	\$376	\$774	\$2,685	\$0	\$0		\$374	\$0	1 1 1	
	Other Boiler Plant Systems	\$2,016	\$781	\$1,936	\$0	\$0		\$449		4.1000	
3.6	FO Supply Sys & Nat Gas	\$102	\$210	\$188	\$0	\$0		\$48			
	Waste Treatment Equipment	\$918	\$0	\$560	\$0	\$0		\$144	\$0		
3.8	Misc. Power Plant Equipment	\$1,639	\$219	\$841	\$0	\$0		\$261	\$0		
	SUBTOTAL 3.	\$12,911	\$4,792	\$10,379	\$0	\$0	\$28,081	\$2,625	\$0	\$7,140	\$37,845
4	GASIFIER & ACCESSORIES										
	Gasifier, Syngas Cooler & Auxiliaries	\$325,357	\$0	\$150,637	\$0	\$0	\$475,994	\$42,277	\$71,399	\$88,451	\$678,121
	Syngas Cooling	w/4.1	\$0	w/ 4.1	\$0			\$0			\$0
	ASU/Oxidant Compression	\$246,271	\$0	w/equip.	\$0			\$23,871	\$0		
	LT Heat Recovery & FG Saturation	\$51,285	\$0	\$19,002	\$0		1 11 1	\$6,733			
	Misc. Gasification Equipment	w/4.1&4.2	\$0	w/4.1&4.2	\$0			\$0			\$C
	Flare Stack System	\$0	\$2,260	\$920	\$0			\$305			\$4,182
	CO2 Solid Feed System Compressors	\$8,698	\$2,087	\$3,131	\$0			\$1,392	\$0	\$3,062	\$18,369
4.8	Major Component Rigging	w/4.1&4.2	\$0	w/4.1&4.2	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.9	Gasification Foundations	\$0	\$26,928	\$15,365	\$0	\$0	\$42,293	\$3,872	\$0	\$11,541	\$57,706
	SUBTOTAL 4.	\$631,611	\$31,276	\$189,055	\$0	\$0	\$851,942	\$78,449	\$71,399	\$146,169	\$1,147,958

Exhibit 5-41 Case 8 Total Plant Cost Details

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
5A	GAS CLEANUP & PIPING										
5A.1	Double Stage Selexol	\$130,462	\$0	\$110,700	\$0	\$0	\$241,162	\$23,323	\$48,232	\$62,543	\$375,261
5A.2	Elemental Sulfur Plant	\$8,848	\$1,764	\$11,416	\$0	\$0	\$22,028	\$2,140	\$0	\$4,834	\$29,001
5A.3	Mercury Removal	\$2,347	\$0	\$1,786	\$0	\$0	\$4,134	\$399	\$207	\$948	\$5,687
5A.4	Shift Reactors	\$10,263	\$0	\$4,131	\$0	\$0	\$14,393	\$1,380	\$0	\$3,155	\$18,928
5A.5	Methanation	\$26,350	\$10,540	\$15,810	\$0	\$0	\$52,700	\$5,270	\$5,270	\$12,648	\$75,888
5A.6	SNG Purification & Compression	\$18,600	\$7,440	\$11,160	\$0	\$0	\$37,200	\$3,720	\$0	\$8,184	\$49,104
5A.7	Fuel Gas Piping	\$0	\$1,630	\$1,141	\$0	\$0	\$2,772	\$257	\$0	\$606	\$3,634
5A.9	Process Interconnects	\$0	\$12,000	\$18,000	\$0	\$0	\$30,000	\$3,000	\$0	\$6,600	\$39,600
5A.10	HGCU Foundations	\$0	\$1,651	\$1,064	\$0	\$0	\$2,715	\$249	\$0	\$889	\$3,854
5A.11	Zinc Oxide Guard Bed	\$758	\$0	\$140	\$0	\$0	\$897	\$90	\$0	\$197	\$1,185
	SUBTOTAL 5A.	\$197,628	\$35,024	\$175,348	\$0	\$0	\$408,000	\$39,828	\$53,709	\$100,604	\$602,141
	CO2 COMPRESSION										
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$37,246	\$0	\$21,934	\$0	\$0	\$59,180	\$5,698	\$0	\$12,976	\$77,853
	SUBTOTAL 5B.	\$37,246	\$0	\$21,934	\$0	\$0	\$59,180	\$5,698	\$0	\$12,976	\$77,853
6	COMBUSTION TURBINE/ACCESSORIES										
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2	Syngas Expander	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK										
	Heat Recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
-	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1.1
	Stack	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
7.9	HRSG,Duct & Stack Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1.1
	SUBTOTAL 7.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	STEAM TURBINE GENERATOR										
-	Steam TG & Accessories	\$31,587	\$0	\$5,482	\$0	\$0	\$37,069	\$3,557	\$0	\$4,063	\$44,689
8.2	Turbine Plant Auxiliaries	\$171	\$0	\$504	\$0	\$0	\$675	\$66	\$0	\$74	\$815
	Condenser & Auxiliaries	\$3,352	\$0	\$1,548	\$0	\$0	\$4,899	\$470	\$0	\$537	\$5,907
8.3b	Air Cooled Condenser	\$30,717	\$0	\$6,158	\$0	\$0	\$36,875	\$3,687	\$0	\$8,112	\$48,675
8.4	Steam Piping	\$5,449	\$0	\$3,833	\$0	\$0	\$9,283	\$797	\$0	\$2,520	\$12,600
8.9	TG Foundations	\$0	\$1,090	\$1,843	\$0	\$0	\$2,934	\$278	\$0	\$964	\$4,175
	SUBTOTAL 8.	\$71,275	\$1,090	\$19,369	\$0	\$0	\$91,735	\$8,857	\$0	\$16,270	\$116,862

Exhibit 5-41 Case 8 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	gencies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
9	COOLING WATER SYSTEM									-	
9.1	Cooling Towers	\$7,817	\$0	\$1,422	\$0	\$0	\$9,239	\$880	\$0	\$1,518	\$11,637
9.2	Circulating Water Pumps	\$2,078	\$0	\$88	\$0	\$0	\$2,166	\$182	\$0	\$352	\$2,700
9.3	Circ.Water System Auxiliaries	\$168	\$0	\$24	\$0	\$0	\$192	\$18	\$0	\$32	\$242
9.4	Circ.Water Piping	\$0	\$7,009	\$1,817	\$0	\$0	\$8,826	\$798	\$0	\$1,925	\$11,548
9.5	Make-up Water System	\$360	\$0	\$515	\$0	\$0	\$875	\$84	\$0	\$192	\$1,150
9.6	Component Cooling Water Sys	\$827	\$990	\$704	\$0	\$0	\$2,521	\$236	\$0	\$551	\$3,309
9.9	Circ.Water System Foundations	\$0	\$2,566	\$4,363	\$0	\$0	\$6,929	\$657	\$0	\$2,276	\$9,862
	SUBTOTAL 9.	\$11,250	\$10,565	\$8,933	\$0	\$0	\$30,748	\$2,855	\$0	\$6,845	\$40,448
10	ASH/SPENT SORBENT HANDLING SYS										
10.1	Slag Dewatering & Cooling	\$49,571	\$0	\$48,892	\$0	\$0	\$98,463	\$9,540	\$0	\$10,800	\$118,804
10.2	Gasifier Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.3	Cleanup Ash Depressurization	w/10.1	w/10.1	w/10.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.4	High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.5	Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
10.6	Ash Storage Silos	\$1,072	\$0	\$1,167	\$0	\$0	\$2,239	\$217	\$0	\$368	\$2,825
10.7	Ash Transport & Feed Equipment	\$1,438	\$0	\$347	\$0	\$0	\$1,785	\$167	\$0	\$293	\$2,245
10.8	Misc. Ash Handling Equipment	\$2,221	\$2,722	\$813	\$0	\$0	\$5,756	\$548	\$0	\$946	\$7,250
10.9	Ash/Spent Sorbent Foundation	\$0	\$95	\$119	\$0	\$0	\$214	\$20	\$0	\$70	\$304
	SUBTOTAL 10.	\$54,303	\$2,817	\$51,338	\$0	\$0	\$108,458	\$10,492	\$0	\$12,477	\$131,427
11	ACCESSORY ELECTRIC PLANT										
11.1	Generator Equipment	\$435	\$0	\$430	\$0	\$0	\$866	\$83	\$0	\$95	\$1,043
11.2	Station Service Equipment	\$6,156	\$0	\$555	\$0	\$0	\$6,711	\$619	\$0	\$733	\$8,062
11.3	Switchgear & Motor Control	\$11,381	\$0	\$2,070	\$0	\$0		\$1,248	\$0	\$2,205	\$16,903
11.4	Conduit & Cable Tray	\$0	\$5,287	\$17,441	\$0	\$0	\$22,728	\$2,198	\$0	\$6,231	\$31,157
	Wire & Cable	\$0	\$10,101	\$6,637	\$0	\$0	\$16,738	\$1,216	\$0	\$4,489	\$22,443
11.6	Protective Equipment	\$0	\$807	\$2,936	\$0	\$0	\$3,743	\$366		\$616	\$4,724
11.7	Standby Equipment	\$317	\$0	\$309	\$0	\$0	\$626	\$60	\$0	\$103	\$789
11.8	Main Power Transformers	\$10,063	\$0	\$172	\$0	\$0	\$10,234	\$776	\$0	\$1,652	\$12,662
11.9	Electrical Foundations	\$0	\$186	\$489	\$0	\$0	\$675	\$65	\$0	\$222	\$962
	SUBTOTAL 11.	\$28,352	\$16,381	\$31,039	\$0	\$0	\$75,772	\$6,629	\$0	\$16,345	\$98,747
12	INSTRUMENTATION & CONTROL										
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0		\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$516	\$0	\$345	\$0	\$0	\$860	\$81	\$43	\$148	\$1,133
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$343	\$0	\$220	\$0	\$0	\$562	\$53	\$28	\$129	\$772
12.7	Computer & Accessories	\$5,483	\$0	\$176	\$0	\$0	\$5,659	\$519	\$283	\$646	\$7,107
12.8	Instrument Wiring & Tubing	\$0	\$2,778	\$5,678	\$0	\$0	\$8,456	\$717	\$423	\$2,399	\$11,995
12.9	Other I & C Equipment	\$4,088	\$0	\$1,985	\$0	\$0	\$6,074	\$571	\$304	\$1,042	\$7,991
	SUBTOTAL 12.	\$10,430	\$2,778	\$8,403	\$0	\$0	\$21,611	\$1,943	\$1,081	\$4,364	\$28,998

Exhibit 5-41 Case 8 Total Plant Cost Details (continued)

Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Conting	encies	Total Plant Cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process	Project	\$
13	IMPROVEMENTS TO SITE								Î	•	
	Site Preparation	\$0	\$141	\$3,021	\$0	\$0	\$3,162	\$314	\$0	\$1,043	\$4,519
13.2	Site Improvements	\$0	\$2,514	\$3,341	\$0	\$0	\$5,855	\$578	\$0	\$1,930	\$8,362
13.3	Site Facilities	\$4,505	\$0	\$4,754	\$0	\$0	\$9,259	\$913	\$0	\$3,051	\$13,223
	SUBTOTAL 13.	\$4,505	\$2,655	\$11,115	\$0	\$0	\$18,276	\$1,804	\$0	\$6,024	\$26,104
14	BUILDINGS & STRUCTURES										
14.1	Combustion Turbine Area	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14.2	Steam Turbine Building	\$0	\$2,623	\$3,737	\$0	\$0	\$6,360	\$585	\$0	\$1,042	\$7,987
14.3	Administration Building	\$0	\$870	\$630	\$0	\$0	\$1,500	\$134	\$0	\$245	\$1,879
14.4	Circulation Water Pumphouse	\$0	\$160	\$90	\$0	\$0	\$250	\$22	\$0	\$41	\$312
14.5	Water Treatment Buildings	\$0	\$549	\$535	\$0	\$0	\$1,084	\$98	\$0	\$177	\$1,359
14.6	Machine Shop	\$0	\$445	\$305	\$0	\$0	\$750	\$67	\$0	\$123	\$939
14.7	Warehouse	\$0	\$726	\$464	\$0	\$0	\$1,190	\$105	\$0	\$194	\$1,489
14.8	Other Buildings & Structures	\$0	\$514	\$400	\$0	\$0	\$914	\$82	\$0	\$199	\$1,195
14.9	Waste Treating Building & Str.	\$0	\$1,149	\$2,196	\$0	\$0	\$3,346	\$312	\$0	\$732	\$4,389
	SUBTOTAL 14.	\$0	\$7,036	\$8,358	\$0	\$0	\$15,394	\$1,404	\$0	\$2,752	\$19,550
	TOTAL COST	\$1,425,614	\$139,022	\$614,108	\$0	\$0	\$2,178,744	\$202,203	\$126,189	\$434,199	\$2,941,335
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor										\$22,166
	1 Month Maintenance Materials										\$3,939
	1 Month Non-fuel Consumables										\$767
	1 Month Waste Disposal										\$937
	25% of 1 Months Fuel Cost at 100% CF										\$1,559
	2% of TPC										\$58,827
	Total										\$88,196
	Inventory Capital										
60 d	ay supply of fuel and consumables at 100% CF										\$13,457
	0.5% of TPC (spare parts)										\$14,707
	Total										\$28,164
	Initial Cost for Catalyst and Chemicals										\$16,258
	Land										\$900
	Other Owner's Costs										\$441,200
	Financing Costs										\$79,416
	Total Overnight Costs (TOC)										\$3,595,468
	TASC Multiplier										1.201
	Total As-Spent Cost (TASC)										\$4,318,158

Exhibit 5-41 Case 8 Total Plant Cost Details (continued)

INITIAL & ANNUAL	O&M EX	PENSES			Cost Base (Jun):	2007
Case 8 - Siemens Quench SNG Production w/ CO2					MWe-net:	-3
SNG (MMbtu/hr):	6349	_			Capacity Factor (%):	90
OPERATING & MAINTENA	NCE LABOI	<u> </u>				
Operating Labor	2445	t/hour				
Operating Labor Rate(base): Operating Labor Burden:	34.65	% of base				
Labor O-H Charge Rate:		% of labor				
Labor O-IT Charge Rate.	23.00					
			Total			
Operating Labor Requirements(O.J.)per Shift: 1	unit/mod.		Plant			
Skilled Operator	2.0		2.0			
Operator	12.0		12.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>3.0</u>		3.0			
TOTAL-O.J.'s	18.0		18.0			
					Annual Cost	Annual Unit Cost
					\$	\$/MMBtu
Annual Operating Labor Cost					\$7,102,696	\$0.142
Maintenance Labor Cost					\$28,362,952	\$0.567
Administrative & Support Labor					\$8,866,412	\$0.177
Property Taxes and Insurance					\$58,826,693	\$1.175
TOTAL FIXED OPERATING COSTS					\$103,158,753	\$2.061
VARIABLE OPERATING COSTS						
					*** ***	\$/MMBtu
Maintenance Material Cost					\$42,544,428	\$0.84994
Consumables	Consur	mption	Unit	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water(/1000 gallons)	0	3,694	1.08	\$0	\$1,312,704	\$0.02622
Chemicals						
MU & WT Chem.(lb)	0	22,010	0.17	\$0	\$1,251,314	\$0.02500
Carbon (Mercury Removal) (lb)	214,355	367	1.05	\$0 \$225,110	\$1,251,314	\$0.00253
COS Catalyst (m3)	214,555	0	2,397.36	\$223,110	\$0	\$0.00000
Water Gas Shift Catalyst (ft3)	7,580	6.49	498.83	\$3,780,914	\$1,063,382	\$0.02124
ZnO Sorbent (ton)	61		12,574.00	\$772,815	\$869,417	\$0.01737
Methanation Catalyst (ft3)	11,347	8.64	440.00	\$4,992,625	\$1,248,156	\$0.02494
Selexol Solution (gal)	484,145	154	13.40	\$6,486,691	\$676,998	\$0.01352
SCR Catalyst (m3)	0	0	0.00	\$0,400,071 \$0	\$0,0,7,0	\$0.00000
Aqueous Ammonia (ton)	0	0	0.00	\$0 \$0	\$0 \$0	\$0.00000
Claus Catalyst (ft3)	w/equip	1.63	131.27	\$0 \$0	\$70,295	\$0.00140
Subtotal Chemicals	wequip	1.05		\$16,258,155	\$5,306,187	\$0.10601
Subtotal Onemicals				\$10,200,100	\$5,500,107	\$0.10001
Other						
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for consumption) (M	0	82	61.60	\$0	\$1,665,795	\$0.03328
Gases,N2 etc.(/100scf)	0	0	0.00	\$0	\$0	\$0.00000
L.P. Steam(/1000 pounds)	0	0	0.00	\$0	\$0	\$0.00000
Subtotal Other			_	\$0	\$1,665,795	\$0.03328
Waste Disposal						
Spent Mercury Catalyst (lb.)	0	367	0.42	\$0	\$50,289	\$0.00100
Spent ZnO Sorbent (ton)	0	0.21	16.23	\$0	\$1,122	\$0.00002
Flyash (ton)	0	0	0.00	\$0	\$0	\$0.00000
Slag (ton)	0	1,889	16.23	\$0	\$10,069,904	\$0.20117
Subtotal-Waste Disposal				\$0	\$10,121,315	\$0.20220
By-products & Emissions						
Sulfur (tons)	0	116	0.00	\$0	\$0	\$0.00000
Supplemental Electricity (for sale) (MWh)	0	0	58.00	\$0 \$0	\$0 \$0	\$0.00000
Subtotal By-Products	0	0	50.00	\$0 \$0	\$0 \$0	\$0.00000
				֥	40	
TOTAL VARIABLE OPERATING COSTS				\$16,258,155	\$60,950,429	\$1.21765

Exhibit 5-42 Case 8 Initial and Annual O&M Costs

This page intentionally left blank

6. <u>SUMMARY</u>

6.1 **PERFORMANCE**

The nominal thermal input for the Siemens gasifier used for all cases in this study is 500 MW, but actual input varies with coal type. The bituminous coal cases in this study had a thermal input of 549 MW per gasifier, the PRB cases 527 MW and the lignite cases 506 MW. For the co-production cases, a portion of the syngas was used to produce 2,000 tonnes/day (2,204 tons/day) of ammonia with the remaining syngas producing approximately 1.2 BNm³/year (42 Bscf/year) of SNG at 90 percent CF.

The performance summaries for all cases are shown in Exhibit 6-1. The HHV efficiencies are shown in Exhibit 6-2. The higher and lower heating values (LHVs) of the SNG production are shown in Exhibit 6-3.

- The cases using PRB coal have the highest net conversion efficiency at 63.1 percent and the highest SNG product heating value at 973 Btu/scf (HHV) and 876 Btu/scf (LHV). The lower nitrogen content of the lower rank PRB and lignite coals aids in boosting the HHV of the SNG end-product, and consequently the net conversion efficiency.
- The remaining six cases have essentially constant conversion efficiency (61.3 to 61.5 percent). The addition of carbon sequestration has only a minimal impact on conversion efficiency. The sequestration impact is seen in the reduced available export power relative to the non-sequestration case.

		Illinois	No. 6 Coal		Roseb	ud PRB	North Dak	ota Lignite
	SNG	Only	SNG and Ar	nmonia	SNG	Only	SNG	Only
PERFORMANCE	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
CO ₂ Sequestration	No	Yes	No	Yes	No	Yes	No	Yes
SNG Production (Bscf/year) ¹	57	56	42	42	55	55	52	52
Ammonia Production (TPD) ¹	N/A	N/A	2,204	2,204	N/A	N/A	N/A	N/A
HHV Conversion Efficiency, %	61.4%	61.3%	61.5%	61.4%	63.1%	63.1%	61.5%	61.5%
Gross Power Output (kW _e)	308,000	310,600	292,300	292,300	302,000	302,000	305,800	310,500
Auxiliary Power Requirement (kW _e)	216,350	262,090	263,600	316,030	247,570	300,190	259,740	313,930
Net Power Output (kW _e)	91,650	48,510	28,700	-23,730	54,430	1,810	46,060	-3,430
Coal Flowrate (lb/hr)	964,752	964,752	964,000	964,000	1,259,331	1,259,331	1,564,932	1,564,932
HHV Thermal Input (kW _{th})	3,298,455	3,298,455	3,295,885	3,295,885	3,160,745	3,160,745	3,034,796	3,034,796
Raw Water Withdrawal (gpm)	7,169	7,123	7,434	7,458	4,853	5,509	4,421	5,131
Process Water Discharge (gpm)	1,462	1,451	1,455	1,461	1,071	1,218	1,071	1,230
Raw Water Consumption (gpm)	5,708	5,672	5,979	5,997	3,783	4,291	3,350	3,901
CO ₂ Emissions (lb/MMBtu) ²	128	5	147	10	140	0.7	147	0.9
SO ₂ Emissions (lb/MMBtu) ²	0.0274	0.0003	0.0229	0.0006	0.0218	0.0000	0.0239	0.0000
NOx Emissions (Ib/MMBtu) ²	Negligible							
PM Emissions (Ib/MMBtu) ²	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
Hg Emissions (lb/MMBtu) ²	5.71E-07	5.71E-07	5.71E-07	5.71E-07	3.51E-07	3.51E-07	5.60E-07	5.60E-07
COST				-				
Total Plant Cost (\$ x 1,000)	2,628,754	2,692,997	3,048,463	3,119,611	2,741,044	2,813,258	2,864,478	2,941,335
Total Overnight Cost (\$ x 1,000)	3,235,262	3,312,740	3,742,411	3,829,817	3,354,442	3,442,310	3,504,262	3,595,468
Total As-spent Capital (\$ x 1,000)	3,885,549	3,978,601	4,494,636	4,599,610	4,028,684	4,134,215	4,208,619	4,318,158
SNG FYCOP (\$/MMBtu) ¹	19.27	20.95	15.82	17.85	19.15	21.01	21.27	23.24
CO ₂ TS&M Costs	0.00	0.91	0.00	1.29	0.00	0.96	0.00	1.03
Fuel Costs	2.67	2.67	1.89	1.89	1.41	1.41	1.34	1.35
Variable Costs	1.03	1.04	0.79	0.82	1.02	1.03	1.18	1.18
Fixed Costs	1.76	1.79	1.41	1.45	1.84	1.86	2.03	2.06
Electricity Costs	-0.77	-0.41	-0.17	0.15	-0.46	-0.02	-0.42	0.03
Capital Costs	14.58	14.94	11.90	12.25	15.34	15.76	17.13	17.59
Ammonia FYCOP ³ (\$/ton)	-	-	799	828	-	-	-	-

Exhibit 6-1	Performance,	Emissions , and	Cost Results
-------------	--------------	------------------------	---------------------

¹ Based on a capacity factor of 90 percent for all cases

² Based on coal thermal input

³ Ammonia price is correlated to historic natural gas costs

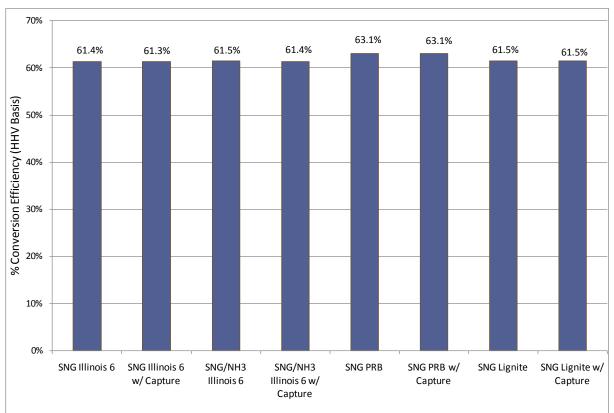
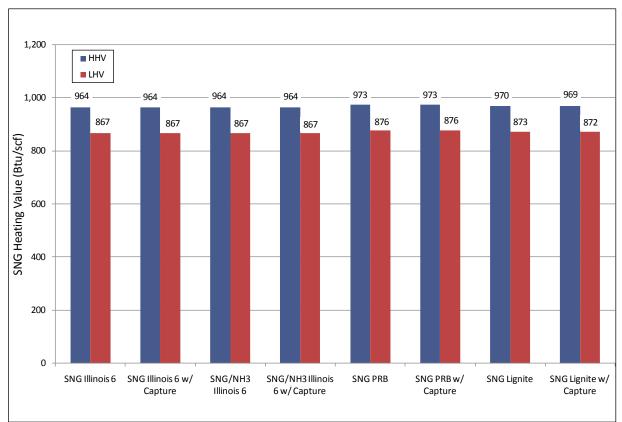
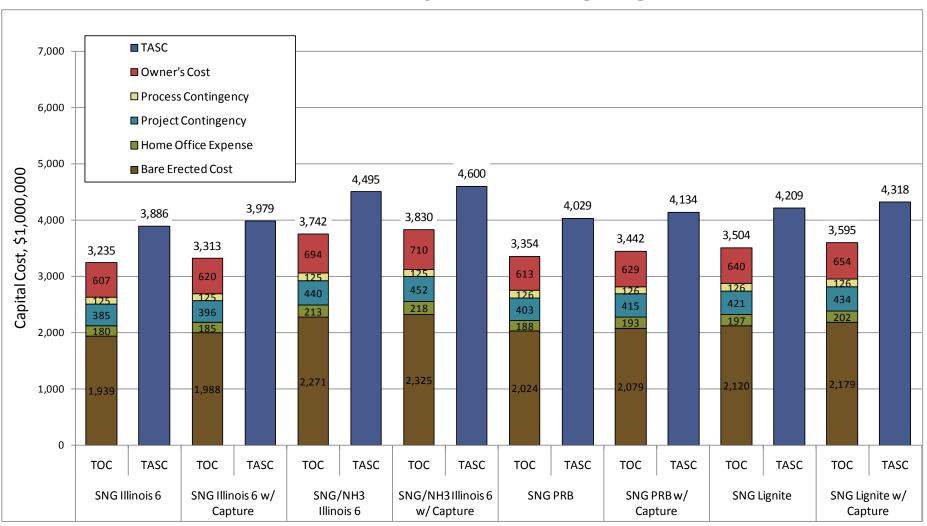
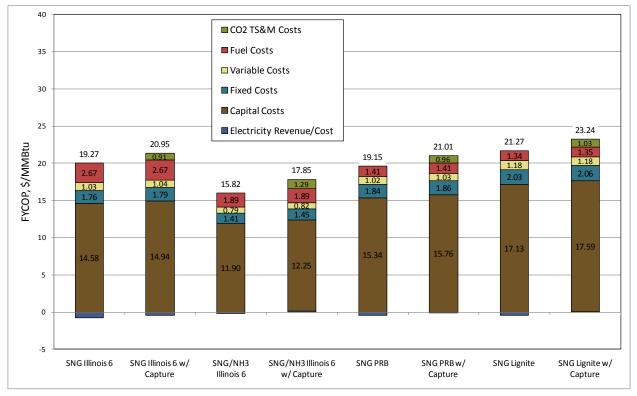



Exhibit 6-2 Net Plant Conversion Efficiency (HHV)


6.2 ECONOMICS

The TOCs are shown in Exhibit 6-4. For reference, Total As-spent Capital (TASC) is also shown. TASC is the sum of TOC, escalation during the capital expenditure period, and interest on debt during the capital expenditure period. Observations related to TOC include:


- In the SNG only cases, the TOC is lowest for the Illinois No. 6 cases followed by the PRB cases, and then by the lignite cases.
- The TOC increase to add carbon sequestration is approximately 2.4 percent for the Illinois No. 6 SNG only case, 2.4 percent for the co-production case, 2.6 percent for the PRB coal SNG only case, and 2.6 percent for the SNG only lignite case.
- The TOC is increased by 16 percent with the addition of ammonia co-production for both the Illinois No. 6 coal non-sequestration and sequestration cases.
- The lignite cases have 4 percent higher TOC compared to the PRB cases.

The FYCOPs are shown in Exhibit 6-5. The FYCOP components and SNG/ammonia product revenues are shown in tabular form in Exhibit 6-6. The following observations can be made:

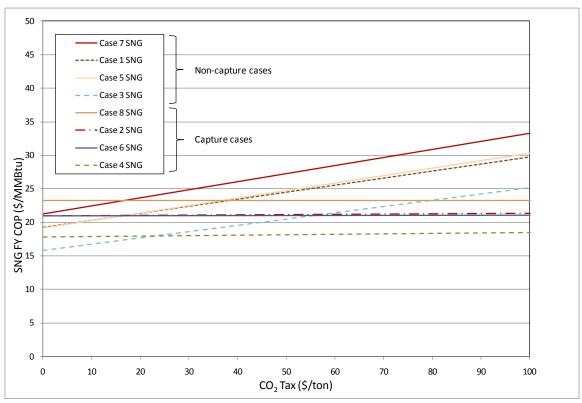
- The FYCOP is dominated by capital charges in all cases. For the SNG only cases, the capital charges (which include owner's costs) range from 71 to 81 percent of the total. For the co-production cases, the capital costs are 75 and 69 percent of the FYCOP for the non-sequestration and sequestration cases, respectively.
- The fuel cost component is highest for the Illinois No. 6 coal cases. For the SNG only cases the fuel represents 13 percent of the total cost for Illinois No. 6 coal, 7 percent for PRB coal, and 6 percent for lignite coal.
- The TS&M component is relatively minor for all cases, ranging from 4 percent to 7 percent.

Exhibit 6-4 Total Overnight Cost and Total As-spent Capital

Exhibit 6-5 First Year Cost of Production

Exhibit 6-6 First Year Cost of Production Components

FYCOP Component ¹	SNG Bituminous No Capture (Case 1)	SNG Bituminous w/ Capture (Case 2)	SNG and Ammonia Bituminous No Capture (Case 3)	SNG and Ammonia Bituminous w/ Capture (Case 4)	SNG PRB No Capture (Case 5)	SNG PRB w/ Capture (Case 6)	SNG Lignite No Capture (Case 7)	SNG Lignite w/ Capture (Case 8)
Capital, \$/MMBtu	14.58	14.94	11.90	12.25	15.34	15.76	17.13	17.59
Fixed O&M, \$/MMBtu	1.76	1.79	1.41	1.45	1.84	1.86	2.03	2.06
Variable O&M, \$/MMBtu	1.03	1.04	0.79	0.82	1.02	1.03	1.18	1.18
Fuel, \$/MMBtu	2.67	2.67	1.89	1.89	1.41	1.41	1.34	1.35
Electricity, \$/MMBtu	-0.77	-0.41	-0.17	0.15	-0.46	-0.02	-0.42	0.03
CO ₂ TS&M, \$/MMBtu	0.00	0.91	0.00	1.29	0.00	0.96	0.00	1.03
Total, \$/MMBtu	19.27	20.95	15.82	17.85	19.15	21.01	21.27	23.24
SNG First Year Revenues, MM\$	1,047	1,137	639	721	1,025	1,124	1,065	1,163
Ammonia First Year Revenues, MM\$	-	-	578	599	-	-	-	-


Based on heating value of SNG

The impact of various levels of CO_2 tax on the FYCOP of SNG as well as the FYCOP of ammonia in the co-production cases is shown in Exhibit 6-7. In the co-production cases the cost of ammonia varies with the cost of SNG according to the following relationship:

Ammonia Price Paid by Farmers
$$\left(\frac{\$}{ton}\right) = 39.78 * \text{Cost of Industrial NG}\left(\frac{\$}{\text{MMBtu}}\right) + 169.29$$

Cases without sequestration are shown as solid lines while those with sequestration are shown as dashed lines. Taxation of plant CO_2 emissions causes a significant increase in FYCOP in the non-sequestration cases while the increase is greatly diminished in the sequestration cases. It should be noted that end-use CO_2 emissions from the SNG product are not accounted for.

Exhibit 6-7 shows that a carbon tax of \$15-20/ton of CO₂ is required to make SNG produced in a sequestration case less expensive than that produced in the corresponding non-sequestration case for SNG only cases. The carbon cost must increase to about \$25/ton before the same is true in the co-production case.

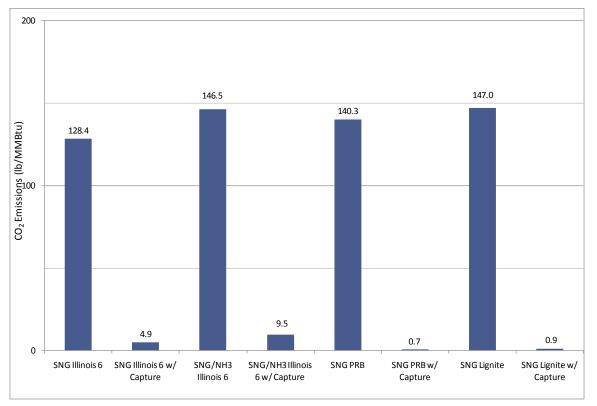
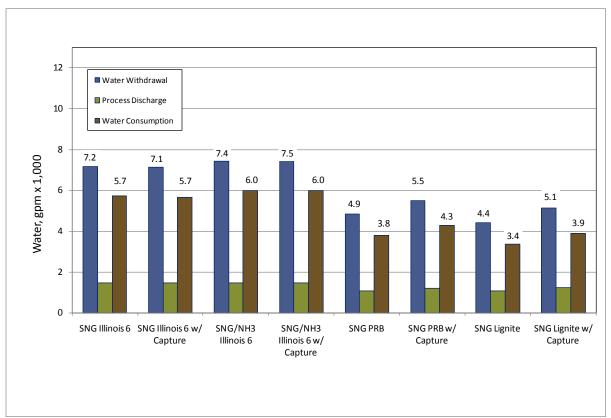


Exhibit 6-7 Impact of CO₂ Tax on FYCOP

6.3 CARBON DIOXIDE EMISSIONS/MITIGATION

Carbon dioxide emissions are not currently regulated nationwide; however, there is increasing momentum for establishing carbon limits. CO_2 emissions are presented in Exhibit 6-8 for each case, normalized by coal thermal input to enable comparison between the technology types (SNG only versus co-production). The following conclusions can be drawn:

- In cases with no carbon sequestration, the SNG only case using bituminous coal emits 12 percent less CO₂ than the co-production case, 13 percent less than the lignite case, and 8 percent less than the PRB case.
- The CO₂ emissions for the SNG only non-sequestration cases are proportional to the carbon intensity of the design coal. Based on fuel compositions used in this study, bituminous coal contains 55 pounds of carbon per million Btu, PRB and lignite coal contain 58 and 60 pounds per million Btu, respectively.
- The normalized CO₂ emissions in the sequestration cases are lower for the low rank coal cases largely because the coal drying method utilized does not require the burning of syngas. The normalized CO₂ emissions for the Illinois No. 6 co-production cases (both non-sequestration and sequestration) are higher than the equivalent SNG only cases because more CO₂ is produced in the shift section of the ammonia plant due to the hydrogen requirements for ammonia production that is not subsequently captured.


Exhibit 6-8 CO₂ Emissions Normalized by Thermal Input

6.4 RAW WATER WITHDRAWAL AND CONSUMPTION

Water withdrawal, process discharge, and water consumption are shown in Exhibit 6-9 for each case. The primary conclusions that can be drawn are:

• In all cases, the primary water consumer is cooling tower makeup, which ranges from 60 to 80 percent of the total raw water withdrawal.

- The SNG and ammonia co-production cases (Cases 3 and 4) consume approximately 5 percent more water than the SNG only cases using bituminous coal (Cases 1 and 2). This is largely due to the excess shift steam required to produce the hydrogen necessary for ammonia production.
- For the SNG only non-sequestration cases, the case using lignite coal requires the least amount of water withdrawal followed by the cases using PRB coal and bituminous coal. The relative raw water withdrawal for the SNG only cases is 1.6:1.1:1.0 (bituminous:PRB:lignite). The trend for the SNG only cases with carbon sequestration is 1.4:1.1:1.0 (bituminous:PRB:lignite).

Exhibit 6-9 Raw Water Withdrawal and Consumption

This page intentionally left blank

7. <u>REFERENCES</u>

- 1 Cost Estimation Methodology for NETL Assessments of Power Plant Performance, April 2011, <u>http://www.netl.doe.gov/energy-</u> <u>analyses/refshelf/PubDetails.aspx?Action=View&PubId=355</u>.
- 2 Dakota Gasification Company, <u>http://www.dakotagas.com</u>
- 3 Modified from Steigel, Gary J. "U.S. Gasification Experience Yesterday, Today, and Tomorrow." IGCC Workshop India. February 20, 2008.
- 4 Udesen, Henrik, Haldor Topsoe A/S. An Integrated Approach to Ammonia Production. 19th AFA International Technical Conference, April 18-20, 2006, Doha, Qatar.
- 5 Christensen, P.V. Haldor Topsoe A/S. Design and Operation of Large Capacity Ammonia Plants. Presented at the 4th Conference for the Development and Integration of Petrochemical Industries in the Arab States. May 7-8, 2001. Bahrain.
- 6 Coal Specifications for Quality Guidelines, Revision 0, May 31, 2005
- 7 2004 Keystone Coal Industry Manual, A Mining Media Publication
- 8 1999 Environmental Protection Agency Information Collection Request Database with Coal Compositions for Over 37,000 Samples
- 9 NETL Power Systems Financial Model Version 5.0, December 2008 User Guide available at: <u>http://www.netl.doe.gov/business/solicitations/ssc2008/references/PSFM%20User</u> <u>%20Guide.pdf</u>
- 10 Gross Domestic Product: Chain-type Price Index, Seasonally Adjusted, http://research.stlouisfed.org/fred2/series/GDPCTPI
- 11 Personal Communication between John Wimer (NETL) and Diane Kearney (EIA), AEO 2007 Reference Case NEMS model forecasted average costs of delivering (transport cost only) to electric utilities in 2010, as shown in the AEO 2007 data provided by the EIA to NETL on March 30, 2007. (Source: aeo2007.d112106a)
- 12 "Pipeline Rules of Thumb Handbook," p. 437, Ed. E.W. McAllister, 2002.
- 13 Dweck, Jacob et al., "Florida's Gas Composition Decision Offers Preliminary Guidelines for US LNG Imports," LNG Journal, May 2006
- 14 Appl, Max. *Ammonia: principles and industrial practice*. WIELY-VCH. Weinheim, Germany. 1999.
- 15 Telephone communication with David Denton, Eastman Chemical Co.
- 16 "Evaluation of Alternative IGCC Plant Designs for High Availability and Near Zero Emissions: RAM Analysis and Impact of SCR," EPRI, Palo Alto, CA, 2005, 1010461

- Higman, Christopher, DellaVilla, Sal, and Steele, Bob, "The Reliability of Integrated Gasification Combined Cycle (IGCC) Power Generation Units," Achema 2006, May 2006
- 18 Personal correspondence with Siemens Energy, Inc. on December 9, 2009
- 19 Cooling Tower Fundamentals, ed. John C. Hensley, 2nd Edition, The Marley Cooling Tower Company, Mission, Kansas, 1985
- 20 "Cost Estimate Classification System As Applied in Engineering, Procurement, and Construction for the Process Industries; TCM Framework 7.3 – Cost Estimating and Budgeting," AACE International Recommended Practice No. 18R-97, 2005
- 21 "Conducting Technical and Economic Evaluations As Applied for the Process and Utility Industries; TCM Framework: 3.2 – Asset Planning, 3.3 Investment Decision Making, AACE International Recommended Practice 16R-90, 2003
- 22 Smith, Lawrence A., Gupta, Neeraj, Sass, Bruce M. and Bubenik, Thomas A., "Engineering and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations," Battelle Memorial Institute, 2001
- 23 Ciferno, Jared P. and McIlvried, Howard, "CO₂ Flow Modeling and Pipe Diameter Determination," February, 2003
- 24 Economic Evaluation of CO₂ Storage and Sink Enhancement Options, Tennessee Valley Authority, NETL and EPRI, December 2002
- 25 Parker, N., "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, University of California, Davis, CA, 2004.
- Gresham, R. L., Apt, J., et. al, "Implications of Compensating Property-Owners for Geologic Sequestration of CO₂," Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, 1999.
- 27 Klass, A.B., Wilson, E.J., "Climate Change and Carbon Sequestration: Assessing a Liability Regime for Long-Term Storage of Carbon Dioxide," 58 Emory Law Journal 103, 2008
- 28 Senate Bill No. 2095, 61st Legislative Assembly of North Dakota, January 6th, 2009
- House Bill No. 661, Louisiana House of Representatives Regular Session, 2009
- 30 Enrolled Act No. 20 (Original House Bill No. 58), 60th Legislature of the State of Wyoming, General Session, 2009
- 31 Overview of Monitoring Requirements for Geologic Storage Projects. IEA Greenhouse Gas R&D Programme, Report Number PH4/29, November 2004
- 32 Wen-yuan Huang, "Impact of Rising Natural Gas Prices on U.S. Ammonia Supply," USDA Economic Research Service, August 2007, http://www.ers.usda.gov/publications/WRS0702/wrs0702.pdf

- 33 Historic Natural Gas Prices, Energy Information Administration (EIA), http://tonto.eia.doe.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm
- Average U.S. Farm Prices of Selected Fertilizers, 1960-2008, Economic Research Service, USDA, Ammonia statistics, http://www.ers.usda.gov/Data/FertilizerUse/Tables/Table7.xls
- 35 Abram, Aleksander and Forster, Lynn, "A Primer on Ammonia, Nitrogen Fertilizers, and Natural Gas Markets," September 30, 2005, Department of AED Economics, The Ohio State University
- 36 Zuideveld, P.L., "Shell Coal Gasification Process Using Low Rank Coal," Gasification Technologies Conference, San Francisco, CA, October 2005
- 37 Eurlings, J. Th. G. M. and Ploeg, J.E.G., "Process Performance of the SCGP at Buggenum IGCC, Gasification Technologies Conference, San Francisco, CA, October 1999
- 38 IGCC Puertollano: A Clean Coal Gasification Plant, ELCOGAS, 2001
- 39 Maurstad, Ola et al., "Impact of Coal Quality and Gasifier Technology on IGCC Performance"
- 40 "Lignite-Fired Power Plant with Optimized Plant Technology (BoA)," RWE Power
- 41 Australia's HRL Ltd. and China's Harbin Power Sign Global Clean Coal Power Generation Agreement, HRL Limited Press Release, February 21, 2006
- 42 "Clean Coal Technology for Brown Coal Power Generation: Construction of a 10 MW Demonstration Facility," The Australian Coal Review, October 1996
- 43 Kakaras, E. et al., "Concept study for a 700°C power plant: using poor quality brown coal with ultra supercritical PF boiler," October 2006
- 44 Universal Industrial Gases, Inc., <u>http://www.uigi.com/cryodist.html</u>
- 45 Jenkins, Steve, "Real-World Experience with IGCC Lessons Learned in Design, Permitting, Operations and Maintenance," URS Corporation, August 17, 2005
- 46 Personal communication, Ray Drnevich, Praxair, Inc., ray_drnevich@praxair.com, November 2002
- 47 Larson, Eric D., et al, "Synthetic Fuel Production by Indirect Coal Liquefaction," Energy for Sustainable Development, Volume VII, No. 4, December 2003
- 48 http://www.calgoncarbon.com/bulletins/Mercury_Removal_Gas_Streams.htmn
- 49 http://www.calgoncarbon.com/bulletins/HGR-P.htm
- 50 http://www.calgoncarbon.com/bulletins/TYPE_HGR.htm
- 51 Meyer, Howard S., et al, "Direct Methanation A New Method of Converting Synthesis Gas to Substitute Natural Gas"
- 52 "Methanation Catalysts," International Energy Agency Coal Research, London, England, 1980

- Breckenridge, William, et al, "Use of Selexol Process in Coke Gasification to Ammonia Project, Laurance Reid Conditioning Conference, February 27 – March 1, 2000, University of Oklahoma
- Wix, C., et al, "Haldor Topsoe: Coal to SNG The Methanation Process,"
 Twenty-fourth Annual International Pittsburgh Coal Conference, September 10-14, 2007, Johannesburg, South Africa.
- 55 Mitrariten, M.J., "Eliminating Carbon Dioxide from Coalbed Methane Using the Molecular Gate Adsorption Process," Third Annual Coalbed and Coal Mine Methane Conference, Denver, March 2002.
- 56 Keeler, C. "ConocoPhillips: Substitute Natural Gas (SNG) Scrubbing the Carbon in Coal and Petcoke," Gasification Technologies Conference, October 2, 2006, Washington, D.C.
- 57 Synthesis Gas Purification in Gasification to Ammonia/Urea Complex. Flour/UOP. Gasification Technologies Conference 2004.
- 58 Appl, M. Ammonia: Principles and Industrial Practice. Weinheim, Germany, Wiley, VCH, 1998.
- 59 Ammonia Synthesis Catalysts. KM1/KM1R: The Heart of the Ammonia Plant. Haldor Topsoe A/S. http://www.topsoe.com/Business_areas/Ammonia /~/media/ PDF%20files/Ammonia/Topsoe_ammonia_km1.ashx.
- 60 "Process Screening Analysis of Alternative Gas Treating and Sulfur Removal for Gasification," Revised Final Report, December 2002, SFA Pacific for NETL