9.5 Integral Representations9.7 Asymptotic Expansions

§9.6 Relations to Other Functions

Contents

§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions

For the notation see §§10.2(ii) and 10.25(ii). With

9.6.1\zeta=\tfrac{2}{3}z^{{3/2}},
9.6.2\mathop{\mathrm{Ai}\/}\nolimits\!\left(z\right)=\pi^{{-1}}\sqrt{z/3}\mathop{K_{{\pm 1/3}}\/}\nolimits\!\left(\zeta\right)=\tfrac{1}{3}\sqrt{z}\left(\mathop{I_{{-1/3}}\/}\nolimits\!\left(\zeta\right)-\mathop{I_{{1/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}e^{{2\pi i/3}}\mathop{{H^{{(1)}}_{{1/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)=\tfrac{1}{2}\sqrt{z/3}e^{{\pi i/3}}\mathop{{H^{{(1)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)=\tfrac{1}{2}\sqrt{z/3}e^{{-2\pi i/3}}\mathop{{H^{{(2)}}_{{1/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right)=\tfrac{1}{2}\sqrt{z/3}e^{{-\pi i/3}}\mathop{{H^{{(2)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right),
9.6.3{\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(z\right)=-\pi^{{-1}}(z/\sqrt{3})\mathop{K_{{\pm 2/3}}\/}\nolimits\!\left(\zeta\right)=(z/3)\left(\mathop{I_{{2/3}}\/}\nolimits\!\left(\zeta\right)-\mathop{I_{{-2/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})e^{{-\pi i/6}}\mathop{{H^{{(1)}}_{{2/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)=\tfrac{1}{2}(z/\sqrt{3})e^{{-5\pi i/6}}\mathop{{H^{{(1)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)=\tfrac{1}{2}(z/\sqrt{3})e^{{\pi i/6}}\mathop{{H^{{(2)}}_{{2/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right)=\tfrac{1}{2}(z/\sqrt{3})e^{{5\pi i/6}}\mathop{{H^{{(2)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right),
9.6.4\mathop{\mathrm{Bi}\/}\nolimits\!\left(z\right)=\sqrt{z/3}\left(\mathop{I_{{1/3}}\/}\nolimits\!\left(\zeta\right)+\mathop{I_{{-1/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{{\pi i/6}}\mathop{{H^{{(1)}}_{{1/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right)+e^{{-\pi i/6}}\mathop{{H^{{(2)}}_{{1/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{{-\pi i/6}}\mathop{{H^{{(1)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right)+e^{{\pi i/6}}\mathop{{H^{{(2)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)\right),
9.6.5{\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}\!\left(z\right)=(z/\sqrt{3})\left(\mathop{I_{{2/3}}\/}\nolimits\!\left(\zeta\right)+\mathop{I_{{-2/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{{\pi i/3}}\mathop{{H^{{(1)}}_{{2/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right)+e^{{-\pi i/3}}\mathop{{H^{{(2)}}_{{2/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{{-\pi i/3}}\mathop{{H^{{(1)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta e^{{-\pi i/2}}\right)+e^{{\pi i/3}}\mathop{{H^{{(2)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta e^{{\pi i/2}}\right)\right),
9.6.6\mathop{\mathrm{Ai}\/}\nolimits\!\left(-z\right)=(\sqrt{z}/3)\left(\mathop{J_{{1/3}}\/}\nolimits\!\left(\zeta\right)+\mathop{J_{{-1/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{{\pi i/6}}\mathop{{H^{{(1)}}_{{1/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{-\pi i/6}}\mathop{{H^{{(2)}}_{{1/3}}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{{-\pi i/6}}\mathop{{H^{{(1)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{\pi i/6}}\mathop{{H^{{(2)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta\right)\right),
9.6.7{\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(-z\right)=(z/3)\left(\mathop{J_{{2/3}}\/}\nolimits\!\left(\zeta\right)-\mathop{J_{{-2/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{{-\pi i/6}}\mathop{{H^{{(1)}}_{{2/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{\pi i/6}}\mathop{{H^{{(2)}}_{{2/3}}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{{-5\pi i/6}}\mathop{{H^{{(1)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{5\pi i/6}}\mathop{{H^{{(2)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta\right)\right),
9.6.8\mathop{\mathrm{Bi}\/}\nolimits\!\left(-z\right)=\sqrt{z/3}\left(\mathop{J_{{-1/3}}\/}\nolimits\!\left(\zeta\right)-\mathop{J_{{1/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{{2\pi i/3}}\mathop{{H^{{(1)}}_{{1/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{-2\pi i/3}}\mathop{{H^{{(2)}}_{{1/3}}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{{\pi i/3}}\mathop{{H^{{(1)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{-\pi i/3}}\mathop{{H^{{(2)}}_{{-1/3}}}\/}\nolimits\!\left(\zeta\right)\right),
9.6.9{\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}\!\left(-z\right)=(z/\sqrt{3})\left(\mathop{J_{{-2/3}}\/}\nolimits\!\left(\zeta\right)+\mathop{J_{{2/3}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{{\pi i/3}}\mathop{{H^{{(1)}}_{{2/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{-\pi i/3}}\mathop{{H^{{(2)}}_{{2/3}}}\/}\nolimits\!\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{{-\pi i/3}}\mathop{{H^{{(1)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta\right)+e^{{\pi i/3}}\mathop{{H^{{(2)}}_{{-2/3}}}\/}\nolimits\!\left(\zeta\right)\right).

§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions

Again, for the notation see §§10.2(ii) and 10.25(ii). With

9.6.10z=(\tfrac{3}{2}\zeta)^{{2/3}},

§9.6(iii) Airy Functions as Confluent Hypergeometric Functions

For the notation see §§13.1, 13.2, and 13.14(i). With \zeta as in (9.6.1),