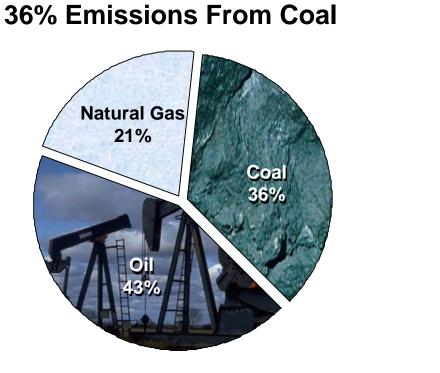
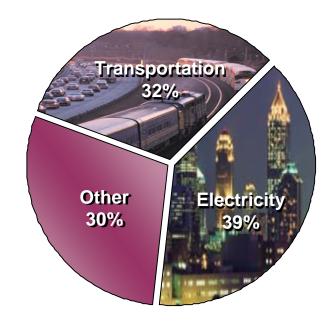
Carbon Sequestration R&D Overview

Carbon Sequestration Briefing October 2007

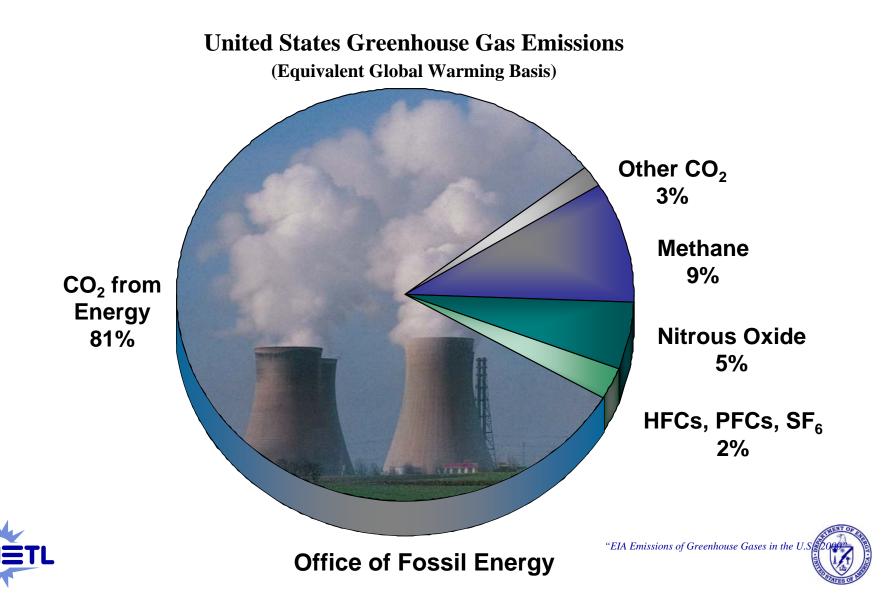
Sean Plasynski, PhD Sequestration Technology Manager


National Energy Technology Laboratory



R&D Focus is on Coal & Electricity

United States CO2 Emissions


39% Emissions From Electricity

R&D Focus is on CO₂

Annual CO₂ Emissions Extremely Large

Emissions	Total Release in the U.S., short tons per year
Mercury	120
Sulfur Dioxide (SO ₂)	15,000
Municipal solid waste	230,000,000
Carbon Dioxide (CO ₂)	6,300,000,000

Data sources: Mercury - EPA National Emissions Inventory (1999 data); SO₂ - EPA air trends (2002 data); MSW - EPA OSWER fact sheet (2001 data); CO₂ - EIA AEO 2004 (2002 data)

How Much CO₂ is Produced?

- 1 million metric tons of CO₂:
 - Every year would fill a volume of 32 million cubic feet
 - Close to the volume of the Empire State Building
- U.S. emits roughly 6 billion tons (gigatons) of CO₂ per year
 - Under an EIA reference case scenario cumulative CO₂ emissions 2004-2100 are expected to be 1 trillion tons
 - Enough to fill Lake Erie with liquid CO2 almost twice

Technological Carbon Management Options

Reduce Carbon Intensity

Renewables

demand

objectives

- Nuclear
- Fuel Switching

All options needed to:

Affordably meet energy

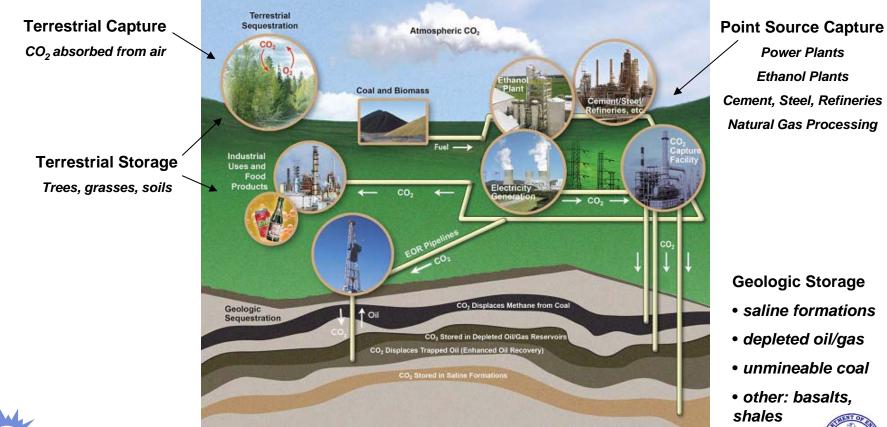
Address environmental

Improve Efficiency

- Demand Side
- Supply Side

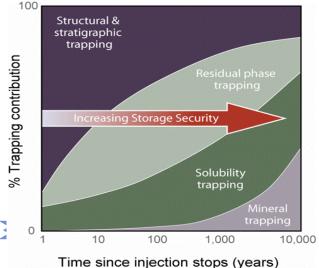
Sequester Carbon

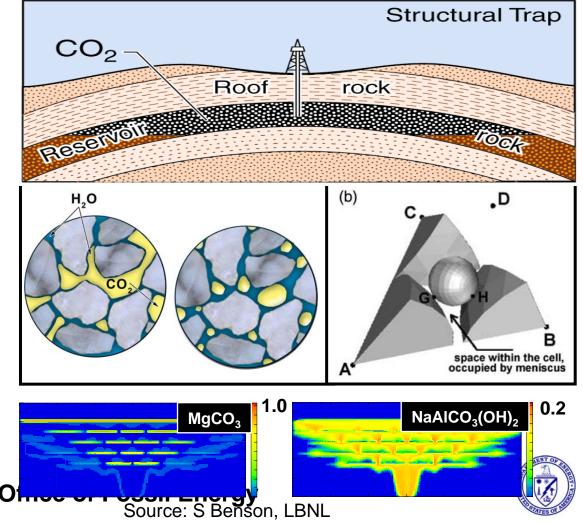
- Capture & Store
- Enhance Natural
 Sinks



What is Carbon Sequestration?

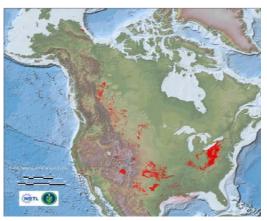
Capture and storage of CO₂ and other Greenhouse Gases that would otherwise be emitted to the atmosphere

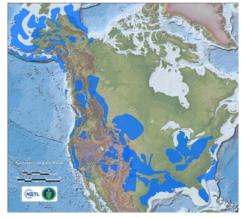

Carbon Storage – How does it work?


Storage mechanisms vary by target class; generally multiple processes which improve over time

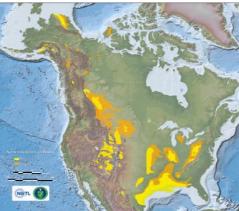
- Physical trapping
- Residual phase trapping
- Solution/Mineral Trapping

Gas adsorption


•For organic minerals only (coals, oil shales)



National Atlas Highlights Adequate Storage Projected


U.S. ~ 6 GT CO2/yr all sources

Oil and Gas Fields

Saline Formations

North American CO₂ Storage Potential (Giga Tons) Unmineable Coal Seams

Sink Type	Low	High
Saline Formations	969	3,223
Unmineable Coal Seams	70	97
Oil and Gas Fields	82	83

Hundreds of Years of

Storage Potential

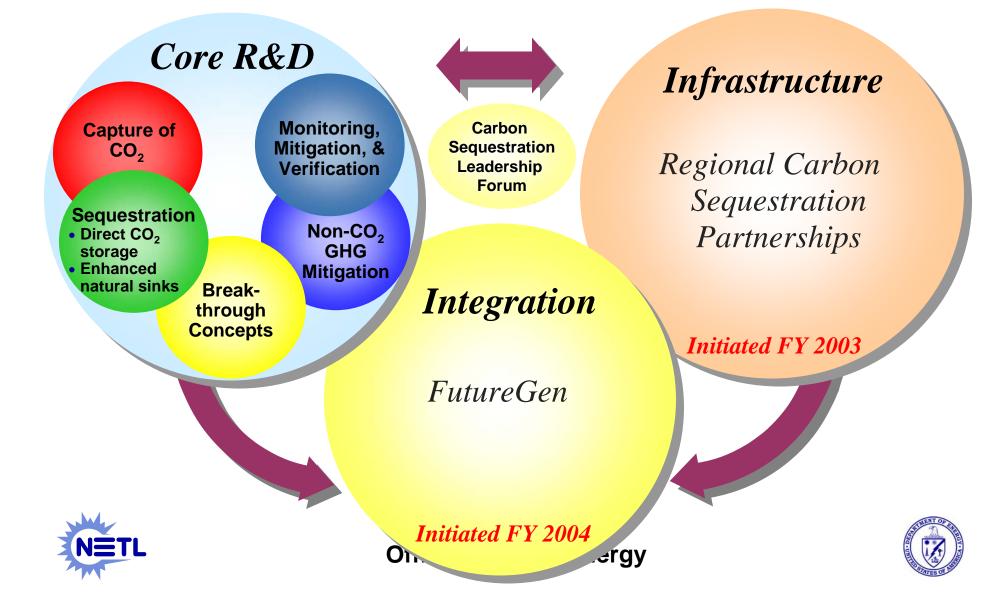
Available for download at http://www.netl.doe.gov/publications/carbon_seq/refshelf.html

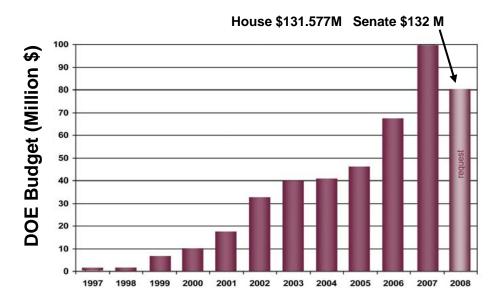
Requirements for Sequestration

• Environmentally acceptable

- -No legacy for future generations
- -Respect existing ecosystems

• Safe


- No sudden large-scale CO₂ discharges
- Verifiable
 - Ability to verify amount of CO₂ sequestered
- Economically viable

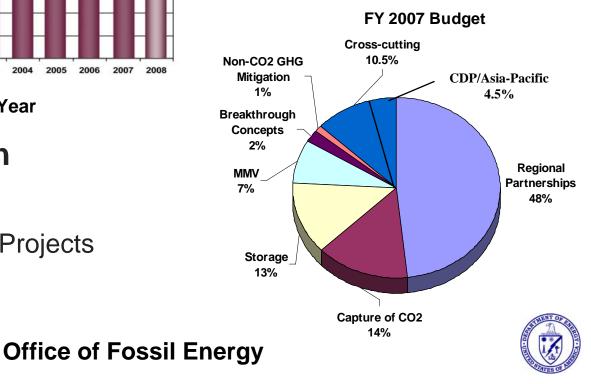


Carbon Sequestration Program Structure

Sequestration Program Statistics FY2007

Fiscal Year

Diverse research portfolio


~ 70 Active R&D Projects

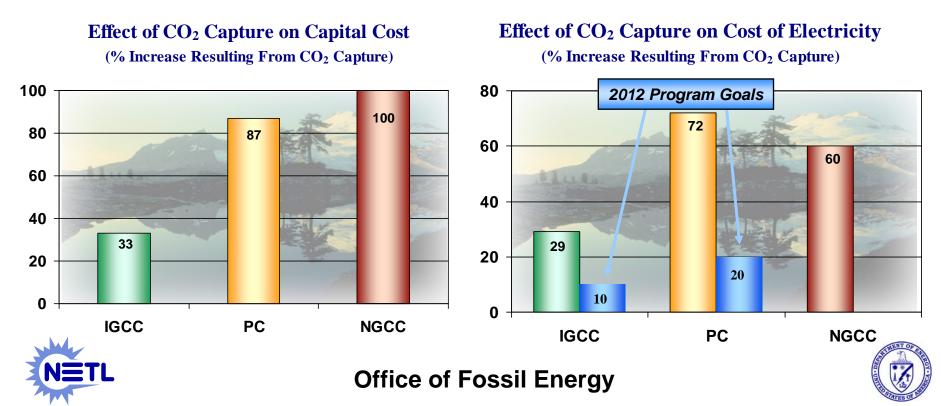
Strong industry support

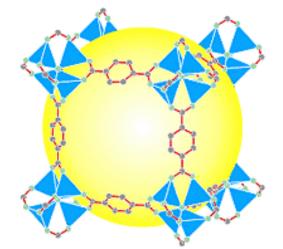
~ 39% cost share on projects

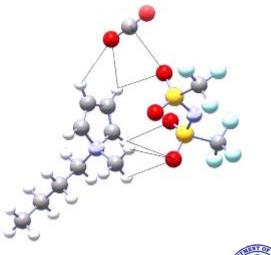
Federal Investment to Date

~ \$360 Million

Overcoming Barriers to Carbon Capture and Storage (CCS)


- Capture Costs
 - Capital Investments
 - Increases in COE
- Lack of Infrastructure
- Regulatory Requirements
- Public Acceptance
- Human Capital Resources
- DOE/FE—NETL Sequestration Program is overcoming these barriers through:
 - Core R&D
 - Technology/Infrastructure Development
 - Government/Industry Partnerships
 - International Collaborations


Capture Cost Reduction Needed !!


- 5–30% parasitic energy loss
- 30–100% increase in capital cost
- 25–75% increase in cost of electricity

Capture Innovations – Driving Down Costs !!

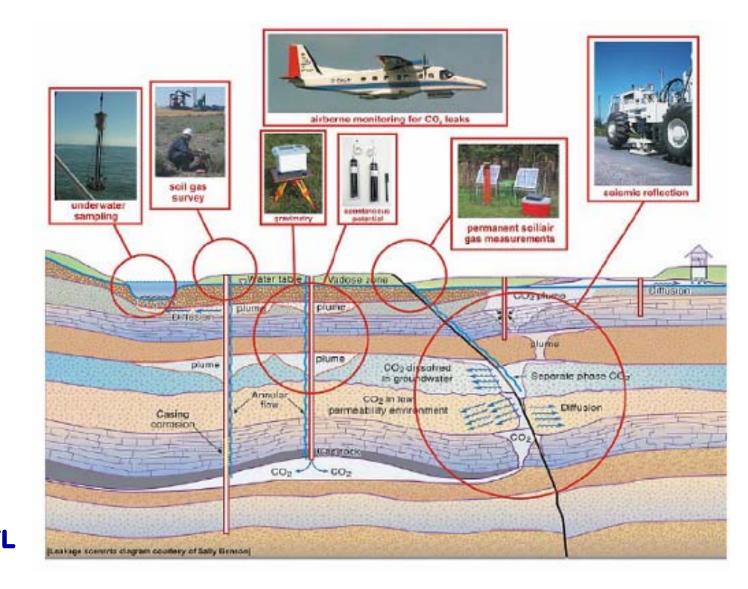
- Ionic liquids
- Metal organic frameworks (MOF)
- Ceramic Autothermal Recovery (CAR)
- Polymer-based high-temperature membrane
- Carbonic anhydrase enzymatic membrane
- Ammonia-based scrubbing
- Amine-enriched absorbents

Back to Original Slide

Summary of Storage R&D Activities

Geologic Storage Sinks

- Unmineable coal seams
- Depleted oil and gas fields
- Saline formations
- Other potential storage opportunities Basalt and Oil Shales

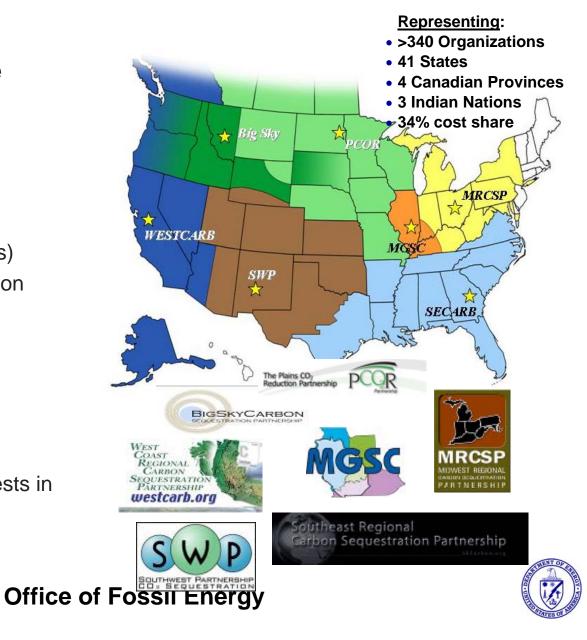

Research Pathways

- Model development
 - Reservoir and Risk Assessment Models
- Physical and chemical processes
- Monitoring technologies
- Well bore management
- Best management practices
 - Selection → Operation → Closure

Monitoring, Mitigation, and Verification Ensuring Permanent Storage !!

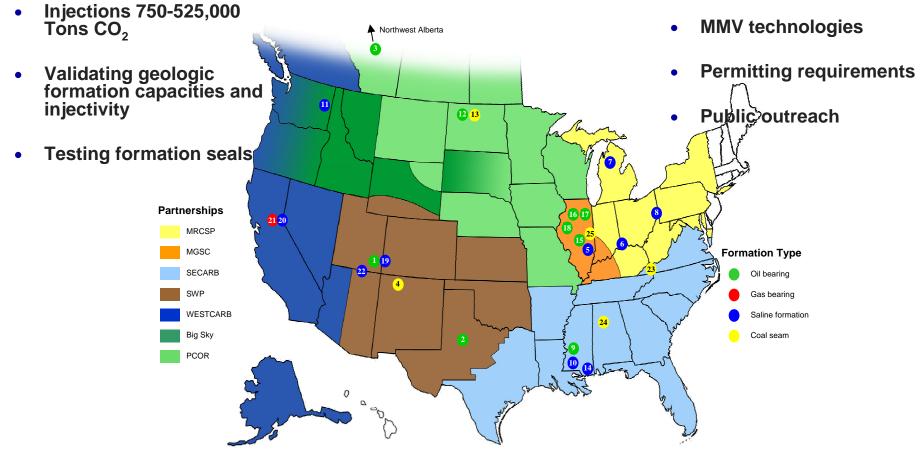
Regional Carbon Sequestration Partnerships

Characterization Phase


- 24 months (2003-2005)
- \$16M DOE funds

Validation Phase

- 4 years (2005 2009)
- 7 Partnerships (41 states)
- 25 Geologic field validation tests
- \$112M DOE funds


Deployment Phase

- 10 years (2008-2017)
 - FY07 Initiated
- Several large injection tests in different geology

Phase II Field Validation 25 Geologic Tests

Deployment Phase Scaling Up Towards Commercialization

- FY 2008-2017 (10 years)
- Several Large Volume Sequestration tests in North America
- Injection rates up to 1,000,000 tons per year for several years
- Scale up is required to provide insight into several operational and technical
- issues in different formations Office of Fossil Energy

Phase III: Deployment *Activities*

• Awarded in 3 budget periods

- 1 Site characterization
- 2 Injection and monitoring
- 3 Site closure and assessment

Necessary Accomplishments in first Budget Period

- Detailed Project Management Plan
- Site characterization and certification
- Permitting and NEPA compliance
- Well completion and testing
- Infrastructure development

Initial 3 Phase III Projects Announced

• First set of projects awarded Sept 2007

- Plains CO2 Reduction Partnership
- Southeast Regional Carbon Sequestration
 Partnership
- Southwest Regional Partnership for Carbon Sequestration
- Several more projects to follow

Plains CO₂ Reduction Partnership (PCOR)

- Lead by University of North Dakota- EERC
- Alberta Basin
 - deep saline formation
 - co-sequestration of CO2 and hydrogen sulfide from a large gas-processing plant
 - 1.8 million tons/year (3-6 years)
- Williston Basin
 - enhanced oil recovery and CO2 storage in a deep carbonate formation that is also a major saline formation
 - CO2 from post-combustion capture facility at a coal-fired power plant in the region
- Total Project Cost: \$135,586,059 DOE Share: \$67,000,000 Partner Share: \$68,586,059

Southeast Regional Carbon Sequestration Partnership

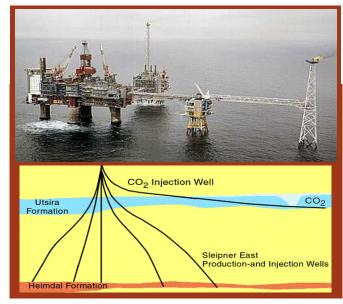
- Lead by Southern States Energy Board (SSEB)
- Lower Tuscaloosa Formation Massive Sand Unit
 - Deep saline formation
 - Two injection sites within same formation with CO2 from two different sources
 - assess different CO2 streams and how the heterogeneity of the formation affects the injection and containment.
- Injection of several million tons of CO2 from a natural deposit
- Conduct a second injection into the formation using CO2 captured from a coal-fired power plant in the region
 - 100,000 Tons per year
- Total Project Cost: \$93,689,242 DOE Share: \$64,949,079 Partner Share: \$28,740,163

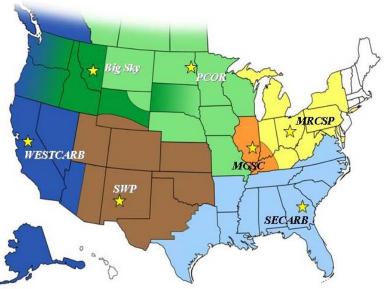
Southwest Regional Partnership (SWRP)

- Coordinated by the New Mexico Institute of Mining and Technology
 - Jurassic-age Entrada Sandstone Formation in the southwestern United States
 - Several million tons of CO2 from natural sources
- Extensive baseline characterization and simulation modeling.
- Information gained from the project will be used to evaluate locations throughout the region where future power plants are being considered.
- Total Project Cost: \$88,845,571
 DOE Share: \$65,437,395
 Partner Share: \$23,408,176

Deployment Phase *Outcomes*

- Site characterization requirements
- Storage capacity assessment
- Design criteria
 - Injection wells
 - Regional monitoring, mitigation, and verification program
 - Site Closure
- Permitting requirements
- Validate reservoir and risk assessment models
- Accelerate public outreach
- Best practice manuals





Geologic Sequestration Undertaking needed Science and Engineering

Million Tonnes per year injections

- Statoil at Sleipner since '96
- BP at In Salah
- EnCana EOR project with CO₂ storage in the Weyburn field
- US EOR since 1970's

Proving Technical Feasibility

- Proper characterization and siting
- Low Risk: Oil and Gas in formations for thousands of years
- DOE undertaking testing in US to develop and prove technology
 - Monitoring tools, models, public outreach, best management practices
- Regulatory & Legal Frameworks are being developed for future large-scale deployment

Additional Information

National Energy Techno	logy Laboratory site Ma	p Go>
NETL		
	THE ONLY U.S. NATIONAL LABORATORY DEVOTED TO F	OSSIL ENERGY TECHNOLOGY
ABOUT NETL	Home > Technologies > Carbon Sequestration	NEWS & FEATURES // All >
KEY ISSUES & MANDATES	Technologies	<u>Carbon Sequestration</u> <u>Technology Roadmap [PDF-</u>
ONSITE RESEARCH	Carbon Sequestration	4542KB] Carbon Sequestration
TECHNOLOGIES Oil & Natural Gas Supply	NETL manages a portfolio of laboratory and field R&D focused on	Program Outreach Plan [PDF-1438MB] • DOE-Advances
Coal & Power Systems Carbon Sequestration	technologies with great potential for reducing greenhouse gas emissions	<u>Commercialization of Climate</u> <u>Change Technology</u>
►CO ₂ Capture	and controlling global <u>climate change</u> . Most efforts focus on capturing	 Regional Carbon Sequestration Partnerships Program Adds Canadian
 CO₂ Storage Monitoring, Mitigation, Verification 	carbon dioxide from large stationary sources such as power plants, and sequestering it using geologic,	Provinces
 Non-CO₂ Greenhouse Gases 	terrestrial ecosystem, or oceanic approaches. Control of fugitive methane emissions is also addressed.	EVENTS CALENDAR // <u>All</u> > The 2006 EIC Climate
 ▶ Breakthrough Concepts ▶ Regional Partnerships ▶ FAQs ▶ Contacts 	Carbon sequestration work directly implements the President's Global Climate Change Initiative, as well as several National Energy Policy goals targeting the development of new technologies. It also supports the goals of the Framework	Change Technology Conference - Engineering Challenges and Solutions in the 21st Century
Hydrogen & Clean Fuels Technology Transfer	Convention on Climate Change and other international collaborations to reduce greenhouse gas intensity and greenhouse gas emissions.	PUBLICATIONS & PROJECTS // All >
SOLICITATIONS & BUSINESS	The programmatic timeline is to demonstrate a portfolio of safe, cost effective	<u>Carbon Sequestration</u>
CAREERS & FELLOWSHIPS	greenhouse gas capture, storage, and mitigation technologies at the commercia scale by 2012, leading to substantial deployment and market penetration beyond 2012. These greenhouse gas mitigation technologies will help slow greenhouse	<u>Carbon Sequestration</u> Project Partfolia (PDE
tn·//www.ne	tl.doe.gov/technologies/carbo	n seg/index.ht

http://www.netl.doe.gov/technologies/carbon_seq/index.html Office of Fossil Energy

