GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE 1 – A PRELIMINARY SYSTEMS EVALUATION

FINAL REPORT

VOLUME I EVALUATION OF ADVANCED COAL COMBUSTION & GASIFICATION POWER PLANTS WITH GREENHOUSE GAS EMISSIONS CONTROL

VOLUME II BENCH-SCALE FLUIDIZED BED COMBUSTION TESTING

SUBMITTED BY

ALSTOM POWER INC. POWER PLANT LABORATORIES 2000 DAY HILL ROAD WINDSOR, CT 06095 (860) 688-1911

PREPARED FOR

NETL AAD DOCUMENT CONTROL BLDG. 921 US DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY P.O. BOX 10940 PITTSBURGH, PENNSYLVANIA 15236-0940 (COOPERATIVE AGREEMENTT NO. DE-fC26-01NT41146)

PHASE I REPORT SUBMITTAL DATE: MAY 15, 2003 PHASE I PERFORMANCE PERIOD: SEPTEMBER 28, 2001 – MAY 15, 2003

PPL REPORT NO. PPL-03-CT-09

VOLUME II

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE I -- A PRELIMINARY SYSTEMS EVALUATION

PHASE I FINAL REPORT

VOLUME II BENCH-SCALE FLUIDIZED BED COMBUSTION TESTING

SUBMITTED BY

ALSTOM POWER INC. POWER PLANT LABORATORIES 2000 DAY HILL ROAD WINDSOR, CT 06095 (860) 688-1911

John L. Marion, Project Manager Nsakala ya Nsakala, Project Leader Raymond MacWhinnie, Task Leader

PREPARED FOR

NETL AAD DOCUMENT CONTROL BLDG. 921 US DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY P.O. BOX 10940 PITTSBURGH, PENNSYLVANIA 15236-0940 (COOPERATIVE AGREEMENTT NO. DE-FC26-01NT41146)

PHASE I REPORT SUBMITTAL DATE: MAY 15, 2003 PHASE I PERFORMANCE PERIOD: SEPTEMBER 28, 2001 – MAY 15, 2003

PPL REPORT NO. PPL-03-CT-09

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Sates Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ACKNOWLEDGEMENTS

The authors appreciatively acknowledge the following ALSTOM Power Inc.'s people in the Power Plant Laboratories (PPL) for their contributions to the successful performance of the work presented herein: Gregory A. Burns for conducting all the test work described in the bench-scale Fluidized Bed Combustor; and Kurt W. Johnson and the Chemical Analytical Laboratory personnel for performing all the fuels and sorbent characterization work.

The financial support of this project by DOE National Energy Technology Laboratory (Contract No DE-FC26-01NT41146), and ALSTOM Power Inc. is also appreciatively acknowledged.

TABLE OF CONTENTS

EXECUT	IVE SUMMARY	i
1.0 BA	CKGROUND/OBJECTIVES	1
2.0 TES	ST PROGRAM	2
2.1 Te	est Plan	2
2.2 Te	est Facility Descriptions	2
2.2.1 2.2.2	Bench-Scale Fluidized Bed Description	2
3.0 TES	ST RESULTS	5
3.1 CI	hemical Analyses of Test Fuels and Limestone Samples	5
3.2 TG	GA Reactivity Test Results	8
3.2.1	Limestone Reactivity	8
3.2.2	Fuel Reactivity	9
3.3 Be	ench-Scale Fluidized Bed Combustion (FBC) Tests Results	13
3.3.1	Observations on Combustion Behavior/Ash Slagging Potentials	15
3.3.2	Combustion Characteristics	17
3.3.3	Gaseous Emissions	19
3.4 Co	onclusions and Recommendations for Future Work	28
3.4.1	Conclusions/Remarks	28
3.4.2	Recommendations for Future Work	29
4.0 BIB	BLIOGRAPHY	30

LIST OF FIGURES

Figure 2.2. 1: Thermo-Gavimetric Analyzer (TGA)	3
Figure 2.2. 2 Schematic of Bench-Scale Fluid Bed Combustor	4
-	
Figure 3.2.1: Sulfation Reactivity of Base Case CFB and Reference Limestones	8
Figure 3.2.2: Burn-Off Shown as Weight Loss of Various Fuels in Air as a Function of Temperature	10
Figure 3.2.3: Rate of Weight Loss of Various Fuels in Air as a Function of Temperature	11
Figure 3.2.4: Burn-Off Shown as Weight Loss of Base Case CFB Coal in Air and O ₂ /CO ₂ Mixtures	11
Figure 3.2.5: Rate of Weight Loss of Base Case CFB Coal in air and O ₂ /CO ₂ Mixtures	12
Figure 3.2.6: Pseudo Combustion Kinetics of Base Case CFB Coal in Air and O ₂ /CO ₂ Mixtures	12
Figure 3.3.2: Variation of Burning Fuel Particle Surface Temperature with Oxygen Partial Pressure	16
Figure 3.3.3: Variation of Fuel Combustion Efficiency and Unburned Carbon Emissions	19
Figure 3.3.4: Combustion of Base Case CFB Coal in Air and Various O ₂ /CO ₂ Mixtures	21
Figure 3.3.5: Combustion of Base Case CFB Coal in Air and 30% O ₂ /70% CO ₂	22
Figure 3.3.6: Combustion of Illinois #6 Coal in Air and Various O ₂ /CO ₂ Mixtures	22
Figure 3.3.7: Combustion of Illinois #6 Coal in Air and 30% O ₂ /70% CO ₂ Mixture	23
Figure 3.3.8: Combustion of Delayed Petroleum Coke in Air and 30% O ₂ /70% CO ₂ Mixtures	23
Figure 3.3.9: Combustion of Delayed Petroleum Coke in Air and 30% O ₂ /70% CO ₂ Mixtures	24
Figure 3.3.10: Variation of NOx Emissions from Test Fuels as a Function of O2	25
Figure 3.3.11: Variation of SO ₂ Emissions from Test Fuels as a Function of O ₂ Concentration in Combu	stion
Gas	26
Figure 3.3.12: Variation of CO Emissions from Test Fuels as a Function of Q Concentration	27

LIST OF TABLES

Table 3.1.1: Table 3.1.2: Table 3.1.3:	Selected Analyses of Test Fuels Ash Compositions and Fusibility Temperatures of Test Fuels Limestone Composition	6 7 7
Table 3.2.1:	TGA Test Matrix for Base Case CFB Coal	.9
Table 3.3.1: Table 3.3.2:	Test Matrix for Bench-Scale Fluidized Bed Combustion	3 8

ACRONYMS AND ABBREVIATIONS

ALSTOM	Alstom Power Inc.
ASTM	American Society for Testing and Materials
atm	Atmosphere
Btu	British Thermal Unit
Ca/S	Calcium/Sulfur Mole Ratio
CC	Cubic centimeter
CFB	Circulating Fluidized Bed
CO	Carbon Monoxide
CO ₂	Carbon Dioxide Gas
DAF, daf	Dry-Ash-Free
DOE/NETL	Department of Energy/National Energy Technology Laboratory
EGR	Enhanced Gas Recovery
EOR	Enhanced Oil Recovery
FBC	Fluidized Bed Combustion
FCE	Fuel Combustion Efficiency
ft	Foot
g	Gram
Hc	Heat Conduction
Hg	Heat Generation
HHV	Higher Heating Value
Hr	Heat Radiation
hvCb	High volatile C bituminous
IGCC	Integrated Gasification Combined Cycle
	liter
Ib/MMBtu	Pounds per Million Btu
min	Minute
MTF	Multi-use Test Facility
mvb	Medium volatile bituminous
N ₂	Nitrogen Gas
O ₂	Oxygen Gas
PPL	Power Plant Laboratories
ppm	Parts per million
sec	second
SO ₂	Sulfur Dioxide
Тg	Gas Temperature
TGA	Thermo-Gravimetric Analysis
Ts	Surface Temperature
UBC	Unburned Carbon
vppm	Volumetric parts per million

EXECUTIVE SUMMARY

Background

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO_2 emissions, recovery and sequestration of CO_2 from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO_2 emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired plant configurations designed to capture CO_2 from effluent gas streams for sequestration.

Burning fossil fuels in mixtures of oxygen and recirculated flue gas (consisting principally of CO₂) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is composed primarily of CO₂, along with some moisture, nitrogen, oxygen, and trace gases like SO₂ and NOx. Oxygen firing in utility scale boilers has been shown to be a more economical method for CO₂ capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFBs) can be more economical than in Pulverized Coal (PC) or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant boiler island cost savings.

Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO₂ product cleanup and compression process. These advanced/novel concepts require long development efforts. A preliminary economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers (CFB's) could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery.

ALSTOM received a cooperative agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled "Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers." This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146).

A comprehensive study evaluating the technical feasibility and economics of alternate CO₂ capture technologies applied to Greenfield US coal-fired electric generation power plants was conducted. Thirteen separate but related cases, representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent traditional Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included for completeness.

The Work breakdown Structure of each Phase in a following flow chart. Phase I is comprised of three tasks, as follows:

- □ Task 1: Conceptual and Economic Performance Analyses of Thirteen Study Cases
- □ Task 2: Bench-Scale Fluidized Bed Combustion (FBC) Testing
- □ Task 3: Phase I Final Report.

Project Flow Chart

Bench-Scale Fluidized Bed Combustion (FBC) Testing: Technical Summary

Objectives

The overall objective of this FBC testing is to derive pertinent combustion performance and bed dynamic information under highly controlled operating conditions in a 4-inch fluidized bed test facility. Results from various oxy-fuel firing of three fuels – two coals and one delayed petroleum coke – are to be compared to those obtained from air firing. Key Outputs include:

- Bed and ash characteristics (e.g., potential bed agglomeration/sintering)
- □ Gaseous emissions (NOx, SO₂ and CO)
- Desulfurization potentials
- NOx emissions reductions
- Unburned carbon (UBC) emissions

Results and Conclusions

The coal sample obtained from the base case CFB plant (known hereafter as base case CFB coal) was evaluated in ALSTOM's 4-inch FBC test facility along with two other fuels. This coal was tested in air and O_2/CO_2 mediums containing from 21% to 70% O_2 . The other two fuels – Illinois #6 coal and delayed petroleum coke – were tested in air and limited O_2/CO_2 mixtures. Additionally, all three fuels were tested in air and 30% $O_2/70\%CO_2$ in the presence of a Ca/S mole ratio of 3.5. ALSTOM's Thermo-Gravimetric Analysis (TGA) apparatus was also used to evaluate the base case CFB coal in environments simulating combustion in air and in 30% $O_2/70\%CO_2$ medium. Results from the FBC and TGA can be succinctly summarized as follows:

- □ Coal combustion in 30%O₂/70%CO₂ medium does not adversely affect the combustion process kinetics.
- □ Testing the base case CFB coal in O₂/CO₂ mediums containing up to 70% O₂ caused bed temperature rises of up to about 250 °F. Nevertheless, it was possible to obviate bed slagging/defluidization problems as long as the bed was well fluidized.
- The added emission benefits offered by oxy-fuel firing over air firing in circulating Fluidized Bed Boilers (CFBs) are:
 - CO₂ in the flue gas is highly concentrated (~90% vs.~15%), thus making the processing of this stream to achieve the required CO₂ purity for EOR application relatively cheaper.
 - Typically, low NOx emissions in combustion-staged air-fired CFBs are further reduced due primarily to elimination of thermal NOx.
 - SO₂ emissions reductions of up to 90% with sorbent utilization should not be negatively impacted. Furthermore, ALSTOM has a commercial product called, "Flash Drier Absorbent (FDA)," which has been successfully demonstrated in the pilot-scale Multi-use Test Facility (MTF) to reduce SO₂ emissions by as much as 99%.
 - Burning the three fuels in high O₂ combustion mediums improved overall fuel combustion efficiencies, which, correspondingly, improved carbon losses.
 - The addition of limestone to the combustion process to control sulfur dioxide emissions did not adversely impact the overall combustion efficiency of each fuel.
- □ The test conditions used in the FBC facility are much more aggressive than those encountered in commercial CFBs (e.g., furnace outlet O₂ concentrations: 13-51% vs. ~3%; superficial gas velocity: ~2-3 ft/sec. vs. ~18 ft/sec). Hence, it is preliminarily concluded that the choice of 70% O₂/30% recycled flue gas (principally CO₂) as a combustion medium for study Case 2 (New Compact O₂-Fired CFB, see Section 2.2, Volume I) was feasible.

Recommendations for Future Work

Based on these encouraging test results, on the findings from technical and economic analyses presented in volume I, and on practical considerations, it was recommended and agreed to by the DOE/NETL that Phase II workscope be implemented as recommended in the Revised Statement of Work of December 13, 2002. Pilot-scale testing in Phase II will evaluate this concept, among other things. Based on the pilot-scale testing the concept presented in Case 2 (see Section 2.2, volume I) will be either affirmed for further commercial development or modified beforehand.

1.0 BACKGROUND/OBJECTIVES

Burning fossil fuels in mixtures of oxygen and recirculated flue gas (consisting principally of CO₂), results in a combustion process that essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is, therefore, composed primarily of CO₂, along with some moisture, oxygen, and trace gases like SO₂ and NO_x. Applying this concept to Circulating Fluidized Bed (CFB) boilers greatly enhances their efficiency and cost effectiveness by reducing the quantity of recirculated flue gas and by reducing the potential for atmospheric air in-leakage, both of which are significant cost and performance hurdles with alternate boiler or furnace approaches. Additionally, ALSTOM Power Inc. (ALSTOM) has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO₂ product cleanup and compression with respect to their commercialization potentials, these advanced/novel concepts require long development efforts. A preliminary economic analysis indicates that the proposed oxygen-firing technology in Circulating Fluidized Bed (CFB) boilers could be developed and deployed economically in the near future in Enhanced Oil Recovery (EOR) application or Enhanced Gas Recovery (EGR), such as coal bed methane recovery.

ALSTOM received an award from the DOE NETL (DOE) in 2001 to carry out a project entitled, "Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers." This two-phased project is in effect from September 28, 2001 to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146).

Phase I is comprised of three tasks, as follows:

- **Task 1:** Conceptual and Economic Performance Analyses of Thirteen Study Cases
- □ Task 2: Bench-Scale Fluidized Bed Combustion (FBC) Testing
- □ Task 3: Phase I Final Report.

The overall objective of this FBC testing is to derive pertinent combustion performance and bed dynamic information under highly controlled operating conditions in a 4-inch fluidized bed test facility. Results from various oxy-fuel firings of three fuels (two coals and one delayed petroleum coke) are to be compared to those obtained from air firing. Key Outputs include:

- Bed and ash characteristics (e.g., potential bed agglomeration/sintering)
- □ Gaseous emissions (NOx, SO₂ and CO)
- Desulfurization potentials
- NOx emissions reductions
- □ Unburned carbon (UBC) emissions

Results obtained from this study are discussed below.

2.0 TEST PROGRAM

2.1 Test Plan

The test plan was comprised of three key elements:

- Chemical analysis of fuel and limestone samples
- □ Thermo-Gravimetric Analysis (TGA) to determine fuel and limestone reactivities
- □ Bench-scale fluidized bed combustion tests.

Chemical analysis of the fuels included standard ASTM proximate and ultimate analyses, heating values, and ash compositions and fusibility temperatures. Limestone composition was also determined.

2.2 Test Facility Descriptions

A Thermo-Gravimetric Analyzer (TGA) and a four-inch Fluidized Bed Combustor (FBC) were the principal facilities used in the bench-scale test program. These facilities are briefly described below.

2.2.1 TGA Description

ALSTOM uses a Perkin-Elmer TGA Model 7 (Figure 2.2.1) to obtain specific reactivity parameters of fuels and limestones, among other things. The TGA is also used to derive the "micro-proximate" analyses of coals and coal chars, based on a test protocol developed in-house. Testing is conducted as follows. For fuel reactivity determination, about 4-6 mg of sample, normally sized to 200x400 mesh, is placed in the TGA sample pan. The sample amount is such that it is distributed over the bottom of the pan in almost a monolayer, thus minimizing the O_2 mass transfer control phenomenon during combustion. Equal amounts of nitrogen (which serves to protect the balance) and air or a combination of O_2 and CO_2) is allowed to pass through the reaction tube containing the coal sample. The temperature control mechanism is actuated, such that the heating rate is maintained at 10 °C/min from room temperature to the completion of combustion. Both weight loss and rate of weight loss are monitored and recorded throughout the combustion process. The information from this testing is used, as shown in Section 3.2, to derive combustion efficiency (or burnoff) curves and "pseudo" surface reaction kinetic parameters of the test fuels as a function of reaction medium.

In the case of limestone sulfation reactivity tests, a number of measurements are normally done as a function of limestone particle size and temperature. In this abbreviated study, only one particle size (25x35 mesh) and one reaction temperature (850 °C) were utilized. Testing entails the following steps. The sample is first brought to the test temperature (850 °C) in a 15% CO₂/85% N₂ mixture to effect calcination. After the weight has stabilized, the reacting atmosphere is switched to a mixture of 3000 vppm SO₂, 5% O₂, 15% CO₂ with the remainder as N₂. The limestone sample is then sulfated at 850 °C in this atmosphere for 210 minutes. The resulting weight gain is attributed to the reaction of CaO with SO₂ and O₂ to form CaSO₄. The weight gain is then used to calculate the percent calcium utilization and plotted against reaction time, as shown in Section 3.2.1

Figure 2.2. 1: Thermo-Gavimetric Analyzer (TGA)

2.2.2 Bench-Scale Fluidized Bed Combustion Description

The bench-scale Fluidized Bed Combustion (FBC) test facility used in this project is depicted schematically in Figure 2.2.2. The reactor in this electrically heated test facility is four inches in inner diameter and ~6 feet in total length. It is equipped with several thermocouples and pressure sensors for measuring bed and freeboard temperatures as well as static pressures. Size-graded fuel, premixed with a sorbent (if required), is accurately screw fed into the fluidized bed through a rotary airlock for "steady state" combustion tests. If batch tests are needed, a single shot of fuel can be directly fed into the furnace through a funnel system.

The combustion gas (e.g., air, O_2/N_2 , or O_2/CO_2), which is measured with a mass flow meter, is preheated before being admitted into the furnace through a grid plate to fluidize the bed materials. The flue gas leaving the combustion chamber is cooled to approximately 400 °F before entering a cyclone; a filter housing is located further downstream for removal of fine particulate. An aliquot of the effluent gas stream is sent to a pre-calibrated gas analysis system for on-line measurement of carbon dioxide (CO₂), carbon monoxide (CO), oxygen (O₂), oxides of nitrogen (NO_x, NO, and NO₂), and sulfur dioxide (SO₂) concentrations. A dedicated, proprietary LabView-based data acquisition system is used to: (1) Record gaseous species concentrations in real time as well as other process/operating parameters (gas flow rates, fuel feed rates, temperatures, pressures, etc.), and (2) Control furnace temperatures and gas flow rates to pre-set conditions. The reactor is designed such that bed materials can be drawn out through a bed drain or the whole bed can be dropped completely out of the heated zone and quenched with an inert gas. The facility currently operates within the following parameters:

- □ Bed temperature: up to 2000 °F
- □ Fluidizing gas: air, or various gas mixtures
- Bed materials: silica sand, fly ash, limestone, etc.
- □ Static bed height: 4-6 inches

Figure 2.2. 2 Schematic of Bench-Scale Fluid Bed Combustor

It was necessary to make some modification to the test facility to enable testing in O_2/CO_2 combustion mixtures containing very high oxygen contents (up to 70% by volume). A ½-inch copper tubing was used to convey each reactant gas (O_2 , CO_2 , and N_2) from its Dewar bottle to the mixing chamber. A section of the tubing was "coiled" and immersed into a thermostat water bath, which was kept at 70 °C to avoid sample freeze-ups. A relief valve was installed downstream of the water bath. Gas flow rates were measured through mass flow meters, which were located upstream of the mixing chamber. The same ½-inch copper tubing used to convey the gas mixture into the 1-½-inch carbon steel pipe, which then fed it into the preheaters. Special guidelines, specified in the ASTM G-94-92 protocol (1999), were used in connecting various portions of the tubing, and in cleaning them for oxygen service. Additionally, N_2 and O_2 lines were connected such that N_2 could be used to purge the O_2 line before and after each operation.

3.0 TEST RESULTS

3.1 Chemical Analyses of Test Fuels and Limestone Samples

The base case CFB coal, Illinois # 6 coal, and delayed petroleum coke were subjected to proximate and ultimate analyses and higher heating value determinations as shown in Table 3.1.1. Additionally, they were subjected to ash analysis and fusibility temperature measurements, as shown in Table 3.1.2 The limestone Sample from the base case CFB plant was also subjected to ASTM analysis, as shown in Table 3.1.3.

The base case CFB coal has nitrogen and sulfur contents of 2.4% and 1.7% on a dry-ash-free (DAF) basis, respectively. These values, which are typical of those of Eastern bituminous coals, result in nitrogen and sulfur loadings of 1.2 and 1.6 lb/MMBtu. The Illinois # 6 coal, on the other hand, has corresponding nitrogen and sulfur loadings of 1.0 and 3.5 lb/MMBtu. The pet coke is somewhat unusual with its lower sulfur content (1.3%, DAF basis) than typical; pet cokes generally have sulfur contents ranging from 3% to 5%. By contrast, typical delayed pet cokes have nitrogen contents ranging from 0.5 to 1.0%, whereas the subject pet coke has a nitrogen content of 3.3% on a DAF basis. These values result in nitrogen and sulfur loadings of 2.1 and 0.8 lb/MMBtu, respectively. These data foreshadow high NOx emission potential for the delayed pet coke and high SO₂ emissions potential for the Illinois #6 coal.

The Illinois #6 coal ash is typical of Eastern bituminous coals, with an iron content (as Fe_2O_3) greater than the sum of alkali and alkaline earth metals (i.e., CaO+MgO+Na₂O+K₂O). The combination of high sulfur content in the coal and ash composition leads to low ash fusibility temperatures, indicating, as is well known, high slaging potential for this coal. The pet coke has an ash content (0.3%, see Table 3.1.2) near the lower end of the typical range for pet cokes. Despite the relatively high concentration of vanadium pentoxide (V₂O₅) in the ash (19.8%), the very low ash content puts the vanadium pentoxide at about 600 ppm on a fuelfired basis. This concentration of vanadium pentoxide is well within the range of other pet cokes that have been successfully fired in CFB combustors.

The limestone sample from the base case CFB plant was analyzed to determine its composition. Table 3.1.3 shows the results of this limestone versus relatively high and low reactivity reference limestones used in ALSTOM-supplied CFBs. Compositionally, this limestone contains more "inerts" than reference Limestones 1 and 2. Suffice it to note that this limestone is successfully used at the base case CFB plant.

QUANTITY	BASE CAS	E CFB COAL	ILLINOIS N	o. 6 COAL	DELAYED PETROLEUM COKE			
QOANTI	As-Received	Dry-Ash-Free	As-Received	Dry-Ash- Free	As-Received	Dry-Ash-Free		
Prox. & Ult. Analyses, Wt.%								
Moisture	3.9		16.4		9.4			
Volatile Matter	15.6	20.9	32.7	43.6	10.2	11.3		
Fixed Carbon (Diff.)	59.0	79.1	42.3	56.4	80.1	88.7		
Ash	21.5		8.6		0.3			
Hydrogen	3.3	4.4	4.1	5.5	3.6	4.0		
Carbon	65.2	87.4	59.2	78.9	81.6	90.4		
Sulfur	1.8	2.4	3.7	4.9	1.1	1.2		
Nitrogen	1.3	1.7	1.1	1.5	3.0	3.3		
Oxygen (Diff.)	3.0	4.0	6.9	9.2	1.0	1.1		
HHV, Btu/lb, daf	11342	15204	10630	12715	14048	15557		
O/N Ratio	2.31		6.27		0.33			
FC/VM Ratio	3.78		1.29		7.85			
N Loading (Ib/MMBtu)	1.15		1.03		2.14			
Sulfur Loading (lb/MMBtu)	1.59		3.48		0.78			

Table 3.1.1: Selected Analyses of Test Fuels

QUANTITY	BASE CASE CFB COAL	ILLINOIS #6 COAL	DELAYED PET COKE		
Ash Fusibility Temperatures, °F					
I.T.	2440	2070			
S.T.	2535	2135	Not Measured		
H.T.	2650	2190	Not measured		
F.T.	2800	2260			
$\Delta T = F.TI.T.$	360	190			
Ash Compositions, Wt.%, Dry					
SiO ₂	56.2	47.7	13.7		
Al ₂ O ₃	26.6	18.3	7.4		
Fe ₂ O ₃	9.1	17.2	12.9		
CaO	1	4.8	12.3		
MgO	0.7	0.8	1.9		
Na ₂ O	0.5	1.7	4.6		
K ₂ O	2.7	1.9	0.7		
TiO ₂	1.3	0.8	0.8		
P_2O_5	0.6	0.1	0.4		
SO ₃	0.8	5.5	14.1		
MnO	0.1	0.1	0.1		
V_2O_5			19.8		
BaO	0.1	0.1	0.1		
SrO	0.1	0.1	0.1		
NiO			10.1		
TOTAL	99.8	99.1	99.0		

Table 3.1.2: Ash Compositions and Fusibility Temperatures of Test Fuels

|--|

ltem	Reference Limestone-1	Base Case CFB Limestone	Reference Limestone-2		
% Moisture	<0.1	0.19	<0.1		
Raw Data - Dry basis	wt %	wt %	wt %		
Total Ca	37.53	32.26	38.59		
Total Mg	0.23	2.28	0.34		
CO ₂	41.62	39.86	42.32		
Report Basis					
% as CaCO3	93.7	80.6	96.4		
% as MgCO3	0.8	7.9	1.2		
% Inerts (difference)	5.5	11.5	2.4		

3.2 TGA Reactivity Test Results

As noted previously, ALSTOM's TGA apparatus was used to determine fuel and limestone reactivities. In the case of fuel reactivity, the measurement involves determining the time for complete burnout of the combustibles of a given fuel. In the case of limestone the measurement involves the time for sulfation to occur and the percent calcium utilization in sulfur absorption. Results are presented below.

3.2.1 Limestone Reactivity

The base case CFB plant-supplied limestone is compared with two other reference limestones that are used successfully in commercial CFBs built by ALSTOM. The subject limestone is slightly less reactive than Reference Limestone-1 and significantly more reactive than Reference Limestone-2. Limestones vary in porosity, and hence reactive surface areas, when undergoing calcination. Though not measured, it can be surmized that the subject limestone has a relatively greater surface area after calcination than Reference Limestone-2, and a surface area slightly less than Reference Limestone-1. Importantly, the three limestones evaluated here are currently used successfully at their respective CFB power plants.

Figure 3.2.1: Sulfation Reactivity of Base Case CFB and Reference Limestones

3.2.2 Fuel Reactivity

Each of the three subject fuels was burned in air along with other reference fuels. Additionally, three cases were evaluated for the base case CFB's coal (Table 3.2.1). Fifty (50) cc/min of N₂ gas were admitted into the balance compartment to protect it from over-heating. The first (Reference) case consisted of burning the coal in 50 cc/min of air. The so-called "Constant Mass" case consisted of burning the coal in an O_2/CO_2 mixture, such that the mass of O_2 used in the Reference case was maintained and the mass of N₂ used in the reference case was replaced with an equal mass of CO_2 . The "Constant Volume" case consisted of burning the coal in O_2/CO_2 mixture, such that the mass of N_2 used in the reference case was replaced with an equal mass of O_2 used in the Reference case was again maintained and the volume of N₂ used in the reference case was replaced with an equal to the reference case was replaced with an equal to the reference case was replaced with an equal to the mass of O_2 used in the Reference case was replaced with an equal volume of CO₂. The two oxy-fuel firing cases are important for the following reasons:

- The "Constant Mass" case simulates a scenario involving a retrofit of an existing air-fired CFB to oxy-fuel firing. It has been shown by ALSTOM (Bozzuto, et al., 2001) that such a case would require only minimal modification to the boiler island.
- □ The "Constant Volume" case simulates a "Greenfield" oxy-fuel-fired CFB scenario. It should, nevertheless, be borne in mind that ALSTOM has pushed the envelope by proposing a full-scale CFB firing coal in a combustion medium comprising 70% O₂ and 30% recycled flue gas. Test results for oxy-fuel firing with the O₂ concentration in the combustion medium (in CO₂ balance) increased progressively from 21% to 70% are presented in Section 3.3.

		Bala	ance	Combustion Air										Com	.b.Med. (Comp.
Combustion		Cooli	ing N ₂	Total Air		O ₂		N ₂		CO2		Grand Total		(Vol. %)		
Medium	Case	(cc/min)	(g/min)	(cc/min)	(g/min)	(cc/min)	(g/min)	(cc/min)	(g/min)	(cc/min)	(g/min)	(cc/min)	(g/min)	N ₂	CO ₂	O ₂
Air	Baseline	50	0.0573	50	0.0592	10.5	0.01373	39.5	0.04524	0.0	0.0	100.0	0.1162	89.5		10.5
O ₂ /CO ₂ Mixture	Constant Mass	50	0.0573	0.0	0.0	10.5	0.01373	0.0	0.0	25.2	0.0452	85.7	0.1162	58.4	29.4	12.3
O ₂ /CO ₂ Mixture	Constant Volume	50	0.0573	0.0	0.0	10.5	0.01373	0.0	0.0	39.5	0.071	100.0	0.1420	50.0	39.5	10.5

Table 3.2.1: TGA Test Matrix for Base Case CFB Coal

All flow rates @ 25 °C & 1 atm.

Burn-off curves of the three subject fuels are shown in Figure 3.2.2 along with that of a Pennsylvania anthracite sample. According to these burn-off curves, the base case CFB coal, which is a medium volatile bituminous coal, takes somewhat longer to burn to completion than the pet coke. As expected, both fuels take longer to burn to completion than the Illinois #6 high volatile C bituminous (hvCb) coal. Also, as expected, both fuels burn to completion faster than a reference anthracite sample.

Figure 3.2.3 shows data from the same TGA tests plotted as the <u>rate</u> of weight loss as a function of temperature. These plots are also shown for the three subject fuels with the same anthracite as a reference fuel for comparative purposes. Plotting the data in this manner shows the position of peak combustion intensity, as evidenced by peak rates of weight loss. Relative positions of fuel reactivity are unchanged from the previous figure, but the shapes of the curves denote something about the nature of the combustibles. Generally, the position of the weight loss peak varies inversely with the volatile matter content in the fuel. This is supported by the fact that the volatile matter contents of the Illinois #6 coal, base case CFB coal, and

the anthracite are 44, 21, and 4%, respectively. The corresponding value for the pet coke is 14%. These fuels are similar to those routinely burned in ALSTOM-designed CFBs (e.g., Tanca, 1994).

Figure 3.2.2: Burn-Off Shown as Weight Loss of Various Fuels in Air as a Function of Temperature

Figures 3.2.4, 3.2.5, and 3.5.6 show the burn-off, rate of weight loss, and pseudo-combustion kinetics of the base case CFB coal in air and O_2/CO_2 mixtures under constant mass and constant volume scenarios. The basic message from these plots is that oxy-fuel firing does not negatively impact the overall combustion efficiency of a fuel compared to air firing. These results are consistent with those obtained previously by ALSTOM (Bozzuto, et al., 2001).

Figure 3.2.3: Rate of Weight Loss of Various Fuels in Air as a Function of Temperature

Figure 3.2.4: Burn-Off Shown as Weight Loss of Base Case CFB Coal in Air and O₂/CO₂ Mixtures as a Function f Temperature

Figure 3.2.5: Rate of Weight Loss of Base Case CFB Coal in air and O_{2/}CO₂ Mixtures as a Function of Temperature

ALSTOM Power Inc.

3.3 Bench-Scale Fluidized Bed Combustion (FBC) Tests Results

Table 3.3.1 shows the test matrix followed when performing the combustion testing of the three subject fuels in the four-inch inner diameter Fluidized Bed Combustion (FBC) facility. Three series of tests were carried out on each fuel, with the major emphasis placed on the base case CFB coal. The first series (I) involved burning the fuel in air to provide a frame of reference for comparing the results from the other series. The second series (II) was dedicated to firing each fuel in one or more O_2/CO_2 mixtures. The third series (III) was for determining the desulfurization potential of each fuel with the limestone sample from the base case CFB plant in air and in 30% $O_2/70\%$ CO₂ (which simulates the constant mass scenario explained in Section 3.2.2). The superficial gas velocity was maintained in a narrow range of 1.8-3.3 ft/sec. The stoichiometry was varies in the 2.0-4.7 range. Under these conditions, the furnace outlet O_2 concentration was in the 13-51% (Dry basis).

The test conditions in Table 3.3.1 were selected on the basis of a balanced consideration of personnel safety, furnace operation, and the nature of the results obtained. A few scoping tests were run up-front to ensure that the widely varying conditions represented in this test matrix could be run without resorting to unreasonable compromises.

Fuel	Series	Ca/S Mole Ratio	Combustion Gas Medium	Bed Temeperature, [°] F	Superficial Gas Velocity, ft/sec.	Stoichiometry, $^{\lambda}$	Measurements/Observations:		
	Ι		Air				Ash slagging/sintering potentials as a		
Base Case	П		23%O2 -70% O2/in CO2 Balance				result of increased oxygen concentrations in the combustion gas, and/or use of a slagging coal		
		3.5	Air		1.8 - 3.3				
	111	3.5	30% O2/70% CO2				Flue gas desulfurzation potential by the limestone sample used		
	I		Air						
Illinois #6 Coal	Ш		21% O2 -50% O2/in CO2 Balance	1635-1908		2.0 - 4.7	NOx emissions reduction by use of nitrogen-free O ₂ /CO ₂ combustion mediums		
		3.5	Air						
Delayed		3.5	30% O2/70% CO2				Impact of various combustion mediums on: (1) overall fuel combustion efficiency; (2)		
	I		Air				unburned carbon emissions; and (3) CO		
	П		30% O2/70% CO3						
Coke		3.50	Air				Impact of fuel nature on all the		
		3.50	30% O2/70% CO3				parameters specified above		

 Table 3.3.1: Test Matrix for Bench-Scale Fluidized Bed Combustion

The impact of both CO₂ partial pressure and temperature on limestone calcination in the furnace is shown in Figure 3.3.1. This thermodynamic calculation shows, for example, that limestone calcination with a CO₂ partial pressure of 0.7 atm is not a problem, as long as the temperature is greater than 1600 °F. Based on this result, it was decided to carry out all the tests with high CO₂ partial pressures at not less than 1650 °F bed temperature. A Ca/S mole ratio of 3.5 was used in all the desulfurization tests, based on previous experience. It should be understood at the outset that the test matrix in Table 3.3.1 was tailored to provide results on a comparative basis only. No conclusions should be drawn on the actual magnitudes of the data points.

The types of measurements/observations made in this evaluation are specified in Table 3.3.1. The results obtained from this test program are discussed below.

Figure 3.3.1: Limestone Calcination as a Function of Furnace CO₂ Partial Pressure And Temperature

3.3.1 Observations on Combustion Behavior/Ash Slagging Potentials

The coal sample obtained from the base case CFB plant was used to evaluated the impacts of superficial gas velocity and O_2 content in the combustion gas on its ash slagging potential. Given that the minimum fluidization velocity of the alumna bed materials used was less than 0.5 ft/sec, it was decided to first determine the minimum superficial gas velocity that could be used during combustion in air without any slagging-related defluidization problems. This value was found to be about 1.7 ft/sec with a bed temperature of about 1650 °F. Testing in 30% $O_2/70\%$ CO₂ medium also presented no defluidization problems at this temperature. Testing in 50% $O_2/50\%$ CO₂ medium, however, caused, at first, a virtually uncontrollable bed temperature rise and subsequent bed defluidization. Consistent with increased bed temperature with increasing O_2 in the combustion medium, it was observed that the flames studied were (1) orange-yellowish in air and 30% $O_2/70\%$ CO₂ combustion; and (2) increasingly bright and whitish in nature and hard to look at.

Testing this coal in Q_2/CO_2 mediums containing up to 70% O_2 caused, as expected, a bed temperature rise of up to about 250 °F. Nevertheless, it was possible to obviate bed slagging/defluidization problems as long as the bed was well fluidized. As a frame of reference, the superficial gas velocity had to be maintained at greater than 2.5 ft/sec, whereas for combustion testing in air and O_2/CO_2 mediums containing equal to or less than 40% O_2 , a superficial gas velocity of ~1.7 ft/sec was sufficient to keep the bed fluidized at all times.

The increase in particle surface temperature (Ts) with Q_2 partial pressure was confirmed through calculations based on heat balance (Field, et al., 1967), i.e., Hg = Hr + Hc, where Hg is the heat generated by the burning particle and Hr and Hc are the radiation and conduction heat losses from the particle, respectively. Depending on the particle size and Q_2 partial pressure surrounding the particle, its surface temperature (Ts) could be lower than the bulk gas temperature (Tg) or higher by several hundred to thousands of degrees Fahrenheit (see illustration of heat balance algorithm in Figure 3.3.2).

A number of lessons were learned through trial and error to successfully burn the subject fuels under the test conditions specified in Table 3.3.1.

- □ Start fuel feeding while the bed temperature was about 200 °F below the target value. Slowly increase the feed rate as the bed temperature rises steadily, and approaches its target.
- □ Ensure that the whole bed is fully fluidized at all times. A superficial gas velocity of 2.5 ft/sec or higher was sufficient for obviating bed slagging/defluidization under the conditions prevailing in this study.

Using the above guidelines enabled the authors to successfully test fire the Illinois #6 coal, which is known to have a high slagging potential (see Section 3.1, above), in the FBC in O_2/CO_2 atmospheres containing up to 50% O_2 without any bed defluidization-related problems. Although the test in 70% $O_2/30\%$ CO₂ was not run, due principally to time and financial constraints, there is no reason to believe that it could not be executed successfully. The pet coke was run only in air and 30% $O_2/70\%$ CO₂ medium, as this fuel has virtually no slagging potential.

The test conditions used here in the FBC facility are very aggressive for three reasons: (1) there was no means of recycling particles to control the bed temperature; (2) the superficial gas velocities were very low; and (3) given the prevailing stoichiometric ratios, the furnace outlet O_2 concentration ranged from 13% to 51% (dry basis). Conversely, the operating conditions of a commercial oxy-fuel fired CFB would be much less aggressive for the following reasons: (1) the bed temperature would be closely controlled through judicious recycling of bed materials; (2) the superficial gas velocity would be maintained at about 18 ft/sec; and (3) the O_2 concentration in the furnace would rapidly decline from its initial value of 70%, for Case 2 (New Compact O_2 -Fired FCB, see Volume I), to about 3% at the outlet.

Based on these findings, it was preliminarily concluded that the choice of $70\% O_2/30\%$ recycled flue gas (essentially CO_2) as a combustion medium for study Case 2 was plausible. Pilot-scale testing in Phase II will be used to evaluate this concept. Based on the pilot-scale testing the concept presented in Case 2 will be either affirmed for further commercial development or modified.

Figure 3.3.1: Variation of Burning Fuel Particle Surface Temperature with Oxygen Partial Pressure

3.3.2 Combustion Characteristics

As noted in the test matrix (Table 3.3.1), a number of measurements were made while observing the bed dynamics behavior (e.g., ash slagging potential), as a function of operating conditions. The fly ash samples, collected in the cyclone and Balston bag filter for each test, were first blended before being subjected to proximate and ultimate analyses. The ultimate analyses yielded the unburned carbon (UBC) values. An ash tracer technique (Nsakala, et al., 1986) was used in conjunction with the proximate analyses of the feed stock and fly ash residues to calculate the overall fuel combustion efficiencies. These results are presented in

Table 3.3.2 and plotted in Figure 3.3.3. They can be summarized as follows:

- The overall Fuel Combustion Efficiency (FCE) of the medium volatile bituminous (mvb) coal from the base case CFB plant (Figures 3.3.3 a & b) increases with increasing oxygen content in the combustion gas, levelling off at about 95%. The unburned carbon (UBC) in the fly ash shows, as expected, the exact reverse trend, levelling off at about 10%.
- □ The Illinois #6 high volatile C bituminous (hvCb) coal (Figures 3.3.3 c & d) is so reactive that the oxygen content in the prevailing combustion gas medium does not distinctly impact its overall combustion efficiency. The FCE values for this coal are greater than 98% under all circumstances. The UBC values in the fly ashes are correspondingly low at about 5% under all circumstances.
- □ The pet coke sample is also highly reactive (Figures 3.3.3 e & f) and, hence, shows a similar FCE trend with the Illinois #6 coal. The high UBC values are simply indicative of the fact that this fuel has a very low ash content (0.3%, see Table 3.1.1 above).
- □ The addition of limestone to the combustion process to control sulfur dioxide emissions does not adversely impact overall combustion efficiency.

Based on these results, it can be concluded that oxy-fuel firing enhances overall fuel combustion efficiency, which, correspondingly, decreases carbon heat loss.

Fuel	Test No.		Superficial Gas Velocity, ft/sec.	Stoichiometry, λ	Ca/S Mole Ratio	Gaseous Emissions, Ib/MMBtu				Fuel	Unburned
		Combustion Gas Medium				Bed Temperature, °F	NOx	SO ₂	со	Combustion, %DAF Basis	in Fly Ash, % Dry Basis
	BCCa	Air	3.27	2.10		1676	1.06	2.26	0.12	88.0	25.8
	BCCa1	21% O ₂ /79% CO ₂	3.18	2.02		1635	0.93	2.21	0.38	89.0	20.7
	BCCb	30% O ₂ /70% CO ₂	1.77	2.11		1683	0.90	2.42	0.32	90.8	20.7
	BCCc	40% O ₂ /60% CO ₂	2.77	2.95		1681	1.01	2.70	0.30	95.1	10.3
Base Case CFB Coal	BCCd	50% O ₂ /50% CO ₂	2.69	2.59		1871	0.84	2.73	0.21		
	BCCd1	50% O ₂ /50% CO ₂	2.74	2.57		1908	0.83	2.78	0.23	95.0	12.2
	BCCe	70% O ₂ /30% CO ₂	2.89	3.67		1805	0.82	2.96	0.48	95.3	10.3
	BCCf	Air	2.78	2.51	3.5	1669	1.32	0.42	0.21	91.0	20.6
	BCCg	30% O ₂ /70% CO ₂	2.72	2.73	3.5	1708	1.27	1.61	0.35	90.7	21.1
	III#6a	Air	2.73	2.86		1632	1.42	5.96	0.23	98.9	5.7
	III#6b	30% O ₂ /70% CO ₂	2.58	3.93		1591	1.63	5.59	0.48	99.1	5.8
	III#6b1	30% O ₂ /70% CO ₃	2.68	2.85		1674	1.35	5.45	0.38		
IIIInois #6 Coal	III#6c	50% O ₂ /50% CO ₂	2.69	4.74		1674	1.32	5.53	0.32	99.2	4.5
	III#6d	Air	2.80	3.14	3.5	1683	1.21	0.67	0.16	98.9	5.8
	III#6e	30% O ₂ /70% CO ₂	2.70	2.80	3.5	1691	1.32	1.83	0.38	98.5	6.8
	DPCa	Air	2.77	2.80		1662	2.15	1.37	0.09	99.9	28.3
Delayed Petroleun Coke	DPCb	30% O ₂ /70% CO ₃	2.79	2.70		1759	1.79	1.33	0.26	99.8	38.9
	DPCb1	30% O ₂ /70% CO ₂	2.59	3.81		1603	1.86	1.26	0.33		
	DPCc	Air	2.74	2.96	3.50	1657	1.75	0.56	0.08	99.8	39.9
	DPCd	30% O ₂ /70% CO ₃	2.82	2.83	3.50	1784	1.33	0.55	0.25	99.9	34.9

Table 3.3.2: Summary of Bench-Scale FBC Test Data

Figure 3.3.2: Variation of Fuel Combustion Efficiency and Unburned Carbon Emissions with Oxygen Partial Pressure

3.3.3 Gaseous Emissions

The emissions of three gas species (NOx, SO₂, and CO) were measured during each test shown in Table 3.3.2. The resulting gas traces are shown in Figures 3.3.4a - 3.3.6b. These traces show the actual time-lapse under stable conditions. The averages from these traces are, actually, the data shown in Table 3.3.2. As these average values lend themselves to easier data interpretation than the results shown in Figures 3.3.4a - 3.3.6b, they are plotted in Figures 3.3.7 - 3.3.8. They show, respectively, the emission trends of NOx, SO₂, and CO as function of oxygen concentration (O₂) in the combustion gas. It should be reemphasised that of particular interest are the trends and relative changes rather than the actual magnitudes of the data points. A brief discussion of the emission of each gaseous species follows.

NOx Emissions

The medium volatile bituminous coal from the base case CFB plant, which was studied in more detail than the other two fuels, shows clear trends (Table 3.3.2 and Figure 3.3.7). Oxy-fuel firing yielded NOx emissions

equal to or less than those from air firing. For example, the reductions in NOx from firing in air to firing in $30\% O_2/70\% CO_2$ and $70\% O_2/30\% CO_2$ amounted to about 18% and 27 %, respectively (i.e., from 1.1 to 0.9 and 0.8 lb/MMBtu). These reductions are believed to be due, at least partially, to the fact that the thermal NOx, which is associated with the nitrogen in the combustion air, does not occur with combustion in nitrogenfree O_2/CO_2 combustion mediums. This trend is consistent with results obtained previously in this Laboratory (Bozzuto, et al., 2001) and by others (Chui, et al., 2001, and Weller and Boiarski, 1985). Adding limestone to reduce SO₂ emissions seemed to exacerbate NOx emissions, at least for this particular coal. For example firing this coal in air without limestone and with limestone (at a Ca/S mole ratio of 3.5) led to a NOx increase of about 18% (from 1.1 to 1.3 lb/MMBtu). The corresponding increase during combustion in $30\% O_2/70\% CO_2$ was about 40% (from 0.9 to 1.3 lb/MMBtu). This trend, which shows the catalytic effect of Ca on NOx emissions, is consistent with ALSTOM's experience with commercial CFB units.

The NOx emissions from the delayed pet coke were consistently the highest under similar scenarios. For example, during combustion in air and 30% $O_2/70\%$ CO₂, the emissions from the pet coke were 2.2 and 1.8 lb/MMBtu, respectively. The corresponding values from the base case CFB and Illinois #6 coals were considerably lower. This trend is in general agreement with the fuel nitrogen loadings shown in Table 3.1.1.

SO₂ Emissions

The medium volatile bituminous coal from the base case CFB plant also shows clear trends (Table 3.3.2 and Figure 3.3.8). Oxy-fuel firing yielded SO₂ emissions that were progressively higher than was the case when firing this coal in air. For example, the increases in SO₂ from firing in air to firing in 30% O₂/70% CO₂ and 70% O₂/30% CO₂ amounted to about 4% and 30%, respectively (i.e., from 2.3 to 2.4 and 3.0 lb/MMBtu). The increases appear to be due, at least partially, to increased bed temperatures during oxy-fuel firing. That is, for the Illinois #6 coal and the pet coke, the SO₂ concentrations actually went down during oxy-fuel firing, as the bed temperatures remained fairly constant.

Based on previous experience, a Ca/S mole ratio of 3.5 was used when burning each test fuel in air and in $30\% O_2/70\% CO_2$ (Table 3.3.2 and Figure 3.3.8). During air firing this sorbent dosage yielded a sulfur capture of 83% for the base case CFB coal (from 2.3 to 0.4 lb/MMBtu). The corresponding sulfur captures for the Illinois #6 coal and delayed pet coke were 88% (from 6.0 to 0.7 lb/MMBtu) and 57% (from 1.4 to 0.6 lb/MMBtu). Sulfur captures were consistently lower during combustion of the three fuels in 30% $O_2/70\% CO_2$. The capture was only 33% for the base case CFB coal (from 2.4 to 1.6 lb/MMBtu). The corresponding captures for the Illinois #6 coal and delayed pet coke were 67% (from 5.5 to 1.8 lb/MMBtu) and 54% (from 1.3 to 0.6 lb/MMBtu).

Sulfur dioxide emissions with or without limestone addition were higher for the Illinois #6 coal than they were for the other two fuels. For example, during air firing SO_2 emissions were 6.0, 2.3, and 1.4 lb/MMBtu for the Illinois #6 coal, base case CFB coal, and delayed pet coke, respectively. This trend is consistent with the sulfur loading values given in Table 3.1.1.

CO Emissions

Consistent with the results shown in Figures 3.3.7 and 3.3.8, the medium volatile bituminous coal from the base case CFB plant also shows clear trends (Table 3.3.2 and Figure 3.3.9). Oxy-fuel firing yielded CO emissions that were always higher than was the case when firing this coal in air. Nevertheless, CO tended to decrease as the oxygen content in the combustion gas increased. For example, firing this coal in air yielded CO emissions of about 0.1 lb/MMBtu. The values during combustion in various Q_2/CO_2 mixtures ranged from about 0.2 to almost 0.5 lb/MMBtu. It is speculated that the higher partial pressure of CO_2 in the flue gas may inhibit the oxidation of CO to CO_2 in the particle boundary layer at the prevailing conditions. A commercial CFB has a gas residence time on the order of 5 seconds versus a gas residence time of about 1.5 seconds in the current bench-scale reactor. Since gas residence time has a significant, favorable bearing on CO emissions, further testing is needed, as is planned during Phase II pilot-scale testing, to verify the magnitude of CO under conditions simulating commercial operation.

Figure 3.3.3: Combustion of Base Case CFB Coal in Air and Various O₂/CO₂ Mixtures without Limestone Addition

Figure 3.3.4: Combustion of Base Case CFB Coal in Air and 30% O₂/70% CO₂

Figure 3.3.5: Combustion of Illinois #6 Coal in Air and Various O₂/CO₂ Mixtures without Limestone Addition

Figure 3.3.6: Combustion of Illinois #6 Coal in Air and 30% O₂/70% CO₂ Mixture with Limestone Addition

Figure 3.3.7: Combustion of Delayed Petroleum Coke in Air and 30% O₂/70% CO₂ Mixtures without Limestone Addition

Figure 3.3.8: Combustion of Delayed Petroleum Coke in Air and 30% O₂/70% CO₂ Mixtures with Limestone Addition

Figure 3.3.9: Variation of NOx Emissions from Test Fuels as a Function of O_2 in Combustion Gas

3.4 Conclusions and Recommendations for Future Work

As stated previously, three fuels were characterized, and tested in the TGA and Bench-Scale FBC. Testing in the Bench-Scale FBC entailed burning the three fuels in air and 30% $O_2/70\%$ CO₂ (by volume). Additionally, the base case FCB and Illinois #6 coals were burned in O_2/CO_2 mixtures containing from 21 to 70% O_2 and from 21 to 50% O_2 , respectively. Bed temperatures ranged from about 1635 °F to 1900 °F. The limestone sample obtained from the base case CFB plant was used to determine, for each fuel, its flue gas desulfurization potential during fuel combustion in air and 30% $O_2/70\%$ CO₂. All tests were carried out in high excess O_2 (with stoichiometric ratios ranging from about 2 to about 4.7).

3.4.1 Conclusions/Remarks

Slagging Behavior

- □ Testing the base case CFB coal in O_2/CO_2 mixtures containing up to 70% O_2 caused bed temperature rises of up to about 250 °F. Nevertheless, it was possible to obviate bed slagging/defluidization problems as long as the bed was well fluidized. The Illinois #6 coal, which is known to have a high slagging potential, was successfully tested in O_2/CO_2 atmospheres containing up to 50% O_2 without any bed defluidization-related problems. Although the test in 70% $O_2/30\%$ CO₂ was not run on this fuel, there is no reason to believe that it could not be executed successfully. The pet coke was run only in air and 30% $O_2/70\%$ CO₂, as it presents virtually no slagging potential.
- □ The test conditions used in the FBC facility are very aggressive for three reasons: (1) there was no means of recycling particles to control the bed temperature; (2) the superficial gas velocities were very low and (3) given the prevailing stoichiometric ratios, the furnace outlet O₂ concentration ranged from 13% to 51% (dry basis). Conversely, the operating conditions of a commercial oxy-fuel-fired CFB would be much less aggressive for the following reasons: (1) the bed temperature would be closely controlled through judicious recycling of bed materials; (2) the superficial gas velocity would be maintained at about 18 ft/sec; and (3) the O₂ concentration in the furnace would rapidly decline from its initial value of 70%, for Case 2 (New Compact O₂-Fired CFB, see Section 2.2, Volume I), to about 3% at the outlet.
- □ Based on these findings/remarks, it is preliminarily concluded that 70% O₂/30% recycled flue gas (principally CO₂) as a combustion medium for study Case 2 is feasible.

Combustion Characteristics

- Burning the three test fuels in high O₂ combustion mediums improved overall fuel combustion efficiency, which, correspondingly, improved carbon loss.
- □ The addition of limestone to the combustion process to control sulfur dioxide emissions did not adversely impact overall combustion efficiency.

Gaseous Emissions

- □ Burning the three fuels in a nitrogen-free combustion medium (i.e., in O_2/CO_2 mixtures) leads to NOx emission reductions ranging up to 27%. The reductions are believed to be due, at least partially, to the fact that thermal NOx, which is associated with the nitrogen in the combustion air, does not occur with combustion in a nitrogen-free O_2/CO_2 combustion medium.
- □ Adding limestone to the combustion process to reduce SO₂ emissions seemed to exacerbate NOx emissions for the base case CFB coal, as is known to happen in commercial CFB units. Unfortunately, this occurred for the Illinois #6 coal and delayed pet coke. This phenomenon needs to be investigated further.
- □ Burning the three test fuels in a nitrogen-free combustion medium (i.e., in O₂/CO₂ mixtures) lead to SO₂ emission increases ranging up to 30%. The increases appear to be due, at least partially, to increased bed temperatures during oxy-fuel firing. This conclusion arose from a closer examination of the data. That is, for the Illinois #6 coal and the pet coke, the SO₂ concentrations actually went down during oxy-fuel firing, as the bed temperatures remained fairly constant.

A Ca/S mole ratio of 3.5 led to sulfur captures ranging up to 88% when the combustion took place in air. Sulfur captures were consistently lower during combustion of the three fuels in 30% Q₂/70% CO₂, ranging only up to 67%.

CO Emissions

Oxy-fuel firing yielded CO emissions that were always higher than was the case when firing in air. Nevertheless, they tended to decrease as the oxygen content in the combustion gas increased. It is speculated that the higher partial pressure of CO₂ in the flue gas may inhibit the oxidation of CO to CO₂ in the particle boundary layer at the prevailing conditions. A commercial CFB has a gas residence time on the order of 5 seconds versus a gas residence time of about 1.5 seconds in the current bench-scale reactor. Since gas residence time has a significant, favorable bearing on CO emissions, further testing is needed, as planned during Phase II pilot-scale testing, to verify the magnitudes of CO under conditions simulating commercial operation.

CO₂ Concentrations in Flue Gas

□ The concentration of carbon dioxide in the flue gas was not measured, as the existing analyzer could measure only values ranging up to 25%. Hence, CO₂ concentration was back calculated. The CO₂ concentration for the combustion of the base case CFB coal in the 21% O₂/70% CO₂ - 70% O₂/30% CO₂ was in the 47-84% range.

3.4.2 Recommendations for Future Work

Testing the base case CFB coal in O_2/CO_2 medium containing up to 70% O_2 caused bed temperature rises of up to 250 °F. Nevertheless, it was possible to obviate bed slagging/defluidization problems as long as the bed was well fluidized.

The added emission benefits offered by oxy-fuel firing over air firing in CFB boilers are:

- \Box CO₂ in the flue gas is highly concentrated (~90% vs.~15%), thus making the processing of this stream to achieve the required CO₂ purity for EOR application cheaper.
- □ Typically, low NOx emissions in combustion-staged air-fired CFBs are further reduced, due primarily to elimination of thermal NOx.
- □ SO₂ emission reductions of up to 90% with sorbent should not be negatively impacted. Furthermore, ALSTOM has a commercial product called, "Flash Drier Absorbent (FDA)," which has been successfully demonstrated in the pilot-scale Multi-use Test Facility (MTF) to reduce SO₂ emissions by as much as 99%.
- □ Burning the three fuels in high O₂ combustion medium improved overall fuel combustion efficiency, which correspondingly improved carbon loss.
- □ The addition of limestone to the combustion process to control sulfur dioxide emission did not adversely impact overall fuel combustion efficiency.

Based on these encouraging test results, on the findings from technical and economic analyses presented in Volume I, and on practical considerations, it has been recommended and agreed to by the DOE/NETL that Phase II workscope be implemented as recommended in the Revised Statement of Work of December 13, 2002. Pilot-scale testing in Phase II will evaluate this concept, among other things. Based on the results of pilot-scale testing, the concept presented in Case 2 (see Section 2.2, Volume I) will be either affirmed for further commercial development or modified.

4.0 BIBLIOGRAPHY

Annual Book of ASTM Standards, Volume 14, G-4, "Compatibility and Sensitivity of Materials in Oxygen Enriched Atmospheres," p. 556, 1999

Bozzuto, C., Nsakala, N., Liljedahl, G., Palkes, M., Marion, J., Fugate, M., Vogel, D., Gupta, J.C., and Guha, M., "Engineering Feasibility and Economics of CO₂ Capture on an Existing Coal-Fired Power Plant," Final OCDO & DOE Report, under Contracts CDO/d-98-8 and DE-FC26-99FT40576, June 2001

Chui, E.H., Croiset, E., and Thambimuthu, K.V., "Simulation of Combustion in High CO₂ and O₂ Environment," CANMET energy Technology Centre, Natural Resources Canada, Ottawa, K1A 1M1, Private Communication, 2001

Field, M.A., Gill, D.W., Morgan, B.B., and Hawksley, P.G.W., "Reaction Rate of Carbon Particles," <u>Combustion of Pulverised Coal</u>, BCURA, Leatherhead, England, 1967, p.186

Nsakala, N., Patel, R. L. and Borio, R. W., "An Advanced Methodology for Prediction of Carbon Loss in Commercial Pulverized Coal-Fired Boilers," Presented at the1986 ASME/IEEE Joint Power Generation Conference, Portland, Oregon (October 19-23, 1986). Paper No. 86-JPGC-FACT-L. CE Publication TIS-8211.

Tanca, M., "Six Years of ABB-CE, Petcoke and Fluid Beds, ABB C-E Systems, Inc., Technical Paper TIS 94-010, 1994

Weller, B., Boiarski, T., and Barrett, R., "An Experimental Evaluation of firing Pulverized Coal in CO2-O2 Atmosphere, Battelle Columbus Laboratories' Presentation to Argonne National Laboratory, 1985