
U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory

The Energetics of Carbon Dioxide Capture in Power Plants

U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory

The Energetics of Carbon Dioxide Capture in Power Plants

Gerold Göttlicher

February 2004

Updated license edition of the publication "Energetik der Kohlendioxidrückhaltung in Kraftwerken." Fortschritt-Berichte VDI Reihe 6 Nr. 421 (VDI Progress Reports Series 6 No. 421).

© VDI-Verlag, Dusseldorf 1999

Translated by APEX Translations, Inc.

The National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE) is pleased to provide this English translation of Dr. Göttlicher's book. While the views in this book may not necessarily be those of DOE, the work stands as a benchmark in the field of CO_2 capture from power plants for the purposes of carbon sequestration.

I would like to acknowledge those at NETL who made contributions to the translation and publication project. The project was initiated by Dr. Larry Headley, Associate Director of the Office of Science and Technology, and supported by Dr. Curt White, Focus Area Leader for Carbon Sequestration Science and Dr. Gilbert McGurl, Deputy Associate Director of the Office of System and Policy Support. A special thanks goes to Patrick Le who coordinated the review of the translation. He was assisted by Edward Parsons, Hsue-Peng Loh, and Dale Keairns. Thomas Russial, Lisa Jarr, Henry Pennline, Ron Cutright, Gary Martin, Lynn Billanti, Debbie Sugg, and Tami Kapaldo also made important contributions.

Finally, I would like to acknowledge the work of Apex Translations, Inc., and especially Dr. Florian Deltgen, for doing the translation in a very professional, timely, and accommodating manner.

Robert P. Warzinski Research Chemist, NETL

PREFACE TO TRANSLATION

Since the first version of this book in 1999, the concerns over rising CO_2 emissions present an even greater challenge to the development of the future energy supply system. Accordingly, new proposals and demonstration projects have been developed to address this issue.

Reducing CO_2 emissions associated with power production by measures such as efficiency improvements or switching to low carbon fuels are limited by the residual carbon content of the fuel and the availability of the primary energy sources, respectively. Also, the utilization of renewable energy sources is restricted by capacities, as well as by the high cost of the present state of this technology. On the other hand, we will have to depend on reliable, abundant energy sources. Coal reserves, for example, are sufficient to provide a sustainable energy supply for centuries. If fossil fuels continue to be the primary energy supply for the next several decades, CO_2 capture and storage, also called carbon management [1], is the only transition solution to both secure energy supplies and reduced CO_2 emissions as we move to new energy supply systems.

Apart from nuclear energy, CO_2 capture and storage by far offers the largest potential for reducing CO_2 emissions at lower costs than utilization of renewable energy sources [2]. Although CO_2 avoidance by efficiency improvement at a certain point will start to get very expensive compared to CO_2 capture (Figure 1), the development of a low emission, i.e., highly efficient, power plant is advantageous for the application of CO_2 capture. The capture requirements would be reduced in proportion to the lower CO_2 emissions. Regarding CO_2 storage, there are potential options; however, there are possible ecological problems in CO_2 storage in the ocean, safety problems in underground storage, and impact problems of possible increases in primary energy consumption that must be considered and understood before this technology is feasible on a large scale. Regardless of the challenges, the vision of clean future energy at acceptable costs has to be pursued.

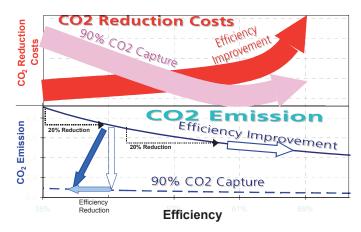


Figure 1: Trends of emission reduction and CO₂ reduction costs by efficiency improvement and CO₂ capture

 CO_2 emission reduction in power plants cannot be the only approach to reducing total CO_2 emissions. The effect of CO_2 capture can be increased if it is also applied to centralized hydrogen production from fossil fuels. Such a system of carbon management would include centralized power production, as well as fuel supply, from centralized hydrogen plants to the transportation sector and to domestic heating or to decentralized production of combined heat and power (Figure 2). For such a hydrogen production system, the gasification of coal or the reforming of natural gas is required with subsequent separation of the CO_2 and H_2 produced, such as in Process Family I in the book, to provide the hydrogen for export and the CO_2 for storage.

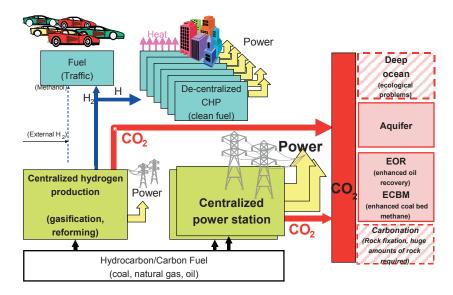


Figure 2: Carbon management system supplying CO₂ emission free power and fuel.

Regarding the development of a CO₂ emission free fossil fuel-fired power plant, the following statements should be considered:

- The development of a low emission, i.e., highly efficient, power plant is also advantageous for the application of CO₂ capture.
- Additional energy demand due to efficiency reduction or power reduction caused by CO₂ capture is unwanted and would partly negate the effect of emission reduction by increased climate effective emissions during mining, transport, and further utilization.
- One principle to be followed for minimization of the energy required for CO₂ capture is to avoid the dilution of the combustion products, e.g. by nitrogen, thus permitting CO₂ separation at the highest concentration possible. Theoretically, exergy could even be gained by avoiding exergy losses of gas mixing during combustion.
- As already mentioned in Chapter 2.2.1 (Overview), CO₂ is not the end product of chemical carbon conversion, but in the global chemical carbon cycle the lowest energy level is finally reached in the carbonates of the ocean sediments:

 $\begin{array}{rll} Mg_3Si_2O_5(OH)_4 + 3\ CO_2 & \rightarrow & 3\ MgCO_3 + 2\ SiO_2 + 2\ H_2O & +63,6\ kJ\ per\ kmole \ (exothermal) \end{array}$

In nature this exothermal integration of carbon into the sediments runs extremely slowly [3], preventing the technical utilization of the released energy. At present, there are no methods to utilize the energy of this reaction.

An optimized system considering all the above statements does not yet exist.

The direct fixation of fuel carbon in carbonates (see reaction above) without the intermediate production of CO_2 and with the utilization of the additional energy potential of the carbonation reaction should be considered as a conceivable process for CO_2 capture. Such a process is depicted in Figure 3 where the

only by-products are steam and a mixture of ash and carbonates. However, a practicable technical solution has not yet been found.

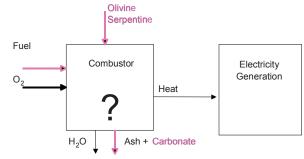


Figure 3: Open technical feasibility of direct fixation of fuel carbon in carbonates

From the comparison of the ideal processes described in Chapter 3.10, it is obvious that the combustion in oxygen and recirculated CO_2 in the long term offers by far the best option. Indeed, the development of oxygen production with membranes is already outlined which will cause clearly lower energy consumption and costs. Furthermore, proposals already exist for which no additional energy demand for oxygen supply would be required. Instead of supplying oxygen via the energy intensive intermediate step of producing highly pure oxygen, the oxygen is directly transferred via intermediate reactions with metal oxides as described in the book in Figure 2.18 or membrane reactors at high temperatures (Perovskit membranes, e.g. Figure 4) [4, 5, 6]. With the introduction of condensing CO_2 cycles, even the energy demand for CO_2 liquefaction could be eliminated. Such high-temperature membranes are also used in high-temperature fuel cells. The gas separation effect of the fuel cells could be used very effectively if this kind of membrane reactor would also be applied to oxidize the residual fuel without mixing with nitrogen from air.

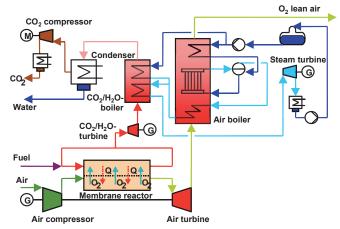


Figure 4: Gas turbine process with oxygen supplied by membrane reactor (Advanced Zero Emission Plant – AZEP [4]). The efficiency reduction would be less than 5 percentage points.

In the ZECA (Zero Coal Alliance) process [7], with the combination of a hydro-gasification process with a calcium/calcium oxide cycle acting as a combined CO shift – gas separation system and a SOFC with chemical heat recuperation in the calcium/calcium oxide cycle, an efficiency of 70% has been claimed when all components including the pressurized fuel cell become available (Figure 5). While CO_2 capture is inherent in this kind of hydro-gasification, the high efficiency of 70% is only attainable in combination with the almost complete utilization of the high temperature exhaust gas of the high tem-

perature fuel cell. Otherwise additional fuel would have to be consumed for adsorbent reduction (calcium/calcium oxide). The gasification components of this system, as well as the advanced pressurized fuel cells, will be subjects of future developments. Recent estimates assuming state-of-the-art components and consideration of chemical equilibrium result in an efficiency of only 39% LHV [8].

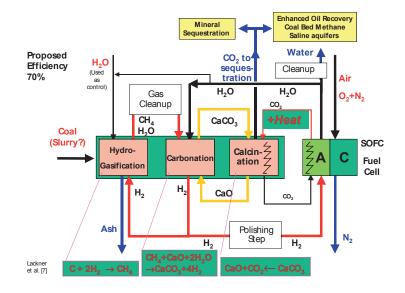


Figure 5: The ZECA process [7]

As a long term research goal, the possibility of the development of a CO_2 -free power plant is outlined with efficiency reduction due to CO_2 capture or even a higher efficiency. To reach this goal, new components have to be developed which minimize the effort for the respective gas separation and CO_2 liquefaction or even eliminate it, e.g., by a combustion system with oxygen transfer via membranes and a CO_2 turbine cycle with condensation. For CO_2 storage, solutions have to be the most environmentally neutral and should possibly utilize the chemical potential of the last transformation from the fuel to the carbonate. In any case, one goal for CO_2 capture has to be an efficiency as high as possible, because then less effort with components and energy is required. If in the long term, an energetic and economically favorable oxygen supply can be developed, it would not be important relative to CO_2 capture to distinguish between gasification technology or a steam power plant.

With existing technology, CO₂ capture can reduce emissions. However, due to the cost of higher primary energy consumption, it cannot be viewed as a no-regrets solution. Nevertheless, when the described development goals can be realized, CO₂ capture could offer a long-term, no-regrets solution with only a low energy requirement and high efficiency.

Gerold Göttlicher

ORIGINAL PREFACE

This dissertation was written during the period I spent as a Research Associate at the Chair of Energy Supply and Energy Management Technologies, at GH Essen University, in the course of research projects sponsored by the European Commission.

My cordial thanks to Professor Dr. Ing. R. Pruschek for helping me to accomplish my project work in an intensive and application-oriented manner and supporting me in carrying out international research. The in-depth discussions we held contributed to the success of this dissertation. I would also like to thank Professor Dr. Ing. K. Görner as co-referent. I am equally indebted to Professor Dr. Ing. I.F.W. Romey who, upon assuming office in the 1996/1997 winter semester, provided me with the opportunity to continue my work in the field of power plant technology and complete this dissertation.

I am thankful for the close collaborative relationship with my colleagues. I would especially like to thank Dr. Ing. Reinhard Kloster for contributing towards the excellent, highly productive atmosphere in the office we shared for many years, as well as Dr. Ing. Gerd Oeljeklaus and Dr. Ing. Uwe Rauh for their continuous readiness to help. I thank Markus Koerdt, Martin Adorni and Bianka Rohloff for their commitment in writing their theses, which provided me with valuable support.

Finally, I would like to express my loving thanks to my parents for enabling me to follow this education path and, in particular, to my dear wife Sigrid for her boundless support and endless patience.

Gerold Göttlicher

O glücklich, wer noch hoffen kann, aus diesem Meer des Irrtums aufzutauchen! Was man nicht weiß, das eben brauchte man und was man weiß, kann man nicht brauchen.

Johann Wolfgang von Goethe, Faust I

Willst du, Freund, die erhabensten Höhn der Weisheit erfliegen, wag es, auf die Gefahr, daß dich die Klugheit verlacht. Die kurzsichtige sieht nur das Ufer, das dir zurückflieht, Jenes nicht, wo dereinst landet dein mutiger Flug.

Friedrich von Schiller, Epigram

Dedicated to my children and all other children

CONTENTS

1	INTE	RODUCI		1	
	1.1	The P	roblem	1	
	1.2	Task [Definition	2	
	1.3	CO ₂ C	apture: Definitions	4	
2	STA	TE OF T	HE SCIENCE AND TECHNOLOGY	6	
	2.1	Baseli	ne Efficiencies	6	
	2.2	Power Plants with CO ₂ Capture			
		2.2.1	Overview	8	
		2.2.2	Gas Separation Methods	12	
		2.2.3	Process Family I: CO ₂ Separation from Synthesis Gas Subsequent to CO		
			Conversion	20	
		2.2.4	Process Family II: Carbon Dioxide Concentration in the Exhaust Gas	35	
		2.2.5	Process Family III: CO ₂ Separation from Flue Gases	45	
		2.2.6	Process Family IV: Carbon Separation	48	
		2.2.7	Process Family V: CO ₂ Capture with Fuel Cells	51	
		2.2.8	Review of the Literature with Conversion to a Common Basis	56	
3	ENE		ID EXERGY ANALYSIS	64	
	3.1	Calcul	ation Methods in the Energy and Exergy Analysis of Power Plant Systems	65	
		3.1.1	Calculations for Gas Turbines	66	
		3.1.2	Calculations for the Heat Recovery Steam Cycle	66	
		3.1.3	Calculations for Coal Gasification	71	
		3.1.4	Calculations for an IGCC Power Plant	75	
		3.1.5	Baseline Case for Performing Calculations for an IGCC Power Plant	76	
	3.2	Bound	ary Conditions and Process Data	78	
	3.3	CO ₂ C	ompression and Liquefaction	80	
	3.4	Gas S	eparation	82	
		3.4.1	Estimated Energy Requirements of Gas Separation Processes	82	
		3.4.2	Reversible Separation Work and Exergetic Efficiency of Technical Gas		
			Separation Processes	95	
	3.5	Proces	ss Family I: CO ₂ Separation From Synthesis Gas After CO Shift	99	
		3.5.1	CO Conversion, Steam Reforming	99	
		3.5.2	Processes with Coal Gasification	103	
		3.5.3	Chemically Recuperated Gas Turbines (CRGT)	118	
	3.6	Proces	ss Family II: CO ₂ -Rich Exhaust Gas	121	

		3.6.1	Oxygen Requirement and Oxygen Purity	121
		3.6.2	Analysis of the Oxygen Supply	123
		3.6.3	Operation at Increased Pressure	125
		3.6.4	Joule Cycle (Standard Gas Turbine) and Joule/Rankine Cycle (Gas/	
			Steam Turbine Combined Cycle)	126
		3.6.5	Other Cycles with CO ₂ as Working Fluid	127
		3.6.6	Parameter Studies for IGCC Power Plants with CO ₂ Recycling	130
		3.6.7	Processes with Coal Gasification and H ₂ /CO Separation	134
	3.7	Proces	ss Family III: CO ₂ Separation from Flue Gases	138
	3.8	Proces	ss Family IV: Carbon Separation	139
	3.9	Proces	ss Family V: CO ₂ Capture with Fuel Cells	139
	3.10	Minim	um Energy Requirements of CO ₂ Capture	140
4	ECO	оміс	COMPARISON OF POWER PLANT CYCLES WITH CO2 CAPTURE	141
	4.1	Proced	dure	141
	4.2	Review	v of Literature	143
	4.3	Develo	ppment Potential	150
	4.4	Compa	arison with Alternative Measures	152
5	SUM	MARY.		154
6	APPE	ENDIX .		159
	6.1	Supple	ementary Information on the Climate Issue	159
	6.2	Possib	le Approaches Towards Reducing CO ₂ Emissions in the Energy Supply	
		Sector		161
	6.3	The Na	atural, Geochemical Carbon Cycle and Global Carbon Reservoirs	165
	6.4	CO ₂ P	ipeline Transport	166
	6.5	Data T	ables	168
	6.6	Electri	cal Equivalence Factor of Heat Utilization (Extraction Steam)	178
	6.7	Calcul	ation of Electricity Generating Costs	181
7	Litera	ature		182

ABBREVIATIONS

ABB	Asea Brown Boveri AG
AFBC	Atmospheric Fluidized Bed Combustion
AFC	Alkaline Fuel Cell
ASU	Air Separation Unit
BASF	Badische Anilin & Soda Fabrik AG
BFW	Boiler Feed Water
BGL	British Gas Lurgi
BP	British Petroleum Company plc
BRC	Binary Rankine Cycle (: 2fold-Clausius Rankine Cycle)
CASH	Compressed Air Storage with Humidification (+ Humid Air Turbine) (:HAT Cycle
CHOIL	with Storage of Compressed Air)
CC	Combined Cycle
CE	Coal Equivalent, 1 t $CE = 29305 \text{ kJ}$
CFBC	Circulating Fluidized Bed Combustion
CFC	Circulating Fluidized Combustion (equivalent to CFBC)
CFZ	Controlled Freezing Zone
CPERI	Chemical Process Engineering Institute
CLEVI	(Aristotle University of Thessaloniki, Greece)
CRE	Coal Research Establishment (British Coal)
CRGT	
	Chemically Recuperated Gas Turbine
DENOX	Secondary measures for the reduction of NO_x emissions
DESOX	Secondary measures for the reduction of SO_x emissions
ECN	Energieonderzoek Centrum Nederland / The Netherlands Energy Research Founda-
	tion
ENDESA	Empresa Nacional de Electricidad S.A.
EOR	Enhanced Oil Recovery
EPDC	Electric Power Development Company
EPRI	Electric Power Research Institute
FBD	Fluidized Bed Drier
FC	Fuel Cell
FG	Flue Gas
FGD	Flue Gas Desulfurization
FW	Feed Water
GE	General Electric Company
GKSS	GKSS Research Center
GSP	Gaskombinat Schwarze Pumpe (<i>East German company prior to reunification</i>)
GT	Gas Turbine
GTCC	Gas/Steam Turbine Combined Cycle
GUD	<u>Gas und Dampf</u> (gas and steam power plant), registered trademark of the Siemens
	corporation for the Gas/Steam Turbine Combined Cycle
HAT	Humid Air Turbine (:gas turbine with humidified air)
HE	Heat Exchanger
HP	High Pressure
HT	High Temperature
HPC	Hot Potassium Carbonate
IIDOO	
HRSG	Heat Recovery Steam Generator
HTW	Heat Recovery Steam Generator High Temperature Winkler (gasification process)
	Heat Recovery Steam Generator

IEA-GHG	International Energy Agency - Greenhouse Gas R&D
IEN	Instytut Energetyki, Warsaw, Poland
IG/CASH	CASH with integrated coal gasification
IGCC	Integrated Coal Gasification Combined Cycle
IGCC hybrid	•
IGHAT	HAT with integrated coal gasification
IH	Sequential Combustion process in gas turbine (staged-combustion)
IPCC	Intergovernmental Panel on Climate Change
IS	Intermediate Superheating
IW	Cologne Institute for Business Research (German: Institut der deutschen Wirtschaft)
KRW	Kellog Rust Westinghouse (gasification process)
LP	Low Pressure
LT	Low Temperature
MCFC	Molten Carbonate Fuel Cell
MEA	Monoethanolamine
MHD	Magneto-Hydro-Dynamic
MP	Medium Pressure
PAFC	Phosphoric Acid Fuel Cell
PEMFC	Proton Exchange Membrane Fuel Cell
PF	Pulverized-Coal-Fired
PFBC	Pressurized Fluidized Bed Combustion
PPCC	Pressurized Pulverized Coal Fired Combined Cycle
PRENFLO	PRessurized ENtrained FLow (gasification process)
Prox. Anal.	Proximate Analysis
PSA	Pressure Swing Adsorption
PTSA	Pressure/Temperature Swing Adsorption
R&D	Research and Development
REVAP	Recuperated EVAPorative (cycle), similar to HAT
RU	Refrigerating Unit
SH	Superheater
SOFC	Solid Oxide Fuel Cell
SPP	Steam Power Plant
ST	Steam Turbine
STIG	Steam Injected Gas Turbine
TIT	<u>T</u> urbine Inlet Temperature
TRC	Triple Rankine Cycle
TSA	Temperature Swing Adsorption
Ult. Anal.	Ultimate Analysis
USC	Ultra Supercritical Steam Cycle
VEAG	Vereinigte Energiewerke AG
VEW	Vereinigte Elektrizitätswerke Westfalen AG
VSA	Vacuum Swing Adsorption
WEC	World Energy Council
WIHYS	Water Gas Shift With Integrated HYdrogen Carbon Dioxide Separation
ad	as delivered
ad	as delivered
af	ash-free
ar dr	as received
ui	Dry

liq.	Liquid
maf	moisture and ash free
mf	moisture free

SYMBOLS

Unless stated otherwise, efficiencies are plant net efficiencies in relation to the fuel energy flow

(LHV) of the fuel, and defined as $\eta = \frac{benefit}{expenditure} = \frac{P_{el,total} - P_{el,int}}{m_F \cdot LHV}$

	$experiment e m_F$ LIV
А	Surface Area
b	Solvent loading
D	Permeability
c _p	Specific isobaric heat capacity
e, E	Exergy (specific, absolute)
е, <i>Е</i> h, H	Enthalpy (specific, absolute)
HHV	Higher Heating Value
LHV	Lower Heating Value
	-
k_{CO_2}	CO ₂ avoidance costs
$k_{el,i}$	Electricity generating costs
Κ	Chemical equilibrium constant, investment
1	Membrane thickness
m, <i>m</i>	Mass, mass flow
Μ	Molecular weight
n	Number of moles
\overline{n}	Cost degression exponent
O_{min}	Minimum oxygen requirement
p	Pressure
P	Power
Q	Heat
R	Gas constant
s, S	Entropy (specific, absolute)
S _{CO2}	CO_2 separation factor in gas separation process alone. Relation of mass flow of the separated
CO_2	CO_2 to the mass flow of CO_2 in the raw gas.
r_{CO_2}	CO ₂ capture ratio, consisting of all process steps such as gas conversion and CO ₂ separation of
002	the gas separation process. The value of CO ₂ capture ratio r_{CO_2} is the quotient of the separated
	CO_{12} is the quotient of the separated
т	CO_2 molar flow and the molar amount of carbon in the fuel.
T	Temperature in K
t	Temperature in °C
V W	Volume Work
w W _{O2}	Specific work for the generation of O_2 (kWh/kg O_2)
W _t	Specific gas turbine work, in relation to the air mass flow in the compressor Mass fraction of component i
X _i	Mass fraction of component i Moisture content in the steam
X	Volume fraction of component i
y _i	Equivalence factor for the conversion of a supplied exergy in the steam cycle into electrical
α	energy
Q	Selectivity in mass separation (two indices)
α_{ij}	Adiabatic exponent
κ π	
π	Compressor pressure ratio

XIV

η	Energetic efficiency (in relation to LHV, if not otherwise indicated)
$\dot{\Delta}$	Change in a value vs. a another value
$\Delta_{\rm r} {\rm H}$	Reaction enthalpy
$\Delta \eta$, $\Delta \eta$	Efficiency penalty through measures for CO_2 capture vs. a baseline plant of the same type
$\Delta \eta$, $\Delta \eta$	without CO ₂ capture (in relation to LHV). $\Delta \eta = \eta_{\text{Reference}} - \eta_i$
C	
${\cal E}_{CO_2}$	CO ₂ emissions reduction
$\epsilon_{\rm RU}$	Performance coefficient of a refrigerating unit
Ψ́	Utilization of fuel energy
ζ	Exergetic efficiency
Ei	Mass fraction of component i
INDICES	
В	fuel
С	carbon
CC	combustion chamber
Comp	compressor
el	electrical
f	feed
FG	flue gas
gas	gaseous
GT	gas turbine
int	internal consumption
crit	critical point (thermodynamic)
liq	liquid
max	maximum
min	minimum
opt	optimum
р	permeate
Reference	reference power plant
RRG	raw gas/clean gas heat exchanger
r, rev	reversible
S	steam
S	state of saturation
ST	steam turbine
<i>t</i> , <i>T</i>	turbine
tot	total
U	ambient conditions
wgs	homogeneous water/gas reaction (CO shift reaction)
Ζ	steam extraction

Graphical Symbols

	Circulating water (condensate, cooling water, feedwater,)		
	Steam		
••	Waste water		
	Air		
	Combustible gases		
	Non-combustible gases		
	Solid fuel (hard coal or bituminous coal, brown coal or lignite)		
	Other solids		
	Shut-off device, throttle (open)		
	Shut-off device, throttle (closed)		
1, kalt 2, heiß 1, kalt 2, heiß 1, kalt 1, kalt 2, kalt 1, kalt 1, kalt 1, heiß	Heat exchanger (heiss = hot, kalt = cold)		
	Evaporator		
	Heat recovery steam generator with superheater, flue gas heated		
	Steam generator with superheater, coal-fired		
ļ.	Steam condenser		
	Fuel gasifier		
\boxtimes	Combustion chamber		
	Turbine (depending on material flow symbol: steam turbine, gas turbine, liquid fluid turbine)		
- <u>M</u>	AC motor		
-@	Generator		
	Liquid pump		

XVI

	Compressor, vacuum pump
	Separator
Ø	Rotary separator, e.g. cyclone, particulates separator
	Wet separator, scrubber
	Tank with its accessories (packed column, catalytic reactor,)
	Tank, feedwater container

XVIII

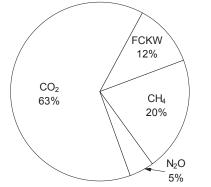
Abstract

 CO_2 capture in power plants is one possible measure, which could potentially be used to reduce CO_2 emissions in the future. This work contains a summary of methods of CO_2 capture in power plants, which are currently under discussion. It includes an energy analysis of the individual methods, as well as an assessment of specific CO_2 emissions, penalties in efficiency resulting from CO_2 capture, additional investment required, additional electricity generation costs incurred, CO_2 avoidance costs and technical feasibility. The following methods of CO_2 capture are examined: separation of carbon dioxide from synthesis gases following CO conversion, CO_2 concentration in flue gas through combustion in an atmosphere consisting of oxygen and recirculated flue gas, carbon dioxide separation from flue gases, and CO_2 capture in power plants with fuel cells. In addition to the various power plant cycles, gas separation methods such as absorption, adsorption, membrane separation processes, and cryogenic processes are analyzed.

A comprehensive review of the literature indicates that cited levels of efficiency in power plants with CO_2 capture, and the efficiency penalties, are scattered over a broad range. This makes it difficult to assess differences between the various methods of CO_2 capture and different types of power plants. Furthermore, the majority of published studies on CO_2 capture in power plants fail to provide an in-depth analysis of the energetics.

Highly efficient power plants consume less primary energy and produce less CO_2 . At the same electrical power out, with increased efficiency, the CO_2 mass flow to be separated, and thus the expenditure on energy and equipment required for CO_2 capture, is smaller. The calculations in this study therefore focus on those power plants, which currently display the greatest efficiency potential, specifically natural gas-fired gas/steam turbine combined cycle (GTCC) power plants and integrated gasification combined cycle (IGCC) power plants.

To enable direct comparisons to be made, a number of my own calculations of power plant cycles and gas separation methods are performed under standardized conditions, and the contributions of the individual process steps to CO_2 capture are analyzed. The minimum expenditure required for CO_2 capture and the effectiveness of individual methods are examined by means of the reversible separation work and other ideal process steps. These indicate the development potential. In addition to the gas separation techniques, this study also examines CO conversion and – for processes involving concentration of CO_2 in the exhaust gas – cycles with CO_2 as a working substance, and O_2 supply. For processes involving CO_2 concentration in the exhaust gas, a selective O_2 supply is proposed. In a theoretical, ideal case, this would allow for capture of gaseous CO_2 through combustion in an atmosphere consisting of O_2 and recirculated CO_2 , without any further energy requirement.


 CO_2 capture in coal-fired power plants, and CO_2 liquefaction, result in an efficiency penalty of between 6 and 14 percentage points. An evaluation of the techniques for CO_2 capture in coal-fired power plants demonstrates that the most favorable method, at current levels of technology, is separation of carbon dioxide from the synthesis gas of an IGCC following CO conversion. With regard to CO_2 capture in natural gas-fired power plants, the most suitable method, with the current state of the technology, is CO_2 scrubbing from the flue gas. CO_2 avoidance costs for CO_2 capture and liquefaction range from 20 to 45 US\$/t CO_2 . This does not include the cost of transporting and disposing of the CO_2 , which adds on an additional 7 to 14 US\$/t CO_2 (based on a pipeline length of 1000 km). Thus, CO_2 capture in power plants only becomes an interesting proposition in the case where global CO_2 emission reduction targets are greater than 10%.

1 INTRODUCTION

1.1 The Problem

As early as 1896, Arrhenius estimated the influence of atmospheric carbon dioxide (CO₂) on the temperature of the Earth's surface [9]. The first World Climate Conference, backed by the United Nations, took place in 1979, and was followed by further conferences, which continue to the present day, all prompted by the concern that increasing concentrations of CO₂ and other trace gases (such as CH₄, N₂O and fluorocarbons) in the Earth's atmosphere could lead to global warming. The "International Energy Agency" (IEA) set up a special group (IEA Greenhouse Gas R&D) engaged on the task of reducing greenhouse gas emissions. Since 1992, this group has held a series of conferences focusing on methods for the capture and disposal of CO₂.

Of all the anthropogenic greenhouse gas emissions, CO_2 makes the most significant contribution towards the greenhouse effect (Figure 1.1) [10]. Since the start of the industrial era, CO_2 concentration as a proportion by volume has risen from 280 ppm to 360 ppm today. This increase in CO_2 concentration has primarily been caused by the increasing combustion of fossil fuels (Figure 1.2). According to a number of predictions, global energy consumption based on fossil energy fuels will continue to climb [11, 12]. For the long term, to prevent a CO_2 concentration exceeding a proportion by volume of 500 ppm, projected worldwide CO_2 emissions will have to be cut by around 40% as early as the year 2025 [10, 13]. According to Schönwiese [14], CO_2 emissions will have to be halved by the middle of the next century. Taking into account the lesser obligations of the Third World to reduce emissions, this would mean industrialized countries having to achieve CO_2 emission reductions of 80%.¹

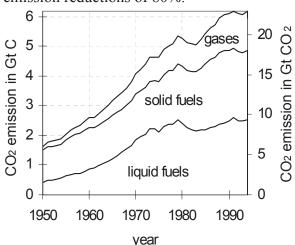
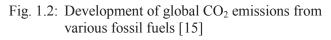



Fig. 1.1: Proportional contributions of anthropogenic greenhouse gas emissions towards climate change, allowing for effects over a period of 100 years [10]

In addition to energy conservation, improvements in energy efficiency, and the use of low-carbon or carbon-free primary energy sources (nuclear fuels, renewable energies), another possible measure¹ is CO_2 capture in power plants. This study analyzes and evaluates the possibilities of this latter measure. The CO_2 separated in this process must subsequently be disposed of in a permanent manner. This disposal process is described in other studies (see Section 2.2.1) and is not dealt with in this paper.

¹ See also Appendix, Sections 6.1 and 6.2

1.2 Task Definition

The purpose of this dissertation is to analyze and compare methods of CO_2 capture in power plants fired with fossil fuels. This paper also provides a comprehensive overview of proposals described in the literature, and includes calculations and comparisons of the expenditure of energy and exergy in these proposals, as well as levels of efficiency and efficiency penalties.

The technical implementation of CO_2 capture in power plants and a comparison of the methods have already been presented in numerous publications, (e.g. [16, 17, 18]). However, no analysis of the energetics of CO_2 capture in power plants has yet been described, which systematically demonstrates the impact of CO_2 capture.

The overview of the literature presented in Chapter 2 of this work ("State of the Science and Technology") incorporates a far greater number of process variants than previous studies, and includes process data such as efficiency, CO₂ emissions and costs.

By combining the various concepts for the integration of CO_2 capture in the plant as a whole, with the different types of power plant and gas separation methods, it is possible to generate a large number of different power plant processes with CO_2 capture. In this study, the methods of CO_2 capture in power plants have been divided into five process families, taking into consideration data from the literature, as well as fundamentals of thermodynamics and process engineering:

Grouping the Methods of CO₂ Capture

- In **Process Family I**, CO₂ is removed from synthesis gases, which are produced through coal gasification or steam reforming of natural gas. For CO₂ capture, the CO in the synthesis gas must be converted into CO₂ and H₂ through CO conversion with the addition of steam. Following CO₂/H₂ separation, the hydrogen-rich fuel gas undergoes combustion with air in a gas turbine, subsequent to which the CO₂ is disposed of.
- **Process Family II (CO₂ enrichment)** comprises all those processes, in which exhaust gas consisting of CO₂ and steam is produced through combustion in an atmosphere of oxygen and recirculated flue gas or steam. In cycles with CO₂ condensation, liquid CO₂ can be separated without further CO₂ liquefaction.
- **Process Family III** includes all those combinations of power plant processes in which CO₂ is removed from the flue gas at the cold end.
- **Process Family IV** comprises processes such as the so-called hydrocarb process, in which carbon is removed from the fuel prior to combustion.
- **Process Family V** deals with CO₂ capture in power plants with fuel cells, which can be operated with combustible gases of fossil origin.

Building on a comprehensive review of the literature dealing with CO_2 capture in power plants (Chapter 2, "State of the Science and Technology"), this work goes on to consider the distinctive characteristics of the various combinations of different power plant types and methods of CO_2 capture.

The studies presented in the literature are based on very different assumptions; consequently, their results are scattered over a very broad range (Figure 1.3). For a better comparison of the studies, the data contained in the literature has been converted to come close to a set of standardized process conditions (see Chapter 2.2.8, Table 2.18).

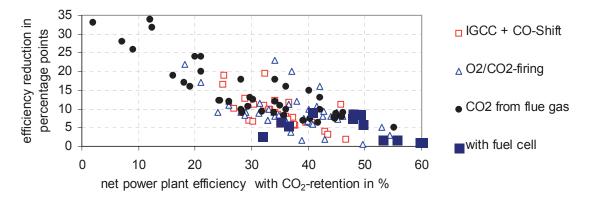


Figure 1.3: Variance of data from the literature (see Chapter 2, "State of the Science and Technology") relating to the efficiency of power plants with CO₂ capture, and efficiency penalties resulting from CO₂ capture and liquefaction.

Chapter 3 ("Energy and Exergy Analysis") determines the fundamental thermodynamic principles for the most important methods of CO₂ capture in power plants, and analyzes how individual process steps involved in CO₂ capture impact on the energy balance and exergy balance in real processes and, in some instances, in ideal processes. Detailed calculations in this study are based on standardized boundary conditions and process conditions. The core of the calculations deal with gas separation methods, chemical conversion of gases, and combined cycle power plants, which therefore also requires the thermodynamic calculation of coal gasification, gas turbines and gas/steam turbine combined cycle power plants (GTCC, also known as GUD power plants²).

In the literature (see Chapter 2, "State of the Science and Technology"), the expenditure of energy in technical installations is described. In addition to examining the processes under real conditions, this present study also determines the minimum expenditure of energy for the ideal case with reversible changes of state, and the process-related, minimal irreversibilities, and from this the minimum expenditure for CO_2 capture in the various integrated systems.

Cost comparisons are presented in Chapter 4 ("Economic Comparison of Power Plant Cycles with CO_2 Capture"). Based on estimations of required investment for the individual component groups of the power plants and for the CO_2 separating equipment, this chapter calculates the electricity generating costs of the power plants with CO_2 capture, and the CO_2 avoidance costs.

² GUD is a registered trademark of the Siemens company and stands for "*Gas und Dampf*" (gas and steam) power plant (GTCC).

1.3 CO₂ Capture: Definitions

Some of the terms relating to CO_2 capture used in this study are not particularly common, and are therefore explained below. Definitions of separation behavior and of operation conditions of gas separation methods are given in the description of the relevant process.

<u>CO₂ separation, CO₂ separation factor</u> s_{CO_2} : This represents the effectiveness of a gas separation method alone. The CO₂ separation factor s_{CO_2} refers solely to the mass flow of CO₂ present in the raw gas (not in the primary fuel); it is the ratio between the mass flow of separated CO₂ and the mass flow of CO₂ in the raw gas.

<u>CO₂ capture, CO₂ capture ratio</u> r_{CO_2} : CO₂ capture is the overall effect produced by gas separation and other process steps, enabling a portion of the CO₂ to be separated from the process as a separate mass flow and stored or used in some other manner. The CO₂ capture ratio r_{CO_2} is the ratio between the separated CO₂ mass flow rate and the mass flow rate of the carbon in the primary fuel supplied, or the CO₂ produced from this, respectively:

$$r_{CO_2} = \frac{\dot{n}_{CO_2,removed}}{\dot{n}_{C,fuel}} = \frac{\dot{m}_{CO_2,removed}}{\dot{m}_{C,fuel} \cdot \frac{M_{CO_2}}{M_C}}$$
(1.1)

In the above equation, $\frac{M_{CO_2}}{M_C}$ is the ratio between the molecular weights of CO₂ and carbon.

Reference Power Plant:

The term "reference power plant" refers to a power plant with no CO_2 capture. Efficiency penalties, reductions in CO_2 emissions and CO_2 avoidance costs resulting from CO_2 capture are calculated relative to the reference power plant. The reference power plant can be an equivalent type of power plant (baseline power plant, see below), or alternatively any other type of power plant, or the average of a power plant park, for example.

Baseline Power Plant:

In this document, a baseline power plant is considered to be a reference power plant with no CO_2 capture, where this is equivalent in type to the corresponding power plant with CO_2 capture or where the power plant with CO_2 capture is derived from the process layout of the baseline power plant.

<u>Specific CO₂ Emissions Reduction</u> ε_{CO_2} of a Power Plant (*i*):

The specific CO₂ emissions reduction of a power plant (*i*) is the reduction in the emitted, i.e. nonseparated CO₂ quantity m_{CO_2} , at the same level of power P_{el} as the reference power plant without CO₂ capture:

$$\varepsilon_{CO_2} = 1 - \frac{\begin{pmatrix} m_{CO_2} \\ P_{el} \end{pmatrix}_i}{\begin{pmatrix} m_{CO_2} \\ P_{el} \end{pmatrix}_{reference}}$$
(1.2)

This equation applies to cases where the reference power plant is of the same type and uses the same fuel (baseline power plant), as well as to cases where the fuel is changed or the reference power plant is of a different type (i.e. the formula also applies in the case of an IGCC power plant with CO_2 capture compared to a baseline plant of the pulverized coal-fired steam type, for example, or even a gas-fired gas turbine cycle).

Since CO₂ capture also involves efficiency penalties, the CO₂ emissions reduction ε_{CO_2} differs from the CO₂ capture ratio r_{CO_2} . Assuming that the fuel composition remains the same, CO₂ emissions reduction ε_{CO_2} may be calculated from efficiency penalty $\Delta \eta = \eta_{\text{reference}} - \eta_i$ and CO₂ capture ratio $r_{CO_2}^{3}$:

$$\varepsilon_{CO_2} = 1 - \frac{\eta_{\text{reference}}}{\eta_{\text{reference}} - \Delta \overline{\eta}} \quad (1 - r_{CO_2})$$
(1.3)

This equation shows that the CO₂ emissions reduction is affected less by efficiency penalty $\Delta \overline{\eta}$ at high efficiency levels of the reference power plant than at low efficiency levels. In the case of $r_{CO_2} = 0$ and negative $\Delta \overline{\eta}$, CO₂ emissions reduction is obtained merely through efficiency improvement³.

<u>CO₂ avoidance costs</u> k_{CO_2} :

 CO_2 avoidance costs are the additional costs associated with the avoidance of CO_2 emissions, incurred over the planning, construction and lifetime of a measure. The CO_2 avoidance costs k_{CO_2} are calculated from the ratio between the increase in electricity generating costs $k_{el,i}$ and the difference between the

specific CO₂ emissions (relating to the electrical energy output) $m_{CO_2,i}$ of the reference power plant and power plant (i):

$$k_{CO_2} = \frac{k_{el,i} - k_{el,reference}}{m_{CO_2,reference} - m_{CO_2,i}}$$
(1.4)

³ Efficiency penalty $\Delta \overline{\eta}$ resulting from CO₂ capture is considered here as a positive value. This involves reversing the sign, when compared with other publications, in which the efficiency <u>improvement</u> with no CO₂ capture, as a measure of CO₂ emissions reduction, is counted as positive.

2 STATE OF THE SCIENCE AND TECHNOLOGY

2.1 Baseline Efficiencies

By improving the efficiency of a power plant, both fuel consumption and, as a result, CO_2 emissions, are reduced. In contrast, CO_2 capture requires an additional expenditure of energy, and thus causes a penalty in efficiency. However, the additional expenditure of energy associated with CO_2 capture becomes smaller as the efficiency of a power plant increases, since higher efficiency means lower production of CO_2 . For this reason, when considering the baseline power plant with no CO_2 capture, on which the development of a concept involving CO_2 capture is to be based, it is essential that this baseline power plant should achieve the highest possible level of efficiency.

Table 2.1 contains a summary of the various power plants, which have either already been introduced, as of today, or are currently under development, together with improvement measures and efficiency potentials. The most important measures for improving efficiency involve increasing steam temperatures and gas turbine inlet temperatures, and improving waste heat utilization and component efficiency [19].

Of all the power plants currently capable of being built, natural gas-fired gas turbine combined cycle (GTCC) power plants (Table 2.2) achieve the highest efficiency, lowest CO₂ emissions and lowest costs (Table 2.2).

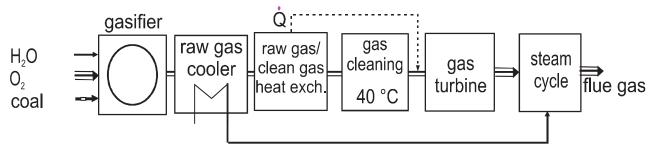


Figure 2.1: Simplified flow diagram of an integrated gasification combined cycle (IGCC) power plant with low-temperature gas cleaning

The most common coal-fired power plant is the steam power plant with pulverized coal combustion at atmospheric pressure. Coal-fired combined cycle power plant cycles with pressurized fluidized bed combustion (PFBC) are commercially viable, but display limited efficiency (43%); integrated gasification combined cycle (IGCC) power plants (Figure 2.1) are in the demonstration phase, and pressurized pulverized coal-fired combined cycle power plants are at an early stage of development. Among the coal-fired power plants, the greatest level of efficiency, at current levels of technology for coal-fired plants, is attained by the IGCC power plants. This is why a large proportion of studies on CO₂ capture in coal-fired power plants suggest the IGCC power plant [20]. Another advantage of the IGCC power plant, in terms of CO₂ capture, is that this is the only type of coal power plant, which allows CO₂ to be separated, prior to combustion, from a gas flow, which is not diluted with air. According to recent studies, there is now virtually no difference between the electricity generating costs of coal-fired steam power plants and IGCC power plants of the next generation, in cases where the annual utilization factor is high [21].

Year of Initial	Example	Operating Characteristics	Efficiency in
Operation			%
	Power Plant Cycles	1 5	
1998	Gas turbine simple cycle	TIT approx. 1190°C (ISO 2314) ⁵	approx. 38-40
1997	GT with reheat		approx. 38
1998	GT with recuperation		approx. 40
1996	GT with steam injection (STIG/Cheng)		<45
>1998	Humid Air GT (HAT)		approx. 58-59
>>2000	GT with chemical recuperation (CRGT)		55-62
1998	Gas / steam turbine combined cycle power plants	TIT approx. 1190°C (ISO 2314) ⁵	58-59
	Fuel cells, natural gas-fired:		
1995 / >2000	PAFC / PEMFC	[23, 24]	approx. 40
>2000 / >2005	MCFC / SOFC combined cycle plant	[23, 24, 25]	55 >60
Coal-Fired Steam	Power Plants		
Operational since	Coal-fired steam power plant	Steam: 285 bar/580°C/580°C/580°C	47
1998	(seawater cooling system)	Feedwater preheating: 300°C	
	Nordjyllandsvaerket [26]	Condenser pressure: 0.023 bar	
		10 feedwater preheating stages	
Planned for 1999	Coal-fired steam power plant	Steam: 275 bar/580°C/600°C	45 to 45.5
(adjusted)	(wet cooling tower system)	Feedwater preheating: 300°C	
(aujusteu)	Gelsenkirchen-Heßler[27]	Condenser pressure: 0.037 bar	
		9 feedwater preheating stages	
Planned for	Coal-fired steam power plant (seawater cooling sys-	Steam: 300 bar/580°C/600°C	50
2001-2005	tem) Avedoere 2 [28, 29]	Condenser pressure: 0.023 bar	
Planned for 2010	Coal-fired steam power plant, study [30]	Steam: 700°C	52-55
Coal-Fired Combi			
1994	Pressurized Fluidized Bed Combustion (PFBC)	Gas turbine: 860°C/12 bar	36-40
	combined cycle		(1999: >45)
>2010	Pressurized Pulverized Coal-Fired combined cycle		>50
	power plant (with hot gas clean up or warm gas		
	clean up according to heat exchanger)		
	Magneto Hydro Dynamic generator (MHD) + steam		50-60
	cycle		
	IGCC Power plant		
		TIT 1050°C (ISO 2314) ⁵	43.2
1993	Buggenum (NL)		
1993 1998	Buggenum (NL) Puertollano (E)	TIT 1120°C -"-	45
	Puertollano (E)		
1998	Puertollano (E) Study, ready for construction in 1998 [21]	ТІТ 1120°С -''-	45
1998 >1998	Puertollano (E) Study, ready for construction in 1998 [21] IGFC (IGCC with fuel cells):	TIT 1120°C -"- TIT >1190°C -"-	45 51.5
1998 >1998 ≥1998	Puertollano (E) Study, ready for construction in 1998 [21] IGFC (IGCC with fuel cells): PAFC (split fuel stream) / GT combined cycle plant	TIT 1120°C -"- TIT >1190°C -"- [31]	45 51.5 approx. 50
1998 >1998 ≥1998 >2000	Puertollano (E) Study, ready for construction in 1998 [21] IGFC (IGCC with fuel cells): PAFC (split fuel stream) / GT combined cycle plant MCFC combined cycle plant	TIT 1120°C -"- TIT >1190°C -"- [31] [32]	45 51.5 approx. 50 > 55
1998 >1998 ≥1998	Puertollano (E) Study, ready for construction in 1998 [21] IGFC (IGCC with fuel cells): PAFC (split fuel stream) / GT combined cycle plant	TIT 1120°C -"- TIT >1190°C -"- [31]	45 51.5 approx. 50

Table 2.1: Efficiency of current power plant types and efficiency potential stemming from possibilities for improvement and for future power plant cycles [22]⁴

There are currently two IGCC power plants in Europe: Buggenum Power Plant (253 MW, $\eta = 43\%$, in operation since 1993) and Puertollano (300 MW, rated efficiency 45%, in operation since 1998). Additional IGCC demonstration power plants have been constructed in the USA, thanks to a sponsorship program run by the US Department of Energy.

⁴ Key parts of the "Combined Cycles" study were compiled during the writing of this work, such as the chapters dealing with the topics of steam power plants, wet gas clean up, the HAT cycle, multiple steam cycles, the Kalina cycle, the MHD/steam turbine combined cycle, and fuel cells.

⁵ It is important to distinguish gas turbine inlet temperature, according to ISO 2314, from combustion chamber/firing temperature, since the influence of blade cooling is not taken into account in the latter temperature (Figure 3.1, 66).

 Table 2.2:
 Levels of efficiency, specific CO₂ emissions and investment costs for power plant types currently ready for construction (off-the-shelf)

	Efficiency (LHV) in %	CO ₂ Emissions in kg CO ₂ /kWh	Investment in US\$/kW	Elec. Generating Costs in US\$/kWh
Steam power plant, hard coal	45-47	0.69 - 0.79	1050	0.036
IGCC, hard coal	50-52	0.62 - 0.71	1100	0.037
Gas/steam turbine combined cycle	58-59	0.32 - 0.33	510	0.027

2.2 Power Plants with CO₂ Capture

2.2.1 Overview

In 1977, Marchetti became the first person to put forward the idea of separating CO_2 from flue gases in power stations fired with fossil fuels and sinking it in the ocean [33]. A storage period of several hundred years would at least flatten out the peak of CO_2 concentration in the atmosphere. A wide variety of proven absorption methods are available for CO_2 capture; furthermore, demonstration plants, provided with absorption facilities, are in operation, and adsorption processes are under development in laboratory tests. Removing CO_2 by condensing it or freezing it has also been considered in some proposals.

The idea of burning fuel in an atmosphere of recirculated flue gas enriched with oxygen originated from Horn and Steinberg [34, 35]. The flue gas would then consist, primarily, of carbon dioxide and water vapor, and it would be easy to subsequently remove the water component through condensation.

When using synthesis gases from coal gasification, the option exists of removing CO_2 at a highly concentrated level from the fuel gas prior to combustion (this option also applies for natural gas subsequent to steam reforming). One way to achieve this is to convert the CO component of the synthesis gas, i.e. conversion of CO (with the addition of steam) into H₂ and CO₂ followed by combustion of the remaining H₂-rich gas with air (thermodynamically at best in a combined cycle). The alternative possibility is separation of H₂ and CO using a membrane, followed by separate combustion of H₂ in air and CO in "technically" pure O₂.

Where natural gas or biomass is to be used, Steinberg [36, 37, 38] suggests a process in which, in addition to the generation of CH_4 or methanol, a further variation allows for only the hydrogen component of the fuel mixture to be used as an energy supply, and for the carbon component to be stored as carbon black.

Fuel cells provide particularly advantageous conditions for CO₂ capture, since they already feature gas separation as part of the system, and the electrochemical oxidation is performed with the exclusion of atmospheric nitrogen.

Demonstration Plants

The separation of CO₂ from power plant flue gases has already been demonstrated to be technically feasible. In the period between 1982 and 1986, chemical scrubbing, based on an aqueous solution with a percentage by weight of 20% monoethanolamine (MEA), was carried out in two locations: the natural gas-fired Lubbock Power Plant in Texas, USA (50 MW), and a natural gas-fired steam generator in Carlsbad (New Mexico, USA). The mass flow of CO₂ leaving the two plants was on a scale of 1000 t and 113 t per day, respectively. It was used to enhance oil recovery in neighboring oilfields. Deterioration in the economic climate, coupled with lower oil prices, led to the two plants being shut down [39]. Since 1991, CO₂ scrubbing with a 15 to 20% MEA solution has been carried out in the 300 MW Shady Point Combined Heat and Power Station (Oklahoma, USA), and in a coal-fired steam generator of a soda ash plant in Botswana. At these sites, more than 400 t of a 99.99+% pure CO₂ product (dry basis) are produced each day, and are used for the food industry and in oil recovery [40, 41, 42]. In Japan and in the USA, demonstration and test plants are currently seeking to use additives to achieve a higher concentration of the MEA solution without increasing oxidation of the absorbent [43, 39].

Norway and Indonesia are both conducting projects to remove (and actually dispose of) CO_2 from natural gas and from gas turbine exhaust gases. On the gas production platforms of the Norwegian "Sleiper Vest" gas field, the volume fraction of CO_2 in the recovered natural gas is to be reduced from 9.5% to 2.5%; the separated CO_2 is then injected into a 250m-deep aquifer located 800 m below the ocean surface [44]. The primary motivation behind this sequestration process is the CO_2 tax totaling 50 US\$ per ton of CO_2 emitted, which applies to offshore areas of Norway. In another announced project involving the recovery of natural gas from the Indonesian "Natuna" field, the volume fraction of CO_2 in the recovered natural gas must be reduced from 71% to almost 0%. Exxon and Pertuna, the two companies involved in the project, intend to inject the separated CO_2 into a nearby aquifer [45].

CO₂ Sequestration

Storing global, anthropogenic CO_2 emissions amounting to 6 Gt C, corresponding to 22 Gt CO_2 per year, requires global storage capacity on a scale of up to several hundred Gt of carbon. There are a variety of sinks and storage options, e.g.:

- depleted oil and gas fields, as well as enhanced oil and gas recovery through CO₂ injection,
- CH₄ recovery from coal seams by injecting CO₂,
- aquifers in geological formations,
- oceans (largest capacity),
- fixation in biomasses (afforestation, biomass fuel) or
- solid CO₂ (dry ice) repository: storage in a thermally insulated sphere of dry ice, with a diameter of approximately 200 m (dry ice repository with limited storage period) [46].

A summary of storage capacities, storage duration and costs involved in the sequestration process is given in Table 2.3.

The Strait of Gibraltar has been proposed as a suitable ocean location for CO_2 sequestration, based on the fact that strong currents from the Mediterranean would thin out the CO_2 and transport it to deeper

regions of the Atlantic [47]. Baes [48] has suggested pumping liquid CO_2 into deep beds, where dissolved CO_2 becomes heavier than seawater and sinks; this delays its return into the atmosphere by a few hundred years. When CO_2 is introduced at depths > 1200 m, the density of the CO_2 water solution is greater than that of the surrounding seawater, with the result that the solution sinks [49]. If it is introduced at depths > 3000 m, the density of the CO_2 is greater than that of seawater, with the result that the CO_2 collects on the ocean floor. It is anticipated that the CO_2 would then remain on the ocean bed for more than 1000 years [50]. To avoid the danger to the biosphere posed by high carbonic acid concentrations in the ocean, one proposal is to distribute the CO_2 in the ocean via a pipe extending several hundred meters into the depths, which would be attached to a moving tanker [51]. With regard to the concept of sinking blocks of dry ice in the ocean depths, it is certainly possible to circumvent the associated technical problems posed by deep-sea pipelines, though these methods nevertheless emerge as being, however, very expensive and ineffective, due to the high energy consumption associated with the production process and the losses from thawing during the sinking process.

Injecting CO_2 into oilfields is already a popular method of enhancing oil recovery (also see Table 6.4). As well as improving oil production, CO_2 can also be used to recover methane from coal seams. CO_2 replaces CH_4 in the coal seam and does not get ejected with the CH_4 . The resulting sequestration capacity for CO_2 is greater than the quantity of CO_2 produced by the recovered CH_4 . The first CH_4 -recovery pilot plants using CO_2 are already in operation [52, 53]. This particular method of utilizing CO_2 may even potentially yield profits.

Natural Reservoirs	Global Storage Capacity in Gt CO ₂		
Earth's atmosphere	2631	(with 348 ppm volume fraction of CO ₂) (hydrocarbonate, carbonate) [60]	
Dissolved in the ocean	154		
Potential CO ₂ Sinks	Global Storage Capacity in Gt CO ₂ [54]	Storage Duration [55] in years	Storage Costs [54] in US\$/t CO ₂
Oceans	> 3664	> 500	1.1 (up to a depth of 500 m) 5.6 (depth of 1200-3000 m)
Aquifers		$10^3 - 10^6$	1.2
Depleted gas and oil fields	>366	10 ⁶	2.2
Oil recovery	238	10 ⁶	
Afforestation	4.4 /a	10 ²	>0.3
Afforestation of the entire agricultural land	0.023 /a		
effective area of the Fed. Rep. of Germany [56]	($<10\%$ of the CO ₂ emissions in Germany)		
Chemicals (current market volumes) [55]	< 0.33 /a 0.006 /a	10	
Dry ice repository [46]		800 with 50% loss of CO ₂	130
CO ₂ Transport in Pipelines [57]			Ocean: 0.6/100 km Land: 0.8/100 km

Table 2.3: Natural reservoirs and proposed additional sinks for CO₂ sequestration

Aside from the storage potential in the ocean, underground locations, and gas and oil fields, a maximum of 1.5% of CO₂ emissions could be used for further processing to produce chemical substances. However, the lifespan of chemicals is limited, which means that storage duration is fairly low. Products,

which require CO_2 include uric acid, methanol, polymers, polycarbonate, polyurethane, carbamate, solvents, fuel additives and di-methyl carbonate. A larger quantity of CO_2 could be used to produce methanol as an alternative fuel [20]. Obviously CO_2 used in this way would be re-emitted during combustion of the methanol; the purpose of this measure would therefore be to create a simple storage and transport medium for hydrogen, which would have to be produced without CO_2 emissions.

Biological methods of CO_2 fixation are restricted by the size of the areas required. Fixation of the CO_2 from a 300 MW coal-fired steam power plant would require an area of around 200 km² of algae pools, for example [58]. Other proposals highlight the potential of increasing the natural fixation of CO_2 in algae or plankton in the ocean by adding nutrients [59].

In the natural, geochemical carbon cycle⁶, carbon dioxide dissolved in water is absorbed into silicate minerals, as part of an extremely slow-acting, energy-releasing process⁷, and is deposited on the floor as water-insoluble carbonate rock [60]. Silicate minerals thus act as a carbon dioxide sink. Several research studies have therefore attempted to achieve the CO₂ fixation, which occurs in the natural sedimentation process, in an industrial plant, with increased rates of reaction, aiming to fix the CO₂ in rock [61, 62].

Fixation of CO_2 in lime, which first has to be produced through calcination, involves CO_2 emissions equal to the quantity to be taken up at a later point, plus the additional emission of the CO_2 stemming from the primary sources of energy used for the heating process; i.e. the CO_2 emissions produced are greater than the CO_2 absorbed. However, there are some natural rocks, which are capable of chemically absorbing CO_2 . The problem is the mass of rock required in this process. For example, to absorb 1 kg CO_2 would require 1.4 kg CaO or 2.7 kg CaSiO₃. Since these minerals are only found as components of natural rock, rather than in their pure form, the mass of rock to be moved is correspondingly larger.

CO₂ Liquefaction and Transport

In all cases where CO_2 is to be transported, stored or further processed, it must be compressed at high pressure. As a result, it is nearly always necessary to take into consideration additional energy consumption or an additional efficiency penalty (Table 2.4). The pressure required (Table 2.5) is generally greater than the critical pressure of 73.858 (Table 2.6). The low critical temperature of 31.05 °C means that this nearly always involves liquefaction of the CO_2 .

Pipelines enable the transportation of large mass flows of CO_2 . The USA, Canada and Europe all have many years of experience in transporting CO_2 through pipelines several hundred kilometers long, in the context of CO_2 injection for the purpose of Enhanced Oil Recovery (EOR). Operation of these pipelines has been shown to make more economic sense at supercritical pressures that at lower pressures [63, 64, 65]. Depending on the pressure drop over the total distance, and the differences in elevation of the pipeline, the most suitable pipeline inlet pressure has been cited as high as 172 bar [66, 67, 70].

According to Riemer and Ormerod [68], specific transport costs lie in the range of 0.6 US\$ per t CO_2 and 100 km pipeline length for pipelines in the sea, and 0.8 US\$ per t CO_2 and 100 km pipeline length for overland pipelines.⁸

⁶ Regarding the natural, geochemical carbon cycle, please also see Appendix, Section 6.3.

⁷ Assuming unimpeded silicate weathering, it would take 10000 years to absorb the entire quantity of atmospheric CO₂. However, hindrances involved in exchange of materials and CO₂ sources must also be taken into account [60].

⁸ For sample designs of CO₂ pipelines, see Appendix, Section 6.4.

	Specific energy expenditure in kWh/kg CO ₂	Energy expenditure related to fuel utili- zation (coal) in % of LHV
Compression to 110 bar	0.11-0.13	~3.5
Cryogenic liquefaction	0.16 (25 bar, -15°C, Linde)	~5.2
Dry ice production [48]	0.26-0.42	~8.4-13.5

Table 2.4: Energy consumption for CO₂ compression, liquefaction and dry ice production

Table 2.5: CO₂ pressure for transport, storage or further processing

Pipeline Transport:	82-172 bar [69, 70]
Sequestration in the ocean:	depends on depth at which it is injected, higher density than seawater
Enhancing oil/gas recovery:	90-340 bar [71]
Methanol synthesis:	250-350 bar (BASF), 50-100 bar (S < 0.1 ppm, Lurgi)

Table 2.6: Properties of CO₂

•	Critical temperature	31.05°C	Critical pressure:	73.858 bar
•	Density (at STP):	1.96 kg/m ³	• Triple point	-56.67°C / 0.518 bar
•	Vapor pressure at 20°C:	57.3 bar	• Boiling point at 1.013 bar:	-78.2°C

2.2.2 Gas Separation Methods

Methods of CO₂ or H₂ Separation

Various methods can be used to separate CO₂ and H₂:

- <u>Absorption</u>
- Adsorption
- <u>Membrane Process</u>
- Cryogenic Engineering Processes (distillation or freezing)
- <u>Other</u> processes; for example, those based on a combination of dissolution processes and magnetic or electrostatic forces (electrochemical processes), or on proposed biological methods of CO₂ absorption using algae or bacteria.

When CO_2 is removed from a gas, which is under pressure, the volumetric flow through the gas turbine decreases, which causes gas turbine output to drop. In addition to the energy consumed by the gas separation process, it is therefore also necessary to take into account the reduction in gas turbine power output, or the work which would have been gained from expansion of the CO_2 stream (e.g. CO_2 removal from a synthesis gas results in a power output reduction of around 0.03 kWh per kg of CO_2 removed, where the gas turbine is designed for a pressure ratio of 16).

Absorption

Absorption in liquid solvents is a standard industrial process for CO₂ separation, which allows high purity levels and separation factors to be achieved. Table 6.8 (Appendix) gives examples of operating data

for usual absorption techniques.

In the case of physical solvents, solubility is approximately proportional to the partial pressure of the gaseous component. In the case of chemical solvents, saturation of the solvent occurs as loading increases (Figure 2.2). In chemical absorption, after scrubbing from the raw gas, the solvent must be heated up to recover the pure CO_2 (solvent regeneration). In physical absorption, it must be expanded. In a first approximation, the energy expenditure to regenerate the solvent in chemical scrubbing is proportional to the quantity of gas taken up. In physical scrubbing it is inversely proportional to the partial pressure of the gaseous component to be removed. A rule of thumb would be to use chemical scrubbing when CO_2 partial pressure is lower than 10 bar, and physical scrubbing when it exceeds this figure. Since the operating temperature for chemical absorption may not be any higher than 60°C (and for physical absorption it is much lower), the gas to be scrubbed must be cooled to the required temperature. To facilitate comparisons, this study expresses the heat required for regeneration in terms of the lost turbine work of the extracted steam²⁹.

Figure 2.3 shows a typical flow diagram for chemical scrubbing.

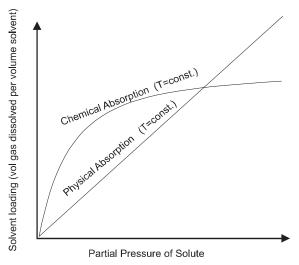


Figure 2.2: Characteristic solvent loading of chemical and physical solvents in dependence on the partial pressure of the dissolved gaseous component

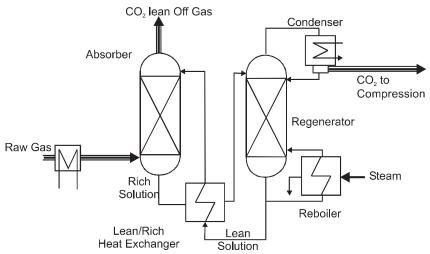


Figure 2.3: Chemical gas scrubbing process flow

Adsorption

Adsorption of CO_2 in solid solvents requires an expenditure of energy for regeneration through lowering the pressure or increasing the temperature. Industrial plants for CO_2 adsorption are only suitable for small gas streams.

The adsorption process makes use of the different solubilities of gaseous components in a solid. Physical adsorption with regeneration through pressure reduction is referred to as pressure swing adsorption (PSA, Figure 2.4). Chemical adsorption with thermal regeneration is known as temperature swing adsorption (TSA). In addition, there are some processes where regeneration consists of a combination of lowering the pressure and increasing the temperature (PTSA).

Activated carbon or coke, carbon molecular sieves, zeolite molecular sieves or activated aluminum may be used for regenerative pressure swing adsorption. With these substances, the adsorption of CO_2 is greater than that of N_2 or O_2 .

Published data from laboratory and demonstration facilities are summarized in Table 6.8 of the Appendix. For CO_2 adsorption from synthesis gases at 13 to 21 bar, CO_2 separation factors of 60% to 90% are given, with levels of purity of over 99% volume fraction.

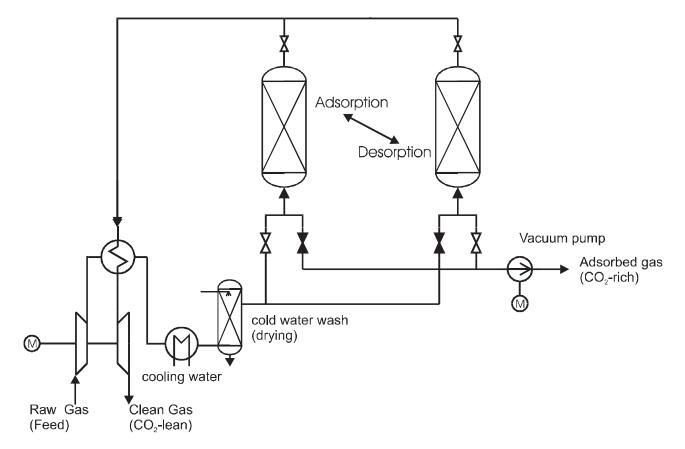


Figure 2.4: Flow diagram of a pressure swing adsorption (PSA) installation

Membrane Processes

In a membrane process, components, which diffuse more readily, may be separated out by means of a thin layer of material under a pressure differential. Where mass transfer (permeability) is known for the

individual components, mass transfer rate m_{CO2} of CO₂ may be estimated for those membranes, which primarily feature solution/diffusion transport (polymer membrane), according to Fick's Law of diffusion:

$$m_{CO2} = \frac{D_{CO_2} \cdot A \cdot (p_{f,CO2} - p_{p,CO2})}{l}, \qquad (2.1)$$

where D_{CO_2} is the permeability of CO₂ through the membrane, *A* is the surface area, *l* is the membrane thickness and p_{f,CO_2} , p_{p,CO_2} are the partial pressures of CO₂ on the feed (*f*) and permeate (*p*) side of the membrane.

For membranes primarily featuring mass transport through Knudsen diffusion (molecular sieve, ceramic and glass membranes), Sievert's Law applies:

$$m_{CO2} = \frac{D_{CO_2} \cdot A \cdot (\sqrt{p_{f,CO2}} - \sqrt{p_{p,CO2}})}{l}.$$
(2.2)

Separation (transport) behavior of a membrane is determined by selectivity α_{ij} , which is defined as the ratio between the permeabilities of two components *i* and *j*:

$$\alpha_{ij} = \frac{D_i}{D_j} \tag{2.3}$$

In the case of Knudsen diffusion (molecular sieve, ceramic/ glass membranes), selectivity α_{ij} is approximately determined by molecular weight M_i , M_j of the two components *i* and *j*:

$$\alpha_{ij} = \sqrt{\frac{M_i}{M_j}} \,. \tag{2.4}$$

Separation behavior is often described in terms of the separation factor. The separation factor for a binary mixture consisting of H_2 and CO_2 is defined as:

$$\overline{\alpha}_{_{H_2/CO_2}} = \frac{y_{p,H_2}}{y_{p,CO_2}} \frac{y_{f,CO_2}}{y_{f,H_2}},$$
(2.5)

where y is the amount of substance, index p is the permeate and index f is the feed.

Reducing the gas mixture to a binary system enables us to describe the mass transport in the membrane using the Weller-Stein equation [72]:

$$\frac{\dot{m}_{i}}{m_{j}} = \alpha_{ij} \frac{\binom{p_{f}}{p_{p}} y_{fi} - y_{pi}}{\binom{p_{f}}{p_{p}} (1 - y_{fi}) - (1 - y_{pi})}.$$
(2.6)

The amount of substance of permeated component *i* is then given by:

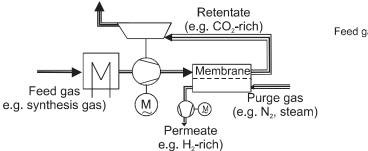
$$y_{pi} = \frac{-B + \sqrt{B^2 + 4(1 - \alpha_{ij})\alpha_{ij} \binom{p_f}{p_p} y_{fi}}}{2(1 - \alpha_{ii})}, \qquad (2.7)$$

where
$$B = (\alpha_{ij} - 1) \begin{pmatrix} p_f \\ p_p \end{pmatrix} y_{fi} + \begin{pmatrix} p_f \\ p_p \end{pmatrix} + (\alpha_{ij} - 1).$$
(2.8)

In addition to the quality of the membrane (permeability and selectivity), gas separation is determined by two further process parameters:

- <u>The compression ratio of permeate to feed gas:</u> a large pressure ratio promotes effective separation, but it also leads to a greater compressor work.
- <u>Permeation ratio</u> as the ratio of permeate molar flow to feed molar flow: high purity is obtained at low efficiency. If an increased separation factor is required, the permeation ratio must be increased, and product gas concentration decreases.
- The required <u>membrane surface</u> depends on the permeability, the desired level of efficiency and the pressure ratio. The size of the membrane apparatus is determined by the membrane surface, and the specific membrane surface by volume, which may differ significantly for different membrane types. For example, polymer membranes have low permeabilities, yet they attain the largest specific surface per unit volume when arranged in bundles of hollow fiber membranes.

As a general rule, it is simpler to separate gaseous components with small molecular weights (and possibly to use the retentate as product). This applies in particular to hydrogen removal from synthesis gases, where the result is a retentate rich in CO_2 , correspondingly CO.


In the case of hydrogen or CO₂ removal from a fuel gas, energy losses consist approximately of:

• Pressure loss:

The expenditure of work is caused by pressure loss in the permeating gas (permeate). This must be compensated for, either through increased pressure of the feed gas (see Figure 2.5) or through subsequent compression of the permeated gas.

- Losses through residual H₂ in the carbon-rich split flow:
 - additional energy requirements for O₂ production to burn fuel residue
 - poor usage of the released combustion enthalpy in a steam cycle.

The gas, which remains (retentate), has approximately the same pressure as the feed gas. Efficient separation requires high selectivities (ratio of permeabilities), a reasonably sized membrane surface and high permeabilities for the components to be removed. Table 6.9 (Appendix) provides an overview of the selectivities of commercial membranes.

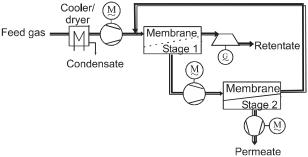
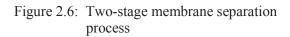



Figure 2.5: Single-stage membrane separation process

By adding a purge gas (e.g. steam or waste nitrogen from the air separation facility of an IGCC) on the permeate side, the partial pressure difference between the permeating components is increased (Figure 2.5). This allows a smaller overall pressure difference to be selected, which, in turn, reduces the energy consumption for the gas separation process. By arranging the membranes over several stages, the purity of the permeate can be increased while simultaneously the yield (separation factor) is lower (Figure 2.6)

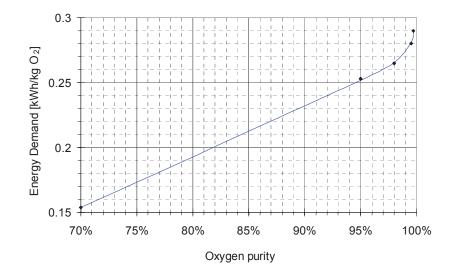
 H_2 removal from synthesis gases using polymer membranes has now been developed to a stage where it can nearly compete with other processes. In contrast, no competitive application is yet in sight for CO₂ removal from flue gases (CO₂/N₂ separation), for which the best selectivity is currently 33, as compared to a required minimum selectivity of 200 [73]. Polymer membranes are, however, also used in the preseparation of CO₂ from natural gas, for example.

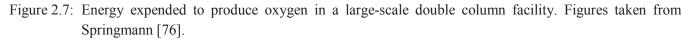
Cryogenic Processes

Direct condensation, sublimation or distillation may all be used, with or without the addition of solvents, to remove CO_2 from mixtures with gases, which only condense/sublime at lower temperatures. In any case, the separation process must be preceded by a drying stage to avoid blockage caused by formed ice.

In cases where CO_2 is the only condensable component of the gas mixture, its partial pressure is reduced by cooling it to the saturation vapor pressure (assuming an ideal gas). The highest CO_2 separation factor s_{CO_2} is achieved through reducing the temperature and increasing the pressure. CO_2 sublimes below the triple point temperature of -56.6°C.

The principal advantage of CO_2 removal through freezing is that, in theory, the lower sublimation pressure at lower temperatures means that it can be carried out at pressures as low as 4 or 5 bar [16]. In contrast, condensation requires significantly higher pressures to obtain lower separation factors (see also p 93).


One commercial process for CO_2 freezing is the "Controlled Freezing Zone" (CFZ) process designed by Exxon, in which expansion of the CO_2 as it emerges from nozzles causes it to sublime freely in the


chamber, after which it is thawed. One problem, which emerges with freezing using heat exchangers, is how to remove the solid CO_2 from the surfaces of the heat exchanger. With regard to theoretical energy consumption for the production of dry ice through freezing CO_2 out of flue gas (which has 13% volume fraction of CO_2), Kümmel et al. [74] cite figures of 0.3533 kWh per kg of CO_2 for a CO_2 capture ratio of 80%, and 0.3768 kWh per kg of CO_2 for a CO_2 capture ratio of 90% at 4 bar, -100°C. Hendricks also suggests CO_2 freezing for CO_2 capture in liquid phase due to the advantage of lower operating pressure [16]. The CO_2 would then have to be thawed out in a heat exchanger.

Oxygen Recovery from Air

The most common type of air separation is liquefaction, in accordance with the Linde method, and rectification in a double column. To achieve oxygen purity of 90% (volume fraction), the feed air must have a pressure of approximately 5 bar, which results in an oxygen product pressure slightly above ambient pressure. For the integration in IGCC power plants, air separation units have been designed with supply air having the final discharge pressure of the gas turbine compressor. The maximum air pressure, which is technically feasible currently, lies in the range of slightly more than 16 bar, with a resulting oxygen pressure of around 6 bar. The nitrogen, which becomes available at around 6 bar, is further compressed in the IGCC power plant and mixed into the fuel gas, in order to maintain the required mass flow ratios between the compressor and turbine⁹, and to reduce NO_x prior to the gas turbine combustion chamber.

For installations dealing with up to 100 t of O_2 per day, pressure swing adsorption (PSA) or temperature swing adsorption (TSA) are also installed. Membrane processes in laboratory experiments have obtained 85% O_2 (volume fraction)[75].

The theoretical, reversible energy consumption for air separation is determined by separation into all the components and reversible compression of each partial pressure to the total pressure:

⁹ Currently, all gas turbines are designed for natural gas as a fuel, i.e. the air and exhaust gas mass flows, which prevail in that type of usage must be maintained when using the gas turbine in an IGCC.

$$w_r = T_0 \sum_i \varepsilon_i R_i \ln p_{tot} / p_i$$
(2.9)

The reversible separation work¹⁰ required to separate air into all its components is 0.01754 kWh per kg of air, or 0.0759 kWh per kg of O₂. In contrast, reversible separation work, in which just O₂ is separated from the ambient air, requires just 0.0336 kWh per kg of O₂. The work required for oxygen production occurs in the course of the cryogenic liquefaction of air utilizing the Joule-Thomson effect, in accordance with the Linde process, with the energy recovery of the cooling and liquefaction cold processes and the subsequent separation of the components through rectification. The basic separation work in a double column is constrained by the liquefaction pressure of the pure nitrogen in a condenser, on the other side of which O₂ is vaporized. It amounts to around 0.05 kWh per kg of air (approx. 0.215 kWh/O₂ with 99.5% volume fraction) [76]. Irreversibilities through heat transfer or turbulence and friction increase the work in a real installation to approx. 0.29 kWh/kg O₂. The energy used in refrigeration accounts for only 10% of the overall energy demand [76].

To calculate the energy required for O_2 production at 1 bar with cryogenic air separation, this study uses the data given by Springmann [76], in dependence on the O_2 concentration according to Figure 2.7. The energy requirement shown for oxygen production by various methods refers to the production of O_2 at above-atmospheric pressure and subsequent work recovery through expansion of the O_2 to atmospheric pressure. The figures used correspond closely to data published in more recent studies (e.g. [77]).

Summary: Gas Separation Methods

Due to the differing CO_2 content in synthesis gases and flue gases, a suitable method should be chosen to match the specific application. Synthesis gases mainly consist of hydrogen, carbon monoxide and carbon dioxide. Flue gases mainly consist of nitrogen and carbon dioxide. Additional data on gas separation processes is provided in the Appendix in Section 6.5.

• CO₂ / H₂ Removal from Synthesis Gases:

<u>Physical absorption methods</u> have proved themselves to be highly suitable for CO_2 removal from synthesis gases. They are characterized by their low energy demand for solvent regeneration. Taking the additional required heat input as a reduction in steam turbine work¹¹, the expenditure for pumps and heat input for CO_2 removal in commercial processes described in the literature amounts to between 0.04 and 0.09 kWh per kg of CO_2 removed. <u>Physical-chemical</u> methods require around 0.04 to 0.07 kWh per kg of CO_2 removed. As a rule, chemical scrubbing is not used for pressurized gases.

Whereas synthesis gas is mostly under pressure, CO_2 is normally released from the desorber at ambient pressure. For this reason, this method requires an additional 0.05 to 0.08 kWh per kg of CO_2 removed, to compress from ambient pressure to the pressure of the synthesis gas.

<u>Membranes</u> used with synthesis gases are only suitable for hydrogen separation. They require highpressure ratios. Since the carbon-rich retentate generally still has a fairly considerable calorific value, the combustible portions of the retentate have to be burnt with additional oxygen. Commercially available polymer membranes are expensive, but they are fully capable of achieving sufficiently high CO₂ separation factors. Taking into account the lost power from the fuel residues and the production of the oxygen

¹⁰ For more details on "reversible separation work", see Section 3.4.2.

¹¹ If the heat required is calculated as a reduction in steam turbine power output through steam extraction. For more details, see Section 6.6 of the Appendix.

required to burn these residues, the energy demand for CO_2 capture with membranes totals 0.17 to 0.29 kWh per kg of CO_2 removed.

<u>Methods employing cryogenic technologies</u> require high pressures to perform CO_2 separation through direct condensation without a solvent (88 bar minimum pressure at -56°C; 592 bar minimum pressure at 0°C) in order to achieve a CO_2 separation factor of 90%. Moderate pressures are sufficient for CO_2 freezing, though extremely low temperatures are required (33.6 bar at -70°C; 88.2 bar at -57°C). For CO_2 removal using cryogenic technologies, in theory, only low separation factors can be obtained, and CO_2 freezing has still not been technologically resolved.

<u>Adsorption</u> of CO_2 or H_2 from synthesis gases is technically feasible using very large equipment; the energy demand of approx. 0.16 to 0.2 kWh per kg of CO_2 removed is higher than with physical scrubbing. In this case, too, the compressor work (of around 0.05 to 0.08 kWh per kg of CO_2 removed), must be considered, which is required to compress the pressure of the separated CO_2 to the pressure of the synthesis gas.

• CO₂ removal from flue gases:

With regard to CO_2 capture from flue gases, <u>chemical absorption</u> is the method, which achieves the greatest exergetic efficiency (see Section 0). This method has also been shown to be technically feasible. The power consumption of solvent pumps lies in the range of between 0.02 and 0.4 kWh per kg of CO_2 removed. To this must be added the heat requirements for solvent regeneration, amounting to between 0.5 to 1.7 kWh¹² per kg of CO_2 removed.

When using common sorbents such as amine, strict limit values for SO_x must be maintained in order to minimize loss of the absorbent through corrosion. Physical solvents are not suitable, due to the low CO_2 concentration in flue gases.

<u>Membranes</u> require high-pressure ratios of more than 40 and selectivities of CO_2 to N_2 of almost 200 (not yet achieved), in order to achieve the required rates of separation and purity at competitive levels of energy consumption.

<u>Cryogenic technology methods</u> require pressures of more than 387 bar to directly condense CO_2 or temperatures below -100°C (at 11 bar) to sublime CO_2 . However, there are no installations available with these technical specifications.

<u>Adsorption</u> of CO_2 from flue gases is currently under development and should achieve a specific energy consumption of between 0.42 and 1.2 kWh per kg of CO_2 removed. Large-scale implementation fails due to the large quantities of adsorbent.

2.2.3 Process Family I: CO₂ Separation from Synthesis Gas Subsequent to CO Conversion

Synthesis gases can be produced from coal by means of coal gasification, or from natural gas through steam reforming¹³. They mainly consist of CO and H₂. Minor quantities of other inert gases in coal gases stem from the residual gases in the oxidant and from the transport gas for coal dust sluicing. Without conversion of the CO component, a CO₂ capture ratio of up to around 14% can be achieved solely

¹² Enthalpy of the steam

¹³ See pp. 22 and 23 for a description of steam reforming and CO shift conversion

through capture of the CO₂ produced by coal gasification¹⁴. The efficiency penalty in this case amounts to less than 1 percentage point [78].

By converting CO to CO_2 and H_2 by adding steam (referred to as the 'carbon monoxide shift reaction', 'water-gas shift reaction', or 'CO shift conversion'), a concentration of CO_2 can be produced in the fuel gas which is significantly higher than that produced in flue gases generated by the combustion with air of a fuel containing carbon (Figure 2.8). This makes it possible to remove CO_2 with a lower expenditure of energy. However, the exergy losses caused by the required fuel conversion (CO shift reaction, steam reforming for natural gas) result in a further energy demand. This process is therefore only advantageous if the energy required for CO shift conversion and CO_2 removal from the synthesis gas is lower than that required for CO_2 removal from a flue gas diluted with atmospheric nitrogen.

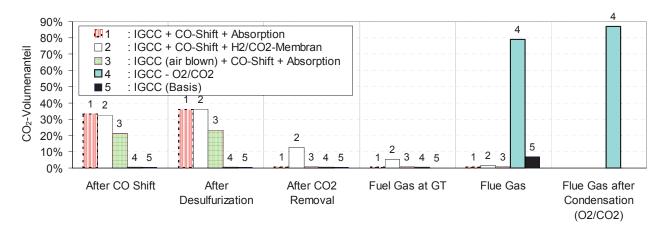


Figure 2.8: CO₂ volume fractions after various process steps in a baseline IGCC, in an IGCC power plant with CO conversion (CO shift reaction) and CO₂ scrubbing or with an H₂/CO₂ membrane, and in an IGCC power plant with a CO₂ gas turbine (combustion in an atmosphere of oxygen and recirculated exhaust gas).

Following CO shift conversion, cooling and desulfurization, the CO_2 can be separated and the carbonlean, cleaned fuel gas can be delivered into a gas turbine cycle or a fuel cell. Figure 2.9 illustrates the difference between two process arrangements: the first with a clean gas CO shift reaction (clean gas CO conversion), and the second with a raw gas CO shift reaction (raw gas CO conversion) (see also p 24). The CO shift reaction causes the CO_2 volume fraction to increase from almost zero to approx. 30% (Figure 3.35, Section 3.5.1), and the H₂ volume fraction to increase from approx. 30% to approx. 50%.

¹⁴ The maximum value is only obtained in a coal gasification process with coal slurry charging, i.e. with low exergetic efficiency.

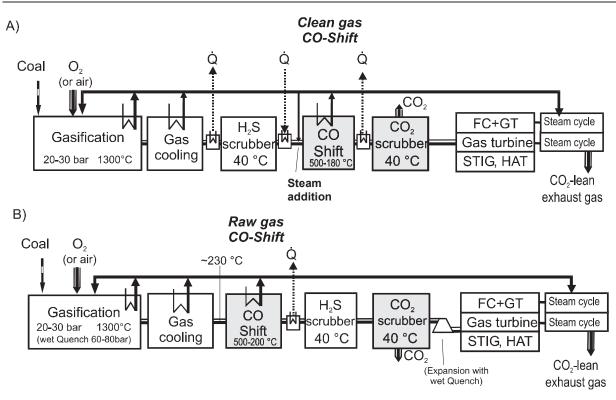


Figure 2.9: Flow diagram of an IGCC power plant using the raw gas heat recovery method to generate steam, with CO conversion (CO shift reaction) and CO₂ scrubbing:
A) Clean gas CO shift reaction, B) Raw gas CO shift reaction¹⁵.

After the CO shift reaction, the fuel gas primarily consists of CO_2 and H_2 . It is therefore necessary to differentiate between two different ways of increasing CO_2 concentration, i.e. either by removing CO_2 or by removing H_2 . If CO_2 is removed, the gas turbine is operated with the remaining H_2 -rich gas (combustion in air) and the previously separated CO_2 is liquefied. If H_2 is removed (separation using membranes), a portion of the combustible components remain in the mixture with the concentrated CO_2 . This portion can subsequently be burnt with technically pure oxygen to avoid fuel losses. The separated, H_2 -rich portion of the gas is burnt with air in the gas turbine combustion chamber.

2.2.3.1 Raw Gas Conversion

To remove CO_2 prior to combustion, coal gas and natural gas must be converted into H_2 and CO_2 , the former via the CO shift reaction and the latter through steam reforming and the CO shift reaction.

The **CO** shift reaction (CO shift conversion, water-gas shift reaction) is the exothermic conversion of carbon monoxide and steam into CO_2 and hydrogen:

$$CO + H_2O_{(g)} \Leftrightarrow CO_2 + H_2$$
 $\Delta_r H = -41.16kJ/Mol$ (2.10)

The exothermic CO shift reaction causes the heating value of one mole of CO (282.98 kJ/mol) to be reduced by 14.5% to the heating value of one mole of hydrogen (241.82 kJ/mol).

¹⁵ In the case of raw gas cooling through direct quenching with water, raw gas CO shift reaction is preferred.

Steam reforming¹⁶ refers to the endothermic conversion of hydrocarbons and steam into carbon monoxide and hydrogen, in this case using the example of the steam reforming of methane:

$$CH_4 + H_2O_{(g)} \Leftrightarrow CO + 3H_2$$
 $\Delta_r H = +206.28kJ/Mol$ (2.11)

The overall reaction consisting of steam reforming and CO shift reaction of methane and steam into CO_2 and H_2 is endothermic, when taken as a whole:

$$CH_4 + 2H_2O_{(g)} \rightarrow 4H_2 + CO_2 \qquad \qquad \Delta_r H = +193kJ / Mol \qquad (2.12)$$

Endothermic steam reforming, and the subsequent exothermic CO shift reaction of methane and steam, causes the fuel energy flow (LHV) to be increased by 20.6% from 802.34 kJ for one mole of CH_4 to 4 x 241.82 kJ = 967.28 kJ for 4 moles of H_2 .

Higher hydrocarbons can also be converted through similar reactions:

....

$$C_2H_6 + 2H_2O_{(g)} \Leftrightarrow 2CO + 5H_2 \qquad \qquad \Delta_r H = +347.50 kJ / Mol \qquad (2.13)$$

$$C_{3}H_{8} + 3H_{2}O_{(g)} \Leftrightarrow 3CO + 7H_{2} \qquad \qquad \Delta_{r}H = +498.06kJ / Mol \qquad (2.14)$$

$$C_n H_m + n H_2 O_{(g)} \Leftrightarrow nCO + (m/2 + n)H_2 \qquad \qquad +\Delta_r H \qquad (2.15)$$

To achieve a high CO_2 capture ratio, high CO or CH_4 conversion is required. This can only be achieved with a high excess of water in relation to the stoichiometric reaction. The enthalpy of vaporization delivered with the excess steam contributes significantly to the exergy losses in the CO shift reaction and steam reforming. Additionally, exergy losses occur during cooling of the synthesis gas subsequent to the CO shift reaction, due to condensation of the excess steam component, even if part of the enthalpy of vaporization expended can be recovered via the heat exchanger.

Potential For Improvement

By increasing the number of reaction stages, heat recovery can be improved and the excess of steam can be reduced.

If the reaction products (CO_2, H_2) of the CO shift reaction or steam reforming are removed during the reaction, then, in accordance with the Le Chatelier-Braun principle (law of mass action), conversion of the reaction educts (CO, CH₄, H₂O) increases, or, alternatively, less steam need be supplied.

Using a combination of a membrane and catalyst, for example, the hydrogen produced during CO shift reaction/steam reforming is separated off, thereby allowing increased CO conversion to be achieved with a low expenditure of energy on steam injection (WIHYS process, see page 31). Other possibilities are, for example, membrane reactors for steam reforming (laboratory tests [103, 104]), or a combination of a CO shift reaction and CO₂ adsorption with limestone or dolomite as a catalyst and absorbent (see Section 3.5.2).

¹⁶ Aside from the process of steam reforming described above, reforming in petrochemical processes refers to a process of catalyst-supported chemical conversion, without additives, effected through a combination of isomerization, aromatization and ring formation.

Operating Conditions for CO Conversion

In the temperature range between 950°C and 1000°C, a CO shift reaction with synthesis gases takes place at a sufficiently rapid pace even without a catalyst [79]. At lower temperatures, the speed of the reaction is slower, in accordance with Arrhenius' Law, though the Le Chatelier Principle means that more CO is converted at lower temperatures in the exothermic CO shift reaction before the state of chemical equilibrium is reached. In industrial applications, catalysts have long been employed at reaction temperatures of between 180°C and 500°C.

In practice, a state is reached after the converter corresponding to an equilibrium temperature, which lies around 10 to 20 K above the reaction temperature. Pressure losses are between 0.18 and 0.3 bar [79]. For reasons of cooling, equipment size and energy utilization, large-scale conversion processes employ a multistage CO shift reactor with different temperature stages (Figure 2.10).

CO shift reactors are classified according to temperature range, and according to the sensitivity of the catalysts to impurities, in particular to sulfur compounds [80, 81, 82]:

- Catalytic clean gas CO shift conversion:
 - catalyst is sensitive to impurities, i.e. desulfurization required prior to CO shift conversion,
 - advantage: high rate of conversion is possible at low end temperatures,
 - disadvantage: reheating required subsequent to wet desulfurization; in the case of wet desulfurization, the water vapor component of the gas condenses, it must subsequently be humidified; high excess of steam required,
 - maximum CO conversion: approx. 99% (2-stage).
 - High temperature CO shift conversion:
 - operating temperature: 300°C to 530°C,
 - rapid conversion/smaller volume, full conversion not possible,
 - catalyst types: Ni/Cr oxide, Fe/Cr oxide,
 - minimal molar ratio of steam to CO: > 2 2.2;
 - sulfur tolerance: mass fraction <0.03%.
 - Low temperature CO shift conversion:
 - operating temperature: 180°C to 270°C,
 - 2nd stage after HT-CO shift conversion, virtually full CO conversion possible,
 - catalyst types: Cu/Zn oxide,
 - operating temperature: 180°C to 270°C,
 - minimal molar ratio of steam to CO: > 2 2.2;
 - sulfur tolerance: volume fraction < 0.1 ppm.

- Catalytic raw gas CO shift conversion:
 - requires sulfur-resistant catalyst; simultaneously partial COS hydrolysis; often requires two-stage execution (HT/LT).
 - advantage: better use of enthalpy (thermal component) and humidity of the raw gas after Venturi scrubbing (higher inlet temperature and raw gas humidity than in clean gas CO shift conversion after wet scrubbing). This also results in lower costs.
 - disadvantage: lower CO conversion rate than with low temperature clean gas CO shift conversion - this latter process may need to be incorporated downstream (combined raw gas/clean gas CO shift conversion).
 - maximum CO conversion: approx. 95% (2 stage).
 - operating temperature: 230°C to 500°C.
 - catalyst: CoMo/Al oxide.
 - same catalysts for all reactor stages.
 - minimal molar ratio of steam to CO: > 1.8 2.

If a wet scrubber working at low temperatures is used for desulfurization, the gas must consequently be reheated prior to the clean gas CO shift reaction. Due to the condensing of the water component, it must also be humidified to a greater extent than is necessary in the case of a raw gas CO shift reaction prior to cold scrubbing. This distinction does not apply if a hot, dry desulfurization technique is used, such as an iron oxide bed [83] or a zinc oxide bed [84].

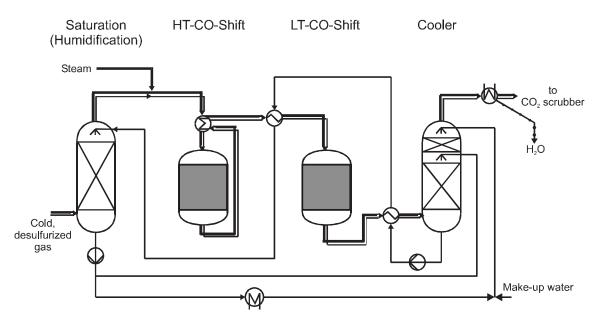


Figure 2.10: Typical arrangement of a two-stage clean gas CO shift conversion process with a cooler-saturator system for heat recovery and for reducing the amount of make-up steam [85, 20]

To set the required proportion of water, the chemical industry frequently employs a cooler-saturator cycle, which utilizes the recovered heat within the "CO shift reactor" system (Figure 2.10). Brand [85], for example, has investigated heat integration with a two-stage CO shift reactor. In cases where the raw gas is cooled by injecting water (direct quenching), the steam content may be sufficient for the CO shift reaction without the addition of extra steam [79, 86]. At the same time, direct quenching with water results in a greater exergy loss than that found in raw gas heat recovery with external steam generation.

Operating Conditions for Steam Reforming

According to the Le Chatelier Principle, a high rate of CH_4 conversion is achieved in the endothermic reforming reaction through high temperatures, low pressures and high water excess. Since it is also true that CO conversion in the exothermic CO shift reaction is favored by low temperatures, a further CO shift stage at low temperature must be incorporated downstream in order to achieve the fullest possible conversion of CH_4 to CO_2 . This means heating prior to steam reforming, subsequent cooling for the CO shift reactor and re-cooling for the case of wet CO_2 scrubbing. Heat recovery is only possible to a limited extent, meaning that the heating and cooling processes cause further exergy losses on top of the exergy lost through chemical conversion.

Steam reforming generally takes place at temperatures of between 800°C and 900°C. Pre-reforming can be carried out at temperatures between 325°C and 600°C. Compared to the stoichiometric, molar ratio of steam to methane of 2, the ratio of steam to methane required for commercial catalysts is at least twice as high (4 to 5). In practice, the catalytic reforming reaction results in a composition similar to that achieved with an equilibrium temperature reduced by 5 K.

The typical process stages for steam reforming, CO conversion and CO₂ separation are:

- Desulfurization to prevent poisoning of the catalysts,
- Steam reforming in tubular fixed-bed reactors with Cr/Ni catalysts,
- CO shift reactor (HT + LT stage) and
- H_2/CO_2 separation.

In a similar manner to the CO shift reaction, a membrane reactor may also be used for steam reforming, allowing the excess of steam, and potentially the reaction temperature, to be reduced.

2.2.3.2 Processes with Coal Gasification

In processes involving oxygen-blown gasification, there are two methods which are suitable for removing CO_2 from a synthesis gas converted through a CO shift process: physical absorption and, as a future option, concentration of CO_2 through removal of H_2 using membranes. For air-blown gasification processes, it is also possible to use physical-chemical absorption techniques, due to the lower CO_2 partial pressure. At the current stage of development, only absorption scrubbing has been proven on an industrial scale; membrane techniques with high selectivity and permeability, and the required resistance to corrosion, are still at the stage of laboratory testing. Adsorption processes are less suitable for this application due to the quantities of adsorbent required, and high energy requirements [87].

The majority of IGCC processes discussed in the literature, which incorporate CO conversion (CO shift reaction) and CO₂ removal, use a raw gas CO shift. For a CO₂ capture ratio of between 80% and 96%, 90% to 95% of the CO is converted via a CO shift reaction, and 91% to 99.8% of the CO₂ is removed from the converted gas (Table 2.7). The processes described in the literature differ primarily in terms of

the different gas turbine efficiencies, on which they are based, meaning that any comparison of efficiencies is made on the basis of non-standardized levels of technology. For this reason, it makes more sense to compare efficiency penalties resulting from CO_2 capture.

According to various literature sources, CO conversion, CO₂ removal and liquefaction reduce the net efficiency of an IGCC power plant by between 7 and 13 percentage points (Table 2.7).

Table 2.7:	Data on CO ₂ capture in an IGCC power plant with CO conversion (all gasification procedures are O ₂ -	
	blown, except for nos. 8, 11 and 13)	

(Gasification Method Reference	Gas Separa- tion Method	CO ₂ Removal/ Capture		CO ₂ Emissions (CO ₂ liquid)	Efficienc $\Delta\eta$ (percen		Efficiency (CO ₂ liquid)	
	Kelelelice		СО	Separation	Capture	in kg CO ₂ /kWh	CO ₂ at	CO ₂ at	in %
			conver- sion in %	factor of scrub- bing in %	ratio in %		1 bar	110 bar	
		•		Physical abs	sorption	•			
			F	Raw gas CO shi	ft conversio	n			
	Texaco + direct quench-	Selexol	95	99	90	0.019 Baseline 0.89	4.5	7	29.5
2	ing with water [86, 88] Texaco [17]	Selexol	90	91	79	0.137	(4*)	(7*)	37.0
;	HTW [87]	Purisol	90 90	91	86.6	0.13			37.0
	niw [8/]	Pullsol	90	98	80.0	0.15	approx. 3.5	approx. 6.8	
ŀ	(British Coal) [89]	phys. scrub- bing	not spec.	not spec.	90	0.1 Baseline 0.79	approx. 6.4	approx. 10	33.0
j	(British Coal) [89]	seawater	not spec.	not spec.	90	0.1 Baseline 0.79	appr	ox. 8	35.0
			C	lean gas CO shi	ft conversio		1		I
5	PRENFLO [20]	Rectisol	91.2	98.1	88	0.10 Baseline 0.69	6.2	10.7	36.0
7	Shell [16, 71, 90]	Selexol	98	98-99	96	0.04	approx.	7.37.7	36.3
;	KRW (air-blown) + hot	Glycol	95	95	90	Baseline 0.76 0.16	4.0	6.5	35.0
,	gas desulfurization[91]	methanol	95	95	90	0.10	14.5	0.3 16.6	24.9
	Bas acountainzation[, 1]					Baseline 0.745	14.5	10.0	24.7
	KRW (O ₂ -blown) [91]	Glycol	95	95	90	0.277	1.9	3.3%	35.2
				1:0		Baseline 0.8			
0	(D.:.(1. (D1) [00]			hift conversio	$\frac{n + cnemic}{90}$				22.0
0	(British Coal) [89]	aqueous amine	Ŷ		- •	0.1 Baseline 0.79	approx. 7.4	approx. 11	32.0
1	"British Coal Topping Cycle" (air-blown) [89]	aqueous amine	not spec.	not spec.	87	0.1	approx. 9	approx. 12	34
2	Shell [81]	DEMEA	95	99.8	94.6	0.057 Baseline 0.756	6.6	9.8	33.2
3	KRW (air-blown) + hot	MEA	95	95	90	0.19	9.4	12.9	28.7
-	gas desulfurization[91]	K ₂ CO ₃				0.18	7.8	11.3	30.3
						Baseline 0.84			
		Raw gas	CO shif	t conversion +	membran	e (H ₂ separation)		•
4	HTW [87]	membrane				not spec.	>4	>8.5	< 36.5
5	British Coal [89]	metal mem- brane Separa- tion factor ¹⁷ ≈200	not spec.	not spec.	90	0.1 Baseline 0.79	approx. 4.5	approx. 8	35
6	Shell [92, 93]		90	88 (H ₂) >95 (H ₂)	96.6 _''-	0.030 0.028	approx. 7	approx. 11.5	34.5 37.5
		tion factor ¹⁷ ≈ 25		>) 5 (112)		0.028	approx.	approx. 8.5	57.5
7	KRW (O ₂ -blown) [91]		95	95	90	0.457 Baseline 0.8	6.0%	8.5%	30.7
	1	Combined cle	an gas Cí) shift conver	$\frac{1}{1}$	nbrane (H_2 sepa	ration)	1	1
8	PRENFLO [94]	ceramic mem-		80 (H ₂)	79.6	0.178	3.9	7.9	38.8
0		brane Separa- tion factor ¹⁷ ≈ 25		00 (112)	12.0		3.3	7.3	39.4 (with h gas clean up
17:4	hout CO. companying an			nonont from	al gasifiasti	Baseline 0.75			gas clean up
v 1t	hout CO ₂ conversion: se Texaco [78]	chem. abs.	0.00 = 0.00	99	14.4	0,63	< 1	< 2	46.4
9		IL LICELLE ALLS	0.00	177	114.4	U.0.5	1 1	~ 4	40.4

 $[\]overline{}^{17}$ See equation 2.5 (p 15).

CO₂ Removal Using Physical Absorption

A high CO_2 partial pressure favors removal via physical absorption [95]. Hence, physical scrubbing to remove CO_2 is also proposed for the majority of the power plant cycles with CO conversion described in the literature. Using combined, selectively acting solvents, CO_2 and H_2S can be removed simultaneously and recovered separately at high levels of purity.

Fluor Daniel Inc. carries out investigations for EPRI [86, 88] examining CO₂ capture in the case of coal gasification with coal slurry feed (approx. 50 bar) and raw gas cooling through direct <u>quenching with</u> <u>water</u> according to the Texaco method (Table 2.7: No. 1). Poor raw gas heat recovery means that even the baseline process displays a low level of efficiency. After cooling by direct quenching, the raw gas has an extremely high water vapor content. To reduce the water content, and to ensure that its enthalpy of vaporization is not lost through cooling and condensing prior to desulfurization, a raw gas CO shift process is used. Using this process arrangement, no additional steam is required for the CO shift reaction, which means that, in principle, it is possible to achieve an efficiency penalty (in this case, 4.5 percentage points¹⁸), which is smaller than that incurred with raw gas cooling via a steam generator.

In all other studies, the <u>heat from the raw gas cooling process is used to generate steam</u>, in which cases the proportion of water vapor in the raw gas is extremely small (approx. 1% volume fraction at a gasification temperature of 1300°C). For this reason, it is necessary to increase the water content up to a ratio of H₂O to CO of 1.4 to 2 through humidification and additional steam injection prior to the CO shift reaction. The water component, which remains following CO conversion, is condensed no later than the point where the gas is cooled to the CO₂ scrubber working temperature, causing further exergy losses attributable to CO conversion.

According to KEMA [17], the high operating pressure in a Texaco gasification process (approx. 80 bar, with steam generation in the raw gas cooler) allows a water content of approx. 30% volume fraction to be achieved subsequent to Venturi scrubbing at temperatures of around 230°C (Table 2.7: No. 2). This reduces the need for additional steam injection, resulting in an efficiency penalty calculated at 4 percentage points¹⁸

In the work of Pruschek et al. [20] (Table 2.7: No. 6), relating to gasification according to the PRENFLO method with raw gas cooling via the steam generator, the water component required for CO conversion in the desulfurized gas is introduced largely via the saturator, meaning that only a small additional amount is required to be injected directly as steam prior to CO conversion. The efficiency penalty comes to 6.2 percentage points¹⁸.

In a study by British Coal [89] (Table 2.7: No. 5), the physical absorption of CO_2 in seawater is also investigated. Since the seawater simultaneously serves as a solvent and as a sequestration site, neither solvent regeneration nor compression work for the separated CO_2 is required. Since CO_2 will leak out again if introduced at ocean depths <2000 m, a large-diameter seawater pipeline extending to great depths (> 2000 m) would be required. The efficiency penalty resulting from pump work and pressure build-up (with a CO_2 capture ratio r_{CO_2} of 90%) is cited at 8 percentage points. However, the low solubility of CO_2 in water means that given to approximate an experiment of a well as feed and drainage and

bility of CO_2 in water means that giant tower scrubbers are required, as well as feed and drainage systems for the seawater (see also my own calculations in Section 3.4).

²⁹

¹⁸ CO₂ gaseous at 1 bar, excluding liquefaction

Hendricks et al. [16, 71, 90] abstain from performing any detailed analysis of energy conversion in IGCC power plants, instead restricting their calculations to the energy and exergy losses in the clean gas CO shift conversion process and CO₂ scrubbing (Selexol process) (Table 2.7: No. 7). An efficiency penalty of approx. 4 percentage points^{18,19} is calculated as a result of the exergy losses in CO conversion and the energy required for CO₂ scrubbing.

CO₂ Removal Through Chemical and Physical-Chemical Absorption

In cases where chemical scrubbing is used to remove CO_2 from a coal gas after CO conversion (e.g. after air-blown gasification), the energy requirements for the gas separation process should be expected to be slightly higher than for physical scrubbing. However, since the CO_2 removal process only accounts for part of the efficiency penalty, a slightly increased energy demand for CO_2 scrubbing only has a limited effect on reducing the efficiency of the plant. With chemical scrubbing, virtually 100% of the CO_2 contained in the gas can be removed. This means either that a higher CO_2 capture ratio may be achieved than with physical scrubbing, or, alternatively, that the same CO_2 capture ratio may be achieved with a lower rate of CO conversion in the CO shift reaction.

In a comparison prepared by British Coal [89], the efficiency penalty at a CO_2 capture ratio of 90% amounts to 11 percentage points, using a chemical scrubbing process with aqueous amines and CO_2 liquefaction (Table 2.7: No. 10), a figure which is slightly higher than that obtained with physical scrubbing. For gasification using the Shell method and chemical CO_2 scrubbing (DEMEA, study by Shell [81], Table 2.7: No. 12), a CO_2 capture ratio of 94.6% is calculated with an efficiency penalty of 9.8 percentage points.

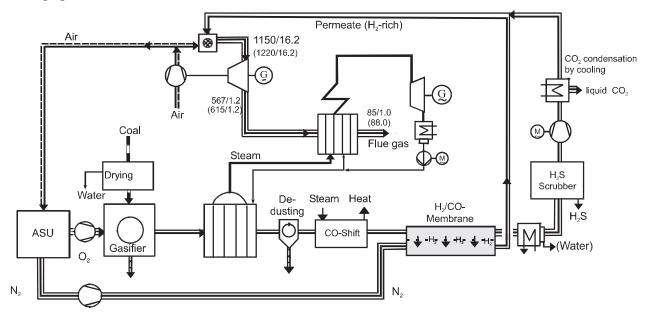


Figure 2.11: Process arrangement of an IGCC power plant with raw gas CO shift and H₂ removal using a membrane.

H₂/CO₂ Separation Using a Membrane

In a mixture of H₂ and CO₂, it is virtually impossible to remove CO₂ using membranes without having a

¹⁹ It is possible that the influence of the reduced mass flow rate on gas turbine performance has not been taken into account here.

larger proportion of H₂. For this reason, it is more advantageous simply to remove the H₂ component with a membrane and to burn in pure oxygen the residual fuel, which remains with the CO₂. At low temperatures of up to approx. 100°C, polymer membranes can be used. At higher temperatures, ceramic membranes are required, though these display lower selectivity. For temperatures in the range between 350°C and approx. 700°C, metal membranes (e.g. palladium) can be used; however, these achieve high selectivities for H₂, meaning that it is virtually only the H₂ component, which is removed. Since palladium membranes are too expensive for large-scale industrial use, metal membranes are being developed, in which an extremely thin metal film is deposited on a ceramic base material. Since membranes, which meet the requirements of power plant technology (e.g. in terms of corrosion resistance and separation behavior), are still at the development stage, virtually all the studies base their research on selectivities and permeabilities, which will be achievable in the future.

According to ECN [92, 93] (Table 2.7: No. 15), a gas separation procedure using a membrane with a separation factor²⁰ of 25 for H₂ to CO₂, and a pressure ratio between feed and permeate of 3.2, can separate out 88% of the H₂, after hot gas clean up at 350°C and CO conversion. The H₂ component, which remains in the retentate, is liquefied and disposed of together with the CO₂. The separated H₂-rich gas stream is burnt in a gas turbine. An efficiency of 34.5% is obtained, including CO₂ liquefaction. Recovery of the residual H₂ in the retentate can boost the efficiency of the power plant to 37.5%. This corresponds to an efficiency penalty of 7, or 4, percentage points¹⁸, respectively, when set against a comparable baseline power plant. According to British Coal (Table 2.7: No. 16), an efficiency penalty of 4 percentage points¹⁸ can be achieved, inclusive of CO₂ liquefaction, using a metallic membrane after the raw gas CO shift to separate out the H₂ with an anticipated future separation factor²⁰ of 200 for H₂/CO₂ [89]. At approx. 250°C, and with a pressure ratio between feed and permeate of approx. 1.33, the H₂ partial pressure in the permeate is lowered by mixing in excess N₂ from the air separation unit as a purge gas (Figure 2.11). Subsequent to desulfurization, the CO₂ component of the retentate is liquefied through condensation, and the remaining mixture of inert gases and H₂ is fed into the gas turbine together with the separated H₂.

Combination of CO Shift Reaction and Gas Separation

If a portion of the products $(H_2; CO_2)$ is removed during the CO shift reaction, its partial pressure drops and the chemical equilibrium shifts to the product side. For the CO shift reaction, this means a higher rate of CO conversion and, at the same time, a lower excess of steam. The reduced excess of steam means that less steam has to be added, so that exergy losses become lower.

A combination of catalytic CO conversion and a ceramic membrane for removing H_2 is being developed by ECN and tested in an application known as the WIHYS process in an IGCC power plant, as part of the JOULE II program [94] (Table 2.7: No. 18). With a low molar ratio of steam to CO of 1.28, a reactor exit temperature of 500°C, a ratio of feed to permeate pressure of around 1.7, and a selectivity of H_2 to CO₂ of 15, 90% of the CO is converted and 80% of the H_2 is removed. 80% of the carbon in the feed coal is retained in the retentate. A conventional CO shift reactor would require a higher excess of steam and a lower reaction end temperature. The addition of nitrogen from the air separation unit causes the H_2 partial pressure on the permeate side to be reduced to less than a third of the overall pressure, thereby improving the separation behavior of the membrane. The H_2 , which remains in the retentate, is burnt with a small proportion of other combustible components, with the addition of pure oxygen, and the

²⁰ See equation (2.5) (p 15).

enthalpy of combustion is used for the steam turbine process. Since the gas separation process works at high temperatures, the efficiency penalty with hot desulfurization is lower than with wet H₂S scrubbing.

Apart from membrane reactors, the combination of a CO shift reaction and CO₂ adsorption is also a feasible method of reducing the energy expended on CO₂ capture. In this study, an efficiency penalty, due to CO conversion/CO₂ adsorption with CaO, of 12.5 percentage points was calculated for an IGCC power plant (see Section 3.5.2). More favorable reaction conditions for CO shift conversion and CO₂ adsorption from coal gas, or for basic CO₂ adsorption from flue gases, emerge for a mixture of limestone and dolomite. CO shift conversion and CO₂ adsorption should be performed at between approx. 300°C and 350°C, basic CO₂ adsorption at between 200°C and 350°C, and desorption at around 650°C. According to Heesink [96], a heat exchanger can limit further heat requirements to 0.38 kWh per kg of CO₂. In this case, power plant efficiency would be reduced by approx. 10 to 15 percentage points. According to Ito and Makino [97], at temperatures of between 150°C and 300°C, zeolites can also act simultaneously as a catalyst for CO conversion and an adsorbent for CO₂. The advantage over MgO/CaO would be the fact that zeolite does not need to be heated to high temperatures for desorption, since the PSA principle can be applied.

Air-Blown Gasification

Subsequent to processing in an air-blown gasifier, coal gas is diluted with N_2 ; therefore, the concentration of CO_2 and of H_2 in the synthesis gas following CO shift conversion is lower than that obtained after O_2 -blown gasification. For this reason, literature sources also suggest chemical absorption as a suitable CO_2 separation method, as well as physical absorption [98, 91].

In the case of an IGCC power plant with an air-blown KRW gasifier [91] (Table 2.7: Nos. 8, 13) or of the "British Coal Topping Cycle" (Table 2.7: No. 11), an IGCC power plant with partial gasification [98], desulfurization can be achieved by adding lime to the fluidized bed combustion process, which means that cooling prior to a stage of wet desulfurization is no longer necessary. However, the fact that cooling is required prior to wet CO_2 scrubbing eliminates the advantage (as compared against the baseline case) of hot desulfurization in the fluidized bed. Although the KRW gasification process apparently achieves virtually complete carbon conversion, the "British Coal Topping Cycle" requires subsequent combustion of the residual char, with 20% to 30% of the original proportion of carbon, in a separate fluidized bed, which means that, to perform CO_2 capture, a second CO_2 scrubbing stage must be incorporated in the fluidized bed combustion process.

2.2.3.3 Processes with Natural Gas Reforming

Since temperatures of between 800°C and 900°C are required for steam reforming of a fuel gas containing hydrocarbons, a portion of the fuel gas is used for reformer heating. The combustion of a portion of the fuel for these reformer heating purposes causes the majority of the exergy losses attributable to CO_2 capture. Whereas coal gasification is still required even without CO_2 capture, in order to render the coal usable for the gas turbine processes, steam reforming in a natural gas-fired power plant is not actually required unless CO_2 capture is being performed. Thus, in contrast to coal gasification, the exergy losses associated with steam reforming, together with CO conversion and gas separation, are entirely attributable to CO_2 capture. The separation of CO_2 and H_2 after steam reforming is performed at significantly lower temperatures than the steam reforming process. This means that the synthesis gas produced must be cooled prior to gas separation. The heat from the gas cooling process is normally used to generate steam (Figure 2.12).

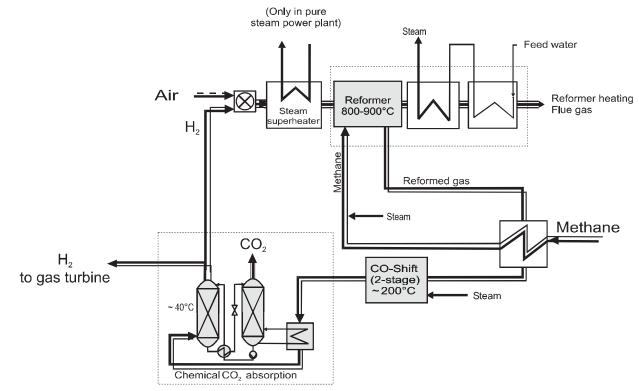


Figure 2.12: Flow diagram of a natural gas reforming process with downstream CO conversion and CO₂ removal (chemical absorption in this example) and external reformer heating with carbon-lean gas

There are relatively few cases in the literature of CO_2 separation after natural gas steam reforming and CO conversion (see Table 2.8 for data). In any event, exergy losses occur in this case due to:

- combustion of a portion of the fuel for reformer heating purposes,
- temperature differences in the heat exchange (heating of the reformer, cooling prior to gas separation),
- steam reforming,
- CO conversion including steam losses and
- H₂/CO₂ separation.

Through steam reforming at 800°C to 900°C, with a moderate excess of steam, only a part of the natural gas can be converted, which means that it is difficult to achieve a CO₂ capture ratio of 90%, even with high rates of CO conversion in the water-gas shift reaction, and a high CO₂ separation factor s_{CO_2} in the

CO₂ scrubbing stage.

In the majority of process arrangements, which have been proposed, the reformer is <u>heated externally</u> through combustion of an H₂-rich fuel gas (Figure 2.12). In a purely steam power plant, the thermal enthalpy of the hot, reformed gas can be used for steam superheating (Table 2.8: No. 1). In this case, the efficiency penalty due to CO_2 capture is cited as being approx. 4 percentage points²¹ [99]. Similar to the manner in which heat from the raw gas cooling process is used in the IGCC, only a small portion of the thermal enthalpy of the hot synthesis gas in gas/steam turbine combined cycle power plants can be transferred to the gas turbine, subsequent to reforming, to be exploited at the high efficiency of the combined cycle. For this reason, the efficiency penalty due to reforming, CO shift conversion and CO_2 separation in a gas/steam turbine combined cycle power plant is greater than in a purely steam power plant. According to Hille [100], this efficiency penalty amounts to 14.5 percentage points²¹ (Table 2.8: No. 2).

	Power Plant Type Reference	Reformer Heating	CO ₂ Removal/Capture			CO ₂ Emis- sions (with CO ₂ liquefaction)	(in per	cy Penalty αη centage ints)	Efficiency (with CO ₂ liquefac- tion)
No.			Method	Separation factor of scrubbing in %	Capture ratio in %	in kg CO ₂ /kWh	CO ₂ at 1 bar	CO ₂ at 110 bar	in %
1	Steam plant [99]	external with H ₂	distillation	not spec.	90	0.059	approx. 4	6.8	30
2	Gas/steam turbine combined cycle [100]	external with H ₂ (890°C)	MDEA (physchem.)	90.9	56	0.167	14.5	15.8	36.5
3	Gas/steam turbine combined cycle [101]	internal	chem. scrub- bing	not spec.	approx. 90	not spec.	not spec.	approx. 9	50
4	CRGT plant (see Sec. 3.5.3)	external with H_2	physchem. scrubbing	90	83.5	0.07	11.3	13	44.0

Table 2.8: Data on CO₂ capture in natural gas-fired processes subsequent to steam reforming and CO conversion

In a <u>"chemically recuperated" gas turbine (CRGT)</u> (Table 2.8: No. 4), the reformer is heated by hot gas turbine exhaust gas, rather than by additional fuel (see Section 3.5.3 for calculations). Due to the lower exhaust gas temperatures, the reforming temperature is lower than in steam reforming heated by direct firing. Accordingly, there is also a lower conversion of hydrocarbons. To achieve higher conversion rates, additional combustion is required (Figure 3.62). Since the reformer is heated using waste heat, the resulting efficiency penalty of approx. 11 percentage points is less than that obtained through arranging an externally heated steam reformer and CO_2 separation process prior to a gas/steam turbine combined cycle.

A significant drop in exergy losses is achieved by heating the natural gas, which is to be reformed, solely through <u>internal partial combustion</u>, while mixing in hot gas turbine exhaust gas (Figure 2.13, Table 2.8: No. 3) [101]. The portion of fuel gas burnt in this process reduces the mass flow of the gas components, which are to be converted via steam reforming and CO shift reaction, and also reduces the associated exergy losses, as compared to cases where the reformer is heated by an external source using H₂. In addition, the enthalpy of the hot gas turbine exhaust gas, mixed in for the combustion process, reduces the amount of fuel required for reformer heating. With this method of reformer heating through internal partial combustion, CO_2 capture and CO_2 liquefaction only reduce the efficiency of a gas/steam turbine combined cycle by 9 percentage points. Estimated costs lie slightly below those incurred by steam reforming with external heating. By comparing various gas/steam turbine combined cycles, namely those with CO_2 separation subsequent to steam reforming, those with combustion in an

²¹ CO₂ gaseous at 1 bar, excluding liquefaction.

atmosphere of O_2/CO_2 , and those with CO_2 removal from the flue gas, it can be seen that the smallest reductions in efficiency are attributable to CO_2 separation subsequent to steam reforming and CO conversion with internal partial combustion [101, 102].

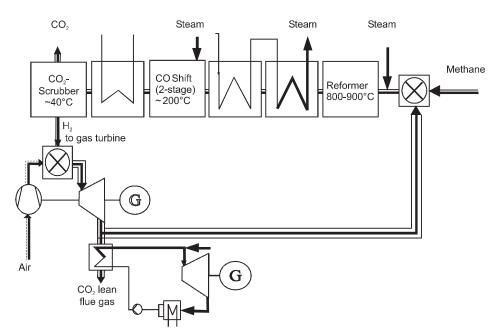


Figure 2.13: Flow diagram of a gas/steam turbine combined cycle with steam reforming (heated by internal partial combustion) and subsequent CO conversion and CO₂ separation

By using a <u>membrane reactor</u>, which combines steam reforming, CO shift reaction and H_2 separation, the chemical equilibrium could be shifted in such a way, that sufficient methane conversion becomes possible even at lower temperatures. Experiments with a palladium/silver membrane reactor have been described by Jørgensen et al. [103]. A CH₄ conversion rate of 60% was achieved at a pressure of 10 bar using a purge gas. Moritsuka [104] suggests the use of a ceramic membrane reactor.

2.2.4 Process Family II: Carbon Dioxide Concentration in the Exhaust Gas

By burning fuel in an atmosphere consisting of oxygen and CO_2 or steam, with the exclusion of other inert gases, it is possible to produce an exhaust gas consisting only of CO_2 and H_2O .

Depending on the way in which the oxygen is supplied, a distinction may be made between processes involving:

- production of a high-purity oxygen gas by means of air separation (Figure 2.14) or
- oxygen delivery through direct, selective mass transport from the ambient air through to the reaction (p 40).

The second method eliminates both the energy required to generate the pure oxygen, and the exergy losses resulting from the mixing process with the fuel and the recirculated flue gas. While oxygen production through air separation is a proven process, there are only a few laboratory investigations, which are currently experimenting with selective processes to generate oxygen for combustion.

The temperature of combustion is adjusted by recirculating the CO_2 to the combustion chamber. The CO_2 -rich flue gas may be drawn off either at high pressure prior to the gas turbine, or at low pressure prior to entering the compressor. If the gas is extracted prior to the gas turbine, the thermal enthalpy of the hot CO_2 must be incorporated in the subsequent steam cycle. Since the thermal enthalpy of the hot CO_2 , at high temperatures after the gas turbine combustion chamber, is used less efficiently in the steam cycle than in the combined cycle, it is preferable to remove the CO_2 at low pressure, following expansion in the gas turbine (providing that the compressor pressure ratio in the gas turbine and the steam cycle are set to optimal performance levels, and that the gas temperature is significantly higher than the temperature of the steam).

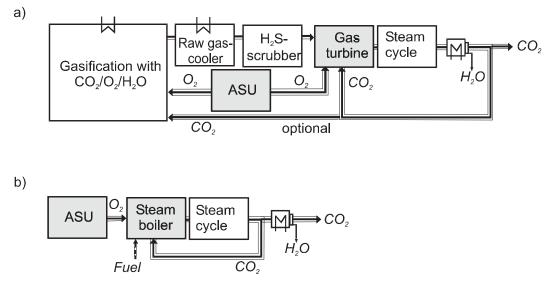


Figure 2.14: Basic principles of a power plant process with combustion in an atmosphere consisting of pure oxygen and recirculated CO₂. (a) IGCC power plant, (b) Steam power plant.

This process group practically eliminates the emission of CO_2 into the atmosphere. Minor emissions of CO_2 are caused by dissolution of the CO_2 in the condensate from the exhaust gas cooling stage, and in the condensate from the CO_2 compression process. In addition, CO_2 is also absorbed in the desulfurization process, and is released with the waste gas from the Claus plant. Furthermore, leakages may occur in the compressor and pumps, as well as in the combustion chamber. Overall, however, well over 99% of the CO_2 is retained. Other CO_2 capture techniques are also susceptible to these potential CO_2 leakages and emissions.

The characteristics of combustion, in an atmosphere consisting of recirculated waste gas (CO₂) and pure oxygen, have already been investigated in the course of various research experiments. Descriptions of experiments involving coal combustion are provided, for example, by Weller and Rising [105], Wolsky [106], Abele [107] and Roberts [108]. Experiments involving natural gas combustion are described by Kimura et al. [109]. In spite of smaller intrusions of air, CO₂ volume fractions of over 90% were achieved with a residual oxygen content of 3% to 4% (volume fraction) [108].

CO2 as a Turbine Working Fluid

In a similar manner to operation with air, a gas turbine, in accordance with the Joule cycle, can also be driven with CO_2 , or a mixture of CO_2 and H_2O , as the working fluid. In the Joule cycle, the changes of state are above the critical point, in a region in which CO_2 approximates the behavior of an ideal gas.

Since the properties of CO_2 differ substantially from those of air, it will be necessary to develop a new gas turbine for processes, which use CO_2 as a working fluid, which has been adapted to satisfy these modified characteristics. There are currently no gas turbines of this type available or under development.

Compared to the use of air as a working fluid, the main changes in physical characteristics for a working fluid primarily consisting of CO_2 are as follows [110]:

- 7% to 12% smaller isentropic exponent,
- heat capacity: -17% at 1 bar/15°C, +20% at 30 bar/15°C, +9% at 1 to 30 bar/1000°C,
- approx. 22% lower speed of sound,
- higher density,
- approx. 48% to 38% lower kinematic viscosity,
- approx. 58% to 92% higher Reynold's number and
- a critical temperature, which lies closer to ambient temperature ($T_k = 31.05^{\circ}C$).

The fact that these physical characteristics differ from those of air has the following consequences for the gas turbine cycle:

- higher mass flow in gas turbines,
- lower specific compression and expansion work,
- higher turbine exit temperature (Figure 2.15),
- maximum efficiency of the Joule cycle at significantly higher pressure ratios (Figure 3.70) and
- changes to optimal blade shape, turbine and compressor diameter, and number of stages. Bammert and Mukherjee [111], for example, have described the design of a CO₂ gas turbine in great detail.

A standard gas turbine (Joule/Brayton process with air as a working fluid) is not suitable for operation using CO_2 as a working fluid (or can only be used with a significant penalty in performance and efficiency), unless changes are made to blade shape, flow area and the number of stages [112].

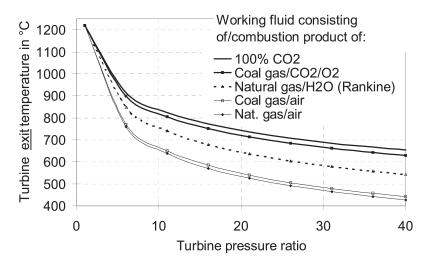


Figure 2.15: Turbine exit temperature calculated for different working fluids in dependence on pressure ratio at a turbine inlet temperature of 1200°C²².

Special CO₂ Working Cycles

Aside from the Joule cycle, which is situated far in the supercritical region ($p_{max} \ll p_{crit}$) throughout, there are a number of other cycles suited to the use of CO₂ as a working fluid, which, in particular, make use of the lower compression work close to the critical point of CO₂ (73.858 bar, 31.05°C). Cycles of this type, with moderate pressure ratios, but high overall pressures, adapted to operation with CO₂ as a working fluid, could potentially achieve greater efficiency and more cost-effective designs than today's standard gas turbines and gas/steam turbine combined cycle power plants.

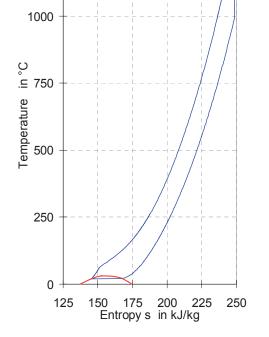
In conjunction with the development of alternative working cycles for nuclear power stations, detailed research -- even to the extent of detailing the structural design of the turbines -- was carried out, between 1967 and 1975, on cycles using pure CO_2 as a working fluid [111, 113, 114, 115]. In these studies, the upper process temperature was limited to a maximum of 800°C. Several proposals were even published on processes with internal combustion and a working fluid resulting from this consisting of CO_2 and steam [116, 117].

In order to achieve low compressor work, it is advantageous to select the lowest pressure close to critical pressure. With the resulting high pressures of around 73.858 bar, together with the high densities, there is greater heat transfer, which means that it was advantageous to utilize regenerative heat transfer from the hot gas after the turbine to the compressed cold gas. In terms of cycles, which use CO_2 as a working fluid, it is important to differentiate between:

- supercritical processes (*p_{min}*>73.858 bar),
- subcritical processes (*p_{min}*<73.858 bar),
- processes with or without condensation ($p_{min} < 73.858$ bar, $T_{min} < 31.05^{\circ}$ C)

and process improvements due to

• split flow compression,


²² Calculated with real gas factors in accordance with Redlich-Kwong-Soave.

- an intercooled compressor,
- intermediate superheating (via heat exchanger) or reheating (via internal combustion, sequential combustion chambers).

Increasing the lower operating pressure of a Joule gas turbine cycle to a level above the critical pressure results in the <u>Feher</u> cycle (Figure 2.16), which operates entirely in the supercritical region. In the <u>Gohstjejn</u> cycle, compression of the working fluid occurs subcritically in the liquid region following condensation, whereas expansion occurs in the supercritical region (Figure 2.17). Due to the differing heat capacities on the high-pressure and low-pressure sides in the recuperator, and the consequent difference in enthalpy flow rates, the heat-up range on the high-pressure side is lower than the cooling range on the low-pressure side. Partial compression allows the enthalpy flow rates to be balanced out (Schabert cycle = Feher cycle + partial compression; entirely supercritical; Sulzer cycle = Gohstjejn cycle + partial compression). Improved heat transfer has a positive effect on efficiency.

Though partial compression improves efficiency, it also simultaneously reduces specific work, and more equipment is required due to the additional compressor. According to Gašparovic [114], processes involving partial compression, or processes with additional compressors required for other purposes, are less suitable for practical applications than the Feher or Gohstjejn cycle. Bammert and Mukherjee [111] come to a different conclusion for a process limited to 520°C: they rule out the Feher and Gohstjejn cycles, and only compare processes with partial compression (Schabert cycle, Schabert cycle with additional intermediate superheating, Sulzer cycle with reheating). Although the Sulzer cycle with reheating does, in fact, achieve the highest efficiency in the comparison test, the Schabert cycle with reheating is selected as the most favorable in terms of both structural design and economic viability.

Figure 2.16: T-S diagram of the Feher cycle (entirely supercritical)²³

Gohstjejn

1250

Figure 2.17: T-S diagram of the Gohstjejn cycle (condensation; $p_{min} < p_{crit}$, $p_{max} > p_{crit}$)²³

Iantovski [117] proposes a 'quasi'-combined cycle in the form of a Joule cycle (gas turbine: TIT 1300°C, 60 bar/4 bar) with a Rankine cycle (steam turbine: 240 bar, 600°C/60 bar, 20°C) in a partially subcritical, partially supercritical process with recuperators, but without partial compression (see Section 3.6.5, p 127). In the version with reheat (sequential combustion), this is referred to as the "<u>MATIANT</u>" cycle (<u>MAT</u>hieu and <u>IANT</u>ovski [118]).

All cycles with condensation (Gohstjejn/Sulzer/"MATIANT" cycles) require a coolant to be available, at all times, at a sufficiently low temperature (31.05° C minus the pinch point in the condenser), which can be difficult to achieve in hot areas. In the case of fully or partially condensing working fluids, savings can also be made on the compression work for CO₂ liquefaction.

The "Graz cycle" is a mix between the (H₂O) Rankine cycle and a CO₂ gas turbine cycle with steam injection [119]. The exhaust gas emerges from the final expansion stage, which is arranged downstream from the gas turbine waste heat recovery stage, at a temperature of around 30°C, with the result that virtually no exhaust gas heat losses occur. Nevertheless, high exergy losses in the steam injection process in the combustion chamber mean that claimed efficiencies of over 60% (TIT 1400°C) seem somewhat dubious.

²³ Values for pure CO₂ according to IUPAC [163].

Oxygen Delivery

One theoretical possibility for delivering oxygen to the combustion process is ambient air oxidation of metals with reduction of the oxide in the combustion chamber at high temperatures. This would avoid the energy required for air separation. Jody et al. [120] suggest using barium. Ishida [121] proposes an arrangement in which a gas turbine is driven by exothermic oxidation of nickel at 1300°C. Methane is burnt with the oxygen atom of the nickel oxide in a second combustion chamber. The net reaction is exothermic, and, again, a combustion chamber temperature of 1300°C should be reached. The turbine is driven by the waste gas, consisting of steam and CO_2 , which arises in this process; the reduced nickel is fed into the first combustion chamber (Figure 2.18). In this case, the difference in oxygen partial pressure between air and fuel (in this example, methane, 0% volume fraction of O_2) serves as a driving potential for the mass transfer of O_2 . The overall achievable efficiency is supposed to be higher than that achieved by any other gas-fired cycle with the same turbine inlet temperature; in the case of gaseous CO_2 capture, it is even, theoretically, supposed to be higher than that achieved in combined cycles with combustion in air and without CO_2 capture. The possibility of high efficiencies can be explained by lower exergy losses in the combustion process through intermediate reactions with Ni/NiO [122].

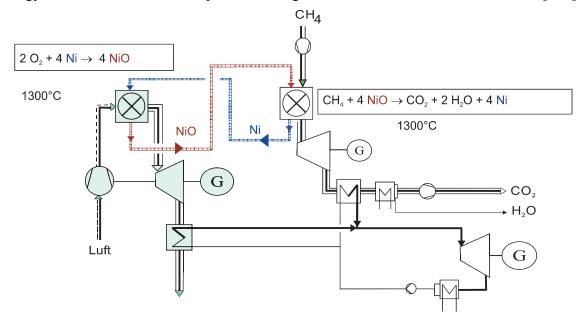


Figure 2.18: Gas turbine cycle with O₂ supplied by Ni/NiO (according to [121])

Coal-fired Cycles

According to data from the literature, <u>steam power plants</u> display an efficiency penalty due to CO_2 capture of between 5 and 7 percentage points (Table 2.9), caused by oxygen production in the air separation units and flue gas recirculation. CO_2 liquefaction reduces efficiency by a further 3.6 to 4.8 percentage points. In some proposals, no desulfurization or nitrogen removal is envisaged, while other processes integrate not only desulfurization and nitrogen removal, but also the recovery of residual oxygen.

Descriptions of coal-fired <u>combined cycles</u> in the literature are limited to gas/steam turbine combined cycles. The majority of the proposals deal with IGCC power plants (Table 2.10, No. 1-10; 12) or MHD/steam turbine combined cycles (Table 2.10, No. 12-14). Relatively few of the proposals examine gas turbines operated directly with flue gas from the coal combustion process (Table 2.10, No. 11).

In addition to the changes in the combustion process and the gas turbine cycle, it is also necessary to provide the <u>air separation unit</u> (ASU) in an IGCC power plant with a separate air compressor. It only remains to provide an interface to the combined cycle through use of the enthalpy of the hot, compressed air prior to the air separation unit to preheat the feed water.

Table 2.9: Data from the literature for steam power plants featuring an air separation unit and flue gas recirculation

Source	DESOX / DENOX	Volume Fraction on O ₂ Production		Power Plant η in %	$\Delta \eta CO_2$ gas. / liq. (percentage points)	
		in %	(in kWh/kg O ₂)	$(CO_2 \ 1 \ bar)$		
Horn, Steinberg [34, 35]	-	98	0.228	34.4	5.6	9.2
McMullan et al. [123]	-	not spec.	not spec.	30.9	8.5	13.0
Herzog et al. [124]	-	95	0.221	28.9 to 30.9	6	10.8
IEA GHG [18]	-	99	not spec.	32.8	7.0	11
Allam, Spilsbury [125]	distillation of entire exhaust gas,	99.5	not spec.	32.6	5.4	9.4
	O ₂ recovery					
Bower et al. [98]	absorption/condensation	not spec.	not spec.	25 to 33	5.0-8.0	9.0-12.0

The nitrogen byproduct cannot be used in the power plant. Rendering the coal mills inert can only be achieved by using CO_2 -rich recirculated waste gas instead of N_2 (as used in a conventional IGCC), in order to avoid dilution of the fuel gas and exhaust gas. The only oxidant worth considering in this case is high-purity oxygen, in order to prevent the fuel gas and flue gas becoming diluted with atmospheric nitrogen and other inert gas components of the air.

In contrast to a conventional IGCC power plant, it is possible, in this case, using a heat exchanger, to utilize the waste heat from the <u>raw gas</u> to preheat the compressed gas turbine working fluid, since there is no danger of it igniting even if leakages in the heat exchanger were to occur, or if the fuel gas were to flow into the recirculated flue gas. A preheating process of this type is proposed by Wessel [137] (Table 2.10, No. 8) and, due to the fact that much of the heat from the raw gas cooling process can be used in the gas turbine, it results in high efficiency levels for an IGCC power plant with ASU and flue gas recirculation, as compared to other designs in which heat from the raw gas cooling process is used to generate steam.

In coal gasification, the large supply of CO_2 can be used to replace the <u>gasification medium</u> of steam with CO_2 (Table 2.10, No. 8-10). The main problem of CO_2/O_2 -blown gasification is that gasification with CO_2 (Boudouard Reaction) takes around three times longer to run its course than gasification with H₂O (water-gas reaction) [126]. Similar results have been obtained in experiments performed by van Heek [127], Teggers et al. [128], Azuma et al. [129] and Kühl et al. [130]. Further investigations into gasification using CO_2 have been performed at Delft University [131] and at CPERI [146]. Even the addition of catalysts did not serve to improve the difference in reaction rates between CO_2 and H₂O [132].

Knoche et al. [138] choose CO_2 as a gasification medium, in order to reduce the exergy losses of gasification (Table 2.10, No. 9). In an idealized process, with CO_2/O_2 -blown gasification and a three-stage CO_2 gas turbine with different recuperators (with no subsequent steam cycle), an exergy loss of 42.4% is calculated, corresponding to an overall exergetic efficiency of 57.6%.

According to Boeddicker [110] (Table 2.10, No. 10), where process conditions are otherwise identical, the efficiency obtained through CO_2/O_2 -blown gasification of hard coal is greater than that obtained using H₂O/O₂-blown gasification by up to 0.8 percentage points. In contrast, according to Ruyck et al. [146], CO_2/O_2 -blown gasification of lignite reduces the efficiency of an IGCC power plant by more than

one percentage point. According to Boeddicker [110], the specific useful work of the IGCC power plant is 5.7% higher in the case of H₂O/O₂ gasification than with CO₂/O₂-blown gasification.

According to data from the literature, the <u>efficiency penalty</u> in IGCC power plants due to oxygen production in combination with a CO_2 gas turbine cycle (Joule cycle) lies between 6 and almost 9 percentage points, excluding CO_2 liquefaction (Table 2.10).

The efficiency of a pressurized pulverized coal-fired combined cycle with a gas turbine directly driven by hot, cleaned flue gas (TIT 1300°C) is reduced to 45.2%, excluding CO_2 liquefaction, i.e. 6.9 percentage points lower than that of the baseline power plant [139] (Table 2.10, No. 11).

	O_2/C	CO ₂ atmosphe	re					
No.		Gasification Method ⁽²⁴⁾	Gas Turbine (TIT / π)	Steam Cycle (pressure stages)	Oxygen Purity Volume Fraction in %	O ₂ Production in kWh /kg O ₂	η (CO ₂ 1 bar) in %	Δη CO ₂ gas./ liq. in percentage points
IG	CC: H ₂ O/O ₂ -blown gas	sification, Joule						
1	van Steenderen [133]	Texaco	1050°C / 11 1050°C / 20	3 +IH	gasifier: 95 GT: 98	not spec.	34.5 34.9	8.5 / 10 8.1 / 9.1
2	Pruschek et al., [20], Boeddicker [110]	PRENFLO	1190°C / 16.2 1190°C / 30 1190°C / 46	3 + IH	95	0.445 (25)	39.1 39.9 40.2	7.5 / 10.7 6.8 / 10.0 6.5 / 9.7
3	McMullan et al. [123]	partial gasifica- tion + PFBC	1000°C / 20	1 +IH	not spec.	not spec.	33.2	11.0 / 15.7
4	Pak et al. [134]	not spec.	STIG: 1250°C / 60 30bar/0.5bar		not spec.	0.2379	31.1	
5	Koetzier et al.[17]	Texaco Shell	1050°C / 20 1050°C / 22	1 + IH 2 + IH	98	$0.37^{(25)} \\ 0.36^{(25)}$	38.5 39.5	$\approx 4 / 7.5^{(26)} \\ \approx 3-4 / 7-7.5^{(26)}$
6	Shao et al.[135]		1140°C/15.6	not spec.	not spec.	combined with CO ₂ liquefaction	36.6 (CO ₂ liq.)	- / ≈ 6-8
7	Pechtl [136]	not spec.	STIG, not spec.		not spec.	not spec.	39	
IG	CC: CO ₂ /O ₂ -blown gas	sification, Joule	gas turbine cycle					
8	Wessel [137]	Entrained flow (dry feed)	1150°C / 30	2+ IH	not spec.	0.35 (25)	42.8	$(0.4 / 4.5)^{(27)}$
9	Knoche et al. [138]	not spec.	4-stage compression / 3-stage combustion		not spec.	not spec.	(49.6) ⁽²⁸⁾	⁽²⁾
10	Pruschek et al., [20], Boeddicker [110]	PRENFLO	1190°C / 16.2 1190°C / 30 1190°C / 46	3 + IH	95	0.445 ⁽²⁵⁾	39.9 40.5 40.7	6.8 / 10.0 6.2 / 9.2 6.0 / 9.0
Pre	essurized Pulverized Co	oal-fired Combi		oule gas turb	oine cycle, hot gas c	lean up (1300°C	C)	
	Leithner [139]		1300°C / 15	1 +IH	not spec.	not spec.	45.2	7.2 / 12.1
	ID/steam turbine com	bined cycle						
12	Davison, Eldershaw [140, 141]		(MHD) 2563°C / 8	1 + IH	99.5	0.288	42.6	8.1 / 12.4
13	Goldthorpe et al. [89]		(MHD) not spec.	not spec.	not spec.	not spec.	≈ 44	≈ 6 / 9
14	McMullan et al. [123]		(MHD) not spec.	1+ IH	not spec.	not spec.	41.6	8.6 / 11.9
	CC: H ₂ /CO membrane			H ₂ and CO,	Joule gas turbine c	ycle		
15	Hendriks, Blok [142]	Texaco / Shell	1260°C/14.5	2 + IH	99.5	0.28	37.1 39.6	3.7 / 6.8 4.0 / 7.0

Table 2.10: Data from the literature for coal-fired combined cycles (IGCC, PPCC, MHD) with combustion in an O_2/CO_2 atmosphere

⁽²⁴⁾ All with raw gas cooler/steam generator

 $^{^{(25)}}$ Including O₂ compression.

⁽²⁶⁾ Baseline IGCC estimated.

⁽²⁷⁾ Baseline IGCC with raw gas cooler as steam generator; in the case of CO₂ capture with raw gas/air heat exchanger.

⁽²⁸⁾ Efficiency estimated from exergy losses.

In the case of an MHD/steam turbine combined cycle power plant with combustion in an O_2/CO_2 atmosphere, the efficiency penalty is greater than with CO_2 removal from the flue gas, due to the fact that a considerable portion of the enthalpy of combustion can only be utilized after the MHD channel, due to dissociation of CO_2 at the high temperatures in the combustion chamber (around 1800°C) [140, 141] (Table 2.10, No. 12-14).

IGCC Power Plant with H_2 /CO Separation and Separate Combustion in Two Gas Turbine Cycles

With coal gas, around one-third of the combustion oxygen is used for the oxidation of the hydrogen component. By burning the hydrogen component separately with air, less energy is required to generate O_2 for combustion of the carbon-containing components of the fuel. According to a proposal from Hendricks and Blok [142], hydrogen is removed from a cleaned coal gas, using a membrane, and is then burnt with air in a gas/steam turbine combined cycle (Figure 2.19; Table 2.10: No. 15). The retentate, which remains behind the membrane, primarily consists of CO and a small quantity of CO₂ and inert gas components. This retentate is burnt with recirculated flue gas, with the addition of oxygen, in a second gas turbine cycle, from which highly-concentrated CO₂ can be removed subsequent to condensation of the combustion water. The efficiency penalties in this process, as compared to the baseline IGCC power plant without CO₂ removal, arise from the energy required for additional oxygen production and the separation work of H₂ and CO in the membrane, which is mainly caused by the pressure drop across the membrane. Based on a membrane with a selectivity for CO to H₂ of 60, Hendricks and Blok calculate an efficiency penalty for this process, in comparison to the baseline IGCC power plant, amounting to nearly 4 percentage points, or nearly 7 percentage points if CO₂ liquefaction is included.

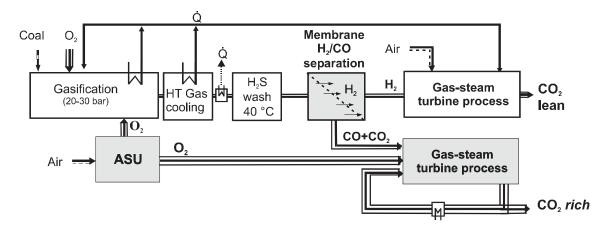


Figure 2.19: IGCC power plant with separate combustion of carbon-containing synthesis gas components excluding inert gases

Gas-Fired Processes

The highest plant efficiency given in the literature for processes involving combustion in oxygenenriched, recirculated flue gas is cited by Iantovski [117, 147], who gives a figure of 54.3% for a 'quasicombined' cycle specially adapted to the characteristics of CO₂-rich flue gas, and capture of CO₂ in its liquid form (for recalculations see Section 3.6.5, p 127ff). For combined cycles with a Joule gas turbine cycle and subsequent steam cycle, efficiency penalties of between 6 and 8.5 percentage points are cited; in accordance with current gas turbine technologies, this corresponds to efficiencies of between 49% and 55% (see Table 2.11 for an overview of the literature).

Table 2.11:	Data from the literature for gas-fired cycles with CO ₂ as a working fluid and oxygen supplied via air
	separation

Source G	T (TIT /)	Steam Cycle (pressure stages)	Oxygen Purity Volume Frac- tion O ₂ in %	O ₂ Production in kWh /kg O ₂	(CO ₂ 110bar) in %	CO ₂ gas. / liq. percentage points
Steam power plant	•	•	- -		•	
Syed et al. [143]		not spec.	90	not spec.	28.7	5.8 / 8.3
Gas/steam turbine combine	ned cycle					
Bolland, Sæther [144]	not spec./ 30	2	95	0.42 **	41.4	8.0 / 10.7
van Steenderen [133]	1050°C /11 1050°C / 20	3 +IH	98	not spec.	42.7 44.0	6.9 / 9.3 5.6 / 8.0
Shao, Golomb [135]	1140°C / 15.6	not spec.	not spec.	combined with CO ₂ liquefaction	45	(6.5/9.0)
GT cycle with evaporation (REVAP)					
de Ruyck [145, 146]	1200°C / 80 (40 bar/0.5 bar)		100	not spec.	46	5.8 / 8.3
H ₂ O-CO ₂ Rankine cycle (wa	ater/steam injection	n in combustion c	hamber, only H ₂ C) condensed and r	ecirculated)	
Bolland, Sæther [144]	900°C / 1333 (200/0.15bar)	1 95		0.42 ** 34.	0	-
Iantovski et al. [117]	750°C / 480 (240/30/5/0.5 bar)	2 x intermediate heating	not spec.	0.3	36.7 (TIT 1300°C: 42.7)	-
CO ₂ /H ₂ O Feher cycle (with	basic intermediate	cooling and inter	mediate heating)			
Iantovski et al. [117]	1300°C / 100		not spec.	0.3	42 - 53 *	(7-18/9.5-20.5)
CO ₂ /H ₂ O quasi-combined ('	MATIANT") cyc	cle				
Iantovski et al. [147]	1300°C / 4/ 15 (240/60/4 bar)	not	spec.	0.2 **	54.3	2 / 6

min. temperature difference at recuperator: a) 70 K b) 170 K

** incl. O2 compression

2.2.5 Process Family III: CO₂ Separation from Flue Gases

As shown in Section 3.4.2, the energy required for CO_2 separation from a flue gas is dependent on the concentration of CO_2 in the flue gas and the gas separation method selected. In the case of steam power plants, there is a greater concentration of CO_2 in the flue gas than in cycles with gas turbines. However, in terms of CO_2 separation processes, the resulting slightly lower expenditure on gas separation cannot compensate for the less favorable efficiency of steam power plants in comparison to combined cycle power plants. Furthermore, CO_2 concentration in a coal-fired cycle is always greater than that of a natural gas-fired cycle of a similar type, which means that the energy expended on CO_2 separation is slightly lower. However, CO_2 removal from the flue gas is still an attractive option in natural gas-fired cycles, since the other methods of CO_2 capture involve high energy consumption.

A simple method to increase CO_2 concentration in the exhaust gas of gas turbine cycles – and thus to reduce theoretical separation work – is to recirculate a portion of the flue gas. According to Bolland and Sæther [144], this method can be used to increase the volume fraction of CO_2 concentration in the flue gas of a natural gas-fired gas turbine from between 3% and 3.5% to around 5.5% volume fraction, which, however, only has the effect of improving efficiency by 0.1 percentage points, as compared to the case of CO_2 removal without flue gas recirculation (Table 2.13: No. 5b).

The results obtained from a study of the literature, dealing with coal-fired and natural gas-fired power plants with CO_2 removal from the flue gas, are summarized in Tables 2.12 and 2.13.

	Source	CO ₂ Separation Method	CO2 Capture	CO ₂	Efficienc	y Penalty	Efficiency	Specific	CO2 Avoid-
		-	Ratio in %	Emissions	Δ	η	(LHV)	Investment	ance Costs
					in perc	entage	in %		
					poi	ints			
No				in kg CO2/	CO ₂ at	CO ₂ at	CO ₂ at 1 bar	in US\$/kW	in US\$/
				kWh	1 bar	110 bar			t CO ₂
Ste	am Power Pla	nts							
1	Kümmel et al.	freezing under pressure	80 - 90	0.136-	10-12		26 - 28	not spec.	not spec.
	[74]			0.253				1	1
2	Blok et al. [148],	chem. absorption (MEA)	90	0.115	8.3	11.6	31.7	1691	32
	Hendriks et al.							1828^{*}	
	[71]							=Baseline+822	
3	Herzog et al.	a) chem. absorption (MEA)	90	0.17-0.42	16-20	12-14	11 - 23	not spec.	not spec.
	[124]	b) distillation	90	0.2-1.76	19-34	15-29	(6 - 20)		
		c) membrane (2 stage, polymer)	80	0.35-0.7	17-26	13-22	13 - 22		
		d) phys. absorption (seawater)			14-19	10-15	(20 - 25)		
4	Smelser et al.	chem. absorption (MEA)	90	0.085	8.9-9.0		27.9-28.0	1871-2185	not spec.
	[154]							2070-2297*	
5	Bower et al. [98]	chem. absorption (aqueous amine)	90	0.13	8	11.9	30.0	not spec.	not spec.
5	Koetzier et al.	a) chem. absorption (column)	a)86.2	a)0.105	≈11	13.9	a)32.6	a) 1752	41
	[17]	b) chem. absorption (membrane apparatus)	b)86.4	b)0.103			b)33.0	1877*	
7	McMullan et al.	chem. absorption (MEA)	86.1	0.123	7.6	10.6	30.7	1843*	not spec.
	L - J								
-		FBC (Topping Cycle)	1	1			1		1
3	Bower et al. [98]	chem. absorption (aqueous amine)	90	0.1	7.9	11.9	38.1 GT: 1170°C/16	not spec.	not spec.
9	McMullan et al.	chem. absorption (MEA)	87.0	0.102	7.3	10.4	36.9	1741*	not spec.
	[123]		1				GT: 1000°C/20		1
		bine Combined Cycle	-		-		-		
10	McMullan et al.	chem. absorption (MEA)	88.2	0.075	5.3	8.0	44.9	1633*	not spec.
	[123]								

Table 2.12: Data from the literature on CO ₂ capture from flue gases in coal-fired cycle	2S
---	----

 * incl. $CO_{2}\ compression$

	Source	CO ₂ Separation Method	CO ₂ Capture	CO ₂	Efficient	cy Penalty		Specific	CO ₂
			Ratio in %	Emissions			(LHV)	Investment	Avoidance
					in per	centage	in %		Costs
					ро	ints			
Nr.				in kg	CO ₂ at	CO ₂ at	CO ₂ at 1 bar	in US\$/kW	US\$/t CO ₂
				CO ₂ /kWh	1 bar	110 bar			
St	eam power pl	ants							
1	Hansen [149]	a) chem. absorption (MEA)	80	not spec.	8	10	38	not spec.	not spec.
		b) distillation		-	5	7	41	-	-
		c) membrane			32	34	14		
G٤	as/steam turb	ine combined cycle					•		
2	Miller et al.	chem. absorption	55 -60	0.3-0.4	8.5	10	35.5 - 43.5	646-822 ^{c)}	k. A.
	[150]	(25-30% MÊA)							
3	Blok et al. [148],	chem. absorption (MEA)	90	0.048	4.5	6.6	43.5	941 ^{c)}	k. A.
	Hendriks et al.								
	[71]								
4	Hansen [149]	a) chem. absorption (MEA)	80	k. A.	11	13	44	not spec.	not spec.
		b) distillation			13	15	42		_
		c) electrochemical			7	9	48		
		d) membrane			< 0	< 0	< 0		
5	Bolland, Sæther	chem. absorption (MEA)	a)88.5	0.0128	5.5	7.6	46.7	a) 845	not spec.
	[144]	a) standard	b)88.6	0.0127	5.4	7.5	46.6	885 ^{c)}	_
		b) flue gas recirculation (65%)	, , , , , , , , , , , , , , , , , , ,				GT: 1060°C/11	b) 1525 ^{p)}	
6	Koetzier [17]	a) chem. absorption (column)	a)77.4	a)0.086	7.0	8.4	a)46.5	a) 873	38.3
		b) chem. absorption (membrane	b)77.6	b)0.085	6.1	8.5	b)47.4	927 ^{c)}	
		apparatus)	, ,	<i>,</i>			GT: 1050°C/11	1007 ^{p)}	
H	AT cycle	· · ·	•		-	•			
	Rao et al. [151]	chem. absorption	k. A.	0.085-	5	not spec.	55	not spec.	not spec.
		ECONAMINE FG		0.090		1	GT: 1300°C	1	1

Table 2 12.	Data from the li	itoroturo on CO	capture from flue	googo in notural	and finad avalag
I able 2.15.	Data nom the f	1000000000000000000000000000000000000	capture from flue	gases in natural	gas-med cycles
				0	0

As well as the energy required to compress and liquefy CO_2 , the separation of CO_2 involves some further work: depending on the gas separation method, this may involve compressor work (membrane, adsorption, physical absorption), cooling work (distillation, freezing) or heat for solvent regeneration (e.g. through the provision of extraction steam). Whereas, in all other methods, mechanical/electrical internal energy requirements for compression or refrigeration directly reduce power plant output, the reduction in electrical output in the case of chemical absorption is also determined by the manner in which the heat demand for solvent regeneration is integrated.

Literature sources almost always cite chemical absorption as the most appropriate method (with the lowest energy consumption) of removing CO₂ from flue gases, which have a low CO₂ concentration (Table 2.12: No. 2-11; Table 2.13: No. 1-7). Since up to 2/3 of the low-pressure steam mass flow (2-5 bar) of the turbine is consumed for the purpose of solvent regeneration, the low-pressure turbine section must be adjusted accordingly. Using chemical absorption, CO₂ can be captured at a higher level of purity, with a CO₂ capture ratio of over 90%. The equivalent electrical energy consumption²⁹, comprising pump work and heat consumption, lies between 0.28 and 0.4 kWh/kg of CO₂, whereby less energy is required for higher concentrations of the chemically reactive absorbent in the solvent. Some solvents (e.g. aqueous amine) require an effective desulfurization stage to be incorporated upstream, in order to keep down the costs incurred by oxidation of the absorbent.

As an example, 80% of the CO₂ can be absorbed from the flue gas of a natural gas-fired gas/steam turbine combined cycle using CO₂ scrubbing with an aqueous MEA solution. After the heat recovery steam generator, the flue gas must be cooled from around 100°C to approx. 40°C. After MEA scrubbing, it

²⁹ If heat requirements are calculated as a reduction in steam turbine output through steam extraction. Also see Appendix, Section 6.6.

must then be heated up again to approx. 60°C. The solvent regenerator is heated using steam extracted from the steam turbine, at 4 bar, which is subsequently released as condensate at approx. 109°C.

Low CO₂ partial pressure means that physical absorption is not a suitable method for removing CO₂ from power plant flue gases, unless seawater is used as a solvent (Table 2.12: No. 3d). Although energy expenditure would be lower if regeneration were to be omitted, seawater is still not a suitable CO₂ solvent, since the low solubility of CO₂ in water would require large quantities of water to be transported, and the pump work associated with this would exceed the energy requirements of other processes [152] (see also Section 3.4, p 84).

Low-temperature fractional distillation of a flue gas can be used to achieve high purity levels of the separated CO₂. Specific electrical energy consumption lies between 0.6 and 1 kWh per kg of CO₂ removed, higher than the figure for chemical scrubbing [152]. Theoretically, direct freezing of CO₂ would consume 0.35 to 0.38 kWh per kg of CO₂ [74] (Table 2.12: No. 1); however, this is virtually impossible to perform from a technical point of view, since the cooling surfaces freeze up.

Using currently available polymer membranes, it is not possible to achieve sufficient purity of the separated CO_2 (only around 30% volume fraction is obtained) [153]. A two-stage membrane module can increase the capture ratio and, at the same time, improve CO_2 purity. However, the energy consumed in the course of flue gas compression approximates the gross power output of the entire plant [124] (Table 2.12: No. 3c; Table 2.13: No. 4d). According to van der Sluis et al. [73], membrane modules will require a selectivity between CO_2 and N_2 of at least 200 to 1, if they are to compete with other methods of CO_2 capture from flue gases.

The final method of removing CO₂ from flue gases is chemical absorption. For a CO₂ capture ratio (or separation factor, since in this case $r_{CO_2} = s_{CO_2}$) of between 80% and 90%, literature sources cite efficiency penalties of between 8 and 13 percentage points for coal-fired steam power plants, and between 5.5 and 11 percentage points for gas/steam turbine combined cycle power plants. It should be noted, however, that the specific work per kg of separated CO₂ is much higher in gas-fired power plants.

According to [154], CO_2 capture should only reduce the availability of the power plant by approx. 0.75%.

2.2.6 Process Family IV: Carbon Separation

Another possible way of avoiding CO_2 emissions is to remove the carbon from the fuel. Since the carbon can then no longer be used as a fuel, it only makes sense to apply this method to fuels containing a high proportion of hydrogen.

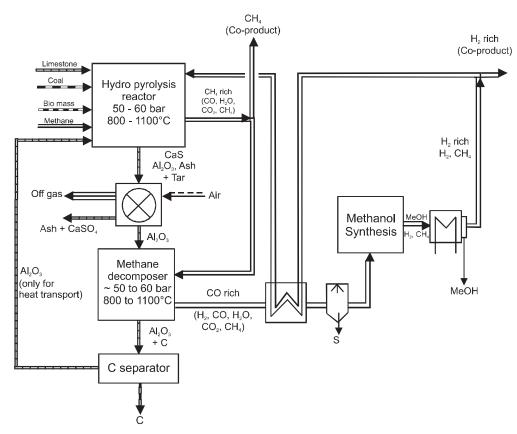


Figure 2.20: Process arrangement of the "Hydrocarb" process for producing methanol, methane and carbon from mixtures of different fuels (according to [36, 37, 38])

A system, which retains virtually all of the carbon, and which produces liquid fuels (methanol/carbon emulsion) from mixtures of biomass and coal, tar or natural gas, is proposed by Steinberg et al. [36, 37, 38]. In the version known as the "Hydrocarb" process, the system consists of three stages (Figure 2.20):

- a hydropyrolysis reactor, in which the fuel used is gasified exothermically with H₂ to form a methane-rich fuel gas,
- a methane cleavage reactor, in which H₂ and C are produced from CH₄ using aluminum oxide pellets with the addition of heat and
- possibly a methanol synthesis stage.

 H_2 and CH_4 are produced as co-products. The aluminum oxide pellets act as a heat transfer medium between the individual process steps. Storing the carbon, which is produced, rather than burning it, can certainly lead to a significant reduction in CO_2 emissions; however, even with the production of synthesis gas, no more than 70% of the energy of the fuel used is converted into energy of the fuel product (Table 2.14). So far the process has not been performed on an industrial scale.

The results of the calculations given in Table 2.14 show that the specific CO_2 emissions of the fuel produced are, in all cases, lower than that of the primary fuel mix. If the CO_2 from the combustion of biomass is not counted as a CO_2 emission, then C-capture from the fuel creates the effect of a carbon sink in the case of the various fuel mixtures, which include biomass, as shown in Table 2.14.

Table 2.14: Energy utilization, and specific CO₂ emissions, with maximum C capture from the fuel, for different fuel mixtures and end products

Fuel Mixture/		Fuel Utiliza-	Specif	ic CO ₂ emi	ssions**	Power Plant Effi-
Chemical Reaction		tion ψ^*		in kg CO ₂ /kWh of fuel produced		
		in %	0 -		1	ciency ^{***} in %
		(in rel. to	primary fuel		minus CO ₂	(combined cycle
		LHV/HHV)	mix	absolute	from bio-	η =58%, own calcu-
					mass	lation)
Methanol synthesis ("Hyd	rocarb" pro		g to Steinber	g et al. [36,	37, 38])	
Biomass + methane (m_{LHV})	= 1.65 :1)	58.2 / 60.9	0.311	0.248	-0.128	33.8
$CH_{(1.44)}O_{(0.66)} + 0.34 CH_4 \rightarrow 0$	0.68 C + 0.6	6 CH ₃ OH	•			
Biomass + oil ($_{mLHV} = 0.8$	2:1)	42.1 / 46.3	0.289	0.248	-0.128	24.4
$CH_{(1.44)}O_{(0.66)} + 0.7 CH_{(1.7)} \rightarrow$,	H ₃ OH	1	I		I
Biomass + hard coal (m_{LHV})		42.6 / 44.4	0.335	0.248	0	19.0
$0.32 \text{ CH}_{(1.44)}\text{O}_{(0.66)} + \text{CH}_{(0.8)}\text{O}$	$_{(0.1)} \rightarrow C + 0$.32 CH ₃ OH	•			
Hard coal only		36 / 40	0.33	0.248	0.248	20.8
Synthesis gas production						
Biomass + methane		69.9 / 71.6	0.311	0.21	-0.11	40.5
$CH_{(1.44)}O_{(0.66)} + 0.34 CH_4 \rightarrow 0$	0.68 C + 0.6	6 CO +1.32 H ₂	•			•
Biomass + oil		50.6 / 54.4	0.289	0.21	-0.11	29.3
$CH_{(1.44)}O_{(0.66)} + 0.7 CH_{(1.7)} \rightarrow$	C + 0.66 CO	$O + 1.32 H_2$				
Biomass + hard coal		39.3 / 42.7	0.335	0.21	0.00	22.8
$0.32 \text{ CH}_{(1.44)}O_{(0.66)} + \text{CH}_{(0.8)}O$	$_{(0.1)} \rightarrow C + 0$.32 CO + 0.64 H	H ₂			
Hydrogen production (10	0% C reten					
Biomass only		3.2 / 3.5	0.351	0.00	-10.92	1.9
$CH_{(1.44)}O_{(0.66)} \rightarrow C +$	0.66 H ₂ O +	0.06 H ₂				
Biomass + methane		24.7 / 26.9	0.311	0.00	-0.89	14.3
$CH_{(1.44)}O_{(0.66)} + 0.34$	$CH_4 \rightarrow 1.34$					
Biomass + oil		31.7 / 36.1	0.289	0.00	-0.50	18.4
$CH_{(1.44)}O_{(0.66)} + 0.7 CH$	$_{(1.7)} \rightarrow 1.7 \text{ C}$				I	1
Biomass + hard coal		12.4 / 14.2	0.335	0.00	-0.66	7.2
0.32 CH _(1.44) O _(0.66)	$+ CH_{(0.8)}O_{(0)}$	$(.1) \rightarrow 1.32 \text{ C} +$	0.3112 H ₂ O	+ 0.3192 F	I_2	
Notional net calorific valu	ies/gross ca	alorific values				
Fuel	LHV in MJ	/kmol	kg CO ₂ /kW	h (LHV)	HHV in	MJ/kmol
Biomass $(CH_{(1.44)}O_{(0.66)})$	451.2		0.351		484.8	
Methane (CH ₄)	802.34		0.197		890.36	
Oil (CH _(1.7))	785		0.2		787.7	
Hard coal $CH_{(0.8)}O_{(0.1)}$	479.6		0.33		485.7	
Methanol (CH ₃ OH) 638.5			0.248		726.5	
H ₂	241.82		-		285.83	
CO	282.98		0.55		282.98	
C (graphite)	393.51		0.40		393.51	

*
$$\psi = \frac{m_{B, produced} \ LHV_{o, produced} \ (without \ C)}{m_{F, in} \ LHV_{o, in}}$$

** after combustion

^{***} with optimum chemical conversion process; possible heat recovery or additional internal consumption have not been taken into consideration.

If the fuel produced is burnt in a gas/steam turbine combined cycle with an efficiency of 58%, the efficiency penalty due to C-retention and methanol production lies between 24 and 26 percentage points. If the synthesis gas is produced directly for conversion into electrical energy, the efficiency penalty ranges between 17 and 23 percentage points (Table 2.14).

2.2.7 Process Family V: CO₂ Capture with Fuel Cells

There are several possible methods of CO_2 capture associated with fuel cells, depending on the type of fuel cell used:

- Removing the carbon component from the fuel gas <u>prior to the fuel cell</u> (PEMFC, PAFC, MCFC, SOFC), Figure 2.21.a, .b or
- Separating the residual fuel and CO₂ in the <u>anode exhaust gas</u>, Figure 2.22, Figure 2.23.

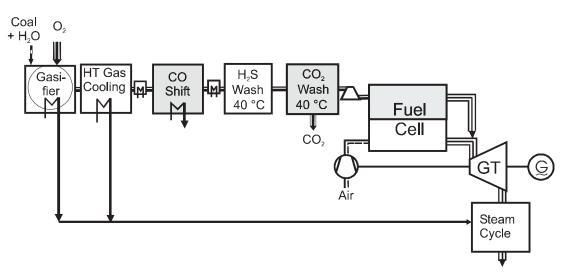


Figure 2.21.a: Gasification and CO shift with CO₂ removal prior to the fuel cell (PEMFC, PAFC, MCFC, SOFC)

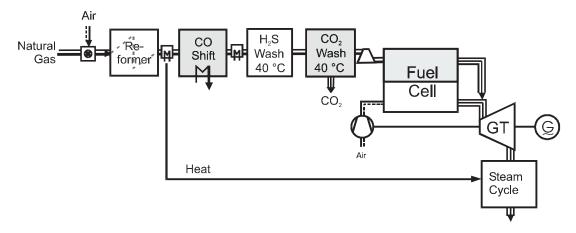


Figure 2.21.b: Natural gas reforming and CO shift with CO₂ removal prior to the fuel cell (PEMFC, PAFC, MCFC, SOFC)

In the first method, the fuel cell is operated with pure H_2 and the conversion work corresponds to the processing of the fuel described in "Process Family I". Since hydrogen production anyway represents a necessary component of the operation of a PEMFC or PAFC, the efficiency penalty incurred with these types of fuel cell is conditional solely on the energy required for CO_2 removal. Due to the high working temperatures associated with MCFC and SOFC, CO shift conversion and steam reforming take place internally, after fuel gas humidification, to at least a partial extent. Using a process arrangement featuring anode exhaust gas recirculation or afterburning for preheating purposes, fuel gas conversion is avoided for operation without CO_2 capture. In the case of the first method of CO_2 capture for these types of fuel cell, the efficiency penalty can be calculated in accordance with the expenditures cited for "Process Family I".

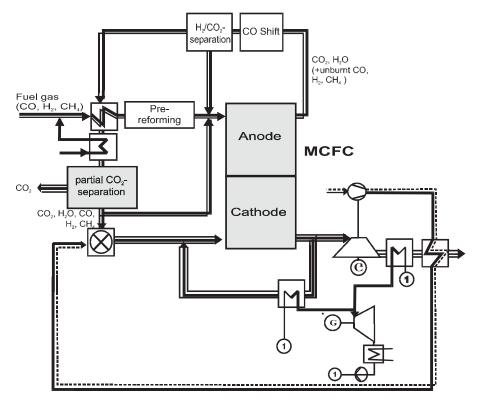


Figure 2.22: Flow diagram of an MCFC with removal of CO₂ from the anode exhaust gas. Due to the operating characteristics of the MCFC, it is necessary to mix a portion of the CO₂ into the cathode intake air.

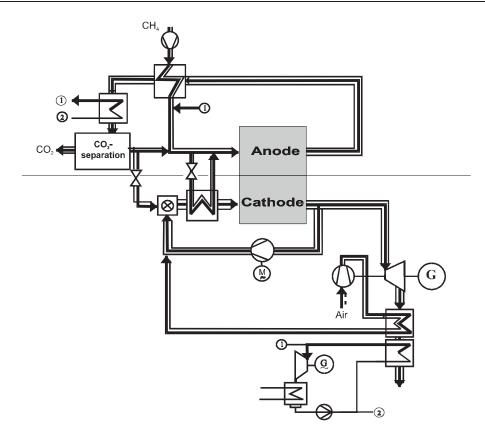


Figure 2.23: Flow diagram of a natural gas-fired SOFC with removal of CO₂ from the anode exhaust gas

In the second method, the fuel cell could be described as functioning as a gas separation apparatus, since the fuel gas is oxidized in the fuel cell without mixing with atmospheric nitrogen and without requiring any work for oxygen production. In fact, the oxidation process in the fuel cell represents a suppressed mixing of the reaction product with the ambient air (i.e. the anode exhaust gas is not mixed with nitrogen) and, in the case of MCFC and SOFC, the selective transport of O_2 (and CO_2 with the MCFC), and, in the case of PAFC and PEM, selective removal of the hydrogen at the cathode, where water is produced. In this method, CO_2 capture work essentially consists of the separation of non-burned components (mainly H_2) and CO_2 in the anode exhaust gas. Since PEM fuel cells are extremely sensitive to CO, it is necessary to convert virtually all of the CO to CO_2 (or to CH_4 through methanation) before the fuel cell stage. In some cases in the literature, the theoretical energy advantage of gas separation with a high level of concentration in the anode exhaust gas is abandoned, in favor of simple utilization of the residual fuel to heat the cathode air, and the CO_2 produced is removed from the cathode exhaust gas [25].

In the case of high-temperature fuel cells, in addition to the electrochemical reaction of H_2 with oxygen ions to form water (and, in part, of CO to CO₂), catalyst-supported CO shift and hydrocarbon reforming also take place. Since not all the fuel can be converted, the anode exhaust gas consists of steam, CO₂ and non-burned fuel. For CO₂ capture, the residual fuel must be separated out, and the water component must be removed through condensation. There are various possible ways of simplifying the CO₂ capture process:

• subsequent (downstream) CO shift, separation of the CO₂ and H₂ which are produced, and return of the H₂ to the anode (best utilization of fuel, most expensive solution),

- afterburning of the anode exhaust gas with oxygen from the air separation unit of a coal gasification unit, utilizing this partly to preheat the cathode air, and separation of CO₂ and H₂O through condensation from the anode exhaust gas, or
- afterburning of the anode exhaust gas, utilizing this to preheat the cathode air, and removal of the CO₂ from the cathode exhaust gas.

Due to the way in which an MCFC functions, sufficient CO_2 must be mixed into the cathode gas. The CO_2 concentration in the cathode exhaust gas should be expected to be higher than that in the intake air. It may therefore make sense to mix all of the burnt anode exhaust gas into the cathode and remove the CO_2 from the cathode exhaust gas.

Source	No. in Table	Cathode	Cathode Ex-	Operating	CO ₂ Absorption	CO ₂ capture
	2.16	Inlet	haust Gas	Pressure	Rate in %	
				in bar		
		Volume fra	ction of CO_2 (%)			
MCFC, coal gasification	2	8.9	5.0	3	60	before anode
IEA-GHG [25]						
MCFC, coal gasification	3	6.3	3.3	3	50	from anode
IEA-GHG [25]						exhaust gas
MCFC, natural gas re-	8	6.5	2.8	3	60	before anode
forming						
IEA-GHG [25]						
MCFC, direct firing with	9	16.1	5.1	1	74	from cathode
natural gas						exhaust gas
IEA-GHG [25]						_
MCFC, coal gasification	4	9.1	0.85	10	92	from anode
Doctor et al. [155]						exhaust gas

Table 2.15: Concentrations and CO_2 absorption rate at the cathode of the MCFC, taken fro	m various studies.
---	--------------------

Precise analysis of CO_2 capture in fuel cells requires knowledge of the electrochemical conversion of individual gas components for different gas compositions and fuel cell operating states. For example, CO_2 absorption in the cathode of the MCFC is a decisive factor for the remaining CO_2 emissions after the cathode. Table 2.15 shows the wide differences in CO_2 absorption in the cathode under different operating conditions, which are used as a basis in various literature sources. The fact that fuel cells are in such an early stage of development means that exact data is hard to obtain; this study therefore limits its scope to a comparison of the data from the literature, rather than providing a separate analysis in Section 3.

For coal gasification power plants, cycles with PAFC, MCFC and SOFC are described in the literature (see Table 2.16: No. 1-7). With coal gasification, CO shift and a CO₂ capture ratio of 68.5%, an efficiency rating of 40.6% can be achieved in a combined cycle consisting of a PAFC and a subsequent steam cycle, including CO₂ liquefaction [31] (Table 2.16: No. 1). With the combination of an MCFC and a steam cycle in a similar configuration, a CO₂ capture ratio of 68% and an efficiency of only approx. 35%, including CO₂ liquefaction, can be achieved [25] (Table 2.16: No. 2). According to IEA-GHG [25] (Table 2.16: No. 3), CO₂ removal from the anode exhaust gas (following combustion with O₂ without CO conversion) holds no potential for improvement, when compared to variations with CO₂ removal from the coal gas prior to the fuel cell (Table 2.16: No. 2). With afterburning of the anode exhaust gas of an MCFC with air, and subsequent CO₂ scrubbing, the efficiency in a plant with

integrated coal gasification and a subsequent steam cycle is even lower, according to a study performed by Doctor et al. [155] (Table 2.16: No. 4). The low efficiencies of these cited MCFC power plants can primarily be traced back to poor fuel conversion, of around 75%, in the fuel cell, and further exergy lost through the cooling of the hot, afterburnt anode exhaust gas prior to CO₂ scrubbing. Improved efficiencies for MCFC with coal gasification and subsequent steam cycle are obtained with CO conversion in the anode exhaust gas and H_2 recirculation to the anode [156] (Table 2.16: No. 5). By using a ceramic membrane, it is stated that between 88% and 95% of the H₂ can be removed hot from the anode exhaust gas (converted through a CO shift reaction) and recirculated. Assuming CO conversion of 90% in the CO shift reaction and fuel conversion of 75% with a single pass through the MCFC, this would mean a reduction in residual fuel energy in the anode exhaust gas of 25% of the fuel gas energy before the anode, to between approx. 3.6% and 5.2%. Improved utilization of the fuel gas and hot gas separation are the explanation behind the achievable efficiencies of between 47.7% and 53.2%, including CO_2 liquefaction and depending on the H₂ separation factor, achieved with a CO_2 capture ratio of 68.5%, according to the study by Jansen et al. [156]. With a similar process arrangement, McMullan et al. [32] (Table 2.16: No. 6) calculates an efficiency of 49.6% for an IGCC power plant with MCFC and a CO₂ capture ratio of 87.9%. Without CO₂ capture and liquefaction, the efficiency rating is 5.9 percentage points higher. For a corresponding process arrangement of an IGCC power plant with SOFC (Table 2.16: No. 7), and a CO₂ capture ratio of 98.8% from the anode exhaust gas after CO conversion, McMullan et al. [32] cite an efficiency of 47.8%, corresponding to an efficiency penalty of 8.7 percentage points when compared to the IGCC power plant with SOFC without CO₂ capture. Due to the early stage of development of the SOFC, McMullan et al. assume a lower efficiency for the SOFC than for the MCFC.

All the cases of MCFC in combination with coal gasification are based on a maximum feasible CO_2 capture ratio of between around 70% and 88%. A large portion of the remaining CO_2 emissions stem from the emissions of the MCFC cathode, which requires increased CO_2 concentrations at the cathode for correct functioning. The CO_2 absorbed at the cathode of the MCFC varies between 50% and 92% in the various studies (Table 2.15). It is possible that the CO_2 emissions may be subject to further uncertainty due to deviations in CO_2 absorption at the cathode.

In the case of MCFC operation using natural gas, with an efficiency of 49.0% (including CO₂ liquefaction), the variant which features CO₂ removal subsequent to reforming and CO conversion is inferior to a gas/steam turbine combined cycle with CO₂ scrubbing from the flue gas [25]. At the same time, this process allows less than 60% of the CO₂ to be separated. With a CO₂ capture ratio of 90%, removal of CO₂ from the cathode exhaust gas of an MCFC results in a power plant efficiency of 55.5%, including CO₂ liquefaction, which is marginally higher than that achieved in a gas/steam turbine combined cycle with CO₂ scrubbing from the flue gas. With an efficiency of 59.7%, including CO₂ liquefaction, with a CO₂ capture ratio of approx. 90%, a combined cycle power plant with SOFC featuring afterburning of the anode exhaust gas with air, and subsequent gas turbine and heat recovery steam cycle stages, in which 90% of the CO₂ capture, at least from the point of view of efficiency [25].

Investment costs for PAFC and MCFC are estimated to be substantially higher than for other types of power plant. This is why the CO_2 avoidance costs cited in the literature, relating to IGCC power plants or gas/steam turbine combined cycle power plants, are so high. The only case where the costs are comparable with the costs incurred in other gas/steam turbine combined cycle power plants is that of CO_2 capture with a natural gas-operated SOFC.

No	Type of power plant, literature source	CO ₂ capture	FC operating conditions (temp./ pressure)	Efficiency (LHV) in %	Efficiency penalty due to CO ₂ capture and liquefaction (percentage points)	in kg CO ₂ / kWh	CO ₂ capture ratio in %	in US\$/kW	CO ₂ avoid- ance costs in US\$/t of CO ₂
	<i>tion</i> + PAFC Campbell et al. [31]	before anode (CO shift + scrubbing)	200°C / 1 bar	40.6	9.0	0.254	68.5	4310 (1995) 2100 (future)	
	<i>Coal gasifica- tion</i> + MCFC IEA-GHG [25]	before anode (CO shift + scrubbing)	650°C / ≈ 1 bar		not spec.	0.306	68	3303	65
	<i>Coal gasifica- tion</i> + MCFC IEA-GHG [25]	from anode exhaust gas, (after combus- tion with O ₂)	650°C / ≈ 1 bar ^{***}	36.3	not spec.	0.217	76	2925	40.4
	<i>Coal gasifica- tion</i> + MCFC Doctor et al. [155]	from anode exhaust gas (scrubbing)	bar	31.7	2.3 liquefaction + 0.4 CO ₂ scrubbing + x other		81	2666	
	Coal gasifica- tion + MCFC Jansen et al. [156]	H ₂ separation from anode exhaust gas after CO shift	650°C / 4 bar	47.7 - 53.2	> 2	0.0228 (+0.15-0.16 from cathode exhaust gas [*])	68.5	IGCC x 1.2- 1.4	
	<i>Coal gasifica- tion</i> + MCFC McMullan et al. [32]	CO ₂ separation from anode exhaust gas after CO shift		49.6	5.9	0.08	87.9	3820	30 (own calcula- tion)
	Coal gasifica- tion + SOFC McMullan et al. [32]	CO ₂ separation from anode exhaust gas after CO shift		47.8	8.7	0.008	98.8	3820	35 (own calcula- tion)
	Natural gas reforming + MCFC IEA-GHG [25]	before anode (reforming + CO shift + scrubbing)	650°C / ≈ 1 bar ^{**}	49.0	not spec.	0.177	58	2153	117
	Direct natural gas-fired MCFC IEA-GHG [25]	from cathode exhaust gas (scrubbing)	bar **	55.5	not spec.	0.034	91	1955	55.4
	gas-fired SOFC IEA-GHG [25]	(scrubbing)	bar **	59.7	not spec.	0.034	90	1637	39.8
Base	eline IG <u>CC p</u> ow	ver plant accordin	g to IEA-GHG	[25] (do	es not conform t	o current stat	te of the techn	ology)	
	CC without CO_2			41.9		0.791		1811	
com	/steam turbine abined cycle at <i>without CO</i> ₂ <i>ture</i>			52.0		0.406		840	

Table 2.16: Data from the literature on power plant systems with fuel cells, CO₂ capture and liquefaction

* according to my own estimations, a maximum limit of 70%-80% of the CO₂ can be absorbed at the cathode, meaning that additional emissions should be expected in this case.

** MCFC: ΔT≈40 K, 85% fuel utilization, SOFC: ΔT≈380 K, 85% fuel conversion

2.2.8 Review of the Literature with Conversion to a Common Basis

The power plants with CO_2 capture described in the literature display widely differing levels of technology, in terms of factors such as gas turbine inlet temperature and live steam temperature, for example, as well as differing ambient conditions. This causes significant discrepancies in the efficiencies described. By using simple conversion equations, it is possible to convert the efficiencies obtainable with CO_2 capture to the same level of baseline power plant (modern steam power plant, or gas/steam turbine combined cycle power plant with currently achievable gas turbine inlet temperature) and the same energy requirements for CO_2 liquefaction, assuming an identical final pressure. CO_2 avoidance costs are calculated based on the assumption of standard costs for the baseline power plant (Table 2.2, p 8), and further investment according to the literature sources.

However, some of the processes described in the literature are no longer currently available, some cannot even be performed with current technologies. To a certain extent, information on the efficiencies and CO₂ avoidance costs is therefore speculative.

Efficiency Conversions and Estimates

Conversion to an IGCC Power Plant with Improved Combined Cycle (Without CO₂ Capture)

The efficiency of GTCC power plants has improved significantly over the last few years. When comparing different processes, it is therefore important to assess efficiency on the basis of comparable individual efficiencies. The following equation provides a first approximation for the conversion of IGCC efficiency $\eta_{IGCC,0}$ (without CO₂ capture), in dependence on the efficiency of the gas/steam turbine combined cycle $\eta_{GTCC,0}$ on which this is based, to achievable efficiency $\eta_{IGCC,1}$ using an improved gas/steam turbine combined cycle power plant with efficiency $\eta_{GTCC,1}$:

$$\eta_{IGCC,1} = \eta_{IGCC,0} \frac{\eta_{GTCC,1}}{\eta_{GTCC,0}}$$
(2.16).

The following equation applies to CO₂ emissions:

$$m_{co_{2,1}} = m_{co_{2,0}} \frac{\eta_{GTCC,0}}{\eta_{GTCC,1}}$$
(2.17).

Power Plants with CO₂ Separation from the Flue Gas, CO₂ Liquefaction

By relating the additional energy requirements for CO₂ separation (or the penalty in output caused by CO₂ separation) to the heating value of the fuel employed, efficiency η_{PP,CO_2} of the power plant with CO₂ separation can be calculated from efficiency η_{Basis} of the baseline power plant without CO₂ separation, as follows:

$$\eta_{PP,CO_2} = \eta_{\text{Basis}} - \Delta \overline{\eta}$$

$$\Delta \overline{\eta} = \frac{(additional\ internal\ consumption)\ or\ (reduction\ in\ output)}{m_F\ LHV_F}$$
(2.18)

where

If the energy expenditure for CO₂ capture consists solely of the energy expended on gas separation, with specific energy expenditure w_{CO2} related to mass flow m_{CO2} of the separated CO₂, efficiency penalty $\Delta \overline{\eta}$ is calculated from:

$$\Delta \overline{\eta} = \frac{m_{co_2} w_{CO_2}}{m_F LHV_F}$$
(2.19)

and efficiency $\eta_{_{PP,CO_2}}$ of the power plant with CO₂ separation is approximated from:

$$\eta_{PP,CO_2} = \eta_{\text{Basis}} - \frac{m_{co_2} w_{CO_2}}{m_F LHV_F}.$$
(2.20)

Power Plants with Combustion in an Atmosphere of O₂/CO₂

In power plants featuring combustion in an atmosphere of oxygen and recirculated exhaust gas or steam, additional energy is required to generate the oxygen. Based on the assumption that a working cycle, which uses CO₂ as a working fluid, has the same cycle efficiency as a cycle using air as a working fluid, efficiency $\eta_{PP,O_2/CO_2}$ of the power plant with CO₂ capture is approximated by:

$$\eta_{PP,O_2/CO_2} = \eta_{\text{Basis}} - \frac{O_{\min} w_{O2}}{m_E LHV_E}$$
(2.21)

where: O_{min} minimum oxygen required, w_{O2} specific work to generate O₂, m_F mass flow of fuel, LHV_F heating value of the fuel, η_{Basis} efficiency of the baseline power plant without CO₂ capture

IGCC Power Plants with CO Conversion and CO₂ Capture

For an IGCC power plant with CO conversion and subsequent CO_2 separation, it is not possible to estimate the efficiency of the power plant with CO_2 capture directly from that of the baseline power plant, since the efficiency is influenced not only by internal consumption for the gas separation process, but also by the CO_2 conversion process. The relationships involved in determining the efficiency of the IGCC with CO_2 capture are illustrated by the following equation:

$$\eta_{IGCC,CO_{2}} = \eta_{CG} \eta_{CO-shift} \eta_{GTCC} + \left[\left(1 - \eta_{CG} \eta_{CO-Shift} \right) - c_{G} \right] c_{1} \eta_{HT} + \left[\left(1 - \eta_{CG} \eta_{CO-Shift} \right) - c_{G} \right] (1 - c_{1}) c_{2} \eta_{steam}$$

$$- \dot{m}_{cO_{2}} \eta_{turbine} RT_{u} \ln \left(\frac{p_{GT}}{p_{u}} \right) - w_{int} - w_{int,CO_{2}}$$
(2.22)

where:

 $\eta_{CO-Shift}$: efficiency of the CO shift (95 to 97%);

 η_{CG} : ratio of fuel energy flow (HHV/HHV) or cold gas "efficiency", see equation 3.12, p 74;

 η_{GTCC} : efficiency of the gas/steam turbine combined cycle power plant;

 η_{Steam} : efficiency of the steam cycle;

 $\eta_{\rm HT}$: efficiency in the utilization of heat from the raw gas cooling stage in the steam cycle;

 $w_{\text{int}} = W_{\text{int}} / (m_{Coal} LHV_{Coal})$: specific internal consumption

 $w_{\text{int,}CO_2} = -\frac{m_{co_2} w_{CO_2}}{m_{coal} LHV_{Coal}}$: internal consumption of the CO₂ separation process;

 w_{CO_2} : specific work required to separate a kg of CO₂;

- c_G : enthalpy for the gasification steam requirement related to the coal energy;
- c_1 : constant representing the proportion of the heat from the raw gas cooling stage, which is used in the steam cycle;
- c_2 : proportion of the heat from the raw gas cooling stage, which is transferred from the raw gas to the clean gas. Since ratio of fuel energy flows η_{CG} does not include the exergy expenditure for gasifying agent (H₂O) and oxidant (O₂), this expenditure must be taken into account in the values for c_2 and specific internal consumption w_{int} and adjusted to the specific application under examination.

The third from last term approximately describes the lost expansion work of the separated CO_2 . Values for the constants are given in Table 2.17.

Table 2.17: Constants used for approximate estimation of the efficiency of an IGCC

Gasification temperature	in °C	1300	1200	1100	1000	900
Ratio of gross heating value (cold gas efficiency)	in %	88.0	89.1	90.2	91.1	91.8
Heat from raw gas cooling to HRSG	in % *	6.0	4.9	3.8	2.5	0.9
Heat from raw gas cooling to clean gas preheating in	۱% [*]	4.8	4.8	4.7	4.7	4.7
Heat from raw gas cooling to saturator heating in %	*	1.6	1.7	1.9	2.5	3.9
$\eta_{\scriptscriptstyle HT}$ (Efficiency of the heat from the raw gas cooling	g process in the	47	47	47	47	47
steam cycle) in %						
c_G (Gasification steam)	in % *	1.7	2.0	2.6	3.7	6.1
c_1 (Steam produced from heat from the raw gas cool	ing process) in	52.5	48.0	42.0	33.0	15.1
%						
c_2 (Heat from raw gas cooling to the clean gas)	in %	55.8	63.3	74.5	95.0	142.6
w _{int} (ASU; DESOX,)	in %	1.3	1.2	1.2	1.2	1.1
w_{int,CO_2} (Internal consumption of the CO ₂ separation	n process) in %	1.0 - 1.7	1.0 - 1.7	1.0 - 1.7	1.0 - 1.7	1.0 - 1.7

 * based on the fuel energy flow (LHV) of the feed coal

Evaluation and Comparison

A comprehensive assessment of the different processes may be performed on the basis of technical/ economic operating data (e.g. costs, efficiency, emissions, simple operation), and social criteria, such as acceptance on the part of the local population and decision-makers in energy supply companies and the political arena. By evaluating and weighting the individual criteria, the different designs may be ranked according to their suitability (e.g. see [157]³⁰). The scope of this present study is restricted to the evaluation of individual, objectively assessable, technical criteria. Specifically, these are:

- specific CO₂ emissions,
- efficiency with and without CO₂ capture,
- efficiency penalties, or specific energy expended on reducing CO₂ emissions, respectively (establishing the contributions of the individual steps in the process),
- increase in specific investment due to CO₂ capture,

³⁰ Criteria compiled and weighted by R. Pruschek and G. Göttlicher, among others.

- increase in electricity generating costs³¹ caused by CO₂ capture,
- CO₂ avoidance costs and
- technical feasibility.

The achievable CO_2 capture ratio and the incorporation of CO_2 liquefaction are two of the most important boundary conditions in a standardized comparison of CO_2 capture processes.

Efficiency penalties due to CO_2 capture, and the specific additional energy requirements of CO_2 capture, are primarily dependent on the method and the level of technology of the CO_2 capture process, and only depend to a small degree on the efficiency of the baseline power plant³². The efficiency penalty can thus be viewed as a characteristic variable for energy expenditure.

Table 2.18 shows the results of the conversion process, where the baseline power plants are converted to a standardized level of technology of the steam power plant, the IGCC power plant and the gas/steam turbine combined cycle power plant, and where the specific energy requirements of CO_2 liquefaction, related to the CO_2 mass flow, are the same in all cases. The occasionally inconsistent discrepancies between the data (e.g. the efficiency penalties due to combustion in an atmosphere of oxygen and recirculated CO_2 in a natural gas-fired steam power plant are different from those in a natural gas-fired gas/steam turbine combined cycle) are due to the fact that the data is based on literature sources which differ by up to approx. 30%.

Specific CO₂ Emissions (kg CO₂/kWh)

The only way of achieving virtually complete avoidance of CO_2 emissions is through combustion in an atmosphere of O_2/CO_2 . In all other processes, the maximum CO_2 capture ratio that can be achieved with a reasonable amount of work done only amounts to around 95%. CO_2 separation from the flue gas of a coal-fired power plant (steam power plant or IGCC), or CO_2 separation following CO conversion in an IGCC power plant, can serve to reduce specific CO_2 emissions to between one-quarter and one-fifth of the CO_2 emissions of a natural gas-fired gas/steam turbine power plant without CO_2 capture. With CO_2 capture, the specific CO_2 emissions of a natural gas-fired power plant again lie below those of the coal-fired power plant, in accordance with the lower carbon content of the fuel.

Efficiency With and Without CO₂ Capture

The highest efficiencies with CO_2 capture are achieved by high-temperature fuel cell power plants. Setting aside fuel cells for the time being as a "future option", the natural gas-fired gas/steam turbine combined cycle power stations and the coal-fired IGCC power stations display the greatest efficiency, as is the case with the baseline power plants. In IGCC power plants, the most advantageous method, from the point of view of energy expenditure, is CO_2 capture after CO conversion, closely followed by combustion in an atmosphere of O_2/CO_2 .

In the case of natural gas-fired gas/steam turbine combined cycle power stations, literature sources cite both CO₂ separation from the flue gas, and CO₂ separation subsequent to reforming with internal partial combustion and CO conversion as the most advantageous methods. According to the results from Table 2.18, CO₂ separation from flue gases ranks slightly higher than CO₂ separation subsequent to reforming with internal partial combustion and CO conversion.

³¹ Electricity generating costs calculated according to the annuity method, see Appendix, Section 6.7 [180].

³² In spite of this, the baseline power plant needs to display high efficiency, since this is the only way to create a small ratio between power output penalties caused by CO_2 capture and gross electricity generation, and thereby to make the additional costs low.

Several processes can be ruled out due to their low efficiencies: namely, processes with CO_2 adsorption, CO_2 separation from synthesis gases following gasification with air or following direct quenching of the raw gas with water, STIG processes with combustion in an atmosphere of O_2/CO_2 and Rankine cycles with internal combustion, as well as processes with CO_2 separation subsequent to externally heated reforming or CO_2 separation from flue gases using a membrane process.

Specific Expenditure of Energy on Reducing CO₂ Emissions / Efficiency Penalty

In this case, too, high-temperature fuel cell power plant cycles again achieve the lowest energy requirements related to avoided CO_2 emissions, followed by CO_2 separation from synthesis gases after CO conversion in an IGCC power plant (if adsorption, air-blown gasification and raw gas cooling through direct quenching with water are excluded), and IGCC power plants with combustion in an O_2/CO_2 atmosphere. The variation featuring H_2/CO separation and combustion of just the CO portion in an O_2/CO_2 atmosphere also achieves low specific energy expenditure.

In the case of natural gas-fired processes, the specific expenditure of energy on reducing CO_2 emissions is significantly higher than that required in all the coal-fired processes. However, the efficiency penalty due to CO_2 capture in natural gas-fired processes is smaller, since the CO_2 mass flow to be separated is substantially smaller overall. Specific energy expenditure on CO_2 capture from the flue gas, and with combustion in an O_2/CO_2 atmosphere, lies slightly below that of CO_2 separation with reforming with internal partial combustion and CO conversion.

 CO_2 adsorption after CO conversion in an IGCC, CO_2 separation subsequent to externally heated reforming and CO conversion, and the Rankine cycle with internal combustion (working fluid: mixture of H_2O and burner gas) all require a significantly higher expenditure of energy than that of the other cases.

Increase in Specific Investment Due to CO₂ Capture

The additional investment for CO_2 capture stems from the efficiency/output penalties and the additional equipment required for CO_2 capture. Overall, CO_2 capture increases specific investment by between 20% and 40%, if processes with low efficiencies or high expenditures of energy are disregarded. The lowest relative increase in investment caused by CO_2 capture occurs in the case of CO_2 capture in power plants using fuel cells, followed by gas/steam turbine combined cycle power plants with flue gas scrubbing, and CO_2 capture using membranes from the synthesis gas of an IGCC power plant subsequent to CO conversion. For CO_2 capture through combustion in an atmosphere of O_2/CO_2 , the investment required increases slightly more than in the case of CO_2 separation from synthesis gases after CO conversion in an IGCC. In the case of fuel cell power plants, however, the costs of the baseline power station are already extremely high, and, at the same time, the efficiency penalties are lower than in the other cases, meaning that the additional investment required for CO_2 capture will be less significant overall. No significant difference was found between natural gas-fired and coal-fired processes in terms of the increase in additional costs due to CO_2 capture.

Increase in Electricity Generating Costs Due to CO₂ Capture

According to the results given in Table 2.18, electricity generating costs rise by between approx. 20% and 40% in the case of CO_2 separation from the synthesis gas of an IGCC power plant following CO conversion. For combustion in an O_2/CO_2 atmosphere, this figure ranges between around 30% to over 50%, and for CO_2 capture from flue gases it ranges from 40% to over 60%. In spite of this, thanks to higher efficiencies overall, natural gas-fired combined cycle power plants achieve lower electricity generating costs than coal-fired power plants.

CO₂ Avoidance Costs

 CO_2 avoidance costs (Equation 1.4) depend heavily on the choice of reference power plant. In Table 2.18, two instances of reference power plants are given.

If CO_2 avoidance costs are related to the emissions of a <u>baseline power plant of the same type</u>, they can be seen to be significantly higher in the case of natural gas-fired processes with reforming or combustion in an atmosphere of O_2/CO_2 , than in the case of coal-fired processes. The lowest costs, amounting to between 16 and 35 US\$ per ton of CO_2 avoided, are achieved with CO_2 separation from synthesis gases following CO conversion in an IGCC power plant (where possible with hot gas desulfurization), in a steam power plant with combustion in an O_2/CO_2 atmosphere, and with flue gas scrubbing following a gas/steam turbine combined cycle. The costs of CO_2 capture with fuel cells in coal-fired processes are much higher.

If CO_2 avoidance costs are related more generally to a <u>coal-fired steam power plant as a reference power plant</u>, the change to a fuel with a lower carbon content (in the case of natural gas-fired power plants), and the simultaneously lower specific investments, make the CO_2 avoidance costs much lower. In the case of CO_2 separation from the flue gas, these costs even turn out to represent a net cost saving as compared to a coal-fired steam power plant without CO_2 capture (though this excludes transport and disposal costs), meaning that the CO_2 avoidance costs become negative.

To evaluate CO_2 capture without the factor of the change in fuel, the reference power plant must be operated with the same fuel as the power plant with CO_2 capture. Analyzed in this way, CO_2 capture from natural gas-fired power plants would no longer be favorable.

Technical Feasibility.

At current levels of technology, gas/steam turbine combined cycle power plants, steam power plants and IGCC power plants with CO₂ capture via flue gas scrubbing can all be built, as can IGCC power plants with CO₂ scrubbing subsequent to CO conversion. In contrast, membranes for CO₂ separation, and membrane reactors which combine H_2/CO_2 separation with CO conversion or reforming, are not yet available for large-scale industrial use in power plants. Fuel cell power plants are still in the development stage; no implementation of MHD processes is yet in sight. In principle, the current state of combustion technology and O₂ generating technology means that processes involving combustion in an atmosphere of O_2/CO_2 are feasible, though there is still a lack of a CO₂ gas turbine. Development of CO₂ gas turbines would have to be stimulated by concrete demand. This would involve new technical challenges due to the higher pressure ratios of CO₂ gas turbines as compared to today's gas turbines.

Summary

With the current state of the technology, the following designs have been proven to be advantageous: in the case of coal-fired processes, designs involving CO_2 separation from synthesis gases following CO conversion in an IGCC power plant and, in the case of natural gas-fired power plants, designs involving CO_2 separation from flue gases in gas/steam turbine combined cycle power plants. Fuel cell power plants will only provide a realistic alternative in the future if costs are reduced.

 Table 2.18:
 Data comparison of processes (converted to a common technical basis). Costs based on assumptions for component groups (see Section 4). Costs of MHD and IGCC hybrid investment according to data from the literature. All costs exclude pipelines and sequestration

ture. All costs exclude p	<u>_</u>		<u>^</u>			1	2	2	4	~		~
1) Investment	1	2	3	4	3	I	2	3	4	5		5
2) CO_2 emissions											1	ce power ant:
3) Efficiency	Bas	seline po	wer pl	ant			with CC	P_2 captu	ire		Baseline	
4) Electricity generating costs		type of p						2 1			power	PP,
, , , , , , , , , , , , , , , , , , , ,	Ì	51 1		. /							plant	η=45%
5) Specific power consumption	wi	thout CO	- capti	ire	gas.		CO ₂	lia.		liq.	gas. / liq.	•
to reduce CO_2 emissions		kg CO ₂ /	η	US\$/	η	115\$/	kg CO ₂ /	η	US\$/	kWh/	US\$/t	US\$/t
6) CO_2 avoidance costs	kW	kWh	in %	kWh	•	kW	kWh	in %		kg CO ₂	CO_2	CO_2
Process Family I:	K VV	K VV II	III /u	K VV II	111 /0	K W	K VV II	111 /0	K WII	Kg CO ₂	co_2	002
IGCC + CO conversion/ reforming + CO α	onvers	ion										
Dir. quenching with water, phys. abs		0.78	40.2	0.052	35.9	1300	0.099	31.9	0.067	0.293	11/23	27
Phys. abs.	1112	0.78		0.052 0.050		1436			0.067	0.293		18
Phys. abs. (seawater)	1112	0.63		0.050		1470			0.064		26/26	20
Chem. abs.	1112	0.63		0.050		1649	0.047		0.070		23/35	28
Membrane, hot gas clean up	1112	0.61		0.050		1336				0.262	7 / 16	12
Membrane reactor	1112	0.63		0.050		1384	0.155		0.061	0.311	11 / 23	18
Distillation	1112	0.63		0.050		1573	0.121		0.067	0.378	21 / 35	27
Adsorption	1112	0.63	51.5	0.050		2236	0.135	31.3	0.094	0.722	64 / 88	73
Air-blown gasification, chem. abs.	947	0.67	48.0	0.047	39.7	1547	0.178	35.7	0.071	0.476	31 / 48	36
Natural gas-fired cycles (reformer, CO co	nversio	on)										
Steam power plant	1049	0.46	45.0	0.062	35.0	1417	0.053	33.3	0.085	0.623	42 / 54	50
GTCC (reform. externally heated)	510	0.35		0.040		936	0.225		0.061	1.476	139 / 171	20
GTCC (reform.: internal partial combus-	510	0.35		0.040		760	0.062		0.051		32 / 40	-1
tion)	510	0.55	57.0	0.010	51.0	/00	0.002	50.0	0.001	0.011	527 10	1
Process Family II: combustion in an O ₂ /CO	D_{a} atmos	sphere						1	1	I		
Steam power plant	1049	0.72	45.0	0.052	40.0	1414	0.007	35.6	0.067	0.296	11/23	23
DFCC	1134	0.72		0.052 0.050		1754	0.007		0.007		24/37	30
MHD + steam cycle	1170	0.64		0.050		1902	0.007		0.073		24/37	39
IGCC hybrid (+ PFBC)	945	0.67		0.047		1726			0.075		29/43	34
IGCC (O ₂ /H ₂ O-blown.)	1112	0.63		0.050		1613				0.296	18/29	24
IGCC (O ₂ /H ₂ O-blown) / STIG	1112	0.84		0.057		1901	0.007		0.088		22 / 37	52
IGCC (CO ₂ /H ₂ O-blown)	1112	0.63	51.5	0.050	46.7	1609	0.007	42.3	0.068	0.290	18 / 29	23
IGCC, H ₂ /CO membrane	1112	0.63	51.5	0.050	47.4	1668	0.048	43.4	0.069	0.269	21/32	26
Natural gas-fired cycles	1112	0.05	51.5	0.050	-7	1000	0.040	75.7	0.007	0.20)	21/52	20
Steam power plant	1049	0.46	45.0	0.062	39.0	1375	0.007	37.1	0.078	0.390	26/36	38
GTCC	510	0.40		0.002		914	0.007		0.078		40/47	
												6
Gas turbine cycle with evaporation	505	0.35		0.040		1002	0.007		0.061	0.677	53 / 62	14
Rankine cycle with internal combustion	510	0.35	59.0	0.040	38.5	2022	0.007	36.6	0.096	1.102	150/165	64
Process Family III: CO ₂ separation from the	-											
Steam power plant, distillation	1049	0.78		0.052		1920			0.082		36 / 52	59
Steam power plant, chem. absorption	1049	0.78			37.4					0.364	25 / 39	43
Steam power plant, membrane	1049	0.78			32.0					0.816	74/134	180
MHD + steam cycle, chem. abs.	1170	0.78	50.2	0.052	44.9	1706	0.077	40.9	0.071	0.257	17 / 27	31
IGCC hybrid (+ PFBC), chem. abs.	945	0.67	48.2	0.047	40.9	1514	0.092	36.9	0.069	0.392	25/38	28
Natural gas-fired cycles												
Steam power plant, chem. abs.	1049	0.46	45.0	0.062	38.0	1471	0.042	36.3	0.082	0.458	37 / 47	45
GTCC + chem. abs.	510	0.35		0.040		594	0.045			0.396	13/19	-9
HAT + chem. abs.	488	0.35		0.039		724	0.088			0.361	27 / 35	-5
Process Family V: CO ₂ capture with fuel c		5.55	27.0	5.057	22.0	, <u> </u>	0.000		0.010	0.001	, 55	5
IG-PAFC+CO shift, (future costs)	1503	0.78	50.5	0.061	44.6	2008	0.279	40.6	0.082	0.351	52/93	70
							0.279			0.331		
IGCC MCFC (exhaust gas scrubbing)	3318	0.58									6 / 26	108
IGCC SOFC (exhaust gas scrubbing)	3188	0.57	56.5	0.104	51.8	3772	0.0081	47.8	0.123	0.274	16/34	101
Natural gas-fired cycles	1	-		· ·				1				
MCFC (exhaust gas scrubbing)	1361	0.35	58 5	0.054	57.3	1953	0.034	555	0.071	0.160	26/31	29
SOFC (exhaust gas scrubbing)	1134	0.33			61.5					0.161	20 / 24	14

3 ENERGY AND EXERGY ANALYSIS

The overwhelming majority of published studies and investigations, which deal with the various possible methods of CO_2 capture in power plants, do not include any detailed analysis of the energetics. In particular, investigations into how individual process steps in CO_2 capture influence efficiency penalties and the energy required for CO_2 capture, and analysis of the minimum energy required for CO_2 capture, could open up new horizons in the systematic evaluation of the thermodynamic qualities of different processes, and the possible ways of minimizing the energy expended on CO_2 capture.

 Table 3.1:
 How individual process steps contribute to efficiency penalties in the various CO₂ capture processes (see the "Introduction" Section for definitions of the process families)

Process family:					l										IV		V	
			fired		n	atural	gas fire	d										
		CO S	Shift +		Refo	orming/	CO-Shi	ft +										
	+ Physical absorption	+ Chemical absorption	+ Adsorption	+ Membrane	+ Physical absorption	+ Chemical absorption	+ Adsorption	+ Membrane	Combustion in O2/recirculated flue gas	Combustion in O2/steam	CO/H2-separatino (2 GT)	Chemical absorption	Membranes	CO2 freezing	C-removal prior to combustion	PAFC	MCFC	SOFC
Chemical conversion																		
CO-Shift	Х	Х	Х	Х	Х	Х	Х	Х								Basis	(X)	(X)
Reforming					Х	Х	Х	Х								Basis	(X)	(X)
C-separation												-			Х			
Pressure losses			1															
CO-Shift/Reformer	х	х	х	х	х	х	х	х								х	(X)	(x)
Absorber	х	х			х	х						х		х		х		
Adsorber			х				х									(X)	(X)	(x)
Membrane			Х	Х				Х			Х		Х			(X)		
Flue gas recirculation									х								(x)	(x)
Gas separation	Energ	iebeda	arf:	E=	electr	ic wor	k	Q=hea	at	P=pre	ssure I	oss	F=fue	l loss				
CO2-separation	E	Q	P/E/Q		E	Q	P/Q					Q	Р	E		P/E	P/E	P/E
H2-separation			(P/E/Q	P / F			(P/Q)	Р			Р					(P/E)	(P/E)	(P/E)
O2-separation									E	E								
Influence on cycle charac	teristic	s																
Gasifiyng agent									(CO2)	(CO2)								
Turbine working fluid									CO2									
Bottoming stem acycle: influence of steam/water extraction (heat consumption)	x	Xx	x	x	x	Xx	x	x				x						
Changes in fuel conversion									MHD -							(x +)	(x +)	(x +)
CO ₂ -liquefaction	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х

Efficiency penalties due to CO_2 capture in power plants are caused by the energy requirements of individual process steps (e.g. heat and/or compressor work for solvent regeneration in gas scrubbing, pressure losses), and by exergy losses (e.g. through temperature differences in heat transfer, or in fuel conversion processes involving a CO shift reaction or steam reforming). In some cases, CO_2 capture results in process data being changed slightly; for example, the composition of the raw gas in a gasification process using CO_2 as a gasification substance, combustion in a CO_2 -rich atmosphere in a hightemperature combustion chamber, or gas turbine characteristics in cases where the fuel or working fluids are changed. The potential contributions to efficiency penalties caused by CO_2 capture, which are examined in the following investigations into complete plant cycles, are marked in Table 3.1. Expenditure required for CO_2 compression and liquefaction must be added in addition.

ENERGY AND EXERGY ANALYSIS

Due to the high carbon content of coal, CO_2 capture in coal-fired power plants results in a greater CO_2 emissions reduction than in natural gas-fired power plants. At current levels of technology, the coal-fired plant, which achieves the highest levels of efficiency, is the IGCC power plant, which also allows for the possibility of separating the CO_2 from the fuel gas. For this reason, the following calculations primarily focus on CO_2 capture in an IGCC.

3.1 Calculation Methods in the Energy and Exergy Analysis of Power Plant Systems

To calculate power plant cycles, and the individual components of these cycles, including gas separation, a computer program was developed for use in a spreadsheet program, allowing a variety of tasks to be solved in a flexible manner.

The calculations are based on:

- Steam tables according to IFC67 [158]³³: functions for liquid water, superheated steam, wet steam, saturation line;
- Physical characteristics of ideal gases according to Hougen et al. [160]³⁴: heat capacity, enthalpy, entropy, wet bulb temperature, speed of sound, adiabatic exponent;
- Exergy according to the environment model developed by Baehr and Schmidt [161];
- Physical characteristics of coal.

The most important calculation routines, designed to calculate work/power output, temperatures and compositions, and exergy and exergy losses, comprise the following:

- Steam turbines (isentropic expansion), pumps, steam/water mixture;
- Compression, expansion of gases (polytropic/isentropic expansion);
- Gas humidifier ("saturator"; it is assumed that the water exit temperature is equivalent to the wet bulb temperature³⁵ of the incoming gas);
- Gas separation: reversible separation work, membrane model according to Shindo[162];
- stoichiometric combustion;
- Chemical equilibrium reactions: CO shift reaction, reforming (partial reaction towards the equilibrium is simulated through deviations of the reaction temperature);
- Coal gasification:
 - compositions of the delivered coal mix subsequent to ash recirculation,
 - coal gasification,
 - integrated gas production with ASU, raw gas cooler, gas cleaning, gas humidification, reheating (optionally with CO shift and CO₂ scrubbing or membrane);
- Integrated gas turbine module (optionally with capacity to define the optimum pressure ratio for maximum efficiency or maximum specific work, optional blade cooling).

³³ With the functions for the steam tables according to IFC67, uncertainties of up to 1% arise, primarily at the boundaries of numerical regions (phase changes, numerical boundary changes); these uncertainties can even be as high as 6.5% in extreme cases close to the critical point [158]. During the preparation of this paper, a more precise formulation with a higher rate of accuracy was published [159].

³⁴ Numerical formulations of physical characteristics always deviate from the given values at boundaries. The accuracy of the formulations of physical characteristics employed here for ideal gases for the current heat capacity lie, on average, between 0.24% and 0.57%, depending on the gas component (Appendix, Table 6.6).

³⁵ aka: wind chill temperature

For processes involving the condensation of CO_2 or changes of state close to the critical point of CO_2 (Table 2.6), real gas behavior must be taken into account. For these kinds of changes of state with pure CO_2 , functions were created to calculate the CO_2 steam tables according to IUPAC [163]. The ASPENplus simulation program was used for process simulations with mixtures.

3.1.1 Calculations for Gas Turbines

For a simple gas turbine cycle, the compressor, combustion chamber and turbine components are calculated. Pressure loss in the combustion chamber is also taken into account in this calculation, as well as the option of a simple model for blade cooling air (Figure 3.1). The given values and calculated values are summarized in Table 3.2.

Parameters	Calculated Values
 Turbine inlet temperature according to ISO 2314 Compressor pressure ratio Polytropic compressor and turbine efficiency Pressure loss in the combustion chamber Air: composition, temperature and pressure Fuel: mass flow, composition, temperature and pressure 	 Efficiency of the gas turbine (in relation to LHV, HHV, exergy) Combustion chamber temperature prior to blade cooling (combustion temperature) Turbine exit temperature (T_{off} in Figure 3.1) Temperature after compressor Mass flow of intake air Flue gas: mass flow and composition Compressor and turbine output Exergy losses: compressor, combustion chamber, turbine blade cooling, total Exergy of exhaust gas, compressor intake air, fuel
	• Specific total work, related to mass flow of intake air

Table 3.2: Initial parameters and calculated values for the simple gas turbine cycle

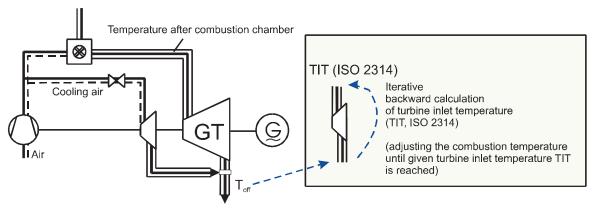


Figure 3.1: Process flow simulating a simple gas turbine cycle.

3.1.2 Calculations for the Heat Recovery Steam Cycle

The process arrangement of a heat recovery steam cycle is very elaborate. In order to adapt to the sources of heat and heat sinks used in each case (waste gas enthalpy flow, heat from raw gas cooling, steam extraction), it requires the variation of a number of parameters (adjustment of flue gas cooling curve, Figure 3.2). Since this study required the calculation of so many different processes, the output of the heat recovery steam cycle was determined using a simplified method, rather than by calculating a detailed heat recovery steam cycle each time.

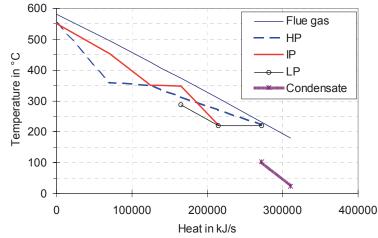


Figure 3.2: Flue gas cooling curve of the heat recovery steam cycle according to Figure 3.4

If exergetic efficiency ζ_{HRSG} of the downstream heat recovery steam cycle is defined as the ratio of power used P_{ST} to useful difference in exergy ΔE (e.g. between the exergy of the flue gas at the turbine exit and at the stack after the heat recovery steam generator)

$$\zeta_{HRSG} = \frac{P_{ST}}{\Delta \dot{E}} \tag{3.1}$$

and exergetic efficiency ζ_{HRSG} is taken as being constant, the output of the steam turbine is proportional to the useful difference in exergy. The exergetic efficiency is used to calculate the proportion of the exergy supplied or released, which is converted into electric work, or which results in a reduction in work, respectively.

For the tests carried out here, it proved to be practical to introduce two further exergetic efficiencies in addition to the equivalence factor for the utilization of the hot gas turbine exhaust gas; namely, efficiencies for the import of saturated steam and the export of hot feed water.

The exergies supplied and released are split into:

- Δe_{HRSG} useful flue gas exergy (exergy of enthalpy³⁶),
- Δe_{HT} exergy of the enthalpy³⁶ from the balance of imported and exported steam or high-temperature heat (e.g. from raw gas cooling) and
- Δe_{LT} exergy of the enthalpy³⁶ from the balance of imported and exported feed water, or low-temperature heat.

The output of the heat recovery steam cycle comprises:

$$P_{ST} = \zeta_{HRSG} \Delta e_{HRSG} \, m_{HRSG} + \zeta_{HT} \Delta e_{HT} \dot{m}_{HT} + \zeta_{LT} \Delta e_{LT} \dot{m}_{LT}$$
(3.2)

where:

 ζ : exergetic efficiency for the conversion of the exergy supplied or released in the steam cycle into electrical energy _{HRSG}: gas turbine exhaust gas,

HT: steam import/export,

³⁶ 'Exergy of enthalpy' (= only the thermal portion of the exergy, excluding fuel exergy or mixing exergy): $e_h = \Delta h - T_u \Delta s$ according to Baehr [161], aka contact exergy [174].

LT: hot feed water import/export.

The useful flue gas exergy was taken to be the difference in exergy between the exhaust gas temperature at the inlet of the waste heat steam boiler and 100°C as the minimal exit temperature after the waste heat steam boiler:

$$\Delta e_{HRSG} = \left(e_{RG}(T_{FG}, p_a) - e_{FG}(T_{\text{Stack}}, p_a)\right)$$
(3.3)

With use of the hot gas turbine exhaust gas, this gives an electric output of:

$$P_{ST} = \zeta_{HRSG} \cdot \Delta e_{HRSG} \ m_{HRSG} \tag{3.4}$$

A more detailed waste heat steam cycle according to Figures 3.4 and 3.2 was calculated to obtain a more precise determination of the exergetic efficiencies in utilizing the exergy flows supplied and released in the waste heat steam cycle. For utilization of the flue gas exergy in a three-pressure heat recovery steam cycle (evaporation at three different pressures), according to Figure 3.4, an exergetic efficiency ζ_{HRSG} of 87.0% was calculated.

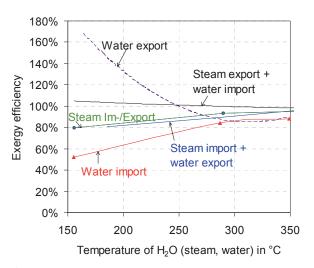


Figure 3.3: Exergetic efficiency ζ_{HRSG} for evaluating exergy utilization with heat consumption and heat supply in the heat recovery steam cycle

The output of a heat recovery steam cycle in an IGCC power plant is also influenced by the steam or hot feed water imported from, or exported to, the gasifier island. For a temperature range of 150°C to 350°C, changes in steam turbine output were calculated for saturated steam consumption, saturated steam supply and hot water consumption and supply, as well as for cases involving steam import/export, in which the corresponding mass flow of hot feed water is recirculated. The exergetic efficiencies for the conversion of the exergy supplied and released in the heat recovery steam cycle were determined from these calculations (Figure 3.3).

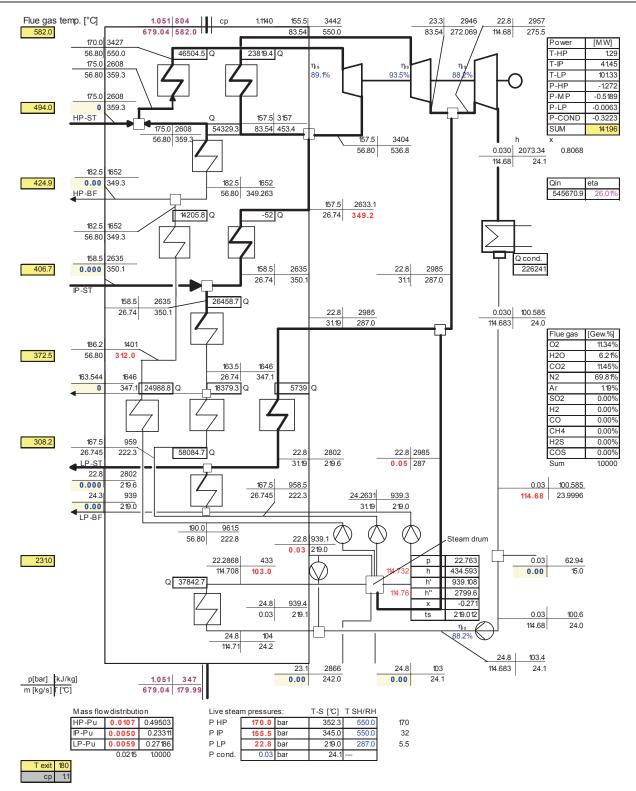


Figure 3.4: Process diagram of the heat recovery steam cycle

Application to Gas/Steam Turbine Combined Cycle Power Plants

By working on the simplified basis of an ideal gas with constant isentropic exponent and a simple gas turbine without pressure losses in the combustion chamber, and calculating the heat recovery steam cy-

(3.7),

cle with the help of exergetic efficiency ζ_{HRSG} for utilization of the enthalpy of the gas turbine exhaust gas, the power output of the steam turbine P_{ST} can be calculated as follows:

$$P_{ST} = \zeta_{HRSG} \Delta \dot{E} = \zeta_{HRSG} c_p \left[\left(T_{GT,exit} - T_{Stack} \right) - T_a \ln \frac{T_{GT,exit}}{T_{Stack}} \right]$$
(3.5).

The efficiency of the gas/steam turbine combined cycle may be expressed as:

$$\eta_{GTCC} = \frac{P_{GT} + P_{ST}}{h_3 - h_2} = \frac{\theta \eta_{Comp} \eta_T \left(1 - \frac{1}{\varphi} \varsigma\right) - (\varphi - 1) + \zeta_{HRSG} c_p \left[\left(T_{GT, exit} - T_{Stack}\right) - T_a \ln \frac{T_{GT, exit}}{T_{Stack}} \right]}{\eta_{Comp} (\theta - 1) - (\varphi - 1)}$$
(3.6)

where:

 $\theta = \frac{T_{Combustor}}{T_a}, \qquad \varsigma = \left(\frac{1}{1 - \frac{\Delta p_{CC}}{r_a}}\right)^{\kappa}, \quad \varphi = \pi^{\frac{\kappa - 1}{\kappa}}$ Δp_{CC} = pressure loss in the combustion chamber, p_{Comp} = pressure after gas turbine compressor,

= compressor pressure ratio, π

 η_{Comp} = compressor efficiency (isentropic), η_T = turbine efficiency (isotropic).

As shown in Figure 3.5, the energetic efficiency and the specific useful work of the combined cycle power plant increase with a higher exergetic efficiency ζ_{HRSG} of the heat recovery steam cycle. At the same time, the pressure ratio drops at the point of maximum efficiency.

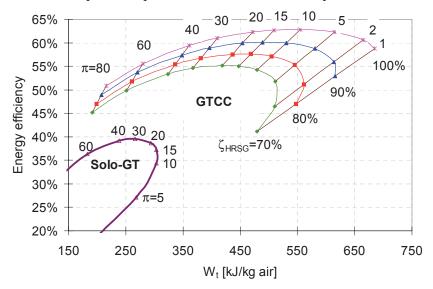


Figure 3.5: Efficiency and specific work of a simple gas turbine and gas/steam turbine combined cycle power plant at different pressure ratios and exergetic efficiencies ζ_{HRSG} of the heat recovery steam cycle. Turbine inlet temperature 1190°C (ISO 2314).

3.1.3 Calculations for Coal Gasification

Coal gasification involves the production of a synthesis gas consisting primarily of carbon monoxide and hydrogen. The fundamental reactions of coal gasification are presented in Table 3.3. In the case of autothermic gasification, oxygen acts as an oxidant for the exothermic combustion reaction. In allothermic gasification, the energy required for gasification can theoretically also be delivered from an external source via a heat exchanger. Steam is used as the gasification agent, which reacts with carbon in the water-gas shift reaction to form CO and H₂. The Boudouard reaction and the hydrogasification reaction only play a minor role in coal gasification if steam is used as the gasification agent. The gasification products are converted further by means of the water-gas shift reaction and the methane-forming reaction.

For the simulation of coal gasification, after entering the gasification temperature, the coal and the temperature of the gasification steam and oxygen, the raw gas composition, and the mass flows of the oxidant (O_2 , air), of the gasification agent (H_2O) and of the raw gas produced are calculated from the chemical equilibrium and the energy balance, as are the efficiencies of the coal gasification process (see below).

- Input data:
 - Composition of coal, oxidant, transport gas (nitrogen),
 - Gasification temperature, gasification pressure,
 - Temperature and pressure of coal, oxidant, transport gas (nitrogen), H₂O at reactor inlet
 - Mass flow of coal, dissipation of heat through gasifier wall cooling,
 - Particulates clean up (separation of residual carbon and ash in cyclone dust separator and filter, recirculation to the gasifier).
- Values calculated for:
 - Fuel composition and mass flow at gasifier inlet of a mixture of fresh coal and ash recirculated from the cyclone dust separator and filter,
 - Energy balance of all gaseous, liquid and solid material flows delivered and removed.

•	Reaction equilibrium and conve		N (10)	(·	(2,0)
	partial combustion	$C + 1/2 O_2$	→ CO	(conversion n_1	in mol),	(3.8)
	water-gas (steam-carbon) reaction	$\mathrm{C}+\mathrm{H_2O}$	→ CO + H ₂	(conversion N_2	in mol),	(3.9)
	methane-forming reaction	$\rm C+2~H_2$	$\rightarrow CH_4$	(conversion n ₃	in mol),	(3.10)
	CO shift reaction	$\rm CO + H_2O$	→ $CO_2 + H_2$	(conversion n_{wgs}	in mol).	(3.11)

- Conversion of sulfur into H₂S and COS, formation of HCl (assuming conversion of the entire amount of S and Cl),
- Exergy losses.

Table 5.5. Basic reactions of coal gasi	in our de la constant
Partial combustion	\rightarrow close to equilibrium
$C+1/2 O_2 = CO$	-123.1 kJ/mol
←increase of pressure	
Combustion	\rightarrow close to equilibrium
$C + O_2 = CO_2$	-393.6 kJ/mol
= pressure-independent =	
Boudouard reaction	\rightarrow equilibrium reached at low CO ₂ concentrations
$C + CO_2 = 2 CO$	+159.9 kJ/mol
\leftarrow increase of pressure increase of temp	oerature→
Heterogeneous shift reaction	\rightarrow close to equilibrium
$C + H_2 O = CO + H_2$	+118.5 kJ/mol
\leftarrow increase of pressure increase of temp	$perature \rightarrow$
Hydrogasification reaction	\rightarrow equilibrium not reached (dependent on volatile matter)
$C + H_2 = CH_4$	-87.5 kJ/mol
←increase of temperature increase of pres	sure \rightarrow
(Homogeneous) CO shift reaction	\rightarrow close to equilibrium
$CO + H_2O = H_2 + CO_2$	-40.9 kJ/mol
\leftarrow increase of temperature = pressure-inde	venaent –
Methane-forming reaction	\rightarrow equilibrium not reached
$CO + 3 H_2 = CH_4 + H_2O$	-205.9 kJ/mol
\leftarrow increase of temperature increase	se of pressure \rightarrow

Table 3.3: Basic reactions of coal gasification

Molar conversion n_1 , N_2 , n_3 and n_{wgs} is calculated iteratively with the aid of the equilibrium constants and the energy balance (Figure 3.6). It determines the composition of the raw gas (Figure 3.7) and the mass flows (Figure 3.8). All seven of the fundamental reactions of coal gasification presented in Table 3.3 may be combined from these four reactions. A partial reaction equilibrium as proposed by Steiner [164] is assumed for the methane forming reaction. For the CO shift reaction (water-gas shift reaction), a partial equilibrium is simulated through raising the reaction temperature by 300 K.

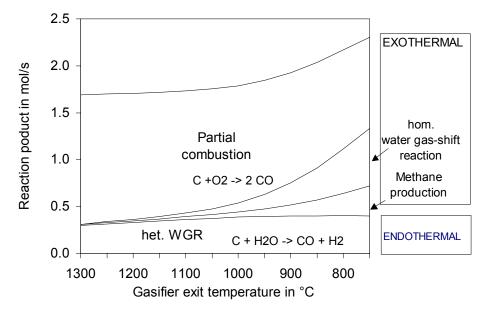


Figure 3.6: Molar conversion of the individual reactions in dependence on gasification temperature

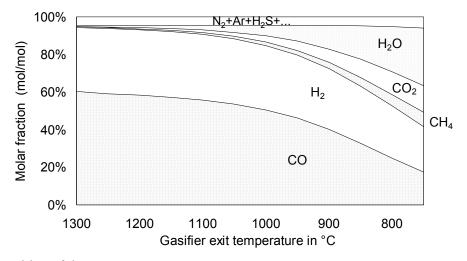


Figure 3.7: Composition of the raw gas

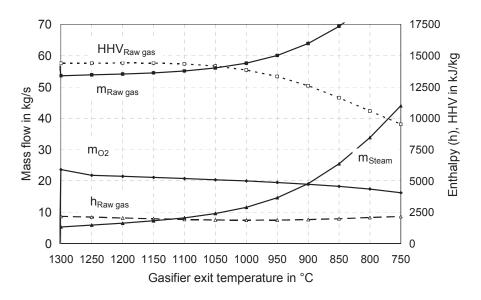


Figure 3.8: Supplied mass flows of gasification medium (H₂O) and oxidant (O₂), as well as enthalpy and gross heating value of the raw gas produced

Three different efficiencies are used to evaluate coal gasification in this case:

• Cold gas " efficiency" η_{CG} (proper thermodynamic term: ratio of fuel energy flow (HHV)):

$$\eta_{CG} = \frac{m_{Raw gas}}{m_{Coal}} \frac{HHV_{Raw gas}}{HHV_{Coal}}.$$
(3.12)

This value is not suitable for energetic or exergetic evaluation of the overall process, since it does not take into consideration the auxiliary energy required for gasification (steam, oxygen, ...).

• Exergetic efficiency of the gasification process (hot raw gas at gasifier exit):

$$\xi_{Exergy(hot Raw gas)} = \frac{E_{Raw gas,hot} + E_{Steam,exit,1} - (E_{Feed water,in,1} - E_{N_2} - E_{O_2} + E_{Gasifiying steam})}{E_{Coal}}.$$
(3.13)

• Exergetic efficiency of gas generation (gasifier island) including raw gas cooling (cooled raw gas, excluding gas cleaning and reheating) and the balance of the steam generated:

$$\xi_{Exergy(coded \ rawgas)} = \frac{\dot{E}_{Rawgas,500^{\circ}C} + \dot{E}_{Steam,out,2} - (\dot{E}_{feed \ water,in,2} - \dot{E}_{N_2} - \dot{E}_{O_2} + \dot{E}_{Gasification \ steam})}{\dot{E}_{Coal}},$$
(3.14)

in which:
$$\dot{E} = Exergy \ flow \ [kJ / s],$$

 $\dot{E} \ Steam, exit, 1 = \dot{E} \ Steam \ from \ gasifier \ wall \ cooling,$
 $\dot{E} \ Feed \ water, in, 1 = \dot{E} \ Feed \ water \ to \ gasifier \ wall \ cooling \ + \dot{E} \ Steam \ to \ Raw \ gas \ cooler,$
 $\dot{E} \ Feed \ water, in, 2 = \dot{E} \ Steam \ from \ gasifier \ wall \ cooling \ + \dot{E} \ Steam \ to \ Raw \ gas \ cooler \ ,$
 $\dot{E} \ Feed \ water, in, 2 = \dot{E} \ Feed \ water \ to \ gasifier \ wall \ cooling \ + \dot{E} \ Feed \ water \ to \ Raw \ gas \ cooler \ .$

The exergetic efficiencies take into consideration all exergy flows supplied and released. The exergy of the materials is made up of the chemical and the thermal exergy components.

3.1.4 Calculations for an IGCC Power Plant

The calculation for an IGCC power plant is divided into three areas:

- gas generation,
- gas turbine (Section 3.1.1) and
- heat recovery steam cycle (Section 3.1.2).

The process arrangement, on which the calculations are based, is shown in Figure 3.9.

As well as the energy and exergy analysis of coal gasification, the calculation of <u>gas generation</u> also includes the balances of raw gas cooling, Venturi scrubbing, desulfurization, gas humidification, and reheating, as well as oxygen supply and the mixing of nitrogen from the ASU into the cleaned fuel gas.

An exergetic efficiency of 7% is assumed in calculating the electrical internal consumption of the desulfurization plant.

The calculation of oxygen production by means of air separation is simplified by the assumption that energy expenditure w_{O_2} is required to produce 1 kg of O_2 at 1 bar with an O_2 volume fraction of y_{O_2} , as expressed in the following equation (see Figure 2.7; p 18):

$$w_{Q_2} = 0.3868 (y_{Q_2} - 0.21) e^{0.00021/(1-y_{Q_2})} - 0.0357$$
 (in kWh/kg Q_2 at 1 bar) (3.15)

For example, to produce O_2 with a purity of 95% volume fraction, solving the equation results in an energy requirement of 0.25 kWh per kg O_2 at 1 bar. It is also necessary to take into account the energy required to further compress the oxygen to the gasification pressure, and to compress the nitrogen (mixed into the clean gas) to the pressure required prior to the combustion chamber. If air is used for the gasification process, both oxygen production and the admixing of nitrogen may be omitted from the calculations. Nitrogen admixing is omitted in the case of IGCC cycles with combustion in an atmosphere of O_2/CO_2 .

After deducting the heat/enthalpy flows released and consumed in the gas generation process at varying

temperatures, the heat values Q_{LT} , Q_{HT} transferred to the heat recovery steam cycle (Figure 3.9) are determined from the energy balance and exergy analysis, as are their exergies, the exergy losses in the individual process steps and the exergetic efficiency of the gas generation process.

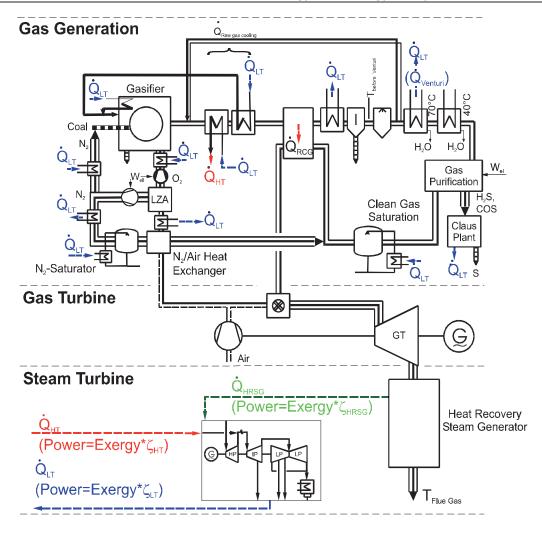


Figure 3.9: Model for calculating an IGCC power plant

To calculate <u>gas generation with CO_2 capture</u>, special program modules were designed, which determine energy conversion, exergy conversion and substance conversion in the gas generation process with raw gas CO shift and CO_2 capture (see process diagram in Figure 2.10). The heat required to humidify the raw gas prior to CO conversion, and the useful component of the lost heat from CO conversion, both

play a part in determining heat value Q_{HT} given off in the heat recovery steam cycle, extracted heat

value Q_{LT} , and their exergies. The CO₂ capture is simulated either through the exergetic efficiency of the gas separation process with input of the separation factor, or through a membrane calculation³⁷ with input of the relative permeabilities of all the gas components, the pressure ratios and the quantity of permeating gas.

3.1.5 Baseline Case for Performing Calculations for an IGCC Power Plant

Calculations of IGCC power plants are based on more recent studies prepared for an IGCC power plant, ready for construction in 1998, which uses an entrained flow gasification process (PRENFLO) and a gas turbine with a turbine inlet temperature of 1250°C (ISO 2314); these studies were carried out as part of a

³⁷ Membrane model according to Shindo [162]

project sponsored by the European Commission [20]. The gasifying installation is operated with oxygen (95% volume fraction O₂) as an oxidant. It achieves a carbon conversion rate of 99.6% and a cold gas "efficiency" (Equation 3.12) of 87.2% at a gasifier exit temperature of 1300°C. Raw gas cooling basically consists of a steam generator and a raw gas/clean gas heat exchanger for reheating the cleaned fuel gas to around 360°C. The air separation unit is fully integrated, i.e. the air required is included in the compression process of the gas turbine compressor, and a portion of the nitrogen is re-mixed into the generated fuel gas prior to the gas turbine combustion chamber. The nitrogen and the cleaned fuel gas are humidified with the required water component in the saturator, prior to mixing, at the lowest possible temperature. The saturator columns are heated with hot water.

Under the ambient conditions stated, the IGCC power plant achieves an efficiency of 51.5% (exergetic efficiency: 47.4%) with a gas turbine inlet temperature of 1250°C. The largest exergy losses result from combustion of the generated gas in the gas turbine combustion chamber, gasification and partial combustion of the coal in the gasifier, and heat transfer in the raw gas cooler and the heat recovery steam cycle (Figure 3.10).

To conform with legal limit values for NO_x emissions without using additional nitrogen oxide reduction measures, it is necessary to observe a minimum water content in the clean gas, in dependence on the gas temperature, in conformance with the guidelines issued by the gas turbine manufacturer. The equation used in this case to describe the dependence of the water content on the fuel gas temperature is as follows:

$$x_{H_2O, fuel gas} = 0,1946 \cdot 10^{-6} \cdot t_{fuel gas}^2 + 0,719168 \cdot 10^{-4} \cdot t_{fuel gas} + 0,0992476$$
(3.16)
where: $x_{H_2O, fuel gas} = \frac{m_{H_2O}}{m_{fuel gas}}$ and $t_{fuel gas}$ in °C.

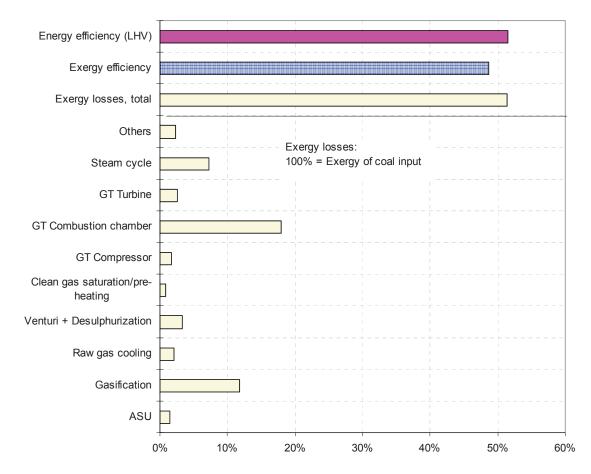


Figure 3.10: Exergy losses in an IGCC power plant (gasification at 1302°C, TIT 1250°C)

3.2 Boundary Conditions and Process Data

Ambient temp.	20°C	
Ambient pressure	1.013 bar	
Air		
Rel. humidity	80.0%	
	Mass Fractions	
O_2	22.88%	
H ₂ O CO ₂	1.16%	
CO_2	0.05%	
N_2	74.65%	
Ar	1.27%	

Table 3.4: Ambient conditions

Table 3.5: Gas turbine data

Compressor pressure ratio	17.8
TIT (ISO 2314)	1250°C
Compressor efficiency (polytropic)	89.7%
Turbine efficiency (polytropic)	89.7%
Pressure loss in combustion chamber	2.6%
Pressure at gas turbine exit	1.06 bar

Table 3.6: Data on heat recovery steam cycle

Steam circuit	
Min. waste gas temp.	75°C
Difference in temp. between hot waste gas and steam	30 K
Exergetic efficiency (gas turbine waste heat)	87.0%
Exergetic efficiency for HT heat (steam from raw gas cooling)	90.0%
Exergetic efficiency for LT heat (feedwater)	125.0%
Max. permissible temp. of the steam	580°C
	Vapor States
LP steam	163.8°C / 6.3 bar
MP steam	245.9°C / 35.2 bar
HP steam	365.0°C / 180 bar
LP feedwater	154.1°C / 11 bar
	245 89C / 20 har
MP feedwater	245.8°C / 39 bar

Table 3.7:	Coal	gasification data
------------	------	-------------------

		1202
Gasifier exit temperature in °C		1302
Gasification pressure	in bar	29.0
Residual moisture after coal drying	in %	1.2
Exerget. efficiency of desulfurization	in %	7.0
Degree of desulfurization	in %	99.0
Pressure drop at gasification island	in bar	1.2
Temperature prior to Venturi scrubbing	in °C	288
Temp. of clean gas	in °C	375
Moisture in clean gas		Equation (3.16)
C conversion, single pass	in %	97.0
Ash to slag	in %	57.01
C to slag	in %	1.98
Residual ash in filter cake	in %	24.25
Residual C in filter cake	in %	11.11
Gasifier wall cooling:		
Cooling, related to $(HHV \cdot \dot{m}_{Coal})$	in %	0.659
Difference in pressure (gasifier/GT comb.	chamber) in bar	11.0

Coal	Pittsburgh No.8			
	Mass fractions in %			
С	76.56 (mf)			
Н	5.26 (mf)			
0	5.88 (mf)			
N	1.44 (mf)			
S	3.00 (mf)			
Cl	0.06 (mf)			
Ash	7.80 (mf)			
Volatile	39.15 (mf)			
matter				
H ₂ O	5.50 (raw)			
	1.2 (dried)			
LHV (mf)	31438 kJ/kg			
HHV (mf)	32613 kJ/kg			

Table 3.8: Composition of coal, oxygen for gasification and transport nitrogen

Gasification Oxygen				
	Volume			
	fraction in			
	%			
02	95.0			
H ₂ O	0.0			
CO2	0.0			
N2	1.7			
Ar	3.4			
Temp. in °C	200			
Pressure in	33.8			
bar				

Transport Nitrogen				
	Volume			
	fraction in %			
O_2	0.64			
H ₂ O	0.00			
CO ₂	0.00			
N ₂	99.01			
Ar	0.35			
N ₂ /coal (kg/kg)	0.0578			
Temp. in °C	as for coal			
Pressure in bar	40			

Table 3.9: Source data for CO₂ capture

2 1		
CO_2 capture ratio r_{CO_2}	in %	88.0
CO conversion in CO shift reaction	in %	91.2
CO_2 separation factor S_{CO_2} in scrubber	in %	96.9
Exerget. efficiency of CO ₂ scrubbing	in %	30.5

For details of influencing factors in the calculation of <u>electricity generating costs</u>, see Table 4.2, p 143.

3.3 CO₂ Compression and Liquefaction

Liquefaction of CO_2 may be performed using cryogenic techniques, or through intercooled compression and subsequent cooling to ambient temperature. The results of an example calculation for multi-stage compression ranging from 1 bar to a maximum of 200 bar, with intercooling to 30°C, are shown in Figure 3.11.

Since CO_2 is a highly corrosive medium, the water content must be reduced to less than 60% of the saturation state [165]. In the case of intercooled compression, a portion of the moisture is removed through condensation; however, it is still necessary to provide a further drying stage after the final compressor stage (e.g. using triethylene glycol, glycerol, activated aluminum, silicate gel or molecular sieves) [65]. The small quantity of water involved means that the energy expended in the drying process is negligible in comparison to the compression work.

For the purposes of the conversion process and simulations in this study, CO_2 final pressure after liquefaction is assumed to be 110 bar. The costs and additional energy expenditure, which is required to overcome pressure loss in transporting CO_2 through a pipeline, increase in dependence on the discharged CO_2 mass flow and the pipeline length; they are nevertheless independent of the power plant cycle and do not therefore fall within the mandate of this study.

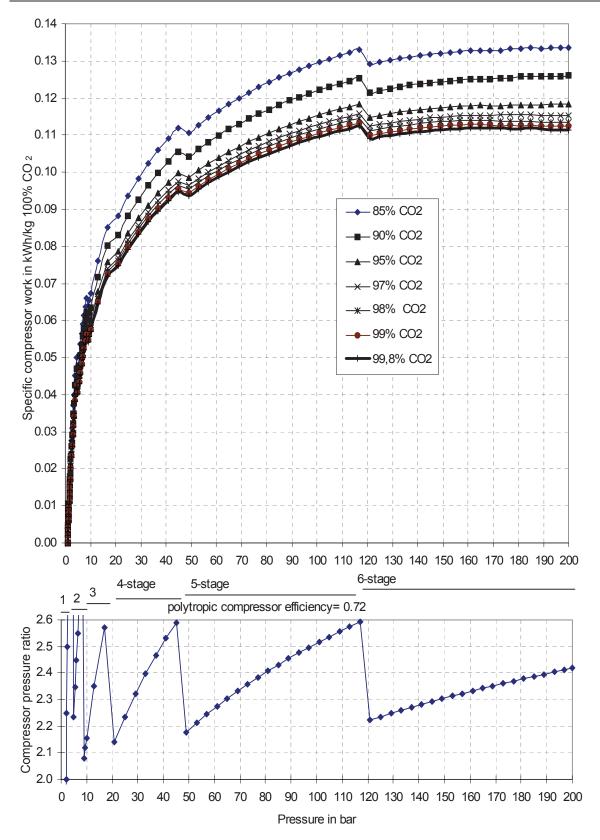


Figure 3.11: Compressor work in intercooled compression of CO₂. The compression stages and the corresponding pressure ratios are shown in the lower diagram. Intercooling: 30°C, polytropic compressor efficiency: 72%. Calculated using ASPENplus and real gas factors according to Redlich-Kwong-Soave.

Using Pittsburgh No.8 coal, and with a CO2 capture ratio of 90%, the efficiency penalty resulting from CO2 liquefaction in this case equals 3.1 percentage points. With a CO2 capture ratio of 100%, it rises to 3.9 percentage points. CO2 liquefaction in natural gas-fired cycles with a CO2 capture ratio of 90% reduces efficiency by 2.0 percentage points.

3.4 Gas Separation

The energy required for CO_2 separation in physical and chemical absorption processes is calculated using information on solubility for different solvents, and the exergetic efficiency of the scrubbing process is determined through a comparison between the theoretical work required for gas separation (reversible separation work) and data from the literature concerning energy requirements for gas scrubbing procedures, on the basis of typical gas compositions. For adsorption methods and membrane separation techniques, the results of calculations are shown, which also calculate the composition of the exhaust gases. For the calculations in Section 3.4, the example gas compositions presented in Table 3.10 are used.

	Air	Coal gas (O ₂ blown entrained flow		Flue gases		
		gasifica	tion)			
Fuel		Coal	Coal	Coal	Coal	Natural gas
Type of plant		IGCC	IGCC	Steam power	IGCC	Combined cycle
(syngas)		(95% CO conver-	(raw gas)	plant		
		sion)		_		
O ₂	20.47			6.13	11.90	13.74
H ₂ O	2.30	0.10	2.12	1.10	7.00	7.20
CO_2	0.03	40.50	1.49	11.10	8.08	3.20
N ₂	76.29	3.70	6.05	72.00	72.07	74.90
Ar	0.91		0.96	9.67	0.95	0.98
H ₂		54.00	28.78			
СО		1.80	59.66			
CH ₄		0.01	0.01			
H_2S			0.92			

Table 3.10: Composition of the gases compared (volume fractions in %)

3.4.1 Estimated Energy Requirements of Gas Separation Processes

Physical absorption of CO₂ with methanol at low temperatures (similar to Rectisol process)

Working on assumptions designed to simplify the calculation (disregarding product purities, cooling work and heating work), an estimated first approximation of the energy required for solvent regeneration in the form of pump work for recirculation of the solution P_{pump} is given by:

$$P_{pump} = \dot{V}_{Solvent} \frac{\Delta p}{\eta_{pump}}, \qquad (3.17)$$

where Δp is the pressure drop between absorption and desorption and η_{pump} is the efficiency of the pump. Solvent circulation $V_{Solvent}$ can be estimated if solvent charge $b_{Solvent}$ (in $\frac{m_{Solut}^3}{m_{Solvent}^3 bar}$), in dependence on pressure, is known:

$$V_{Solvent} = b_{Solvent} \Delta p \quad . \tag{3.18}$$

Part of the solvent pump conveying work can be recovered by a pressure drop in a hydraulic turbine.

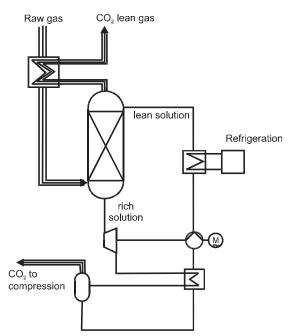
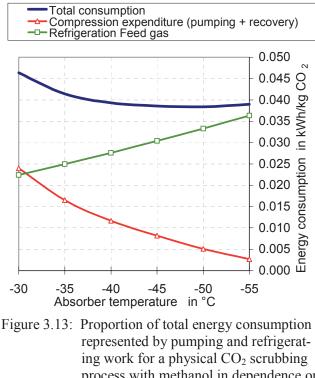



Figure 3.12: Flow diagram for calculating physical absorption from synthesis gases

ing work for a physical CO_2 scrubbing process with methanol in dependence on the absorber temperature (for information on assumptions and partial results, see Appendix, Table 6.10).

CO₂ solubility increases as the temperature drops, meaning that solvent recirculation and energy consumption decrease. The refrigerating energy³⁸ to be applied is kept to a minimum through cold recovery.

Using these formulae, calculations are performed for the required solvent recirculation and the pump work for CO_2 separation from a coal gas following CO conversion according to the flow diagram shown in Figure 3.12. The solubility coefficients of CO_2 in methanol were taken from Landolt-Börnstein [166]. As absorption temperature sinks, so too does the pump work required to circulate the solvent, as a consequence of the increasing solubility of CO_2 in methanol; at the same time, however, more refrigerating energy is required (Figure 3.13). The most advantageous absorber temperature to achieve the lowest energy consumption is around -60°C in this example. In real processes, the operating temperature of the absorber lies between-70°C and -30°C.

³⁸ Efficiency of refrigerating unit η_{RU} =35 %, performance coefficient $\varepsilon_{RU} = \eta_{RU}/\eta_{Carnot}$ (see Appendix, Table 6.10, for calculation of values).

CO₂ Absorption Using Seawater as a Solvent

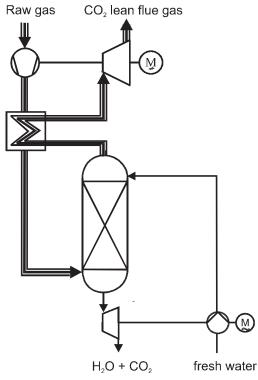


Figure 3.14: Flow diagram of physical absorption with seawater

If seawater³⁹ is used to scrub CO_2 out of flue gases or synthesis gases, then solvent regeneration is no longer required. The low solubility of CO_2 in seawater makes it necessary to use high pressures or large quantities of solvent. Working on the assumption that the pump and compressor work can be partially recovered using turbines, in accordance with the flow diagram shown in Figure 3.14, energy consumption primarily occurs as a result of the irreversibilities in the pumps, compressors and turbines, and of the lost expansion work of the compressed CO_2 component in the raw gas, in the case of a pressurized raw gas.

Calculation of the pump work and the recoverable hydraulic work shows the optimum absorption pressure to achieve minimal energy consumption as lying between 15 and 20 bar (Figure 3.15). Pressure losses in the supply and disposal pipes are not taken into account in this calculation. The energy consumption for all the gas compositions considered is greater than that of the standard absorption processes. Furthermore, the large quantity of water involved (approx. 100 kg water per kilogram CO_2 in the case of a synthesis gas after CO conversion, or between 350 and 930 kg water per kg CO_2 in

the case of flue gases) means that expensive pipe layouts and absorption columns with large diameters are required.

³⁹ Calculations are based on the solubility of CO_2 in water according to IUPAC [167].

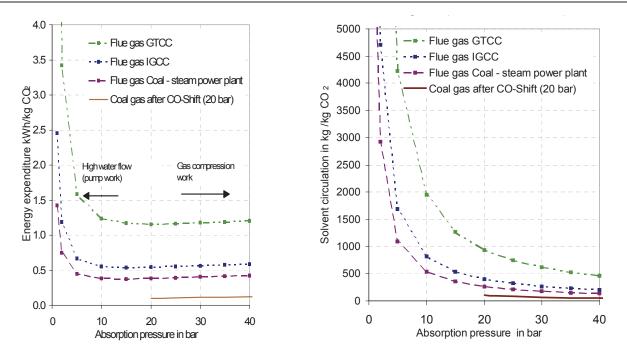


Figure 3.15: Energy required to separate 90% of the CO₂ from various gases, using seawater at 20°C as a solvent (for process data and partial results, see Appendix, Table 6.11).

Chemical CO₂ Scrubbing

Approximately 80% of the energy required in chemical scrubbing occurs in the regeneration of the solvent [168], which is synonymous with desorption of the components to be separated. The following formula applies for a simplified estimate [168]:

Energy for regeneration = {	enthalpy of reaction + thermal enthalpy component of the solu + enthalpy of vaporization of the vaporiz + enthalpy of vaporization of the vaporiz	ed water
L L	+ pump and compressor work	(3.19)

In this case, the enthalpy of reaction represents the lower boundary of the energy expenditure for chemical scrubbing, since it is always required to break the chemical bond of the dissolved gas with the absorbent (MEA, DIPA, DEA, K_2CO_3 , ...). A skilful process arrangement can ensure that the heat supplied to heat up the charged solution can be kept to a minimum (e.g. through heat recovery via the solvent heat exchanger (Figure 2.3)). The absolute enthalpy of vaporization, and the proportions of the absorbent and the water required as a solvent for the absorbent, which evaporate during regeneration, are dependent on the steam pressure and on the temperature in the desorber, respectively. From this, it is possible to approximate the amount of water/absorbent, which is evaporated proportionally with the desorbed gas⁴⁰.

An estimation of the overall energy expenditure comprising these various components is shown in Figure 3.16. In these assessments, the reaction enthalpy represents a proportion of between 19% and 37% of the total energy consumption (see also Appendix, Table 6.12).

⁴⁰ Assisting desorption by lowering the pressure (flash), and lowering the partial pressure through stripping with an inert gas (e.g. water vapor), are not considered here.

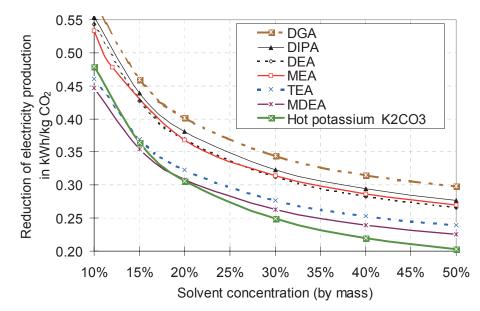


Figure 3.16: Energy consumption for chemical CO₂ scrubbing, calculated in terms of the reduction in electricity production (for information on assumptions and partial results, see Appendix, Table 6.12).

CO₂ Separation in a PSA Plant Using Zeolite 5A⁴¹

The energy required for gas separation in a PSA plant comprises:

- Increasing the pressure of the raw gas to the absorption pressure, utilizing the pressure potential of the clean gas (not required for synthesis gases),
- Evacuation to desorption pressure, e.g. using a water-ring pump,
- Pressure build-up in the column to adsorption pressure after desorption.

Impurities in the product are caused by:

- simultaneous adsorption of several components and
- the dead volume of the columns.

The charge is calculated using adsorption isothermals according to Figure 3.17, and the multicomponent equilibrium according to Myers and Prausnitz [170]. For the sake of simplicity, these calculations are performed with isothermal adsorption and desorption at 20°C. (For assumptions, see Table 3.11).

Firstly, steam is adsorbed on the zeolite, then CO_2 and, only much later, CO, N_2 , O_2 , and, finally, H_2 (Figure 3.17). Prior condensing of the water component can improve the CO_2 separation process.

⁴¹ Results for CO₂ separation with a PSA plant stem from a dissertation (Adorni [169]) written under my supervision during the writing of this work.

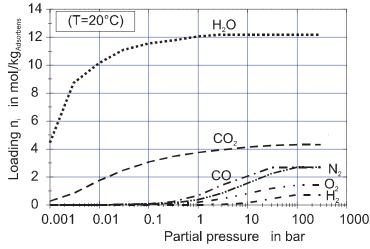


Figure 3.17: Adsorption isotherms of the pure components for zeolite 5A molecular sieve at 20°C ⁴²

Table 3.11: Assumptions on which the example PSA calculation is based

Desorption pressure	in bar	0.3
Flue gas pressure	in bar	1
Syngas pressure	in bar	24
Adsorption and desorption temperature	in °C, (isothermal)	20
CO_2 separation factor S_{CO_2} (total, three PSA plants in sequence) in %		80

Calculation of a PSA process comprises:

- Selecting the adsorption pressure,
- Calculating the amount of adsorbent, among other factors from the raw gas volume flow and composition, adsorption pressure, residence time, the form of the adsorbent,
- Calculating the empty volumes of the columns, the number of columns and the pressure loss,
- Adsorption: calculating the adsorbed quantities of the individual components,
- Desorption: calculating the quantities which remain in the adsorbent,
- Calculating the energy expended on increasing pressure, evacuation and pressure build-up.

In comparison to CO_2 separation from the flue gases of a natural gas-fired combined cycle power plant, an IGCC power plant or a coal-fired steam power plant, CO_2 separation from the synthesis gas of an IGCC plant after CO conversion consumes the lowest amount of energy and requires the smallest quantity of adsorbent (Figure 3.18, Table 3.12). More than 80% of the higher energy expenditure required for CO_2 separation from flue gases is caused by the pressure build-up. Moreover, the amount of adsorbent required for CO_2 separation from flue gases is unacceptably large.

To achieve greater levels of purity, it is necessary to connect up several PSA plants in sequence. The diagram in Figure 3.20 was generated from a series of calculated values, which enable the product purities and the specific separation work for PSA plants connected in sequence with zeolite 5A (Figure 3.19) and with a CO₂ separation factor (s_{CO_2}) of 93% per column to be evaluated in dependence on the CO₂ content of the raw gas.

⁴² Data for CO and H₂ based on Kapoor et al. [171], data for CO₂ and N₂ based on Burkert [172], data for H₂O based on Gerhartz [79], data for O₂ interpolated from figures for N₂ and H₂.

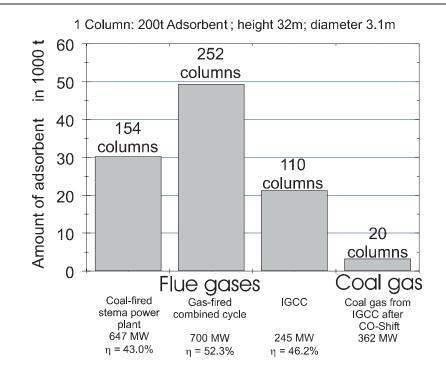
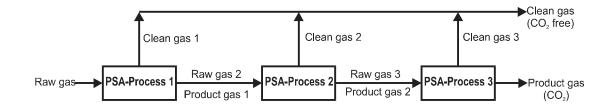
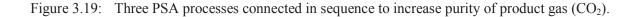




Figure 3.18: Comparison of amount of absorbent for 80% CO₂ separation factor s_{CO_2} with zeolite 5A

Table 3.12:	Impact on power	plant efficiency	V (CO ₂	separation	factor 80%.	zeolite 5A)
			/ (2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

	Efficiency penalty resulting	CO ₂ mass frac-	Specific separation
	from CO_2 capture $\Delta \eta$	tion in the gas	work
	in %	in %	in kWh/kg CO ₂
Flue gases			
Gas-fired combined cycle	7.8	4.94	1.28
Integrated coal gasification plant	21.4	11.70	0.72
Coal-fired plant	13.9	17.14	0.42
Synthesis gas			
Coal gas from IGCC after CO shift	6.0	82.02	0.21

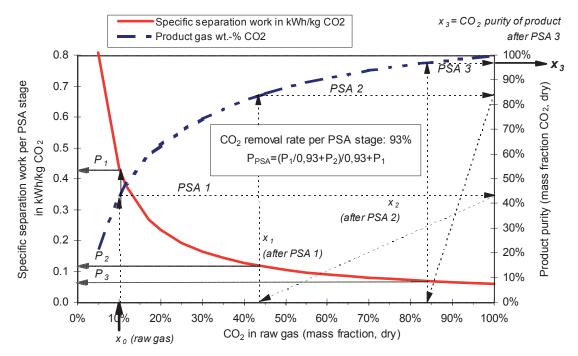


Figure 3.20: Specific separation work and CO₂ product purity with PSA plants connected in sequence using zeolite 5A (Figure 3.19). The separation factor per PSA plant is laid down as 93%.

Example for Figure 3.20: raw gas with CO₂ mass fraction x_0 of 10%. After the first stage, purity is $x_1 \approx 43\%$, after the second stage $x_2 \approx 86\%$ and after the third stage $x_3 \approx 99,3\%$. Thus, the specific work of the complete, three-stage plant is: $P_{PSA} = (P_1/0.93 + P_2)/0.93 + P_3 \approx 0,7$ kWh/kg CO₂.

Membranes

The following example calculations for single-stage membrane modules use the process described by Shindo et al. [162] and Stern et al. [173]. The CO₂ capture ratio in all cases is 90%. In situations where permeabilities were unknown, selectivity α_{ij} was calculated from the ratio of the mole masses. To calculate the gas separation process with membranes, with known permeabilities, it is necessary to take into consideration the gas transfer equations and the mass balances corresponding to the variable composition over the membrane surface in the various flow models (countercurrent flow, co-current flow, cross-current flow).

H₂/CO₂ Separation with Synthesis Gases

This first example of H_2 separation from a coal gas after CO conversion is based on the assumption that the enthalpy of combustion from subsequent combustion of the retentate is used in a steam cycle, while the hydrogen-rich permeate is used in a gas/steam turbine combined cycle with a higher efficiency. The largest component of the energy expenditure for H_2 separation consists of the compressor work/the pressure loss of the permeate and the reduced output resulting from fuel loss in the retentate (Figure 3.21). Simulations show that, as selectivity increases, the pressure ratio between the feed and permeate side of the membrane, which is most favorable in terms of energy expenditure, becomes lower (Figure 3.22). A higher H_2 separation factor should be aimed for (Figure 3.23).

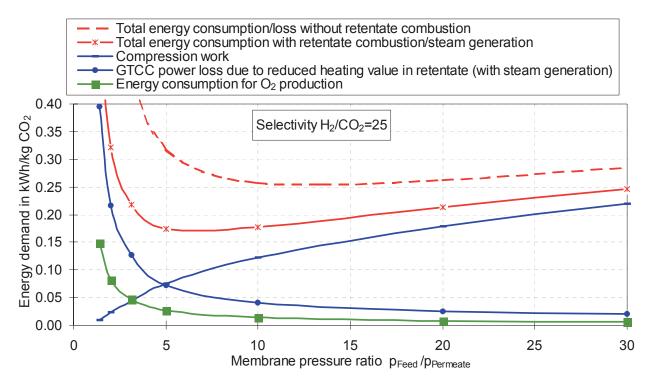


Figure 3.21: Composition of the energy expenditure on H_2/CO_2 separation with a CO₂-rich coal gas after CO shift (excluding losses from CO shift)

H₂/CO Separation With Synthesis Gases

In a second example, a membrane is used to separate the hydrogen from a coal gas primarily consisting of H_2 and CO. The hydrogen is then utilized in a gas turbine cycle. The retentate is burnt in a second, semi-closed gas turbine cycle with the same efficiency, supplied with oxygen. In this case, the energy used in capturing the CO_2 is primarily determined by the compressor work involved. Consequently, the lowest energy expenditure is achieved by selecting the smallest possible pressure ratio in the membrane (Figure 3.24, Figure 3.25).

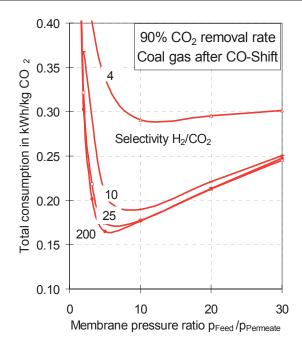


Figure 3.22: Total energy expended on $\underline{H_2/CO_2}$ separation with a CO₂-rich coal gas <u>after CO shift</u>, (incl. subsequent combustion of the retentate with heat recovery, without losses from CO shift).

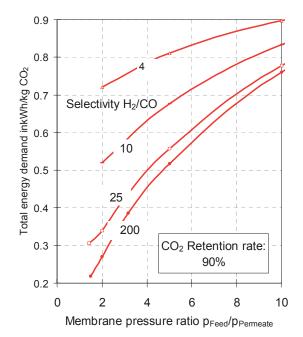
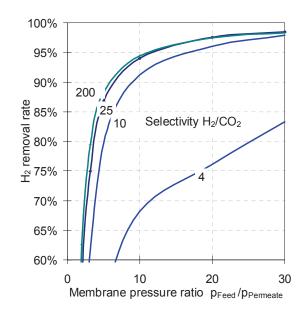
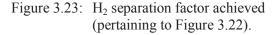




Figure 3.24: Total energy expended on $\frac{H_2/CO}{separation}$ of a coal gas (incl. O_2 production for gas turbine cycle with combustion in an atmosphere of O_2/CO_2 , assuming that both gas turbine cycles display the same efficiency).

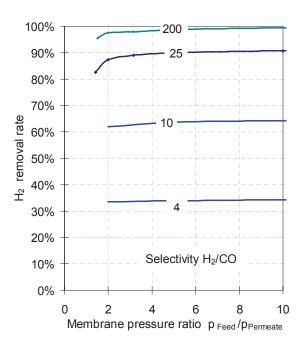


Figure 3.25: H₂ separation factor achieved (pertaining to Figure 3.24).

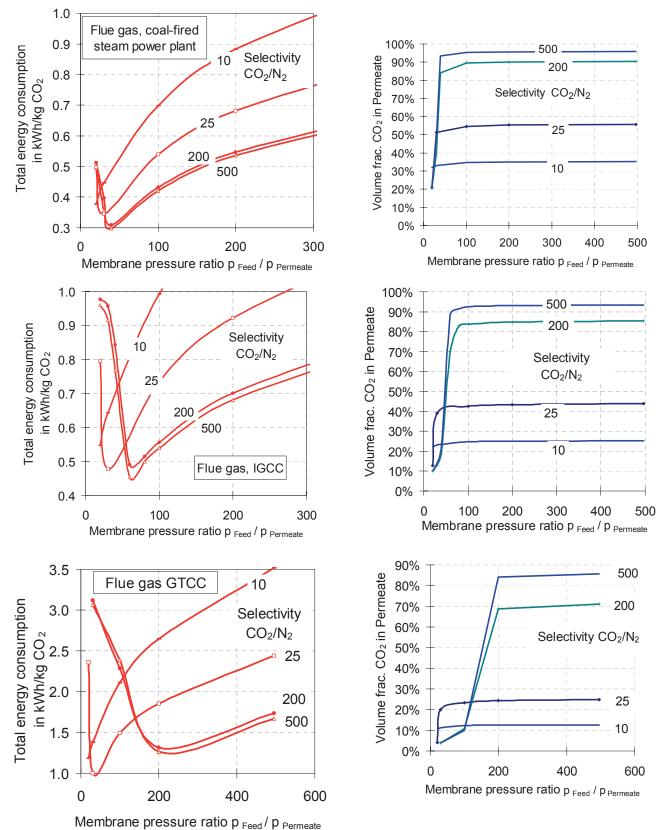


Figure 3.26: Energy consumption and CO₂ purity in the permeate for CO₂ separation from flue gases (coalfired steam power plant, IGCC, gas/steam turbine power plant) with a CO₂ capture ratio of 90%

CO₂ Separation from Flue Gases

In CO₂ separation from flue gases (Figure 3.26), a portion of the compression work required in this process can be recovered through retentate expansion. As CO₂ concentration increases (GTCC \rightarrow IGCC \rightarrow coal-fired steam power plant), the amount of energy required for CO₂ separation decreases. An optimum pressure ratio in terms of energy expenditure can also be obtained in this process; in contrast to the situation of hydrogen separation from synthesis gas, this optimum pressure ratio becomes larger as selectivity increases. Although higher selectivity significantly improves the purity of the separated CO₂, it has little influence on energy requirements.

Condensation and Sublimation of CO₂ from Flue Gases and Synthesis Gases

The CO₂ separation factor s_{CO_2} in the condensing or subliming of CO₂ from synthesis gases or flue gases is dependent on saturation or sublimation pressure p_s , total pressure p and molar fraction y_i :

$$s_{CO_2} = 1 - \left(\frac{y_{N2} + y_{O2}}{y_{CO2}} \cdot \frac{p_s(T)}{p - p_s(T)}\right)$$
(3.20)

Equation 3.20 clearly shows that, aside from a low temperature, high overall pressure together with a high initial content of CO_2 also play an important role in achieving a high rate of separation. The pressures and temperatures required to achieve a CO_2 separation factor of 90% are shown in Figure 3.27.

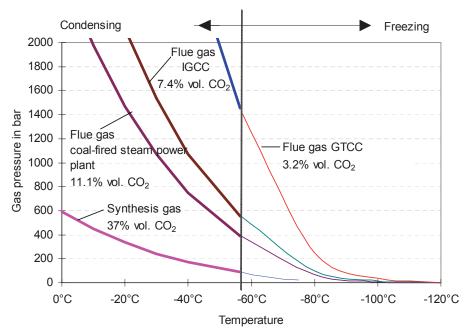


Figure 3.27: Pressure required to capture 90% of the CO₂ through condensing/freezing⁴³.

For an exergetic efficiency of 35%⁴⁴ for the refrigerating unit, a polytropic efficiency of 85% for the compressor and turbine, and heat recovery with a pinch point of 40 K, the energy required to con-

⁴³ Calculated from steam and sublimation pressure of CO₂ according to IUPAC [163].

⁴⁴ The efficiencies were assumed to be constant over the temperature range.

dense/freeze out 90% of the CO_2 from the example gases was calculated according to Table 3.10 (Figure 3.28, Figure 3.29). If the freezing of CO_2 were technically feasible, the energy consumption involved would be lower than that of condensing, where a great deal of compressor work is required to achieve the high pressure required.

The process data for the calculation is summarized in the Appendix in Tables 6.14 to 6.17

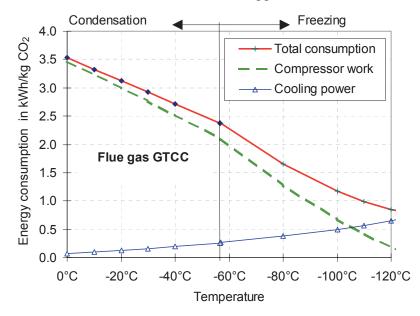


Figure 3.28: How energy consumption is divided up in the condensation/sublimation of 90% of the CO_2 from the flue gas of a gas/steam combined cycle.

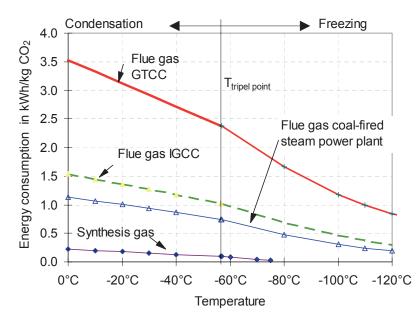


Figure 3.29: Energy required for condensation/sublimation of 90% of the CO₂ from various gases.

3.4.2 Reversible Separation Work and Exergetic Efficiency of Technical Gas Separation Processes

The exergetic efficiency ζ_{sep} of a gas separation process is here defined as the ratio of reversible separation work to actual work, plus isothermal compression of the separated gas to the total pressure of the raw gas feed⁴⁵:

$$\zeta_{sep} = \frac{w_r}{w_{real} + x_i R_i T_0 \ln p_{tot} / p_{desorber}} = \frac{x_i R_i T_0 \ln p_{tot} / p_i}{w_{real} + x_i R_i T_0 \ln p_{tot} / p_{desorber}}$$
(3.21).

In this equation, *i* is the gas component to be separated, x_i is the mass fraction, R_i is the gas constant, w_{real} is the specific energy requirement of the gas separation process, $w_r = x_i R_i T_0 \ln p_{tot} / p_i$ is the reversible separation work (see below) and $x_i R_i T_0 \ln p_{tot} / p_{desorber}$ is the isothermal compression work to compress separated gas from desorption pressure $p_{desorber}$ to total pressure p_{tot} of the raw gas.

In real gas separation processes, the pressure of the separated gas is generally significantly lower than that of the supplied raw gas; to enable comparisons to be made with reversible separation work, it is therefore necessary to add on the energy required to compress the separated gas to the total pressure of the raw gas. Otherwise, in certain cases (for example, those where CO_2 is separated from a synthesis gas, which is under pressure, and is then released at ambient pressure), energy would actually be yielded in the reversible case with high CO_2 partial pressures.

Exergetic efficiency ζ of a gas separation procedure provides an empirical parameter for a specific separation process, which, with minimal data, and without precise knowledge of the gas separation procedure, enables a first evaluation to be made for any separation task from the ideal separation work.

Exergetic efficiency ζ of physical and chemical scrubbing, and of adsorption and membrane separation processes, is presented in the following sections, and is used for the simulation of CO₂ separation with scrubbing.

Reversible Separation Work

In cases with adiabatic mixing of streams, entropy flow $\Delta S_{V,mix} = \Delta S_{irr}$ is produced irreversibly, which leads to exergy loss $\Delta E_{V,mix} = T_U \Delta S_{V,mix}$. To separate a stream into streams of differing concentration, it is necessary to expend, at minimum, the value of the exergy loss of the mixture $\Delta E_{V,mix}$. This gives a

minimal, reversible separation work w_r of:

$$w_r = \Delta \dot{E}_{V,mix} = T_U \left(\dot{S}_{mix} - (\varepsilon_1 \dot{S}_1 + \varepsilon_2 \dot{S}_2) \right)$$
(3.22)

This is synonymous with the difference in exergy between the exergy of the total mixture prior to gas separation, and the sum of the partial volumes of the separated components and of the residue, which remains, in each case at the overall pressure of the mixture. In contrast to the process of separating out individual components, reversible separation work done to separate ideal gases into n different streams is defined by the isothermal compression to be applied to <u>all</u> the n separated gas components to take them from their respective partial pressure to the total pressure:

⁴⁵ The gas is denoted as raw gas or feed prior to entering the gas separation process.

$$w'_{r} = T_{0} \sum_{i=1}^{n} x_{i} R_{i} \ln(p_{tot} / p_{i})$$
(3.23)

where:	x_i mass fraction of separated	gas component i
	R _i individual gas constant	
	pi partial pressure,	p _{tot} absolute pressure.

Working on the assumption that the work of expansion, which is to be applied owing to the reduced volume of the remaining gas, is drawn from the environment, reversible separation work w_r to separate an individual component *i* can be reduced to:

$$w_r = x_i R_i T_0 \ln(p_{tot} / p_i)$$
(3.24)

The reversible separation work for a component should not be confused with the minimum work of a separation process, which is conditional on the system (e.g. as in air separation, where this system-contingent separation work is often indicated by the reversible separation work to separate air into all its individual components) [76].

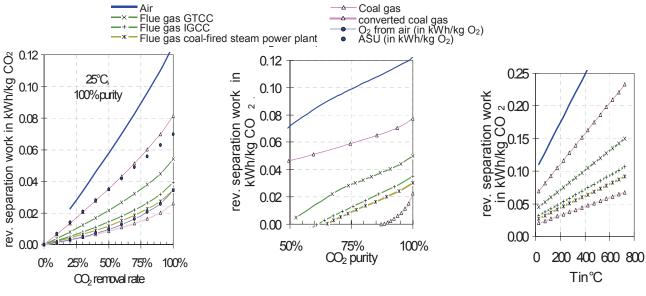


Figure 3.30: Reversible separation work in dependence on CO_2 separation factor⁴⁶

Figure 3.31: Reversible separation work in dependence on CO_2 purity (volume fractions)⁴⁶

Figure 3.32: Influence of gas temperature on reversible separation work⁴⁶ (isothermal compression)

In accordance with Equation 3.24, minimum separation work increases, as concentration in the initial mixture of the components, which are to be separated, decreases. Thus, the work required to separate CO_2 from gases increases in accordance with CO_2 concentration in the following sequence: coal gas after CO conversion (40% vol fraction CO_2), flue gases (11% to 3% vol fraction CO_2) and air (0.03% vol fraction CO_2) (Table 3.13). Transport of the emitted CO_2 through the atmosphere and removal of the CO_2 from air would therefore theoretically require between two and six times more energy compared with direct CO_2 separation. In the case of synthesis gases, CO_2 can also be enriched by removing H_2 . The energy expended on H_2 separation, together with the energy required to produce O_2 for combustion in an atmosphere of O_2/CO_2 (Table 3.13), cannot be directly compared with the work required for CO_2 separation, but must instead be viewed in relation to the proportion of carbon as compared to H_2 , and the

⁴⁶ See Table 3.10 for information on gas compositions.

minimum oxygen requirements, respectively. Rising separation factors, product purity and gas temperature (T_0) increase the reversible separation work (Figure 3.30 to Figure 3.32).

ing to Table 5.10						
	Coal gas after	Air	Flue gases:			
	<u>CO shift</u>		Coal-fired steam power plant	IGCC power plant	Gas/steam turbine com- bined cycle plant (GTCC)	
Feed gas						
Volume fraction of CO_2 in %	40.5	0.032	11.1	8.1	3.2	
Mass fraction of CO_2 in %	87.1	0.049	17.1	11.7	4.9	
	Reversibl	le Separation W	ork			
CO ₂ separation in kWh/kg CO ₂	0.026	0.142	0.048	0.055	0.069	
H_2 separation in kWh/kg H_2	0.4354	-	-	-	-	
in kWh/kg CO ₂	≅0.0266					
O ₂ separation in kWh/kg O ₂		0.0336	-	-	-	

Table 3.13:	Reversible separation work w_r	for CO_2 , H_2 and O_2 separation	with various gas compositions accord-
	ing to Table 3.10		

Exergetic Efficiency ζ of Technical CO₂ Separation Installations

The overview of exergetic efficiency ζ_{sep} for various gas separation processes, which is presented in Table 3.14, was compiled on the basis of data from the literature concerning gas composition, separation factors and energy requirements. In the case of H₂/CO₂ separation from synthesis gases, the highest exergetic efficiencies are obtained through physical absorption methods and membrane separation methods, followed by physical-chemical scrubbing. The differences in energy expenditure of physical scrubbing processes are caused by the different solvents used.

Among the processes for separating CO₂ from pressurized synthesis gases, the highest exergetic efficiency, of up to 31%, is obtained using physical scrubbing, followed by an efficiency of 22% for physical-chemical scrubbing and 14% for chemical scrubbing.

In the case of CO_2 separation from flue gases, chemical scrubbing achieves the highest exergetic efficiency, at up to 21%. The exergetic efficiency of chemical scrubbing deteriorates as the concentration of amine in the aqueous solution decreases.

In the case of membrane processes and adsorption, exergetic efficiency is heavily dependent on the composition of the gas.

In this study, calculations of the internal consumption of physical scrubbing are based on an exergetic efficiency of 30.5%. Membrane separation processes are interpreted on the basis of a special simulation method.

According to the energy consumption calculated using Equation 3.15, the exergetic efficiency of O_2 production via air separation is around 19%⁴⁷, if only the O_2 generated is counted as a product.

⁴⁷ Baehr [161] calculates an exergetic efficiency of 9.1% for the Linde process. However, this value relates to the production of liquid air, not to the production of gaseous O2 as described in this study. The exergy of liquid air is approx. 693 kJ/kg, which is more than five times higher than the figure of 124.6 kJ/kg for gaseous O2, at 25°C and 1 bar. According to Bosnjakovic and Knoche [174], air separation units obtain an exergetic efficiency of 33%. In contrast to the values stated above, this figure includes the exergy of all the products, i.e. also that of the nitrogen stream.

capture ratio)					
		liture of Energy	Total Pres-	Volume Frac-	Exergetic Effi-
Process / Solvent	kWh/k	0 2	sure P _{tot}	tion of CO ₂	ciency
	without expan-	with expansion	in bar	in %	in %
	sion losses48	losses49			$\zeta_{Sep} = \frac{\text{reversible sep. work}}{\text{work done}}$
Physical Scrubbing	(CO ₂ separation	from pressurized	synthesis gas	after CO shift)	
	0.04-0.09	0.09-0.14	approx. 24	approx. 36	20-31
Physical/Chemical Scrubbing (CO	² separation from	pressurized synth	esis gas and C	CO ₂ -rich flue ga	ses)
Adip (DIPA & MDEA)	0.07	0.15	approx. 130	approx. 36	approx. 18 50 (20 51)
Activated MDEA	0.04	0.09	approx. 24	approx. 36	approx. 29 ⁵⁰ (32 ⁵¹)
Chemical Scrubbing	(CO ₂ separation	from flue gas)			
Amine					
MEA 12% aqueous sol., mass frac.	0.55	=	approx. 1.2	approx. 11.0	approx. 9 ⁵⁰ (11 ⁵¹)
MEA 20% aqueous sol., mass frac.	0.35	=	approx. 1.2	approx. 11.0	approx. 14 ⁵⁰ (17 ⁵¹)
MEA 30% aqueous sol., mass frac.	0.23	=	approx. 1.2	approx. 11.0	approx. 21 50 (25 51)
Inorganic Scrubbing					
Benfield and variants	0.42	=	approx. 1.2	approx. 11.0	approx. 8 ⁵⁰ (10 ⁵¹)
Flexsorb	0.43	0.5	approx. 60	approx. 36	approx. 5-6 ⁵⁰ (6-
					7 ⁵¹)
Membrane Processes	Γ				
H_2 sep. from synthesis gas ⁵²		0.17-0.2953	approx. 24	approx. 40	25-32
(selectivity $H_2/CO_2 = 4-200$)				(H ₂)	
				approx. 36	
				(CO ₂)	
CO_2 sep. from flue gas	0.2 0.4			11.0	10.14
Coal-fired steam plant	0.3 - 0.4	=	1.0	approx. 11.0	10-14
IGCC power plant (coal)	0.45 - 0.55	=	approx. 1.2	approx. 7.4	6.5-8
Gas/steam turbine plant (GTCC	1 - 1.3	=		approx. 3.2	1.5 - 2
- natural gas) (selectivity CO ₂ /N ₂ = 10-200)					
Adsorption (PSA/TS	SA)				
CO_2 sep. from synthesis gas	0.16-0.2	0.2-0.25	approx. 24	approx. 36	8-12
CO_2 sep. from flue gas	0.10 0.2	0.2 0.20	approx. 21	appron. 50	012
Coal-fired steam plant	0.4	=			9
IGCC power plant (coal)	0.7	=	approx. 1.2	approx. 11.0	5
Gas/steam turbine plant (GTCC	1.2	=	11	11	1.5
- natural gas)					
U /					

Table 3.14: Operating data and exergetic efficiencies of CO₂ and H₂ separation processes (80% to 90% CO₂ capture ratio)

⁴⁸ With high feed gas pressure and low separated gas pressure.

⁴⁹ Incl. compensation for pressure loss of separated gas stream through isothermal compression of the separated gas to the total pressure of the raw gas (where $\eta_{isotherm}=100\%$).

⁵⁰ Work done = (consumption of electrical energy) + (drop in steam turbine performance due to steam extraction)

⁵¹ Work done as exergy of the steam.

⁵² Incl. fuel losses and oxygen production, excl. losses due to CO shift reaction.

 $^{^{53}}$ Corresponds to 1.1 - 1.4 kWh/kg H₂

3.5 Process Family I: CO₂ Separation From Synthesis Gas After CO Shift

Efficiency penalties due to CO_2 capture in processes with coal gasification, CO conversion and CO_2/H_2 separation are primarily caused by⁵⁴:

- Exergy losses in CO conversion (exergetic efficiency of CO conversion approx. 90% to 95%, efficiency penalty approx. 2 to 3 percentage points^{54,55}),
- Energy required for gas separation (regeneration, pressure losses). The resulting efficiency penalty is approx. 2.5 to 3 percentage points^{54,55})
- Reduction in gas turbine power output corresponding to the expansion work of the separated CO₂ volume flow⁵⁶ (efficiency penalty approx. 0.8 percentage points^{54,55})

In cases where figures are available for total CO₂ capture ratio to be achieved $r_{CO_2,tot}$, and for CO₂ separation factor $s_{CO_2,scrubbing}$ in the gas scrubbing process, related to the CO₂ component in the converted synthesis gases, required CO conversion r_{CO} in the CO shift reaction may be calculated from:

$$r_{CO} = \frac{r_{CO_2,tot}}{s_{CO_2,scrubbing} \cdot r_{C-conversion,gasifier}}$$
(3.25)

3.5.1 CO Conversion, Steam Reforming

The expenditure of exergy in the CO conversion process consists of exergy E_{rawgas} of the raw gas supplied, exergy E_{H_2O} of the water/steam supplied, and exergy $E_{Q,heat}$ of the heat used for saturator heating. With useful exergy $E_{converted gas}$ of the converted gas (the gas after the CO shift reaction) and useful component $E_{Q,use}$ of the heat released, the exergetic efficiency of the CO shift reaction may be defined as:

$$\zeta_{CO shift} = \frac{E_{rawgas} + E_{H_2O} + E_{Q,heat}}{\dot{E}_{converted gas} + \dot{E}_{Q,use}}$$
(3.26)

The energy efficiency of the CO shift is:

$$\eta_{CO shift} = \frac{\dot{H}_{rawgas} + \dot{H}_{H_2O} + \dot{H}_{Q,heat}}{\dot{H}_{converted gas} + \dot{H}_{Q,use}}$$

The highest exergetic efficiencies through CO conversion can only be achieved in an ideal case, if, starting from the highest possible temperature, the heat released as the temperature drops is used continuously, and thus at the maximum possible temperature, and if no more water is supplied than that which may actually be converted at each specific moment in time. In an example of a 19-stage CO shift reactor, CO conversion of 90% and exergetic efficiency of around 97% (related to overall expenditure

⁵⁴ Derivation of values in following sections.

⁵⁵ Values for 90% CO₂ separation

⁵⁶ In the majority of cases involving CO₂ separation, the CO₂ produced is released at approximately ambient pressure. Since the partial pressure of the CO₂ in the fuel gas prior to separation is significantly higher, expansion work would be available in the reversible case (ideal case). This is why it is necessary to take into account the reduction in the amount of work gained through expansion of the fuel gas, from which the CO₂ component has been removed.

and gain) are obtained using a raw gas from an oxygen-blown gasification process involving a step-bystep drop in temperature from 1000°C to 100°C with simultaneous, stepwise heat recovery and addition of the minimum quantity of steam required (Figure 3.33 to Figure 3.35). The exergy of the synthesis gas after CO conversion is reduced to 90.5% of the raw gas. Excluding heat recovery, the exergetic efficiency is 90%. The fuel energy flow (LHV) is reduced to 91% of the initial value. The ratio of total energy gain (fuel energy flow (LHV) + thermal enthalpy) to the minimum, overall energy expenditure (enthalpy flow of the raw gas including fuel energy flow (LHV) and steam) is around 86%.

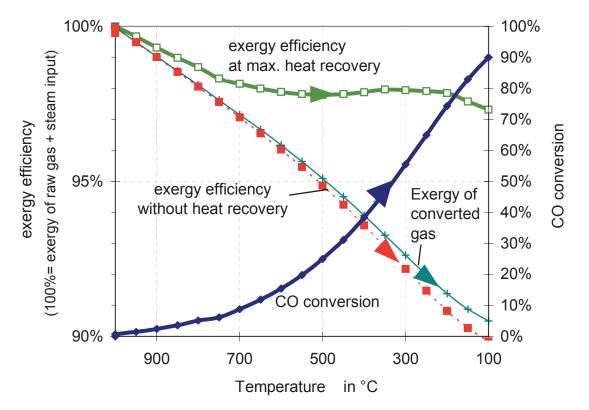


Figure 3.33: "Ideal" CO shift with continuous heat recovery and addition of steam: exergetic efficiency and CO conversion achieved⁵⁷.

⁵⁷ Volume fractions of the components of the raw gas from oxygen-blown coal gasification: 2.12% H₂O; 1.49% CO₂; 6.05% N₂; 0.96% Ar; 28.8% H₂; 59.6% CO; 0.01% CH₄; 0.92% H₂S. Reaction pressure: 25 bar.

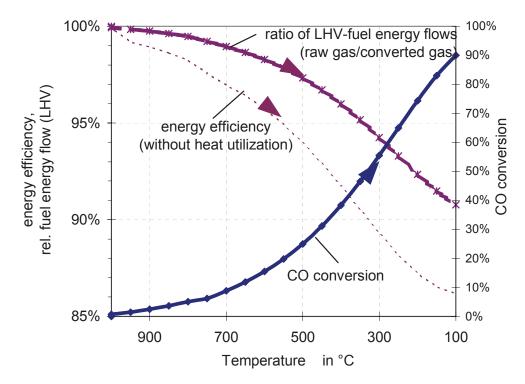


Figure 3.34: "Ideal" CO shift with continuous heat recovery and addition of steam: energy efficiency, reduction in fuel energy (ratio of fuel energy flows, LHV) and CO conversion achieved⁵⁷.

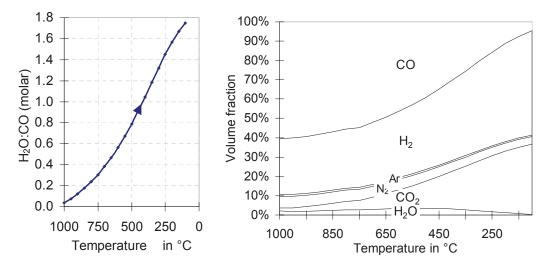
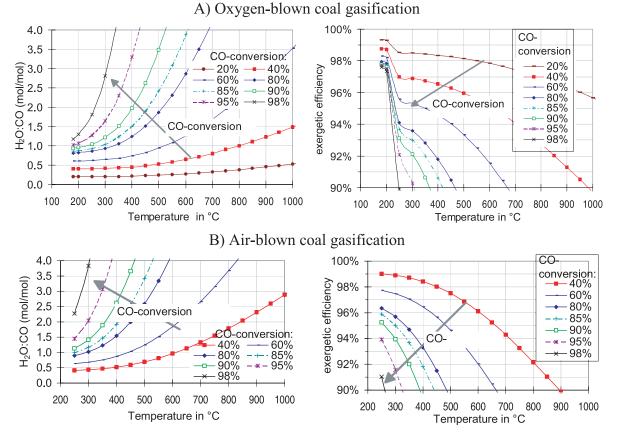



Figure 3.35: Development of the molar ratio of H₂O to CO and volume fraction of the gas components in relation to reaction temperature for an "ideal" CO shift according to Figure 3.33, Figure 3.34

In a real case (Figure 3.36), the number of reaction stages is restricted to between one and three, which means that a far higher excess of steam is required, and that the reaction enthalpy can only be used at low temperatures. As CO conversion and temperature increase, so too do the required steam excess (Figure 3.36, left) and the exergy losses (Figure 3.36, right).

Figure 3.36: Required molar ratio of H₂O:CO and exergetic efficiency with CO shift after A) oxygen-blown and B) air-blown coal gasification⁵⁸

Cooling to the point of condensation after CO conversion causes, with a reactor temperature of 400°C, a further exergy loss of approx. 4%, related to the exergy supplied (Figure 3.37). Hot-gas cleaning avoids these exergy losses since it does not involve condensation.

In contrast, in steam reforming (Figure 3.38) steam excess and exergy losses become larger, as the temperature drops and CH₄ conversion increases.

A) 2.12% H₂O; 1.49% CO₂; 6.05% N₂; 0.96% Ar; 28.8% H₂; 59.6% CO; 0.01% CH₄; 0.92% H₂S.
B) 7.33% H₂O; 9.8% CO₂; 45.5% N₂; 0.59% Ar; 14.0% H₂; 22.1% CO; 0.89% CH₄; 0.1% H₂S.
Assumptions: exit temperature= entry temperature; reaction pressure: 25 bar; steam added at saturation temperature.

⁵⁸ Volume fractions of raw gas components:

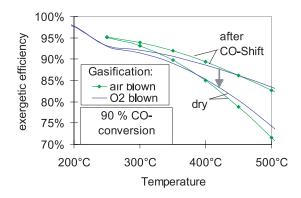


Figure 3.37: Comparison of the exergetic efficiencies for wet coal gas after CO shift and for the same gas after drying (or later water condensation, respectively) with 90% CO conversion

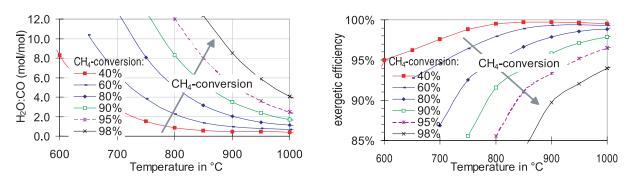


Figure 3.38: Steam excess and exergetic efficiency in steam reforming (100% methane, 25 bar, without subsequent CO shift)

3.5.2 Processes with Coal Gasification

The possibilities for CO_2 capture in IGCC power plants with CO conversion were calculated for the process arrangement of an IGCC power plant described in Figure 3.9, with the additional incorporation of CO conversion and H_2/CO_2 separation. In accordance with Equation 3.25, required CO conversion is calculated in dependence on a given CO_2 capture ratio and the CO_2 separation factor of the gas separation process. The entire gas stream is fed through all the stages of the CO_2 capture process.

3.5.2.1 CO₂ Separation Using Physical Scrubbing

Table 3.15 shows comparative calculations for an IGCC power plant with and without CO_2 separation by means of physical scrubbing (Rectisol), after CO conversion, for 1995 and for the most recently updated figures of 1998 [21]. Recalculation of the figures with modified process conditions (e.g. lower steam content in the clean gas, optimized raw gas heat recovery and greater efficiency of the gas turbine components) shows that the efficiency penalty with the capture of gaseous CO_2 amounts to approx. 5.6 percentage points (Table 3.15). In this process, oxygen with a purity of 95% vol fraction is used as an oxidant in the gasification stage. Table 3.15: Operating data for an IGCC power plant with CO₂ capture from coal gas after CO shift according to Pruschek et al. [20], and re-calculation of the IGCC power plant with CO₂ capture for this study based on most recent figures ("IGCC 1998").

		IGCC, (updated 1995 [20])			dated 1998 emp. 8°C)
			with CO ₂ capture		with CO ₂ capture
		Baseline	(CO ₂ gaseous)	Baseline [21]	(CO ₂ gaseous)
CO ₂ emissions, absolute	in kg/s	72.9	8.4	77.9	8.7
	in kg/kWh	0.69	0.09	0.62	0.086
Coal energy used	in MJ/s	811.2	876.1	874.8	891.7
Natural gas (for drying coal)				0.9	0.9
Gross output of gas turbine	in MW	238.8	234.1	302.3	277.1
steam turbine	in MW	177.7	170.2	177.3	174.3
Internal consumption	in MW	37.8	49.1	28.8	42.8
of which gas separation	in %	3	24	<5	25
Net output	in MW	378.6	355.2	450.8	408.6
Net efficiency	in %	46.7	40.5	51.5	45.8
O_2 for gasification (volume fraction of O_2 in %)		85		95	
Conversion to ambient temp. of 20°C				51.1	45.4

Greater <u>exergetic efficiency of the CO_2 scrubbing process</u> reduces separation work and improves IGCC efficiency. Figure 3.39 shows the different levels of exergetic efficiency and the corresponding efficiency penalty for different gas separation processes.

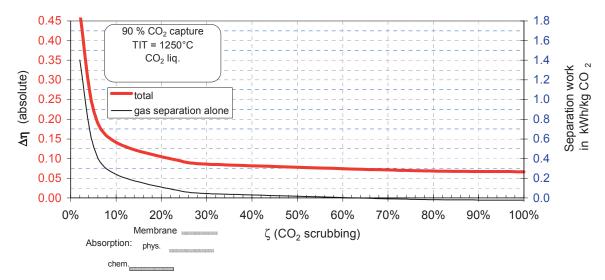
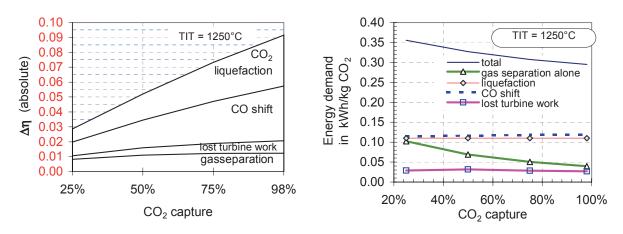
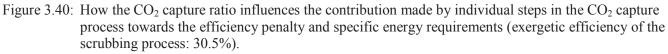
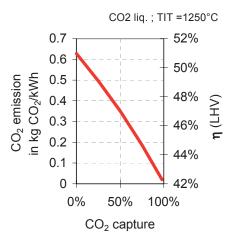




Figure 3.39: Influence of the exergetic efficiency of CO₂ scrubbing on the efficiency penalty and specific separation work at CO₂ capture ratio of 90% (TIT 1250°C)

For the following calculations with CO_2 separation by means of physical scrubbing, an exergetic efficiency of 30.5% is assumed when calculating the internal electrical consumption of the gas scrubbing process.

At a high CO₂ capture ratio, a high level of CO conversion must be achieved; this increases the concentration of CO₂ and the specific energy required for gas separation drops (Figure 3.40, right). Specific energy expenditure is virtually independent of CO₂ capture ratio r_{CO_2} for all other process steps. This makes it more advantageous to strive for a high CO₂ capture ratio in a split stream, than to remove only a small portion of CO₂ from the total stream. Figure 3.41 shows the achievable reduction in CO₂ emissions and the lower efficiencies associated with this.


The largest component of energy expenditure in CO_2 capture is caused by CO_2 liquefaction, 30.5%). followed by CO conversion, gas separation and lost turbine work resulting from the CO_2 which is not expanded in the gas turbine (Figure 3.40, left and Figure 3.42).

ences the efficiency penalty and specific CO₂ emissions (exergetic efficiency of the scrubbing process:

Figure 3.41: How the CO₂ capture ratio influ-

At higher CO₂ capture ratios, exergy losses increase, primarily due to the higher exergy of the separated CO_2 , and the greater energy requirement in the CO_2 scrubbing process (Figure 3.42).

Increasing the gas turbine inlet temperature has the effect, above all, of reducing exergy losses in the gas turbine combustion chamber, while simultaneously causing gas turbine power output and overall efficiency to increase (Figure 3.43, Figure 3.44). Losses due to CO₂ capture, related to the exergy of the feed coal, remain virtually unchanged (Figure 3.45).

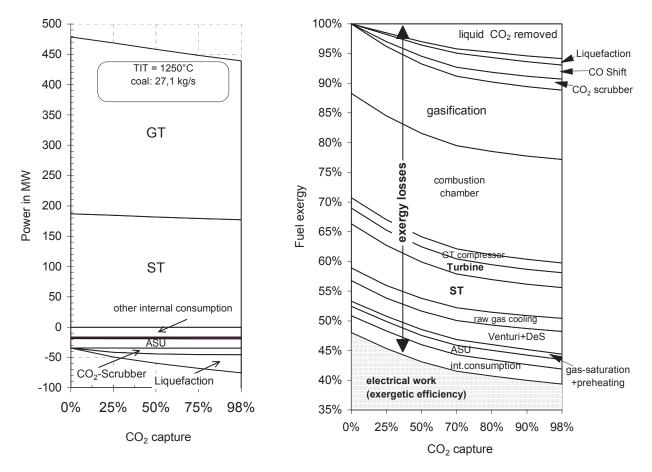


Figure 3.42: Change in output and changes in exergy conversion as a result of increasing the CO₂ capture ratio (exergetic efficiency of scrubbing: 30.5%, TIT 1250°C)

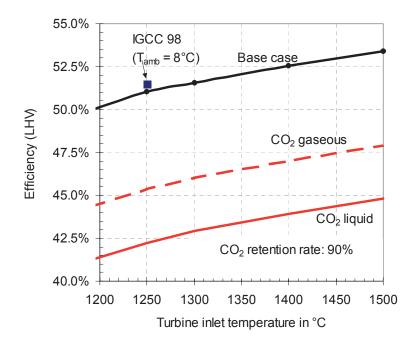


Figure 3.43: Efficiency of an IGCC power plant with CO₂ capture in dependence on gas turbine inlet temperature

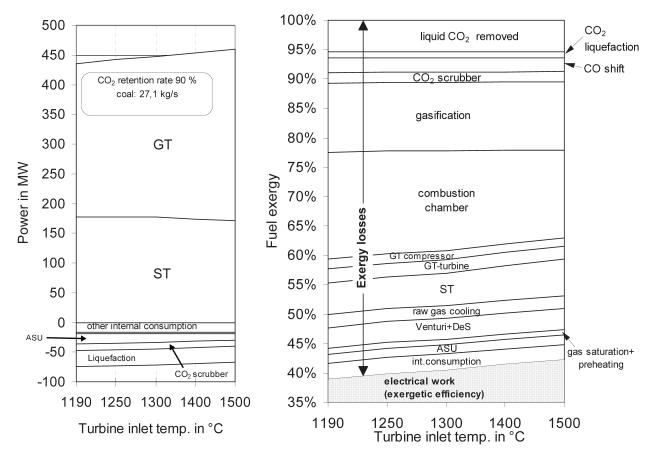


Figure 3.44: Change in output and changes in exergy conversion as a result of changes to the gas turbine inlet temperature (at a CO₂ capture ratio of 90%)

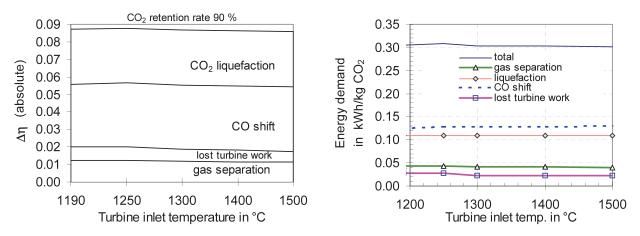
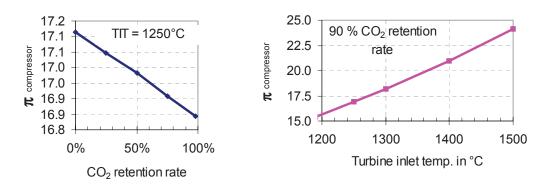



Figure 3.45: How the individual process steps contribute towards efficiency penalties and specific energy consumption, in dependence on gas turbine inlet temperature.

The gas turbine pressure ratio in these calculations has been optimized to achieve maximum specific work of the gas turbine, in correspondence with the modified conditions. At an increased CO_2 capture ratio, the CO_2 content in the flue gas decreases and the optimum pressure ratio becomes smaller (Figure 3.46). Increasing the turbine inlet temperature causes the optimum pressure ratio to become larger.

- Figure 3.46: Changing the gas turbine pressure ratio for maximum IGCC efficiency, with CO₂ capture ratio and gas turbine inlet temperature
- Table 3.16: Operating parameters and results for IGCC power plants with O₂-blown gasification and CO₂ separation by means of physical scrubbing after CO shift, with variation of CO₂ capture ratio r_{CO_2}

Assumptions					
Gasification temperature in °C			1302		
Gasification pressure in bar	34	35	36	39	42
Gas turbine inlet temperature (ISO 2314)	1190	1250	1300	1400	1500
Compressor pressure ratio of the gas turbine	15.4	16.9	18.2	21.0	24.1
CO ₂ capture ratio in %			90		
CO_2 separation factor in scrubbing process (synthesis gas after CO shift) in %			99		
exergetic efficiency ζ of CO ₂ scrubbing in %			30.5		
CO conversion in %			91.27		
Results:					
Output and Internal Consumption in MW (positive =		1			1 /
Coal energy supplied (LHV)	874.9	874.9	874.9	874.9	874.9
Gas turbine	258.00	264.65	269.83	279.33	287.77
Steam from GT waste heat	157.90	158.49	157.89	154.62	151.58
Steam from raw gas cooling	27.4	27.6	27.8	28.1	28.5
Low temperature raw gas cooling	-6.3	-6.4	-6.4	-6.6	-6.8
Steam for drying coal	-0.5	-0.5	-0.5	-0.5	-0.5
Feedwater for gasification	-1.6	-1.6	-1.6	-1.6	-1.6
Σ Steam turbine output	Σ 177.1	Σ 177.7	Σ 177.2	Σ 174.1	Σ 171.2
O ₂ +N ₂ compression for gasification	-16.7	-15.3	-14.2	-12.4	-10.6
CO ₂ scrubbing	-10.9	-10.8	-10.6	-10.2	-9.8
Desulfurization	-2.8	-2.8	-2.7	-2.6	-2.6
Other internal consumption	-16.7	-16.7	-16.7	-16.7	-16.7
CO ₂ compression/liquefaction at 110 bar	-27.41	-27.40	-27.40	-27.38	-27.37
Net output in MW	360.6	369.5	375.4	384.1	392.0
Power plant net efficiencies in %					
LHV (CO ₂ liquid)	41.2%	42.2%	42.9%	43.9%	44.8%
LHV (CO_2 gaseous)	44.3%	45.4%	46.0%	47.0%	47.9%
HHV (CO_2 liquid)	39.6%	40.6%	41.2%	42.2%	43.0%
Exergy (CO ₂ liquid)	38.9%	39.9%	40.6%	41.5%	42.3%
CO_2 emissions in kg CO ₂ /kWh (with retention of liquid CO ₂)	0.081	0.079	0.078	0.076	0.075

3.5.2.2 H₂/CO₂ Separation With Membrane Separation Processes

For the simulation of an IGCC power plant with CO conversion and H_2 separation using a membrane, it is assumed that the permeate is burnt in a gas turbine (with air) and the retentate is burnt in a further gas turbine in an O_2/CO_2 atmosphere (Figure 3.47). The waste heat from both of these gas turbines is used in the heat recovery steam cycle. Subsequent to the membrane stage, both gas streams - the permeate and the retentate - are compressed to the pressure required by their respective gas turbine (see Table 3.18 for details of pressure ratios). To allow comparisons to be made, power output values were calculated for cases where the residual fuel of the retentate is only used for steam generation, or is not used at all.

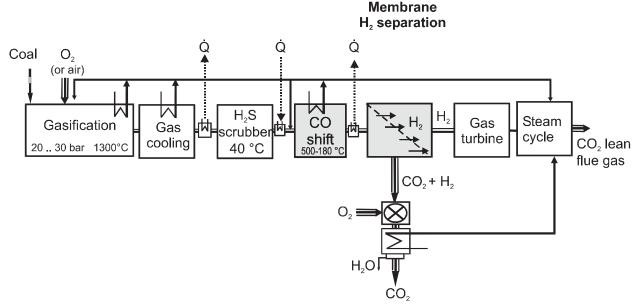


Figure 3.47: Flow diagram of an IGCC power plant with CO conversion, H₂ separation using a membrane and subsequent combustion of the retentate

Mass transfer in the membrane was calculated using a membrane model developed by Shindo et al. [162]. Preliminary investigations (Figure 3.24, Figure 3.25) determined that the pressure ratio of the membrane should be set at 5 to 1 (feed to permeate pressure) (for boundary conditions, see Table 3.18 to Table 3.17).

In determining permeability D, it is assumed that Knudsen diffusion is present. For the gas separation process, relative permeability \overline{D}_i (related to permeability D_{H_2} of H₂) is calculated from selectivity α_{H_2,CO_2} and molecular weight M_i :

$$\overline{D}_{i} = \frac{D_{i}}{D_{H_{2}}} = \alpha_{H_{2},CO_{2}} \sqrt{\frac{M_{CO_{2}}}{M_{H_{2}}}} \sqrt{\frac{M_{i}}{M_{H_{2}}}}, \text{ where } \overline{D}_{H_{2}} = 1 \text{ and } \overline{D}_{CO_{2}} = 1$$
(3.27)

Since the required membrane surface is not realized in this case, absolute permeability is not required.

At higher CO_2 capture ratios, more fuel remains in the retentate (Figure 3.48), meaning that more O_2 must be produced for subsequent combustion. At the same time, less permeate must be compressed to the pressure prior to the gas turbine combustion chamber. Overall, the efficiency penalty becomes larger as the CO_2 capture ratio increases, but the specific separation work related to the separated CO_2 mass flow becomes smaller (Figure 3.49, Figure 3.50). If the residual fuel in the retentate is not used, CO_2

separation and liquefaction cause efficiency to be reduced by up to 17 percentage points. By making use of the residual fuel in the retentate, power plant efficiency can be improved by approx. 7 percentage points (and by a further 0.5 percentage points if it is used in a gas/steam turbine combined cycle with combustion in an atmosphere of O_2/CO_2).

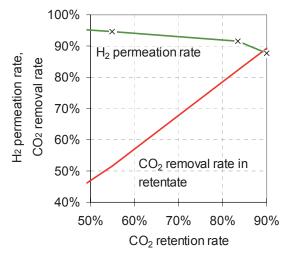


Figure 3.48: H₂ permeation rate and CO₂ separation factor in the retentate in the membrane, in dependence on the CO₂ capture ratio

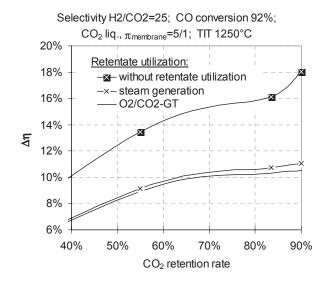


Figure 3.49: Changes in the efficiency penalty of an IGCC due to CO conversion, CO₂ separation using a membrane and CO₂ lique-faction, in dependence on the CO₂ capture ratio

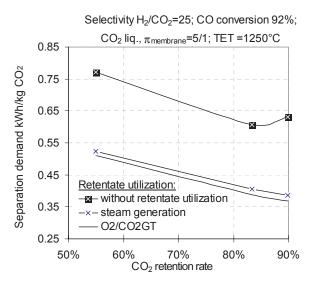


Figure 3.50: Specific energy expended on CO₂ capture incl. CO conversion and CO₂ liquefaction (cf. Figure 3.49: efficiency penalty).

Higher membrane selectivity reduces both the membrane pressure ratio required to achieve the same CO_2 capture ratio, and the residual fuel content in the retentate (Table 3.17). This makes the exergy of the retentate, and the work required to subsequently compress the permeate, smaller. In the following paragraphs, various efficiencies are calculated, ranging from efficiencies provided by currently available membranes, which achieve H₂ to CO_2 selectivities of 25, up to future efficiencies with a conceivable design of metal membranes capable of achieving selectivities of 1000.

With the best possible utilization of the residual fuel in the retentate, an increase in selectivity from 25 to 1000 would boost efficiency by approx. 2.1 percentage points to achieve a total of 42.2%, including CO₂ liquefaction (Figure 3.51, Figure 3.52). At low rates of selectivity, the retentate is used, subsequent to combustion in an O₂/CO₂ atmosphere, in a (CO₂) gas/steam turbine combined cycle, instead of being used just for producing steam. At a selectivity of 1000, the combustion heat is no longer sufficient for high gas turbine inlet temperatures, meaning that the residual fuel in the retentate will subsequently be burnt, and the heat will only be able to be used for steam generation.

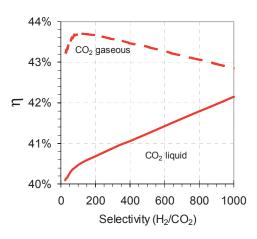


Figure 3.51: How the efficiency of the IGCC changes with selectivity of the H_2/CO_2 membrane.

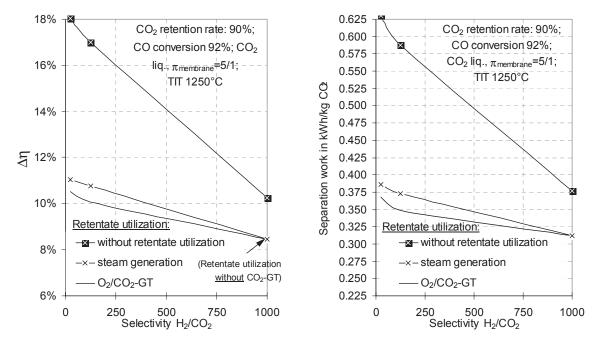


Figure 3.52: Efficiency penalty for an IGCC and separation work for CO₂ separation using a membrane after CO conversion and CO₂ liquefaction, with various ways of utilizing the residual fuel in the retentate, in dependence on membrane selectivity.

In order to demonstrate the proportional contribution of the individual process steps towards the efficiency penalty, a comparison has been drawn between the results of calculations for the basic IGCC, for an IGCC power plant with CO conversion, but without H_2/CO_2 separation, and for an IGCC power plant with CO conversion and membrane (Figure 3.53). The contributions of the subsequent compression of the permeate and CO_2 liquefaction are determined by internal consumption. Since the retentate from a membrane with a selectivity of 1000 occurs at a high pressure, in the case of subsequent combustion without expansion, the CO_2 compression work in this case is reduced.

In comparison to CO_2 separation after CO conversion using a scrubbing process, the efficiencies achievable with currently available membranes are lower (Figure 3.54). This is because gas separation proc-

esses using membranes require production of O_2 to allow utilization of the residual fuel of the retentate, in addition to the separation work (primarily permeate compression). The process is also impaired by the fact that the gasification pressure can only be optimized for one of the two gas turbines (using air or CO_2 as a working fluid, respectively), which results either in the occurrence of additional compressor/expansion losses, or in one of the gas turbines working at an unfavorable pressure ratio. Thus, for example, additional compression of the retentate corresponding to the higher pressure ratio of the compressor of the O_2/CO_2 gas turbine ($\pi = 65$) reduces the performance of the IGCC power plant by approx. 1.5 percentage points.

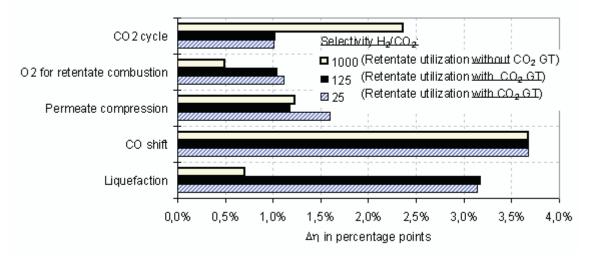


Figure 3.53: Contributions of the individual process steps towards the efficiency penalty at different membrane selectivities⁵⁹

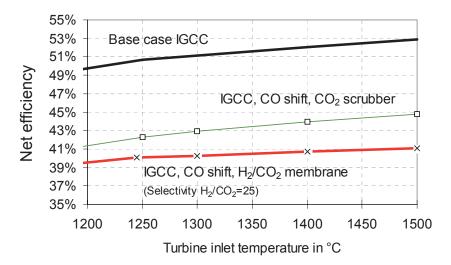


Figure 3.54: Change in the efficiency of the baseline IGCC power plant and the IGCC power plant with CO₂ capture using a membrane⁵⁹ or scrubbing after CO shift conversion, as gas turbine inlet temperature is increased.

⁵⁹ Utilization of the residual fuel in the retentate through additional combustion in O₂/CO₂, expansion in a gas turbine and waste heat recovery for the steam cycle.

Table 3.17: Data on the membrane and the IGCC power plant featuring CO conversion and H2 separation using a
membrane (with variation of the CO2 capture ratio r_{CO2} and membrane selectivity)

74 74 25 55.0	60 92 0.2 25	1250°C 55	57.8 92	58.6
25	92 0.2	55		
25	92 0.2			
	0.2	27	92	0.2
	0.2			92
		0-	0.29	0.44
		25	125	1000
55.0				
55.0				
	83.4	89.9	90.8	93.49
51.5	82.3	89.3	90.3	93.6
94.7	91.6	87.8	89.3	99.4
		11		<u> </u>
86.50	89.02	89.14	89.28	90.1
0.65	0.66	0.89	0.77	0.04
8.98	5.90	5.46	5.42	5.28
0.14	0.19	0.20	0.21	0.22
31.7	38.4	46.9	71.4	73.4
in %			-	
82.9	69.3	60.0	57.6	45.4
11.9	26.2	36.0	38.7	51.5
0.3	0.2	0.2	0.1	0.1
0.3	0.3	0.2	0.2	0.2
41.3	18.1	12.6	11.9	10.0
tive = deliver	ry of electric	c power, neg	ative = const	umption)
874.9	874.9	874.9	874.9	874.9
252.07	233.38	221.57	224.92	248.0
32.62	43.94	54.65	51.05	<u>w/o GT 2</u>
141.5	134.2	127.8	130.0	145.3
12.9	14.8	20.6	18.4	19.8*
23.8	26.9	27.9	27.8	27.0
-12.7	-7.7	-6.4	-6.2	-5.8
-0.5	-0.5	-0.5	-0.5	-0.5
-1.6	-1.6	-1.6	-1.6	-1.6
Σ 163.4	Σ 166.2	Σ 167.9	Σ 168.0	Σ 184.3
-22.76	-22.76	-22.76	-22.76	-22.76
				-4.34
-18.52	-15.17	-13.95	-10.25	-10.74
-2.78	-2.78	-2.78	-2.78	-2.78
-16.66	-16.66	-16.66	-16.7	-16.7
-16.80	-25.49	-27.47	-27.75	-6.2*
364.8				368.8
				1
41.7	40.3	40.1	40.5	42.2
43.6	43.2	43.2	43.7	42.9
40.1				40.5
39.4		37.9	38.3	39.8
			_	0.045
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	in % 86.50 89.02 0.65 0.66 8.98 5.90 0.14 0.19 31.7 38.4 in % 82.9 69.3 11.9 26.2 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 41.3 18.1 tive = delivery of electric 874.9 874.9 252.07 233.38 32.62 43.94 141.5 134.2 12.9 14.8 23.8 26.9 -12.7 -7.7 -0.5 -0.5 -1.6 -1.6 Σ 163.4 Σ Σ 166.2 -22.76 -22.76 -27.78 -2.78 -16.66 -16.66 -16.66 -16.66 -16.80 -25.49 364.8 352.8 41.7 40.3 43.6 43.2 40.1 38.7 39.4 38.1	in % 86.50 89.02 89.14 0.65 0.66 0.89 8.98 5.90 5.46 0.14 0.19 0.20 31.7 38.4 46.9 in % 82.9 69.3 60.0 11.9 26.2 36.0 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 41.3 18.1 12.6 tive = delivery of electric power, neg 874.9 874.9 874.9 874.9 874.9 874.9 252.07 233.38 221.57 32.62 43.94 54.65 141.5 134.2 12.9 14.8 20.6 23.8 26.9 27.9 -12.7 -7.7 -6.4 -0.5 -0.5 -0.5 -0.5 -1.6 -1.6 $21.63.4$ Σ Σ 166.2 Σ 27.78 -2.78 -2.78 -2.78 -2.78 -2.78 -2.78 -2.78 -2.78 -2.78 -16.66 -16.66 -16.66 -16.66 -16.80 -25.49 -27.47 364.8 352.8 350.8 </td <td>in %86.5089.0289.1489.280.650.660.890.778.985.905.465.420.140.190.200.2131.738.446.971.4in %82.969.360.057.611.926.236.038.70.30.20.20.10.30.30.20.241.318.112.611.9tive = delivery of electric power, negative = const874.9874.9874.9874.9874.9874.9252.0723.38221.57224.9232.6243.9454.6551.05141.5134.2127.8130.012.914.820.618.423.826.927.927.8-12.7-7.7-6.4-6.2-0.5-0.5-0.5-0.5-1.6-1.6-1.6-1.6$5.163.4$$\Sigma$ 166.2Σ 167.9Σ 168.0-22.76-22.76-22.76-22.76-22.76-22.76-22.76-22.76-5.7-7.9-9.7-9.1-18.52-15.17-13.95-10.25-2.78-2.78-2.78-2.78-16.66-16.66-16.66-16.7-16.80-25.49-27.47-27.75364.8352.8350.8354.741.740.340.140.543.643.243.243.7<!--</td--></td>	in %86.5089.0289.1489.280.650.660.890.778.985.905.465.420.140.190.200.2131.738.446.971.4in %82.969.360.057.611.926.236.038.70.30.20.20.10.30.30.20.241.318.112.611.9tive = delivery of electric power, negative = const874.9874.9874.9874.9874.9874.9252.0723.38221.57224.9232.6243.9454.6551.05141.5134.2127.8130.012.914.820.618.423.826.927.927.8-12.7-7.7-6.4-6.2-0.5-0.5-0.5-0.5-1.6-1.6-1.6-1.6 $5.163.4$ Σ 166.2 Σ 167.9 Σ 168.0-22.76-22.76-22.76-22.76-22.76-22.76-22.76-22.76-5.7-7.9-9.7-9.1-18.52-15.17-13.95-10.25-2.78-2.78-2.78-2.78-16.66-16.66-16.66-16.7-16.80-25.49-27.47-27.75364.8352.8350.8354.741.740.340.140.543.643.243.243.7 </td

* With a selectivity of 1000, the heating value of the retentate is too low for utilization in a gas turbine.

Gas turbine inlet temperature	GT compressor pressure ratio				
	Working fluid: air	Working fluid: CO ₂			
		(see Table 3.24)			
1190°C	16.1	50			
1250°C	17.5	65			
1300°C	19.0	100			
1400°C	22.1	150			
1500°C	25.6	200			

Table 3.18: Assumed pressure ratios of the gas turbine compressor, with a working fluid of air or CO₂

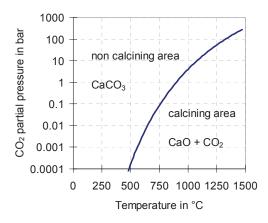
Table 3.19: Relative permeability of the individual gas components in the case of Knudsen diffusion, Eq. (2.4)

Selectivity H ₂ /CO ₂	25	125	1000
O ₂	0.0469	0.0094	0.0012
H ₂ O	0.0625	0.0125	0.0016
CO ₂	0.0400	0.0080	0.0010
N ₂	0.0501	0.0100	0.0013
Ar	0.0420	0.0084	0.0010
SO ₂	0.0332	0.0066	0.0008
H ₂	1.0000	1.0000	1.0000
СО	0.0017	0.0001	0.0000
CH ₄	0.0663	0.0133	0.0017
H_2S	0.0455	0.0091	0.0011
COS	0.0342	0.0068	0.0009

CO₂ Absorption by Seawater

If, instead of physical scrubbing, which has energy requirements of 0.05 kWh per kg of separated CO_2 (Figure 3.45), seawater is used as an absorbent, which has energy requirements of 0.061 kWh per kg of separated CO_2 (Figure 3.15), the efficiency penalty due to gas separation only increases from around 1.4 percentage points (Figure 3.45) to around 1.7 percentage points. This would produce an overall efficiency penalty of approx. 5.2 percentage points. Since no CO_2 liquefaction is then required, the efficiency penalty caused by absorption with seawater is lower than that caused by physical absorption and CO_2 liquefaction. However, the large mass flow rates of water involved mean that CO_2 absorption with seawater still does not represent an attractive alternative (see page 29 ff.).

Combined CO Shift Reaction / Adsorption


Calcium oxide and magnesium oxide can simultaneously act as a catalyst for the CO shift reaction and an absorbent for CO_2 separation. Calcium oxide reacts with CO_2 exothermically to form calcium carbonate:

$$CaO + CO_2 \rightarrow CaCO_3 + 178 \, kJ/mol \tag{3.28}$$

Experiments described in the literature show a CO_2 capture ratio of over 99% for coal gas to CaO at 660°C [175]. To regenerate the absorbent, heat must be supplied for the reverse reaction (calcination) at a high temperature, corresponding to the chemical equilibrium of the calcination reaction, or a virtual vacuum must be achieved (Figure 3.55).

The theoretical, minimum energy requirement for CO_2 adsorption and regeneration with CaO is calculated from the difference in exergy Δe of the heat supplied and the heat released:

$$\Delta e = (T_u / T_{adsorption} - T_u / T_{regeneration})^{\perp} \Delta_r H$$
(3.29)

Calcination (CaO regeneration) [176]: $K_{CaO} < p_{CO_2}$ (bar) $\log_{10} K_{CaO} = \frac{-8684.6}{T(K)} + 7.423$ (3.30)

Figure 3.55: Conditions of equilibrium for calcination

Using the temperatures given in Table 6.18 (Appendix), a minimum exergy loss with coal gas of around 7.4 percentage points is calculated, related to the heating value of the coal used, or, with an exergetic efficiency of the overall process of 40%, an efficiency penalty of around 3 percentage points. In fact, with higher temperatures and lower pressure, further losses must also be expected, especially for the regeneration process (e.g. due to fuel consumption, vacuum pump work, oxygen for combustion). Based on estimated values of energy expenditure and possible recovery of energy for CO₂ separation from the cleaned coal gas of an IGCC power plant according to Figure 3.56, an efficiency penalty of 12.5 percentage points is calculated, with a CO₂ capture ratio of 99.9% (Appendix, Table 6.18).

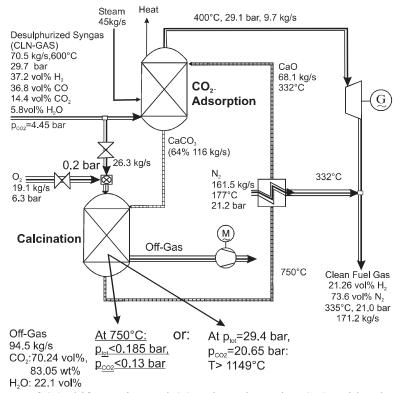


Figure 3.56: Flow diagram of CO shift reaction and CO₂ adsorption using CaO, with subsequent adsorbent regeneration.

Air-Blown Gasification

Oxygen-blown gasification often fails to fully gasify all of the coal, with the result that the residual char must be burnt separately, if a high rate of fuel utilization is to be achieved. The CO_2 produced in burning this residual char increases the specific CO_2 emissions of the power plant, unless the CO_2 is removed using additional measures. Since the raw gas produced is diluted with atmospheric nitrogen, it is still only possible to achieve a CO_2 volume fraction of approx. 21%, after CO conversion, as compared to around 33% after oxygen-blown gasification. This results in an increase of around 50% in separation work, while the exergy losses in the CO conversion process remain virtually unchanged (Figure 3.36). Additionally, larger volumes of equipment are required.

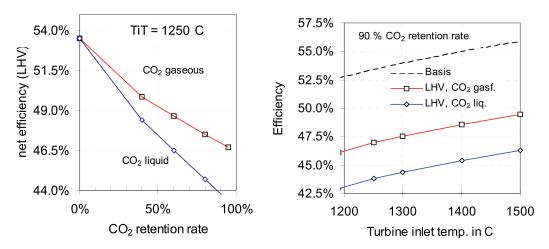


Figure 3.57: Dependence of IGCC efficiency on CO₂ capture ratio and gas turbine inlet temperature

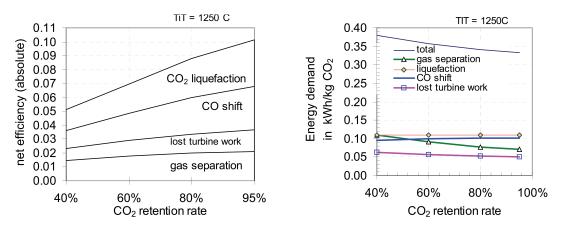


Figure 3.58: Efficiency penalty and specific energy expenditure due to the individual steps in the CO₂ capture process (TIT 1250C)

Carbon dioxide separation from the coal gas of an air-blown gasifier after CO conversion, with a CO_2 capture ratio of 90% and CO_2 liquefaction, incurs an efficiency penalty of around 9 percentage points (Figure 3.57, Figure 3.58, see Table 3.20 for process data). As the CO_2 capture ratio is increased, the contributions made by the individual steps in the CO_2 capture process to the efficiency penalty all become larger at the same rate, amounting to 2.4 percentage points for gas separation, 1.6 percentage points for lost gas turbine work, 2.0 percentage points for CO conversion and 3.1 percentage points for CO_2 liquefaction, with a CO_2 capture ratio of 90% (Figure 3.58).

By increasing the gas turbine inlet temperature from 1250C to 1500C (not yet feasible in practice), the efficiency achievable after retention and liquefaction of 90% of the CO_2 rises from 44.4% to 46.9%

(Figure 3.57). As with O_2 -blown gasification, the larger exergy losses, which occur at higher CO_2 capture ratios, are primarily caused by the exergy of the separated CO_2 and the exergy losses in the CO_2 scrubbing process (Figure 3.59).

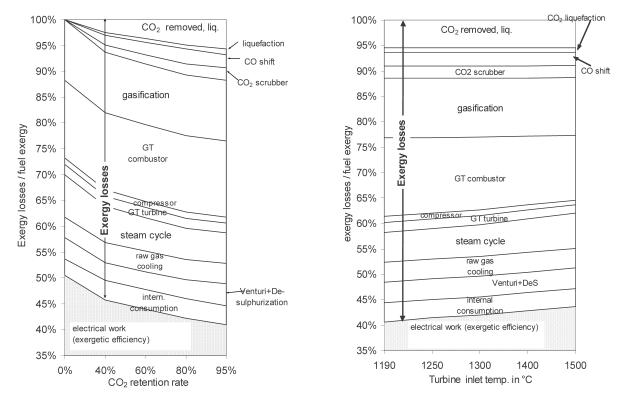


Figure 3.59: How energy conversion changes in relation to CO₂ capture ratio and gas turbine inlet temperature.

Table 3.20:Operating parameters and results for an IGCC power plant with air-blown gasification and CO2separation using physical scrubbing after CO shift, with variation of the CO2 capture ratio

Assumptions:					
Gas turbine inlet temperature (ISO 2314)			1250°C		
CO_2 capture ratio in %	-	40	60	80	95
CO_2 separation factor in scrubber (synthesis gas after CO shift) in %	-		99	9.0	
Exergetic efficiency ζ of CO ₂ scrubbing in %	-		30).5	
Conversion of CO in CO shift reaction in %	-	41.9	62.8	83.7	99.4
Results:					
Output and Internal Consumption in MW (positive = deliver					ption)
Coal energy supplied (LHV)	874.9	874.9	874.9	874.9	874.9
Gas turbine	302.15	289.37	283.53	277.69	273.31
Steam from GT waste heat	147.90	140.32	136.58	132.83	130.01
Steam from raw gas cooling	67.8	68.6	68.8	68.9	69.1
Saturator heating from GT-HRSG	-24.5	-23.6	-22.1	-20.6	-19.6
Steam for drying coal	-0.4	-0.4	-0.4	-0.4	-0.4
Σ Steam turbine	S 190.7	S 184.9	S 182.8	S 180.8	S 179.1
CO ₂ scrubbing	0.0	-12.9	-15.6	-17.6	-18.6
Desulfurization	-3.0	-3.1	-3.2	-3.2	-3.2
Other internal consumption	-21.9	-21.9	-21.9	-21.9	-21.9
CO ₂ compression/liquefaction at 110 bar	0.0	-12.9	-18.8	-24.7	-29.1
Net output	467.9	423.3	406.8	391.1	379.4
Power plant net efficiencies in %					
LHV (CO ₂ liquid)	53.5	48.4	46.5	44.7	43.4
LHV (CO ₂ gaseous)	53.5	49.9	48.7	47.5	46.7
HHV (CO ₂ liquid)	51.4	46.5	44.7	42.9	41.7
Exergy (CO ₂ liquid)	50.5	45.7	43.9	42.2	41.0
CO₂ emissions in kg CO ₂ /kWh (with retention of liquid CO ₂)	0.578	0.360	0.243	0.115	0.013

3.5.3 Chemically Recuperated Gas Turbines (CRGT)⁶⁰

Table 3.21 shows a comparison of different designs of chemically recuperated gas turbines, both with and without CO_2 capture. High CO_2 capture ratios can only be achieved by increasing the temperature of the reformer by means of additional firing (Figure 3.60). The majority of the exergy losses are caused by the cooling process, which is required prior to CO conversion and CO_2 scrubbing, and the condensation of water, which occurs in this process (Figure 3.61; final column of Table 3.21). In processes (d) and (e), shown in Table 3.21, the heat produced in the process of cooling the reformed gas is not used, leading to an efficiency penalty due to CO_2 capture of 19.5 and 17.7 percentage points, respectively. By integrating the heat, which is produced in cooling the reformed gas, into the preheating process in processes (f) (Figure 3.62) and (g) (Figure 3.63), it is possible to reduce this efficiency penalty to between 11.8 and 11.3 percentage points. With a CO_2 capture ratio of over 80%, efficiencies for chemically recuperated gas turbines after gaseous CO_2 capture range between 37.7% and 45.7%, which are better than the figures for a gas/steam turbine combined cycle with externally heated, upstream steam reforming and CO_2 separation.

It may be possible to further reduce exergy losses in the future by using a combination of steam reforming, CO conversion and H_2 retention in a membrane reactor [178], since this method allows the high

⁶⁰ Results of investigations into chemically-recuperated gas turbines stem from a dissertation (Koerdt [177]) written under my supervision during the preparation of this work.

excess of water which is required to be reduced, and also avoids the need for cooling prior to CO conversion and CO₂ scrubbing.

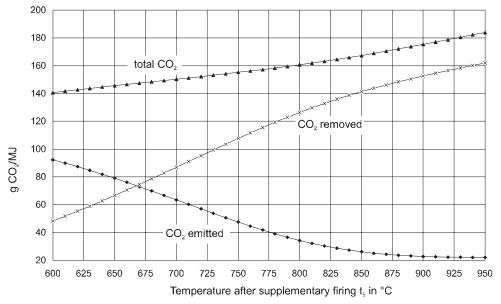


Figure 3.60: Change in the amount of separable CO₂ in dependence on reformer temperature after supplementary firing (constant amount of fuel to gas turbine combustion chamber, Process (d))

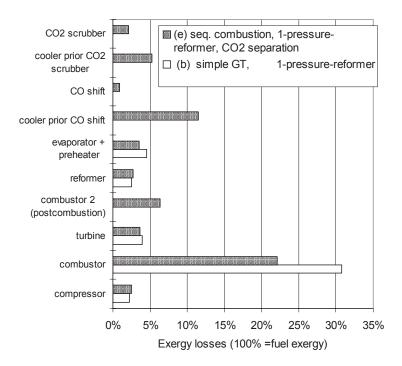


Figure 3.61: Exergy losses in a CRGT with and without CO₂ separation

	-		Δη **	CO ₂	CO ₂	Com-	D of	ormer	CO	Further
	Temp.	η		-	-		Kel	JIIICI		
	of addi-	(LHV)		emis-	capture	pressor			conver-	exergy
	tional			sions	ratio	pressure			sion	losses
	com-					ratio				
	bustion									
		%	%	kg	%	π	H ₂ O/CH ₄		H ₂ O/CO	%
			points	CO ₂ /kW			mol/mol	version	mol/mol	
				h				(%)		
(a) basic GT		37.8		0.52		16				
(b) basic GT, single-		51.8		0.38			5.8	47.5		
pressure reformer										
(c) CRGT, seq. combus.,		59.4		0.33		42	4.7/4.2	38.4 / 56.5		
two-pressure reformer										
[179]										
(d) basic GT, single-	850°C	32.3	19.5	0.094	84.4	16	5.3	95.1	8.9	12.5+6.1
pressure reformer										
(e) seq. combustion,	850°C	37.7	17.7	0.089	82.8	30	4.7	93.6	7.3	11.5+5.2
single-pressure reformer										
(f) Fuel gas/air HE, inter-	850°C	45.2	11.8	0.067	81.2	30	4.3	92.1	6.3	0.4+4.6
cooled compressor, seq.										
combus., single-pressure										
ref. (Figure 3.62)										
(g) Recuperator, inter-	950°C	45.7	11.3	0.07	83.5	30	3	97.0	2.6	2.3+2.6
cooled compressor, seq.						- •	_			
combus., single-pressure										
ref. (Figure 3.63)										
101. (1 16ul 0 3.03)										

Table 3.21: CRGT designs with and without CO₂ separation (gaseous CO₂)

Polytropic efficiency: compressor: 90%, turbine: 85%;

Gas turbine inlet temperature (ISO2314): 1200°C, except CRGT (c) (1370/1260°C)

Internal consumption of CO₂ scrubbing 0.03 kWh/kg CO₂

* CRGT overall efficiency (incl. CO₂ separation, excl. gas turbine auxiliary units)

** Efficiency penalty, in relation to corresponding process arrangement without CO₂ separation

*** Due to cooling prior to the separate CO shift reactor and CO₂ scrubbing, 100% = fuel exergy

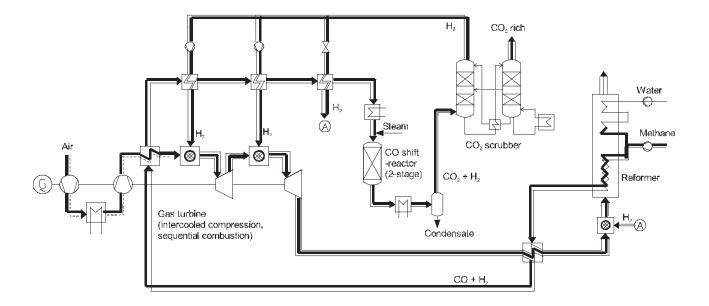


Figure 3.62: Flow diagram of a natural gas-fired CRGT power plant with combustible gas/air HE, intercooled compressor, sequential combustion, single-pressure reformer, CO₂ separation (f)

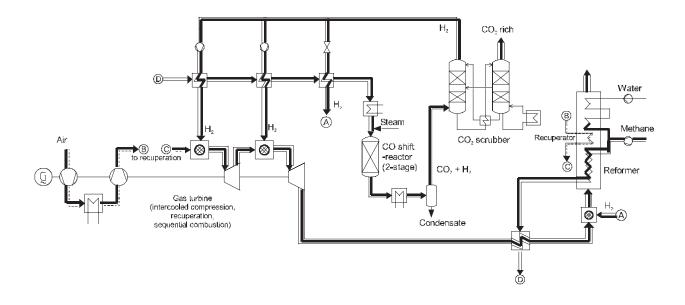


Figure 3.63: Flow diagram of a natural gas-fired CRGT power plant with recuperator, intercooled compressor, sequential combustion, single-pressure reformer, CO₂ separation (g)

3.6 Process Family II: CO₂-Rich Exhaust Gas

In contrast to other methods of CO₂ capture, it is simple to use condensation to separate CO₂, after combustion in an atmosphere of O_2/CO_2 , from a mixture consisting primarily of CO₂ and H₂O. The energy expended on CO₂ capture in this case is mostly used in the preparation of oxygen for the combustion process. This means that, in contrast to other processes, the energy expenditure due to CO₂ capture in this case is less dependent on the carbon content of the fuel; instead, it depends on the minimum level of oxygen required, i.e. it also depends on the hydrogen and oxygen content of the fuel. Efficiency $_{KW,O_2/CO_2}$ of the power plant cycle with CO₂ capture through combustion in an O₂/CO₂ atmosphere is

 $_{KW,O_2/CO_2}$ of the power plant cycle with CO₂ capture through combustion in an O₂/CO₂ atmosphere is approximated by (see page 58):

$$PP,O_2/CO_2 = \underset{\text{Basis}}{\text{Basis}} \frac{O_{\min}W_{O2}}{m_F LHV_F}$$
(2.21)

where:

 O_{min} minimum oxygen required, w_{O2} specific work to generate O₂, m_F mass flow of the fuel, LHV_F heating value of the fuel, B_{asis} efficiency of the baseline power plant without CO₂ capture

3.6.1 Oxygen Requirement and Oxygen Purity

As shown in Table 3.22, significantly more oxygen is used in burning natural gas than in burning coal. In relation to the CO_2 mass flow produced, O_2 requirements (and thus the energy requirements) are around twice as high. In relation to the fuel energy flow (LHV) used, the distinction between natural gas and coal is somewhat tempered. In the case of coal gasification, more than a third of the oxygen required is already introduced at the gasifier stage.

Fuel	Specific CC	0 ₂ emissions	Oxygen	required for co	Energy required to generate O_2 (at 0.27kWh / kg O_2)		
1 401	kg CO ₂ /kg F	kg CO ₂ /MJ F	kg O ₂ / kg	O ₂ / kg kg O ₂ / kg F kg O ₂ / MJ F		related to CO_2	related to pri-
	(maf)	(LHV, maf)	CO_2	(maf)	(LHV, maf)	in kWh/kg CO_2	mary energy
			-			0 -	in % of the fuel
							energy (LHV)
100% C	3.7	0.108	0.726	2.67	0.79	0.196	7.64
Hard coal	2.9 - 3.4	0.09 - 0.1	0.75 - 0.92	2.4 - 3.0**	0.076 - 0.11	0.21 - 0.25	7.3 - 7.6
Lignite	2.3 - 2.6	0.09 - 0.1	0.75 - 0.85	1.3 - 1.9	0.03 - 0.04	0.21 - 0.25	7.4 - 7.5
Natural gas	2.1 - 2.9	0.05 - 0.06	1.46 - 1.54	3.1 - 4.4	0.08 - 0.095	0.39 - 0.41	7.8 - 9.0

Table 3.22: CO₂ emissions, oxygen requirements and energy expenditure on oxygen generation, depending on fuel used

F = fuel

** gasification alone: 1.0-1.3 kg O_2 / MJ F

Achieving a high level of oxygen purity requires more energy to be expended in the air separation process, but simultaneously reduces the compression work in the CO₂ liquefaction phase, since there is less inert gas involved in the compression process. If the energy required to generate O_2 , and the contribution towards energy expenditure for CO₂ liquefaction attributable to the inert gases, are both counted together, then the total expenditure of energy rises as O_2 purity increases, if compressor efficiency is greater than 80% (Figure 3.64). Yet calculations carried out for the IGCC power plant as a whole, with combustion in an O_2/CO_2 atmosphere, show that, although higher efficiency is indeed achieved at lower levels of purity in cases where gaseous CO_2 is retained, optimum efficiency, taking into account the increased compressor work for separated CO_2 more heavily mixed with inert gases, is obtained at an O_2 volume fraction of between 95% and 97% (Figure 3.65).

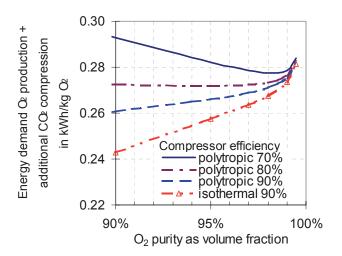
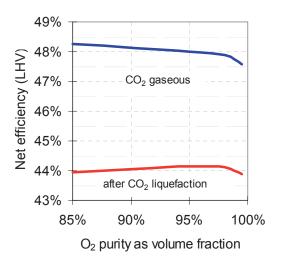
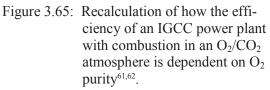




Figure 3.64: Calculated expenditure of energy on oxygen generation and compressor work for inert gas compression in the CO₂ product, in dependence on oxygen purity⁶²

 61 Energy expended on O₂ generation according to (3.15), single-stage compression.

62 TIT 1250°C

3.6.2 Analysis of the Oxygen Supply

In order to achieve full combustion with a residual oxygen volume fraction of 2% in a coal gas-fired gas turbine (TIT 1190°C), an O₂ volume fraction of 11.9% is required in the recirculated flue gas, prior to the combustion chamber. The volume fraction of residual oxygen rises to 2.75% after water condensation through cooling prior to recirculation (Figure 3.66).

If the oxygen is supplied in the form of high-purity oxygen from an air separation unit, a large amount of energy will be required for the gas separation process. Only around 12% of the energy used (generally in the form of compressor work) is maintained as exergy of the oxygen (Figure 3.67). Exergy losses $\Delta \dot{E}_{V,mix} = T_U \Delta \dot{S}_{V,mix}$ incurred in mixing the oxygen with the recirculated flue gas in the combustion chamber are even larger than the exergy of the oxygen generated. Using an O₂-selective, reversible gas separation method, the difference in O₂ concentration would make it possible to increase the oxygen content of the recirculated flue gas almost to the point where the partial pressure of oxygen in the ambient air is achieved (Figure 3.68). A method of this type would not require any additional expenditure of energy, and would more than halve the exergy losses in the mix of the O₂ and recirculated flue gas (Figure 3.69).

The lower exergy losses in the mix also mean that the mix component of the exergy of the flue gas, as opposed to that of the environment, is used for O_2 supply. The exergy flows of the recirculated flue gas and of the gas mixture enriched with oxygen (after O_2 delivery) remain just as large as in cases involving the addition of high-purity oxygen.

These considerations show that, in an ideal case, when generating a flue gas consisting of CO_2 and H_2O_2 , no additional energy is required to supply the oxygen, assuming that the differences in oxygen partial pressure can be utilized by means of a selective transport process, without having to take the roundabout route of generating a highly concentrated stream of oxygen (and accepting the expenditure of energy this involves) and subsequently mixing this with the recirculated flue gas (with the resulting losses through mixing).

One possible way of making use of the difference in O_2 partial pressure between the combustion products and the ambient air in the oxygen delivery process could lie in the oxidation of metals in the ambient air and the reduction of the oxide in the combustion chamber at high temperatures, in line with the proposals, described above, from Jody et al. [120] using barium, and from Ishida [121] using nickel (Figure 2.18). Processes of this type are currently being investigated in studies and research experiments.

These comments on oxygen supply apply equally to coal-fired and natural gas-fired processes, since the only decisive parameter is the residual oxygen content after combustion. The oxygen required for gasification would still have to be covered by means of air separation.

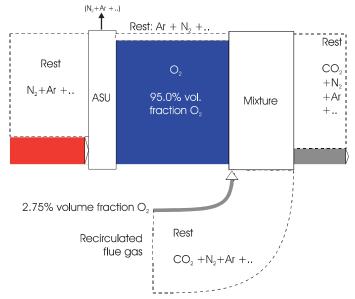


Figure 3.66: Development of O_2 volume fractions where oxygen supply is effected through the generation of pure oxygen using an air separation unit (ASU), all gas streams at 1 bar. Assumption: fuel gas = coal gas, TIT = 1190°C, concentrations in the gas turbine cycle calculated for the example case.

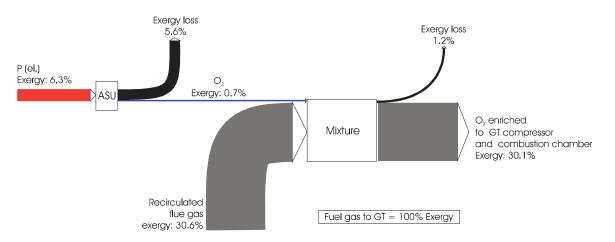


Figure 3.67: Exergy flow diagram for the case where high-purity oxygen is supplied via an air separation unit (ASU), all gas streams at 25°C, 1 bar. Assumption: energy required for oxygen generation = 0.27 kWh/kg O₂, fuel gas = coal gas, TIT = 1190°C, concentrations and exergy flows calculated for the example case.

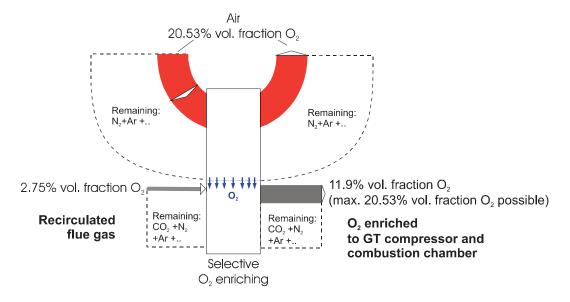


Figure 3.68: Development of O₂ volume fractions in the case of oxygen supply effected through selective mass transfer. Assumption: fuel gas = coal gas, TIT = 1190°C, concentrations in the gas turbine cycle calculated for the example case.

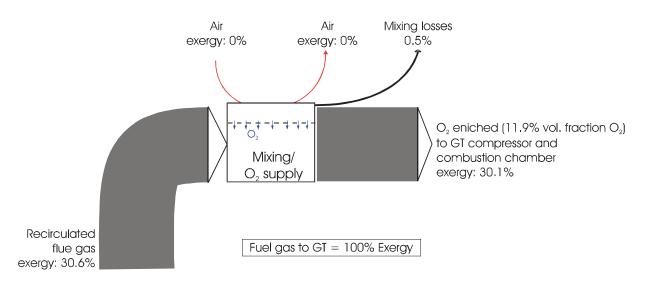


Figure 3.69: Exergy flow diagram for the case where oxygen is supplied through selective mass transfer, all gas streams at 25°C, 1 bar. Assumption: energy required for oxygen generation = 0.27 kWh/kg O₂, fuel gas = coal gas, TIT = 1190°C, concentrations and exergy flows calculated for the example case.

3.6.3 Operation at Increased Pressure

In process cycles such as the Gohstjejn, Sulzer or 'quasi-combined'/'MATIANT' cycle (see pp 38 ff, 127 ff), the working fluid passes through the liquid phase region after condensation, which means that CO_2 liquefaction is already contained within these processes. In some other CO_2 cycles, in which the lower operating point lies above the critical point (e.g. Feher, Schabert cycle), CO_2 is liquefied simply by cooling it to the ambient temperature. It is also possible to perform direct liquefaction of the CO_2 through cooling at the cold end in a simple combustion cycle (steam power plant) or Joule cycle, if the overall level of pressure is increased.

Although operation at a higher pressure cuts down on the compression work required to compress dry, gaseous CO_2 to the point of liquefaction, more work must be done to increase the pressure of the O_2 for combustion (and potentially also for gasification).

If a comparison is made between isothermal compression work W_{Comp,CO_2} :

$$W_{Comp,CO_2} = \frac{1}{\eta_{Comp}} mRT \ln\left(\frac{p_2}{p_1}\right)$$
(3.31)

to compress the required oxygen, and the energy required to compress the CO₂ produced in the combustion of one mole of carbon, it emerges that the compressor work for one mole of O₂ is only slightly larger than that for one mole of CO₂ (the product of general gas constant *R* and mass *m* equals $0,2598 \cdot 32 = 8,315$ for O₂, which is slightly larger than the figure of $0,1889 \cdot 44 = 8,313$ for CO₂). This difference becomes more conspicuous in the case of non-isothermal compression. In terms of fuels where oxygen requirements are greater than for combustion purely of the carbon component, an increase in the working pressure therefore results in the greater energy requirements for oxygen compression outweighing the work saved in the CO₂ liquefaction process.

For fuels with a high water content (e.g. all hydrocarbons), it is therefore more favorable to operate the combustion chamber at the lowest possible pressure. In certain circumstances, a slight advantage may be gained by increasing the pressure in the combustion chamber when using a type of coal, which has a high oxygen component.

In the case of CO_2 cycles, which situate the lower operating pressure close to the critical point, the efficiency advantage posed by the more favorable cycles may outweigh the greater work done on oxygen compression, particularly if the compressor/turbine pressure ratio is lower than in other processes, meaning that only a slight increase in combustion chamber pressure is required.

3.6.4 Joule Cycle (Standard Gas Turbine) and Joule/Rankine Cycle (Gas/Steam Turbine Combined Cycle)

Comparing the specific useful work (W_t) and efficiency (η) of gas turbines in solo operation and gas/steam turbine combined cycles, which use air as a gas turbine working fluid, with the values of processes, in which CO₂ is used as a working fluid, it can be seen that the W_t - η lines of both working fluids lie one on top of the other (if an ideal gas with constant heat capacity is assumed). If the energy required for O₂ generation is omitted, they differ only in the setting of the pressure ratios. If temperature-dependent heat capacity is incorporated in the calculations, the position of the graphs in relation to each other changes slightly (Figure 3.70). This leads to the conclusion that approximately the same efficiencies and useful work may be achieved using either air or CO₂ as a working fluid, on condition that the compressor pressure ratio for processes using CO₂ as a working fluid is set high enough. The reason for this is that the isentropic exponent of CO₂ is lower than that of air.

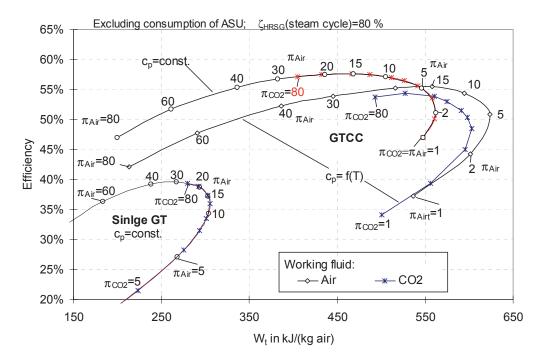


Figure 3.70: Specific useful work and overall efficiency (excluding energy requirements for O₂ generation) of a gas turbine (solo operation) and combined cycle with combustion with air and with CO₂/O₂, in dependence on the compressor pressure ratio. The capacity of the heat recovery steam cycle is taken into consideration in the form of the exergetic efficiency of exergy utilization in the heat recovery steam cycle (p 66); calculation for ideal gas and constant/ temperature-dependent heat capacity; efficiencies: compressor $\eta_{isentropic} = 92\%$, turbine $\eta_{isentropic} = 86\%$.

Literature sources cite the following figures to achieve maximum work and maximum efficiency, respectively, of the CO₂ gas turbine: pressure ratios of 55 and 395, respectively, [110], at a turbine inlet temperature of 1150°C, and pressure ratios of 15 and 140, respectively, [112] at a turbine inlet temperature of 1200°C. If the energy requirements for O₂ generation are included, this reduces the efficiency of the CO₂ gas turbine by around 10 percentage points, compared to that of a gas turbine operated using air.

3.6.5 Other Cycles with CO₂ as Working Fluid

In order to evaluate cycles using CO_2 -rich flue gas as a working fluid, the quasi-combined cycle, [147] according to Figure 3.71 (as well as the variant with reheating known as the 'MATIANT' cycle [118]), and the Gohstjejn cycle were compared with the gas/steam turbine combined cycle (Joule/Rankine cycle) using CO_2 as a working fluid. In the first two cycles, the working fluid is compressed after condensation and expanded in the supercritical region. In the quasi-combined or 'MATIANT' cycle, the high-pressure turbine, liquid working fluid is vaporized and superheated with hot feed gas from the low-pressure turbine using a recuperator. Without the high-pressure turbine, or with a pressure ratio of 1 for the high-pressure turbine, the quasi-combined cycle becomes the Gohstjejn cycle with single-stage expansion.

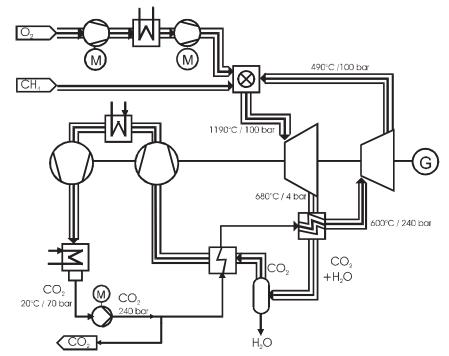
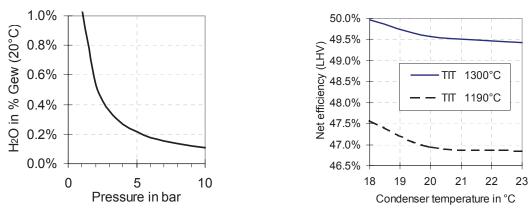
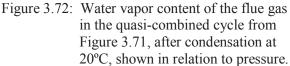
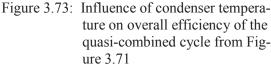





Figure 3.71: Quasi-combined cycle according to Iantovski et al. [147]

Iantovski et al. [147] cite an efficiency of 54.3% for the quasi-combined cycle at 60 bar, with a gas turbine inlet temperature of 1300°C, including O_2 generation and CO_2 capture in liquid state. However, more recent publications on the quasi-combined cycle with reheating (the 'MATIANT' cycle) have reduced the values of the component efficiencies and, as well as highlighting other limitations, they calculate an efficiency of just 41.1% [118].

Investigations carried out by the author of this study, which use the state points of the quasi-combined cycle according to Iantovski et al. [147], but which use modified compressor and turbine efficiencies, calculated an efficiency of 49.6% (Table 3.23). The differences in these results stem from different component efficiencies and differing physical properties models. Additionally, the calculations performed by the author of this study, for the same pressure ratios, are based on a turbine inlet

temperature of 1190°C and single-stage or three-stage working fluid compression. The achievable efficiencies in these two cases are 45.1% and 47.1%, respectively.

To calculate the process in dependence on pressure ratio, the lower process pressure is set at a constant 4 bar (corresponding to suggestions put forward by Iantovski et al. [147]) and the water content prior to compression is reduced to a value, which results from cooling to 20°C (Figure 3.72). Figure 3.74 shows the partial pressure ratios, which have been optimized for maximum efficiency, in dependence on overall pressure ratio. For overall pressure ratios below approx. 35 for single-stage compression, or below approx. 42 for three-stage compression, the high-pressure turbine is omitted, in order to avoid exit temperatures above 600°C at the low-pressure turbine. This satisfies the conditions of the Gohstjejn cycle. As shown in Figure 3.75, advantages in efficiency over the Gohstjejn cycle can only be obtained using the quasi-combined cycle if intercooled compression is used; specific work is invariably higher. Figure 3.73 shows how efficiency is influenced by the condenser temperature.

Compared to the gas/steam turbine combined cycle using CO_2 as a gas turbine working fluid, a gas turbine in which compression proceeds close to the critical point (e.g. Gohstjejn cycle, 'MATIANT' cycle) can obtain a roughly equally high efficiency and comparable specific work at lower pressure ratios (Figure 3.75). The advantage of the quasi-combined cycle is that CO_2 liquefaction is already integrated.

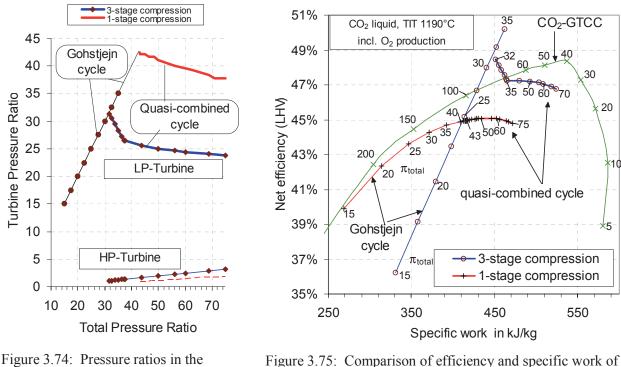
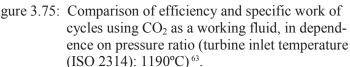



Figure 3.74: Pressure ratios in the Gohstjejn cycle and the quasi-combined cycle⁶³

The efficiency potentials of the various processes, which use CO_2 as a gas turbine working fluid, lie too close to each other to identify any decisive process advantages based on this factor (Figure 3.75).

⁶³ Efficiency and specific work including O2 generation; O2 compression and pump work. Partial pressure ratios are calculated to achieve maximum efficiency. For process data, see Table 3.23; gas turbine inlet temperature 1190°C; lowest pressure 4 bar; minimum temperature 20°C.

Table 3.23:	Comparison of the quasi-combined cycle with internal combustion, according to Iantovski et al.
	[147], with the cycle featuring sequential combustion known as the "MATIANT" cycle [118], and
	with my own calculations

with my own calculations	-							
	Quasi-con	nbined	'MATIANT	' cycle	Own calcu	lations (A	ASPEN	lplus)
	cycle [1		[118]		(quasi-	combine	d cycle	:)
TIT (ISO) in °C	1300)	1300		130	0	11	90
			IH 130	00				
Max. temp. in the recuperator in °C	600		600			600		
HP turbine inlet [*] pressure in bar	240		300			240		
temp. in °C	600		600			600		
MP turbine inlet ^{**} pressure in bar	60		40 / IH		60			0
temp. in °C	1300)	1300 / IH	1300	130		11	90
Min. pressure (H_2O condensation) in bar	4		1			4		
Condenser temp. in °C	20		29			20		
Components	Efficiency	No. of	Efficiency	No. of		No. of	No	. of
(isentropic efficiency)	in %	stages	in %	stages	in %	stages	sta	ges
Gas turbine (HP turbine)	85	1	75	2	90	1		
Steam turbine (MP turbine)	80	1	75	1	90	1		
CO ₂ compressor	80	3	75	3	85	3	3	1
CO ₂ pump	60	1	75	1	73	1		
O ₂ compressor	(pump)	1	75		85	2		
Fuel (volume fractions)	100% 0	CH ₄	84% CH ₄ , 16% CO ₂			100% CH	I_4	
O_2 purity: vol. fraction of O_2 in %	98		99.5		98			
Energy expended on O_2 generation								
in kWh/kg O ₂	0.2		0.37			0.27		
at pressure in bar	60		40			1		
ASU energy required, in relation to fuel	7.0		not spe	ec.		7.9		
energy (LHV) in %								
O_2 compression, in relation to fuel energy	3.1		not spe	ec.		3.8		
(LHV) in %								
Specific output (related to fuel utilization in	n LHV, positiv	ve for pr	oduction, neg	ative for	consumption	on)		
LP turbine in %	65.7		not spe	ec.		62.4	61.9	62.4
	HP turbine in % 14.5		not spe	ec.		20.1	19.5	20.1
compressor in %	-13.2	2	not spe	ec.		-18.4	-19.8	-22.3
pumps in %	-1.4	1	not spe	ec.		-2.9	-2.9	-3.5
ASU in %	-7.0		not spe	ec.		-7.9	-7.9	-7.9
O_2 compressor in %	-3.1		not spe	ec.		-3.7	-3.7	-3.7
CH ₄ compressor in %	-1.2	2	not spe	ec.				
Power plant efficiency (LHV) in %	54.3		41.1			49.6	47.1	45.1

* = pressure at point where CO₂ is sluiced out ** = combustion chamber pressure

3.6.6 Parameter Studies for IGCC Power Plants with CO₂ Recycling

The remaining calculations are performed on the assumption of a combined cycle with a CO₂ gas turbine (Joule cycle) and a subsequent steam Rankine cycle.

The development of efficiency and specific work shown in Figure 3.76 makes it clear how, in contrast to IGCC power plants using air as a gas turbine working fluid, the maximum efficiency of an IGCC power plant using CO₂ as a gas turbine working fluid no longer lies in the proximity of the compressor pressure ratio for maximum specific gas turbine work, but instead lies far above this.

The compressor pressure ratios, optimized for overall efficiency, in an IGCC power plant with CO₂ capture, after combustion in an O₂/CO₂ atmosphere, are more than twice as high as those of the corresponding baseline IGCC power plant without CO₂ capture (cf. Table 3.18).

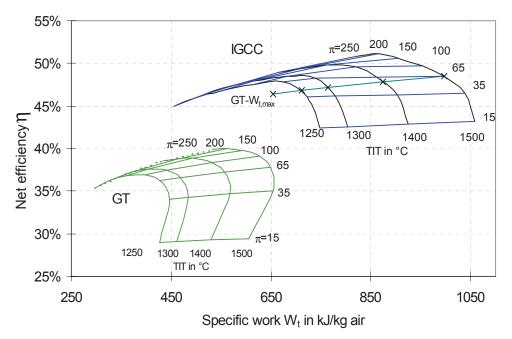


Figure 3.76: Useful work/efficiency diagram (η -w_t) of a gas turbine using CO₂ as a working fluid (excluding ASU energy requirements), and of an IGCC power plant with combustion in an O₂/CO₂ atmosphere (including ASU energy requirements), in relation to compressor pressure ratio π and gas turbine inlet temperature (TIT) according to ISO 2314, Joule/Rankine combined cycle.

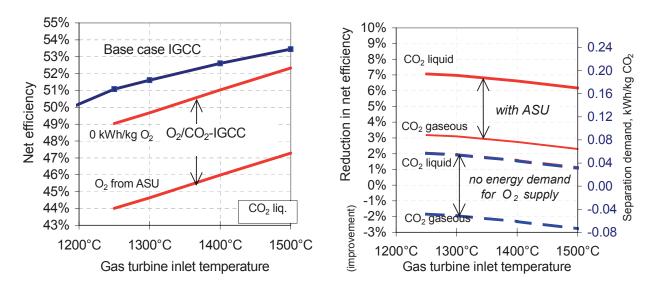


Figure 3.77: Efficiency penalty and efficiencies of an IGCC plant with combustion in an O₂/CO₂ atmosphere, in dependence on gas turbine inlet temperature

Figure 3.77 shows a comparison of the achievable efficiencies, including CO_2 liquefaction, as well as the efficiency penalty. As well as investigating the effect of raising the gas turbine inlet temperature, the possibility is also examined in these calculations of implementing a selective oxygen supply, without any further energy requirements (p 32 ff), for the combustion stage in the gas turbine (not for the oxygen required by the gasifier) (Figure 3.77). In this scenario, the efficiency including CO_2 capture, but excluding CO_2 liquefaction, is even higher than that of the baseline IGCC power plant.

As shown above, in Figure 3.70, this improvement over the baseline IGCC plant cannot be accounted for by improvements in the gas/steam turbine combined cycle, but instead is the result of improved exergy utilization in the gasifier island⁶⁴, due to the higher gasification pressure, and an advantageous process arrangement which omits the addition of N₂. In the baseline IGCC power plant, N₂ from the air separation process is compressed to the fuel gas pressure and then mixed into the fuel gas for the purpose of NO_x reduction. In an IGCC plant with an O₂/CO₂ gas turbine, dilution of the fuel gas with N₂ is not required and is therefore omitted. This, in turn, avoids the losses incurred through additional N₂ compression. Furthermore, an increase in gasification pressure improves the exergetic efficiency of the gasifier island, since, in the gasification process, a small gas volume (O₂, steam) is used to produce a larger volume of fuel gas, which can deliver more expansion work at a higher pressure. Figure 3.78 shows the significant difference in the compressor pressure ratio of the gas turbine between the IGCC plant with combustion in an O₂/CO₂ atmosphere, and the baseline IGCC. It also presents a comparison of the exergetic efficiencies of the gasifier island.

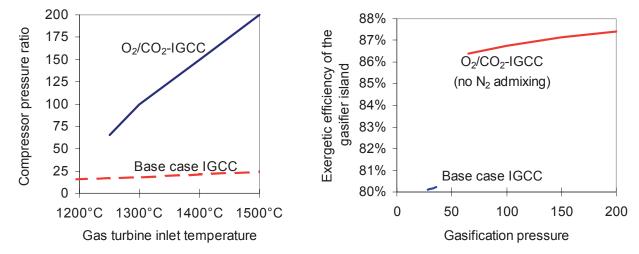


Figure 3.78: Raising the pressure ratios of the gas turbine compressor (and therefore also the gasification pressure) to achieve maximum IGCC efficiency as gas turbine inlet temperature rises, and the resulting increase of the exergetic efficiency of the gasifier island⁶⁴, for an IGCC power plant with a gas turbine using air (baseline IGCC) and CO_2 (O_2/CO_2 IGCC) as a working fluid.

The largest exergy losses due to CO_2 capture are caused by the exergy of the separated CO_2 , O_2 generation and CO_2 liquefaction. Exergy losses in the gasification stage and the combustion chamber, on the other hand, are lower than in the baseline IGCC. The extent to which CO_2 capture contributes to the efficiency penalty is determined by three sub-processes (Figure 3.79, Figure 3.80), whereby the last of these improves the efficiency:

- Generation of high-purity oxygen using an air separation unit (an efficiency penalty of approx. 4 to 4.5 percentage points),
- CO₂ liquefaction (efficiency penalty of approx. 4 percentage points), and
- Improvement to the exergetic efficiency of the gasifier island (efficiency <u>improvement</u> of between 1.8 and 2.8 percentage points, depending on the pressure).

However, the values calculated here only apply subject to the proviso that the same compressor and turbine efficiencies can be achieved as in the baseline case, even at the high pressures which are required in the CO_2 gas turbine. In a real case, the advantages of the increased gasification pressure will be some-

⁶⁴ The gasifier island comprises: the gasification, gas cooling, gas cleaning, reheating and humidification. The exergetic efficiency includes the exergy of all the imported and exported material flows (coal, O2, steam, water, fuel gas).

what tempered by lower component efficiencies. Furthermore, there is some uncertainty as to the process data to be used, e.g. in terms of required fuel gas humidification.

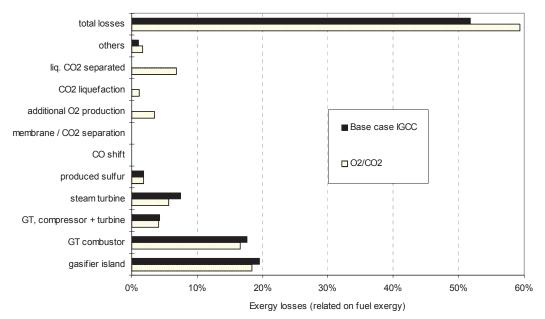


Figure 3.79: Comparison of the exergy losses of the baseline IGCC plant and an IGCC plant with combustion in an O_2/CO_2 atmosphere

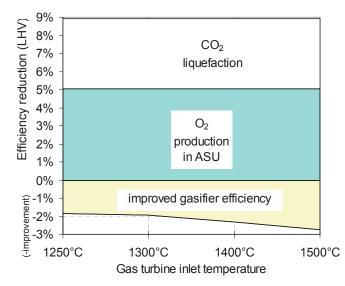


Figure 3.80: Proportions of the efficiency penalty due to CO₂ capture attributable to O₂ generation and CO₂ liquefaction, together with the increase in efficiency improvement as gas turbine inlet temperature is raised

Table 3.24:	Operating parameters and results for IGCC power plants with an O2/CO2 gas turbine with varying
	gas turbine inlet temperatures

Assumptions				
Gasification temperature		1302°C		
Gasification pressure in bar	76	111	161	261
Gas turbine inlet temperature (ISO 2314)	1250	1300	1400	1500
Compressor pressure ratio of gas turbine	65	100	150	200
CO ₂ capture ratio		100%		
O ₂ purity	959	% Volume fra	ction	
Energy requirements for air separation		0.25 kWh/kg	O ₂	
Results:				
Output and Internal Consumption in MW (positive =	= delivery of electric power	, negative = c	consumption)
Coal energy supplied (LHV)		874.9		
CO ₂ gas turbine	313.72	330.16	347.34	360.46
Steam from GT waste heat	170.18	159.72	154.64	152.89
Steam from raw gas cooling	39.1	40.5	42.0	43.3
Low temperature raw gas cooling	-8.3	-9.0	-9.7	-10.2
Steam for drying coal	-0.5	-0.5	-0.5	-0.5
Feedwater for gasification	-1.8	-1.9	-2.0	-2.2
Σ Steam turbine output	S 198.8	S 188.8	Σ 184.4	Σ 183.4
O ₂ +N ₂ compression for gasification	-31.47	-32.78	-34.10	-35.07
O ₂ generation for gas turbine	-44.00	-44.06	-44.13	-44.20
Desulfurization	-1.44	-1.07	-0.71	-0.44
Other internal consumption	-16.66	-16.66	-16.66	-16.66
CO ₂ compression/liquefaction at 110 bar	-33.9	-34.0	-33.9	-33.9
Net output	385.0	390.4	402.3	413.5
Power plant net efficiencies in %				
LHV (CO ₂ liquid)	44.0	44.6	46.0	47.3
LHV (CO ₂ gaseous)	47.9	48.5	49.9	51.1
HHV, (CO ₂ liquid)	42.3	42.9	44.2	45.4
Exergy (CO ₂ liquid)	41.6	42.2	43.5	44.7
CO ₂ emissions in kg CO ₂ /kWh		≈ 0		

3.6.7 Processes with Coal Gasification and H₂/CO Separation

Figures 3.81 to 3.85 and Table 3.26 contain the results of calculations, performed by the author of this study, for an IGCC power plant with an H_2/CO separation membrane, in accordance with Figure 2.19, with a membrane selectivity of 60 for H_2 to CO and a gas turbine inlet temperature of 1190°C.

The more H_2 permeating through the membrane, the greater the energy supplied to the air-operated gas turbine. Since CO₂ also permeates through at the same time as H_2 , larger permeating mass flows of H_2 mean that less CO₂ is captured (Figure 3.81). An efficiency of 43.3% including CO₂ liquefaction (efficiency penalty of 7.9 percentage points) was calculated with a CO₂ capture ratio of 87.7% (Figure 3.82).

Compared to the baseline IGCC power plant, the greatest exergy losses in this case are caused by the exergy of the separated CO_2 and the generation of O_2 for burning the retentate (Figure 3.83). In addition to the energy requirements for O_2 generation and CO_2 liquefaction, efficiency is also reduced in this case due to pressure losses in the membrane (Figure 3.84). A further efficiency penalty occurs due to a unfavorable process pressure for one of the two gas turbine processes.

Based on the assumptions used in this case, the IGCC power plant with H_2/CO separation achieves a higher efficiency than an IGCC power plant with CO conversion and H_2 separation using a membrane, but a lower efficiency than that obtained in the case of CO conversion and CO_2 scrubbing (Figure 3.85).

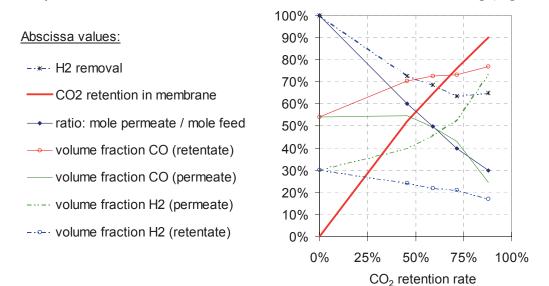


Figure 3.81: Separation characteristics of the H₂/CO membrane in dependence on CO₂ capture ratio

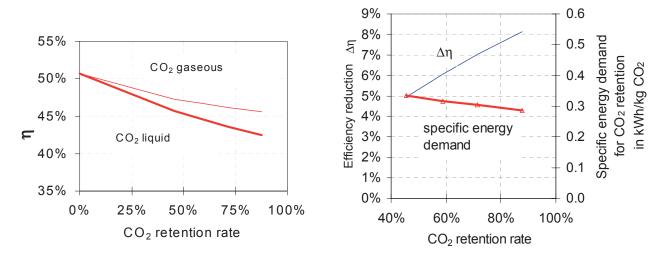


Figure 3.82: IGCC net efficiency, efficiency penalty and specific energy requirements for CO_2 capture in the IGCC plant with H_2/CO separation according to Figure 2.19

Table 3.25: Relative permeability of the individual gas components for H_2/CO separation with Knudsen diffusion according to Equation 2.4

O ₂	0.016
H ₂ O	0.021
CO ₂	0.013
N_2	0.017
Ar	0.014
SO_2	0.011
H ₂	1
CO	0.017
CH ₄	0.022
H_2S	0.015
COS	0.011

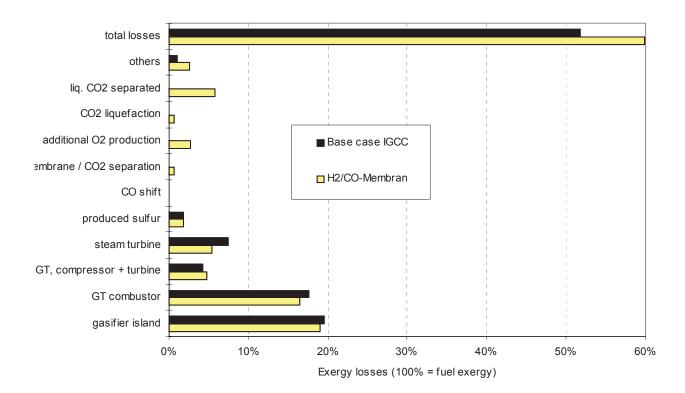


Figure 3.83: Exergy losses of the baseline IGCC power plant and of the IGCC plant with H_2/CO separation with a CO₂ capture ratio of 87.7%

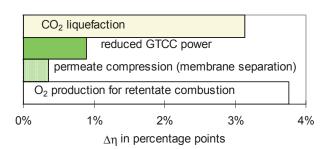


Figure 3.84: How individual process steps contribute towards the efficiency penalty

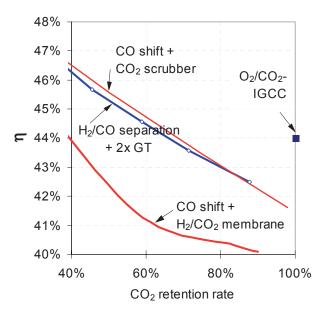


Figure 3.85: IGCC net efficiency in an IGCC power plant with H₂/CO₂ separation or CO₂ scrubbing after CO conversion, an IGCC power plant with H₂/CO separation, and an IGCC power plant with combustion in an O₂/CO₂ atmosphere (TIT 1250°C)

Table 3.26: Operating parameters and results of the calculations of H_2/CO separation in the membrane in an IGCC.

	min. CO ₂ capture	max. CO ₂ capture
Ratio of molar flow rates from permeate to feed	60%	30%
Pressure ratio permeate/feed	0.44	0.33
Selectivity H ₂ /CO	60	60
Relative Permeability - see Table 3.25		
Results:		
CO_2 capture ratio (incl. CO, CH_4 , COS)	45.6%	87.7%
CO_2 separation factor of the membrane (retentate without CO, CH_4 ,	52.3%	90.1%
COS)		,,,,,,
H ₂ permeation	72.6%	65.0%
Composition of the retentate, proportions by weight		•
CO_2	0.8%	0.7%
H ₂	2.2%	1.5%
СО	90.1%	91.1%
CH_4	0.2%	0.3%
kg/s	24.6	46.9
Composition of the permeate, proportions by weight		
CO ₂	0.6%	0.5%
H ₂	4.6%	16.5%
СО	88.4%	77.4%
CH ₄	0.3%	0.3%
kg/s	29.9	7.6
Output and Internal Consumption in MW (positive = delivery of ele	· · · ·	÷ /
Coal energy delivered (LHV)	874.9	874.9
Gas turbine 1 (working fluid: air)	179.0	90.4
Gas turbine 2 (working fluid: CO ₂), incl. retentate compression	108.2	191.7
Steam from GT waste heat (GT 1)	102.3	44.5
Steam from GT waste heat (GT 2)	67.4	120.0
Steam from raw gas cooling	30.7	34.2
Low temperature raw gas cooling	-10.0	-5.0
Steam for drying coal	-0.5	-0.5
Feedwater for gasification	-1.5	-1.5
Σ Steam turbine	Σ 188.4	Σ 191.7
	10.7	
O_2+N_2 compression for gasification	-19.7	-19.7
ASU for gas turbine 2 (addition of O_2 at 1 bar prior to compressor)	-17.4	-30.6
Permeate compression	-4.4	-3.1
Desulfurization	-2.4	-2.4
Other internal consumption	-16.7	-16.7
CO ₂ compression/liquefaction at 110 bar	-14.2	-27.4
Net output	400.7	374.0
Derver rleat at efficiencie		
Power plant net efficiencies in %	15 0	40.7
LHV (CO ₂ liquid)	45.8	42.7
LHV (CO ₂ gaseous)	47.4	45.9
HHV (CO ₂ liquid)	44.0	41.1
Exergy (CO ₂ liquid)	43.3	40.4
CO_2 emissions in kg CO_2/kWh (with retention of liquid CO_2)	0.379	0.091
CO_2 chinosiono in kg CO_2/k w ii (with relention of fiquid CO_2)	0.377	0.071

3.7 Process Family III: CO₂ Separation from Flue Gases

If figures are available for specific work w_{CO_2} required for CO₂ separation, or the equivalent electrical energy of the heat required⁶⁵, Equation 2.20 may be used to approximately calculate efficiency η_1 of the

process with CO₂ separation from separated mass flow of CO₂ m_{CO_2} , fuel energy input $m_F LHV_F$ and overall efficiency of the basic process without CO₂ separation η_0 .

Table 3.27 shows the ranges of energy requirements of various CO_2 separation processes, where heat consumption is expressed in terms of reduced steam cycle performance. For chemical scrubbing, the exergetic efficiency, in relation to the reversible separation work, lies between approx. 9% and 21%. This gives an efficiency penalty attributable to CO_2 scrubbing of between 6 and 16 percentage points, and an equivalent electrical energy requirement⁶⁶ of the scrubbing process of between approx. 0.23 and 0.75 kWh per kg of separated CO_2 (this range also incorporates the various flue gas compositions -- Figure 3.86).

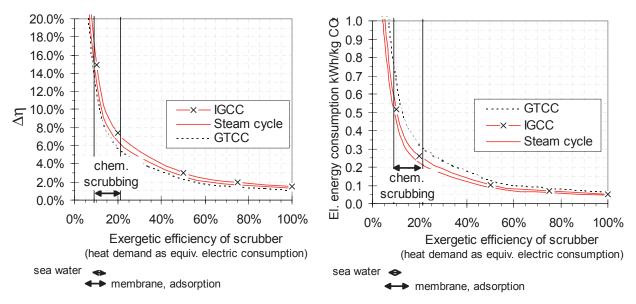


Figure 3.86: Calculation of the power plant efficiency penalty due to CO₂ separation from the flue gas, and the equivalent electrical energy requirements⁶⁶, in hard coal-fired and natural gas-fired processes, in dependence on the exergetic efficiency of the CO₂ separation process (see Table 3.10 for the gas compositions used in the calculations). Ranges are drawn in, as examples, for the exergetic efficiency of chemical scrubbing, scrubbing with seawater, membrane processes and adsorption processes.

⁶⁵ If the heat requirement is calculated as the reduced performance of the steam turbine due to steam extraction. For more details, see Appendix, Section 6.6.

⁶⁶ Sum of electrical energy requirement and reduction in steam turbine output due to the heat requirement.

Table 3.27: Range of equivalent electrical energy requirements⁶⁶ for various CO₂ separation processes (flue gases with higher CO₂ content represent the lower end of the range of energy values given in each case)

CO ₂ Separation Method	Absorbent / Comments	Equivalent electrical energy requirement ⁶⁶ in kWh/kg CO ₂
Chemical absorption	aqueous amine, hot potassium carbonate, (Table 6.7)	0.28- 0.8
Physical absorption with seawater	absorbent: water (without regeneration, see Section 3.4, Figure 3.15)	0.38 - 1.16
Distillation		0.6 - 1
Freezing	theoretical values [74]	0.35 - 0.38
Membrane	selectivity approx. 25-40 (own calculation)	0.4 -1.5
Adsorption	(own calculation)	0.4 - 1.3

3.8 Process Family IV: Carbon Separation

Processes involving the separation of carbon (Process Family IV) are not analyzed in any greater depth within the context of this study, since this process does not involve CO₂ capture in power plants, and utilization of the fuel is incomplete.

3.9 Process Family V: CO₂ Capture with Fuel Cells

If CO_2 capture causes the composition of the fuel gas in the fuel cell to change, this will also have an influence on fuel conversion in the fuel cell, and on the efficiency of the fuel cell itself. However, this influence on the efficiency of the fuel cell is not evaluated in this study. Only a rough estimation is given of the expenditure required, in principle, for CO_2 capture.

In the case of CO_2 separation prior to the fuel cell from a synthesis gas after CO conversion (after coal gasification or natural gas reforming), the efficiency penalty in processes with coal gasification (as described for Process Family I) lies between 4 and 6 percentage points, plus approx. 5 percentage points for CO_2 liquefaction. In the case of CO_2 capture after natural gas reforming and CO conversion, the efficiency of a power plant using fuel cells (corresponding to the values from Process Family I) decreases by around 10 to 14 percentage points, and a further 2 to 3 percentage points are lost due to CO_2 liquefaction.

 CO_2 capture performed using the method of CO conversion in the anode exhaust gas and H_2/CO_2 separation makes the best use of the internal gas separation process (O_2 separation in SOFC, MCFC, and H_2 separation in PEMFC, PAFC). An efficiency penalty of less than 2 percentage points can be achieved in this way.

If the anode exhaust gas is subsequently burnt, and the cathode intake air is mixed in, then CO₂ separation from the cathode exhaust gas will produce efficiency penalties corresponding to the expenditures of Process Family III.

3.10 Minimum Energy Requirements of CO₂ Capture

Depending on the method used, the minimum energy requirement for CO_2 capture is defined, in the different Process Families, by reversible gas separation (separation of CO_2 , H_2 or O_2) and ideal CO conversion, or ideal reforming, respectively. Ideal CO conversion, or reforming, is conceivable using a reactor with an endless number of stages, in which steam is added on a constant basis and heat is either released or, in the case of reforming, added (Section 3.5.1, Figure 3.34, Figure 3.35). In this way, a minimal excess of water and optimum heat utilization are guaranteed.

With retention of 90% of the CO_2 from the flue gas of a coal-fired steam power plant, CO_2 flue gas scrubbing using an aqueous MEA solution with a mass fraction of 20% obtains an exergetic efficiency of 14% and an efficiency penalty of approx. 9 percentage points. With reversible CO_2 separation, the efficiency penalty according to Figure 3.86 would be around 1.5 percentage points.

Working on the assumption of reversible gas separation, instead of a physical scrubbing process with an exergetic efficiency of 30.5%, efficiency increases by approx. 2.2 percentage points, as shown in Figure 3.39. This reduces the efficiency penalty from 5.6 to 3.4 percentage points.

Assuming an ideal reactor with an endless number of stages, as against a two-stage reactor, the exergetic efficiency of gas conversion via a CO shift reaction improves from approx. 92.3% (Figure 3.36) to 97.3% (Figure 3.34). According to Figure 3.40, the corresponding 61% reduction in exergy losses in the CO shift reaction would cause the efficiency penalty to drop by around 2.3 percentage points, i.e. increasing plant efficiency by this amount. For an IGCC power plant with reversible CO₂ separation after ideal CO conversion, CO₂ capture would cause efficiency to drop only by around 1.1 percentage points, if CO₂ were separated in gaseous state.

For processes involving combustion in an atmosphere of O_2/CO_2 , the efficiency penalty can be directly attributed to the energy consumed in generating O_2 . If the energy consumption of an air separation unit (about 0.27 kWh per kg O_2) is replaced by that of reversible separation of O_2 from air⁶⁷ (0.0336 kWh per kg O_2) (Table 3.13), an efficiency penalty of just 0.5 percentage points is obtained, as against 4 percentage points with a technically feasible air separation unit. If it should become possible to supply O_2 through selective mass transfer of O_2 , this would allow the energy required for O_2 supply to be reduced to a negligible value (theoretically to a minimum of zero).

Comparison with ideal process steps clearly shows that, for CO_2 separation (the gas separation process alone), less energy is required to be expended at higher CO_2 concentrations, than at lower CO_2 concentrations. Theoretically, however, the expenditure of energy to separate O_2 from air for combustion in an atmosphere of O_2/CO_2 is even lower than any type of CO_2 capture from flue gases or from synthesis gases.

⁶⁷ i.e. separation from air of the O2 component alone, and not separation into all components, as in the case of minimum work for air separation.

4 ECONOMIC COMPARISON OF POWER PLANT CYCLES WITH CO₂ CAPTURE

This section contains a description of the additional investment and electricity generating costs of CO_2 capture and CO_2 liquefaction for the different process variants, together with a comparison of the resulting CO_2 avoidance costs (Equation 1.4). The section starts with an evaluation of the results of thermodynamic calculations and cost data from published examples of power plant cycles with CO_2 capture. This is then used as a basis for estimating cost trends in dependence on the efficiencies of the baseline power plants.

4.1 Procedure

Additional investment ΔK_{CO_2} for CO₂ separation is composed of increased investment $\Delta K_{\text{Basis, CO}_2, \text{gaseous}}$ for the baseline power plant due to reduced efficiency, and additional investment $K_{\text{equipment, CO}_2\text{separation}}$ in the equipment required for CO₂ separation and CO₂ liquefaction ($\Delta K_{CO_2, \text{liquefaction}}$):

$$\Delta K_{\rm CO_2, gaseous} = \Delta K_{\rm Basis, CO_2, gaseous} + K_{\rm equipment, CO_2 separation}$$
(4.1)

$$\Delta K_{\rm CO_2, liquid} = \Delta K_{\rm Basis, CO_2, liquid} + K_{\rm equipment, CO_2 \, separation} + \Delta K_{\rm CO_2 \, liquefaction}$$
(4.2)

At a constant rate of fuel consumption, specific investment K_{Basis} increases in proportion to the reduction in output by $\Delta K_{Basis,CO_2,i}$ in relation to the net output of the baseline power plant :

$$\Delta K_{Basis, CO_2, i} = K_{Basis} \cdot \left(\left(\frac{\eta_{Basis}}{\eta_{CO_2, i}} \right)^{\overline{n}} - 1 \right)$$
(4.3)

(*i*= gaseous, liquid).

Assuming that the net power output is to be maintained, the lower net efficiency of the power plant means that the size of the baseline power plant must be increased. Where degression exponents \overline{n} are smaller than 1, the specific fixed-cost component caused by the efficiency penalty becomes smaller.

Investment in the equipment required for CO₂ separation is calculated from the specific investments $\overline{K_i}$ in individual items of equipment *i* used for CO₂ separation, in dependence on the mass flow of the sepa-

rated CO₂ $m_{CO_2,separated}$ and of the oxygen, which is additionally required for combustion $m_{O_2,additional}$:

$$K_{equipment, CO_2separation} = \sum_{i} \overline{K_i} \cdot m_{CO_2, separated} + \overline{K}_{LZA} \cdot m_{O_2, additional}$$
(4.4)

Specific investment $\Delta K_{CO, \text{ liquefaction}}$ for CO₂ liquefaction includes not only investment

 $K_{equipment, CO_2 liquefaction}$ in the equipment required for liquefaction, but also, due to the additional efficiency penalty, increase $\Delta K_{equipment, CO_2 separation}$ of the specific investment in the equipment used for CO₂ capture, as set against the separation of gaseous CO₂:

$$\Delta K_{CO_2 \text{ liquefaction}} = K_{equipment, CO_2 \text{ liquefaction}} + \Delta K_{equipment, CO_2 \text{ separation}}$$

$$= K_{equipment, CO_2 \text{ liquefaction}} + K_{equipment, CO_2 \text{ separation}} \cdot \left(\left(\frac{\eta_{CO_2, \text{ gaseous}}}{\eta_{CO_2, \text{ liquid}}} \right)^n - 1 \right)$$
(4.5)

The electricity generating costs were calculated using the annuity method under the conditions described in Table 4.2 (Appendix, Section 6.7, [180]). The cost digression exponents n used are given in Table 4.1. Figure 4.1 shows the proportions of the investment and electricity generating costs represented by the individual process steps in CO₂ capture, based on the example case of an IGCC with CO conversion and CO₂ scrubbing, according to the results of the thermodynamic calculations from Section 3.5, Table 3.16.

The CO_2 emissions reduction costs are heavily dependent on which baseline power plant is chosen as the reference case. In this example, the baseline case selected is always the same type of power plant. An alternative way to proceed would be to always relate the CO_2 emissions reduction costs to a steam power plant, for example.

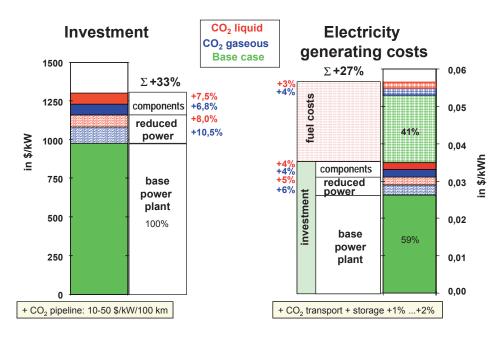


Figure 4.1: How investment and electricity generating costs are divided up for an IGCC with CO conversion and CO₂ scrubbing with a turbine inlet temperature of 1250°C, according to the results taken from Table 3.16 and the costing details given in Table 4.2 and Table 4.5.

U	
Cost Degression Exponent	Related to Output of
0.57616	Gas turbine
0.8061	GTCC plant
	_
0.71221	IGCC plant
1.09459	Whole plant
	_
0.75	Whole plant
0.76428	Steam cycle
0.78255	Steam cycle
	0.57616 0.8061 0.71221 1.09459 0.75 0.76428

Table 4.1: Cost degression exponents n for investment according to Boeddicker [110]

Table 4.2: Factors which influence the calculation of electricity generating costs according to the annuity method (for calculation equations, see Appendix, Section 6.7, [180])

Influ	uencing Factors	Unit			
Та	Utilization factor	(h/a)	7000		
nB	Construction period	(a)	3		
fE	Client's own contribution as % of plant costs	(%)	5.0%		
fZB	Interest rate during construction period (discount rate)	(%/a)	8.0%		
fV	Insurance rate over period of operation	(%/a)	2.5%		
fe	Increase in fuel prices	(%/a)	1.5%		
kb	Fuel costs in base year	(US\$/t)	51		
LHV	Heating value of the coal	(MJ/kg)	30		
nP	Duration of planning period prior to start of	(a)	1		
	construction				
nL	Period of depreciation	(a)	25		
fI	General price escalation (inflation)	(%/a)	3.5%		
fS	Tax rate during period of construction	(%/a)	0.2%		
fW	Standardized rate of maintenance and repair costs + staff costs	(%/a)	2.5%		
fZ	Interest rate during period of operation	(%/a)	8.0%		
Fuel costs	[12]				
coal	1.52 US\$/GJ (44.58 US\$/t coal equivalent, spot market, import Europe)	price, sulfur <1%, r	orth-west		
natural	tural gas 2.24 US\$/GJ (65.49 US\$/t coal equivalent, spot market, import price, EU)				

4.2 Review of Literature

To allow comparison of the data cited in literature sources at a standardized level of technology, calculations were performed of the additional investment costs, electricity generating costs and CO_2 avoidance costs, on the basis of the results of the thermodynamic analyses of data from the literature pertaining to levels of investment for component groups such as CO conversion, CO_2 scrubbing and air separation units. The costs of component groups are presented in Table 4.3. For all the examples, it is assumed that the same power output should be obtained with and without CO_2 capture, i.e. that the basic component of the power plant with CO_2 capture must be increased by a degree large enough to compensate for the efficiency penalty caused by CO_2 separation and liquefaction. In some cases, missing data on separated CO_2 mass flow was calculated from assumptions concerning the fuel. The deviation of the specific levels of investment calculated in this manner is approximately ±30% compared with the

data from the literature. In some cases, the cost data contained in the literature itself for the same type of power plant differs by more than 50%.

The specific investment calculated for power plants with CO_2 capture was used to calculate the electricity generating costs for the first year of operation, using the factors given in Table 4.2. The electricity generating costs and the data on specific CO_2 emissions were then used to determine CO_2 avoidance costs, according to Equation 1.44, for CO_2 emissions reduction as compared to the baseline power plant without CO_2 capture. The results obtained from a review of the literature are presented in Figures 4.3 to 4.7. The figures clearly illustrate the wide range over which the costs are spread, due to uncertainties at the current level of technology in the field of CO_2 capture.

Although calculations for MHD combined cycle power plants are to be found in the literature, MHD plants do not fall within the current state of the technology, nor have they been constructed as demonstration facilities. Equally, combined cycle power plants using SOFC or MCFC fuel cells should also be seen as a future option.

In the majority of cases, the additional specific investment (Figure 4.3, Figure 4.4) is primarily caused by the equipment required for CO_2 capture, followed by the additional specific investment resulting from the reduction in efficiency of the baseline power plant. In the majority of cases, these are then followed, in almost equal proportions, by the additional investment in equipment required for CO_2 liquefaction, and for the efficiency penalty due to CO_2 liquefaction.

The rise in electricity generating costs and CO_2 avoidance costs is caused not only by the additional investment (equipment required, and larger baseline power plant) but also, quite substantially, by higher specific fuel consumption. In virtually all cases where electricity generating costs (Figure 4.5, Figure 4.6) and CO_2 avoidance costs (Figure 4.7) increase, the proportion attributable to CO_2 capture is larger than that attributable to CO_2 liquefaction.

The additional investment required, and the increase in electricity generating costs and CO_2 avoidance costs (related to the same type of baseline power plant), are all at their lowest in an IGCC power plant with CO_2 separation after CO conversion. In a comparison of the electricity generating costs, the steam power plant with CO_2 scrubbing from the flue gases is slightly ahead of the rest of the field, although the efficiencies are lower (Figure 4.2, Figure 4.5, Figure 4.6). According to data from the literature, the investment required for the steam power plant is also significantly lower than for the IGCC power plant (Figure 4.3). Finally, with regard to cycles with CO_2 capture using high-temperature fuel cells, the additional levels of investment and CO_2 avoidance costs may indeed be low (based on a comparable power plant, which also uses fuel cells), but the high specific investment required for the baseline power plant and the high specific investment required for the baseline power plant and the high specific investment required for the baseline power plant and the high specific investment required for the baseline power plant nevertheless means that the electricity generating costs are substantially higher than in any of the other variants.

Table 4.3: Specific investment required for the individual components of CO₂ separation, according to a review of the literature. See Table 4.5 for the author's own calculations. (Calculations are based on the specific investment related to the mass flow of CO₂ or O₂, respectively. The specific investment related to electrical power plant net output merely serves as a reference value illustrating the additional investment in the power plant.)

	-				1 1 7	
			Family I			
CO ₂ Separation From Synthesis Gas After CO Shift						
			iversion			
Raw gas CO shift conversion	Clean ga	s CO shift conver-	Membrane rea		Reforming + CO shift con-	
		sion	(CO shift conversi	-	version	
		+ Rectisol	membrane			
44-184 US\$/kW	2	30 US\$/kW	74 US\$/kW	7	170 US\$/kW	
170 - 680 US\$/(t CO ₂ /s)	1190	US (t CO_2/s)	462 US\$/(t CC	$D_2/s)$	1815 US\$/(t CO ₂ /s)	
	CC	2 Separation (synthe	esis gas under pressu	re)		
Selexol		DEMEA	MDEA		Polymer membrane (CO/H ₂)	
70 – 80 US\$/kW	3	10 US\$/kW	96 US\$/kИ	7	28 US\$/kW	
250 - 360 US\$/(t CO ₂ /s)	1130	US /(t CO_2/s)	1590 US\$/(t C	$O_2/s)$	125 US\$/(t CO ₂ /s)	
		Process 1	Family II			
$CO_2 O_2$	Concentrat	tion in the Waste Ga	s (flue gas recirculat	tion, O ₂ su	ipply)	
Air Separation Unit (O ₂ proc	luction)	Steam Por		Exhaust gas cooler, flue gas recircu		
		modifications	s to the boiler		tion	
≈60 US\$/kW		≈125 U			≈40 US\$/kW	
700 – 2100 US\$/(t O ₂ /	(s)	500 US\$/(CO ₂ /s)			300 US\$/(t CO ₂ /s)	
		Process F	Family III			
CO_2 separa	tion from	the flue gas $(CO_2$	scrubbing, chem. at	osorption [•]	with MEA)	
Coal-fired steam p	ower plar	nt (SPP)	Natural	gas-fired	gas/steam turbine	
			com	bined cyc	le power plant	
140 - 460	140–460 US\$/kW			250 US\$/kW		
570 1250 US\$/(t CO ₂ /s)			2300 US\$/(t CO ₂ /s)			
	CO_2 Liquefaction, Transport, Sequestration					
CO ₂ liquefaction		Pipe	eline		Sequestration	
30 - 480 US\$ /kW		120 - 610) US\$/kW		190–215 US\$/kW	
215 – 1930 US\$/(t CO ₂	2/s)	570 – 2550 U	JS /(t CO_2/s)	57	$70 - 680 \text{ US}/(\text{t CO}_2/\text{s})$	

No. in	Original Source	Type of Power Plant	CO ₂ Separation/Capture
Figure		COAL-FIRED CY	CL ES
	Process Family I:		synthesis gas after CO shift
(1)	Condorelli et al. (EPRI)[86]	IGCC, quenching	phys. absorption
(1)		with water	phys. absorption
(2)	Shell [81]	IGCC	chemical absorption
(3)	Pruschek et al. [20]	IGCC	physical absorption
(4)	Hendriks [16]	IGCC	physical absorption
(5)	Daun [87]	IGCC	physical absorption
(6)	Koetzier et al. [17]	IGCC	physical absorption
(7)	Jansen et al. [92, 93]	IGCC	membrane
(8)	Alderliesten et al. [94]	IGCC	membrane reactor
		nily II: CO2 concentrat	ion in the exhaust gas
(9)	Hendriks [16]	IGCC	H_2/CO membrane, GT with air + O_2/CO_2 GT
(10)	Boeddicker [110]	IGCC	combustion in an atmosphere of O_2/CO_2
(11)	v. Steenderen [133]	IGCC	combustion in an atmosphere of O_2/CO_2
(12)	v. Steenderen [133]	IGCC	combustion in an atmosphere of O_2/CO_2
(13)	McMullan et al. [123]	IGCC hybrid	combustion in an atmosphere of O_2/CO_2
(14)	McMullan et al. [123]	SPP	combustion in an atmosphere of O_2/CO_2
(15)	IEA GHG [18]	SPP	combustion in an atmosphere of O_2/CO_2
(16)	Herzog et al. [124]	SPP	combustion in an atmosphere of O_2/CO_2
(17)	Allam et al. [125]	SPP	combustion in an atmosphere of O_2/CO_2
(18)	McMullan et al. [123]	MHD	combustion in an atmosphere of O_2/CO_2
	Process Fa	mily III: CO2 separation	on from the flue gas
(19)	McMullan et al. [123]	MHD	chem. absorption with MEA
(20)	McMullan et al. [123]	IGCC hybrid	chem. absorption with MEA
(21)	Hendriks [16]	SPP, MEA	chem. absorption with MEA
(22)	McMullan et al. [123]	SPP, MEA	chem. absorption with MEA
(23)	Smelser et al. [154]	SPP, MEA	chem. absorption with MEA
		Family V: CO2 captu	re with fuel cells
(24)	McMullan et al. [32]	IGCC/MCFC	before anode (reforming + CO shift conversion + scrubbing)
(25)	McMullan et al. [32]	IGCC/SOFC	CO ₂ separation from anode exhaust gas after CO
			shift conversion
		ATURAL GAS-FIREI	
			synthesis gas after CO shift
(26)	Hille [100]	GTCC (combined	externally-heated reforming, CO conversion, chem.
(a =)		cycle) power plant	absorption
(27)	Koerdt [177]	CRGT power plant	recuperatively-heated reforming, CO conversion, chem. absorption
		nily II: CO ₂ concentrat	
(28)	de Ruyck et al. [145, 146]	REVAP (similar to HAT)	combustion in an atmosphere of O_2/CO_2
(29)	Bolland [144]	GTCC power plant (gas/steam turbine	combustion in an atmosphere of O ₂ /CO ₂
		combined cycle	
		power plant)	
	Process Fa	mily III: CO ₂ separation	on from the flue gas
(30)	Bolland [144]	GTCC power plant	chem. absorption with MEA
(30)	[דידו] מוושווסבן	Si ce power piant	

Table 4.4: Description of cases shown in Figures 4.3 to 4.7

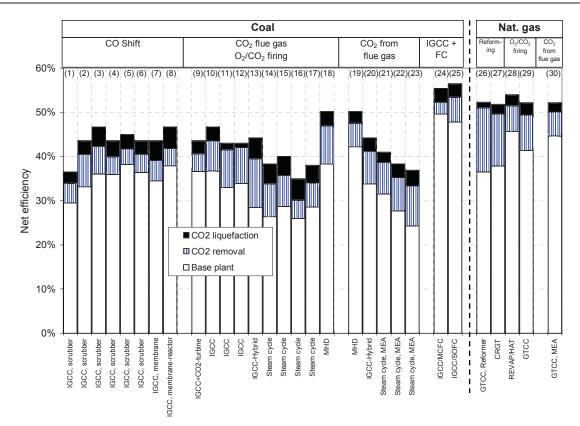


Figure 4.2: Efficiencies of power plants with CO₂ capture and CO₂ liquefaction (review of the literature, Table 4.4)

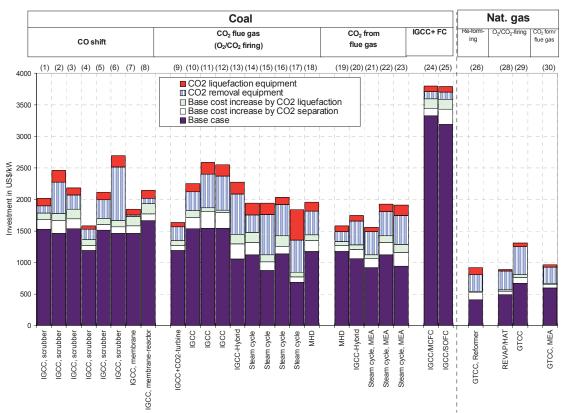


Figure 4.3: Investment required for power plants with CO₂ capture and CO₂ liquefaction (review of the literature, Table 4.4).

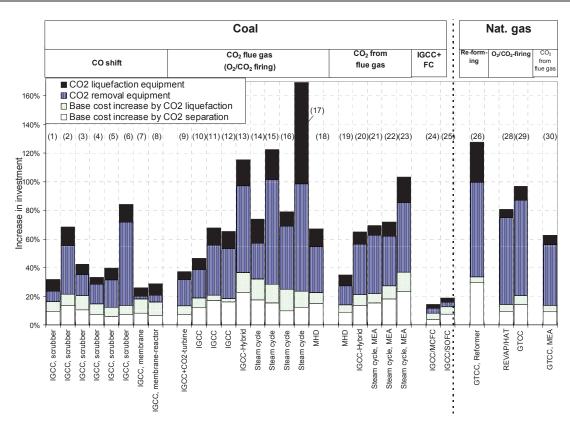


Figure 4.4: Proportions of the specific additional investment represented by CO₂ capture and CO₂ liquefaction (review of the literature, Table 4.4).

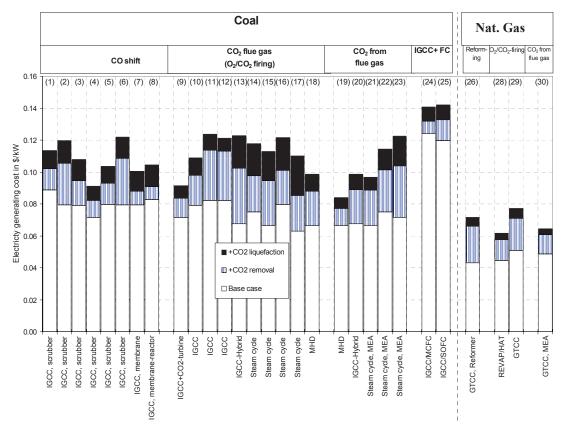


Figure 4.5: Calculated electricity generating costs (review of the literature, Table 4.4)

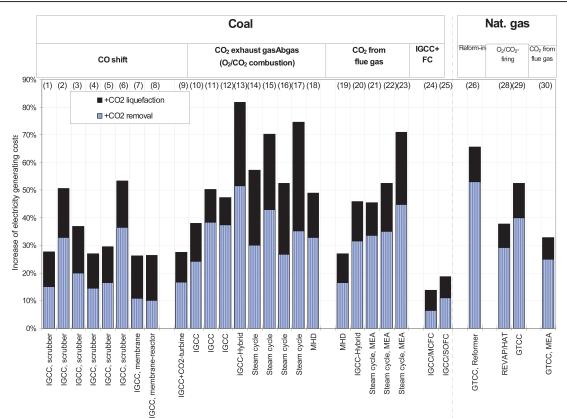


Figure 4.6: Calculated increase in electricity generating costs due to CO₂ capture and CO₂ liquefaction (review of the literature, Table 4.4)

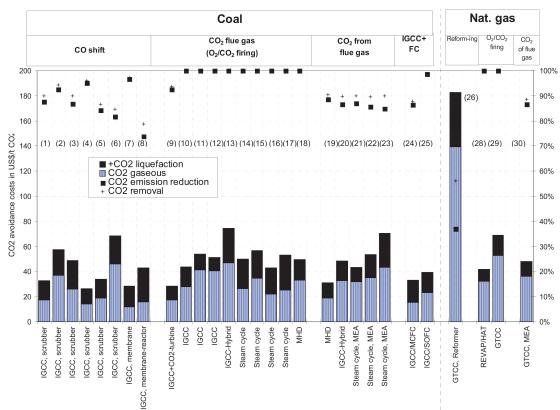


Figure 4.7: CO₂ avoidance costs, base line is the reference power plant of the same type in each case (recalculation using information from the literature on investment and thermodynamic data, Table 4.4)

4.3 Development Potential

In the last section, the performance data and overall investment figures presented in the literature sources were used to recalculate the components of the additional investment (in part from assumed partial costs) and to calculate the electricity generating costs and CO_2 avoidance costs under uniform conditions (Table 4.2). The same cost conditions will be used in this section to calculate the cost trend in CO_2 capture from an IGCC power plant, with efficiency improvement of the baseline power plant, according to the results of Section 3, and according to the specific investment described in Table 4.5.

If, in the future, gas turbine inlet temperatures can be raised to around 1500°C, then an IGCC efficiency (without CO_2 capture) of 54% seems achievable (Figure 4.8, results of Section 3). This, in turn, will improve the efficiency of IGCC power plants with CO_2 separation. According to the results of Section 3, the efficiency of an IGCC using a membrane separation method of CO_2 capture is lower than that of variants which use CO conversion and physical scrubbing or combustion in an O_2/CO_2 atmosphere. For the costing of CO_2 capture in an IGCC power plant, only the IGCC process variants with CO conversion and physical scrubbing, and the IGCC with combustion in an O_2/CO_2 atmosphere, are compared. For an IGCC power plant featuring combustion in an O_2/CO_2 atmosphere, a band of values is given, ranging from the current technology of generating O_2 by means of air separation, to an ideal process of O_2 supply without any additional energy requirements (see Section 3.6.2).

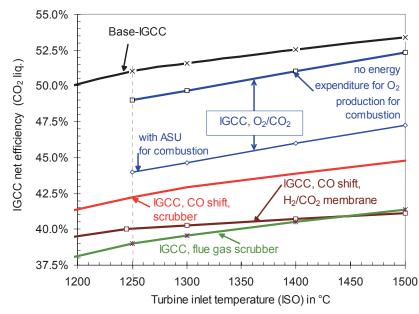


Figure 4.8: Graph showing how IGCC efficiency (with and without CO₂ capture) develops as gas turbine inlet temperature increases (results from Section 3).

Under the assumptions made in this case, specific investment for an IGCC power plant with CO_2 capture after combustion in an O_2/CO_2 atmosphere, and with an air separation unit, is slightly higher than that of the IGCC with CO conversion and physical scrubbing (Figure 4.9). For an IGCC power plant with CO_2 capture after combustion in an O_2/CO_2 atmosphere, with a selective oxygen supply which does not require additional energy, it is assumed that the additional investment related to the O_2 mass flow is equivalent to that of an air separation unit. The higher level of efficiency means that the specific investment for this IGCC power plant drops to approximately the value for the IGCC power plant with CO_2 capture by means of CO conversion and physical scrubbing. As the efficiency

of the baseline IGCC power plant increases, a decrease can be seen in the efficiency penalty due to CO_2 capture as a proportion of the gross power output of the power plant. Consequently, the specific investment required for the IGCC power plant with CO_2 capture also decreases slightly (Figure 4.9). Additionally, as the efficiency of the baseline IGCC power plant improves, there is also a drop in electricity generating costs (Figure 4.10) and CO_2 avoidance costs (Figure 4.11).

At current levels of technology of CO_2 capture from IGCC power plants, the variant with CO conversion and physical scrubbing is more economical than the variant with air separation and combustion in an O_2/CO_2 atmosphere. Moreover, the CO_2 gas turbine for this latter variant is not yet commercially available, since the technology has not yet been developed.

If it should become possible to implement O_2 supply without any additional energy requirements, and if a CO_2 gas turbine should become available, the only remaining energy requirements would be for CO_2 liquefaction; the IGCC power plant with combustion in an O_2/CO_2 atmosphere would then achieve the lowest costs of CO_2 capture in fossil fuel-fired power plants, based on the assumptions described, even if the additional investment were similar to that of the alternative air separation unit.

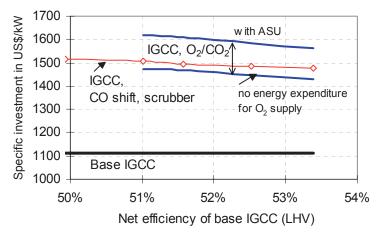


Figure 4.9: Specific investment for an IGCC power plant with CO conversion and CO₂ scrubbing, and an IGCC power plant with combustion in an O₂/CO₂ atmosphere, in dependence on the efficiency of the baseline IGCC power plant without CO₂ capture

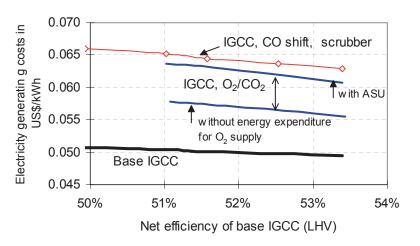


Figure 4.10: Electricity generating costs in an IGCC power plant with CO conversion and CO₂ scrubbing, and an IGCC power plant with combustion in an O₂/CO₂ atmosphere, in dependence on the efficiency of the baseline IGCC power plant without CO₂ capture

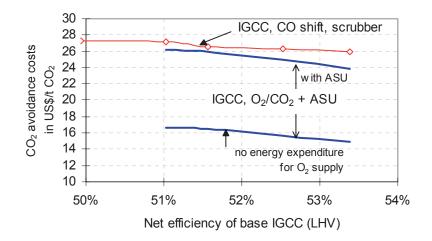


Figure 4.11: CO₂ avoidance costs in an IGCC power plant with CO conversion and CO₂ scrubbing, and an IGCC power plant with combustion in an O₂/CO₂ atmosphere, in dependence on the efficiency of the baseline IGCC power plant without CO₂ capture

Table 4.5: Assumed specific level of investment for baseline power plants and components of CO₂ capture

Power plants without CO ₂ separation:	
Steam power plant (hard coal)	1050 US\$/kW
IGCC power plant	1110 US\$/kW
Gas/steam turbine combined cycle power plant	510 US\$/kW
Components of CO ₂ capture:	
CO conversion	170000 US\$/(kg CO ₂ /s)
CO ₂ scrubbing - Selexol	280000 US\$/(kg CO ₂ /s)
CO ₂ scrubbing - MEA	1400000 US\$/(kg CO ₂ /s)
Air Separation Unit (ASU) or selective O ₂ supply (without	1700000 US\$/(kg O ₂ /s)
additional energy requirements)	
Other, e.g. CO ₂ recycling, piping	110000 US\$/(kg CO ₂ /s)
CO ₂ compression, liquefaction	500000 US\$/(kg CO ₂ /s)

4.4 Comparison with Alternative Measures

The CO₂ avoidance costs due to CO₂ capture in power plants have been calculated as lying between 20 and 45 US\$ /t CO₂. These figures do not include the cost of CO₂ transport and disposal. The transport cost, of between 6 and 8 US\$ /t CO₂ for a pipeline length of 1000 km, and the cost of disposal, amounting to between 1 and 6 US\$ /t CO₂, must therefore be added to the figures for CO₂ avoidance costs (see Table 2.3). Thus, CO₂ avoidance costs for CO₂ capture in power plants and CO₂ disposal lie between 29 and 59 US\$ /t CO₂.

Through measures such as switching to CO_2 -lean fuels, cogeneration efficiency improvement, and increased building of nuclear power plants, CO_2 emissions reductions of between approximately 8% and 14.5% can be achieved (Appendix, Table 6.20). Depending on the method used, CO_2 capture in power plants can result in CO_2 emissions from power plants being reduced by anywhere between 80% and virtually 100%. Since power plants are only one of the factors contributing to global CO_2 emissions (currently around 20%), the contribution towards the global reduction of CO_2 emissions is correspondingly lower, even if CO_2 capture is performed in all power plants.

 CO_2 capture in power plants is only likely to be implemented at the point where a reduction in CO_2 emissions can no longer be achieved more economically using other means. According to information provided by the IW (*Institut der deutschen Wirtschaft* = Institute for Business Research), CO_2 avoidance costs in Germany are likely to be as follows, depending on the reduction targets [181]:

- Reducing CO₂ emissions in Germany by 10% would incur a reduction cost per ton of CO₂ of around 22 US\$.
- Reducing CO₂ emissions by 25% would push the cost of this reduction up to 348 US\$ per ton of CO₂ avoided.

For CO₂ emissions reduction targets of around 10%, it would therefore also be sensible to ascertain the costs of other measures for CO_2 emissions reduction. It is hard to estimate the cost of energy savings, where these go beyond an increase in the efficiency of energy conversion systems, e.g. factors such as avoidance of energy usage. With a saving of up to 25% of primary energy, reducing CO₂ emissions by improving thermal insulation in housing, through retrofitting, can be essentially self-financing. Achieving a higher rate of energy savings incurs costs of up to $369 \text{ US} / t \text{ CO}_2$, depending on the intensity of the measure [87]. According to Pruschek et al. [19], specific CO₂ avoidance costs of between 4.3 and 26 US\$ /t CO_2 can be calculated for efficiency-improving retrofitting measures, which need not, however, lead to an increase in electricity generating costs, assuming that the fuel savings obtained through improved efficiency compensate for the additional investment. Replacing coal-fired power plants with wind energy converters having electricity generating costs of between 0.09 and 0.17 US\$ /kWh incurs estimated CO2 avoidance costs of between 82 and 204 US\$ /t CO₂ [182]. The use of photovoltaics, with electricity generating costs of between 0.9 and 1.1 US\$ /kWh, incurs CO2 avoidance costs of between 850 and 1200 US\$ /t CO2. In the context of negotiations on future reductions in CO_2 emissions, discussion has also focused on the trading of CO₂ emissions rights certificates at prices of between around 3 and 30 US\$ per ton CO₂ [183]. Other measures of reducing CO_2 emissions would also have to compete with this approach.

If CO_2 emissions were required to be reduced by 25%, CO_2 capture in power plants could certainly represent a cost-effective measure.

5 SUMMARY

In order to prevent, in the long term, CO_2 concentration in the earth's atmosphere exceeding a proportion by volume of 500 ppm, as against the current figure of 360 ppm, projected worldwide CO_2 emissions would have to be cut by around 40% as early as the year 2025. If other possible ways of reducing CO_2 emissions (e.g. improvements in energy efficiency and a switch to low-carbon or carbon-free fuels and primary energy sources) prove to be insufficient in the future, CO_2 capture in power plants could serve as an additional method, which could contribute to the reduction or avoidance of these CO_2 emissions. This study presents a survey of the methods of CO_2 capture in power plants which are currently under discussion, together with an energy analysis of the individual methods and an assessment of specific CO_2 emissions, the efficiency penalty due to CO_2 capture, additional investment required, additional electricity generating costs incurred, CO_2 avoidance costs and technical feasibility.

For the sake of clarity, the numerous possible variations on processes for CO₂ capture in power plants have been divided up into five process families:

- Process Family I: CO₂ separation from synthesis gases after CO shift reaction (from coal gasification or steam reforming of natural gas),
- Process Family II: CO₂ concentration in the exhaust gas (mostly through combustion in an atmosphere of oxygen and recirculated flue gas),
- Process Family III: CO₂ separation from flue gases,
- Process Family IV: Carbon separation prior to combustion (not calculated in this study),
- Process Family V: CO₂ capture in power plants using fuel cells (not calculated in this study).

In high-efficiency power plants, less primary energy is consumed and less CO_2 is produced. As efficiency increases, with power output remaining the same, the CO_2 mass flow to be separated become smaller, which, in turn, means that the utilization of energy and equipment for CO_2 capture also become smaller. The calculations in this study therefore primarily focus on those power plants, which currently have the greatest efficiency potential, namely the natural gas-fired gas/steam turbine combined cycle power plant (GTCC power plant) and the GTCC power plant with integrated coal gasification (IGCC). Fuel cell power plants with higher efficiencies, and a theoretically low expenditure of energy required for CO_2 capture, are a future option, offering a potential for CO_2 capture which is sketched out only briefly in this study.

Using as a basis the numerous published investigations of CO_2 capture in power plants, the particular characteristics of the various combinations of different types of power plant and gas separation method are considered, and criteria for assessing the different processes are elaborated. Comprehensive review of the literature shows that the cited efficiencies of power plants with CO_2 capture are spread over a wide range, as are the efficiency penalties due to CO_2 capture; as a result, it is difficult to ascertain the differences between the various methods of CO_2 capture and between the different types of power plant. The majority of the published studies of CO_2 capture in power plants also fail to provide a detailed analysis of the energetics.

When comparing the energy expended on CO_2 capture, and the efficiency penalties and additional costs incurred in this process, various points must be observed, such as standard boundary conditions, e.g. the inclusion of CO_2 liquefaction.

According to the results of the literature review and to calculations carried out by the author of this study (Figure 5.1), the capture and liquefaction of between 85% and 95%, or virtually 100% (Process Family II), of the CO₂ produced through fuel burning results in an efficiency penalty of between approx. 7 and 11 percentage points for IGCC power plants according to Process Family I or coal-fired power plants according to Process Family II. In the case of CO₂ separation from flue gases in coal-fired cycles, the efficiency penalty lies between approx. 11 and 14 percentage points. Even in the most advantageous case, removal of the carbon from the fuel (Process Family IV) results in an efficiency penalty of 18 percentage points. Efficiency penalties of between 6 and 9 percentage points are given for CO₂ capture in power plants using fuel cells (Process Family V) with integrated coal gasification.

More energy is used, per separated CO_2 mass, for CO_2 capture in natural gas-fired power plants than in coal-fired cycles. However, the lower proportion of carbon in natural gas means that the efficiency penalty is smaller. The efficiency of a gas/steam turbine combined cycle power plant is reduced by approx. 9 percentage points by CO_2 scrubbing after reforming (which is heated through partial combustion of natural gas), CO conversion and subsequent CO_2 liquefaction. With combustion in an atmosphere of O_2 and recirculated CO_2 , the efficiency penalty lies between 8 and 11 percentage points, and for CO_2 separation from flue gases through scrubbing, the efficiency penalty lies between approx. 7 and 13 percentage points. In natural gas-fired fuel cell power plants, too, CO_2 separation from the cathode exhaust gas following combustion of the anode exhaust gas also seems to be the most advantageous method.

If CO_2 avoidance costs and technical feasibility are included, the following methods prove to be advantageous: for coal-fired cycles, the concept of separating CO_2 from synthesis gases after CO conversion in an IGCC power plant (Process Family I) and, for natural gas-fired power plants, the concept of separating CO_2 from the flue gases (Process Family III) of gas/steam turbine combined cycle power plants. In the case of coal-fired power plants with CO_2 separation according to Process Family II, the CO_2 avoidance costs are only marginally higher. Nevertheless, a gas turbine cycle optimized for CO_2 as a working fluid, together with the necessary components for this process, would first have to be developed.

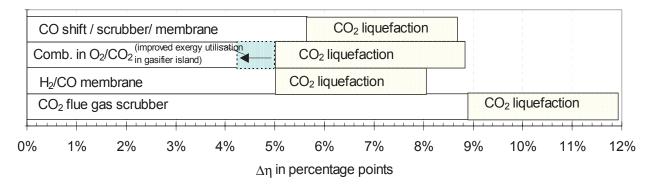


Figure 5.1: Comparison of the efficiency penalty due to CO₂ capture in an IGCC power plant with CO conversion, with combustion in an O₂/CO₂ atmosphere with O₂ generation by means of air separation, with combustion of the CO component in an O₂/CO₂ atmosphere after H₂/CO separation and CO₂ separation from the flue gas (without CO₂ liquefaction)

The minimum energy required for gas separation is determined by the reversible separation work. With the aid of reversible separation work, it can be shown that, the higher the concentration of the gas component to be separated, the lower the energy expended on gas separation. To calculate the exergetic efficiency of real gas separation processes, in terms of the ratio of reversible separation work to the actual expenditure of energy in a real gas separation process, information on energy requirements was taken from the literature, and from research carried out by the author of this study. For this purpose, calculation models were developed for physical and chemical scrubbing, adsorption, low-temperature processes and membranes. According to these calculations, physical adsorption processes and membrane separation processes achieve the highest exergetic efficiency for H_2/CO_2 separation in synthesis gases, at between 20% and 31%; for CO₂ separation from flue gases, the highest exergetic efficiency, of up to approx. 21%, is achieved by chemical scrubbing. Further calculations show the contributions of the individual process steps towards the efficiency penalty due to CO₂ capture (Figure 5.2).

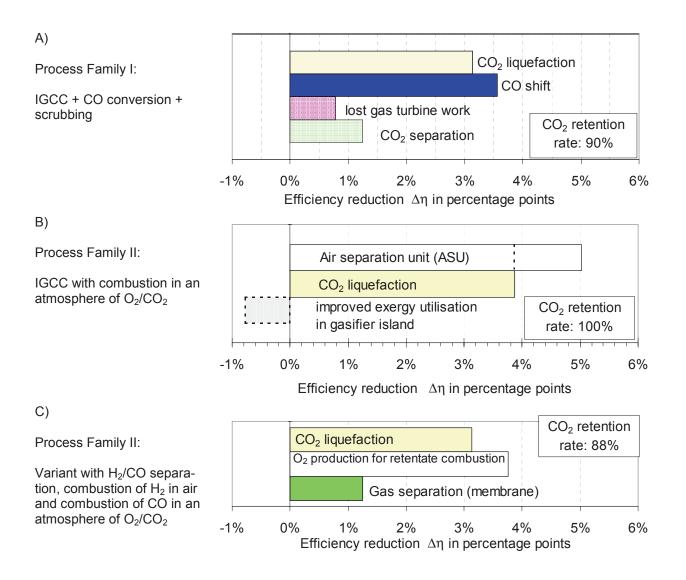


Figure 5.2: Comparison of the contributions of individual process steps to the efficiency penalty due to CO₂ capture in (A) an IGCC power plant with CO conversion, (B) an IGCC power plant with combustion in an O₂/CO₂ atmosphere and (C) an IGCC power plant with H₂/CO separation, combustion of H₂ in air and CO in an O₂/CO₂ atmosphere

SUMMARY

 CO_2 liquefaction makes a contribution of between 3 and 4 percentage points to the reduction in the net efficiency of a power plant. In Process Family I, the contribution of fuel conversion through CO conversion towards the reduction in power plant efficiency is around 3.6 percentage points, for gas separation approx. 1.2 percentage points, and for the non-realized expansion work of the separated CO_2 approx. 0.8 percentage points.

In Process Family II, the largest component of the efficiency penalty (5 percentage points) is caused by the expenditure of energy for O_2 generation. Calculations for Process Family II with various cycles using CO_2 as a working fluid (Gohstjejn cycle, quasi-combined cycle, gas/steam turbine combined cycle power plant) do not show any significant differences in levels of efficiency, as long as the optimum pressure ratios, with regard to efficiency, are set in each case (which is always higher than in cycles using air as a working fluid). For the example of gas/steam turbine combined cycle power plants which use air or CO_2 as a working fluid, it was demonstrated that the only difference with ideal gases lies in a shift of the pressure ratio. In IGCC power plants with combustion in an O_2/CO_2 atmosphere (Process Family II), an increase in gasifier pressure can, however, result in better exergy utilization in the gas generation process.

The additional exergy losses due to CO_2 capture mainly comprise the lost exergy of the separated CO_2 itself (Figure 5.3). The CO_2 liquefaction and gas separation stages also make smaller contributions to these losses.

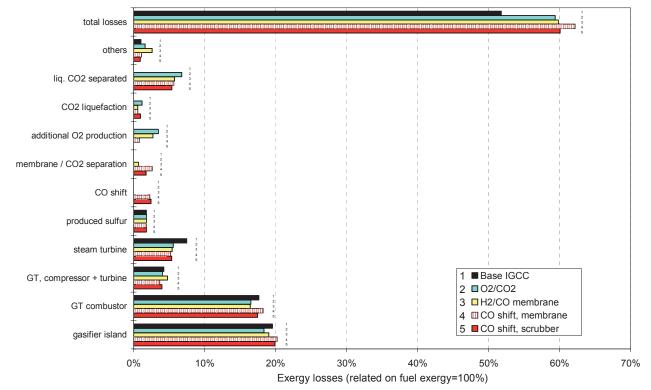


Figure 5.3: Exergy losses in the baseline IGCC power plant and in the IGCC variants with CO_2 capture through CO_2 separation after CO conversion, combustion in an O_2/CO_2 atmosphere or combustion of the CO component in an O_2/CO_2 atmosphere after H_2/CO separation

 CO_2 capture with reversible process steps represents the ideal case of CO_2 capture in power plants, and can also reveal the longer-term efficiency potential. The efficiency penalty is determined through precise process calculations and the comparison of the individual contributions of ideal process steps. The most favorable variant in this case, in terms of energy expenditure, would here be found in the case of combustion in an O_2/CO_2 atmosphere, with an efficiency penalty of just 0.5 percentage points, if the oxygen could be provided through reversible gas separation, followed by an IGCC power plant with CO conversion and CO_2 scrubbing (1.1 percentage points). The variant having the highest reversible separation work for CO_2 capture in coal-fired cycles is CO_2 separation from the flue gas (1.5 percentage points).

Regarding the processes described under Process Family II, it would theoretically be possible, in an ideal case, to provide O_2 for the combustion process without any additional expenditure of energy, if it were possible to implement a selective mass transfer of the O_2 from the ambient air into recirculated flue gas, in which the O_2 partial pressure lay close to zero, instead of generating a technically pure O_2 stream. This would make it possible to capture gaseous CO_2 , in an ideal case, without any additional expenditure of energy or efficiency penalty.

 CO_2 emissions can also be reduced using other means, such as switching to CO_2 -lean or CO_2 -free primary energy sources, increasing efficiency, implementing efficient energy conservation measures, or avoiding energy use. Some of these measures -- particularly, at the present time, switching the primary energy carrier from coal to natural gas -- are more economical than CO_2 capture, with CO_2 avoidance costs of between 20 and 45 US\$ /t CO_2 , including CO_2 liquefaction, to which must be added the costs of CO_2 transport and CO_2 disposal, amounting to between around 7 and 14 US\$ /t CO_2 (based on a 1000 km pipeline length). This means that, working on the basis of global CO_2 emissions reduction targets of over 10%, CO_2 capture in electricity generation can only be judged to be of economic interest once the potential for a reduction in CO_2 emissions, which is posed by the more economical measures, has already been fully exploited. Until that point is reached, CO_2 capture will only be used in special cases in a relatively small number of power plants, e.g. to enhance oil and gas production (EOR), to enable CO_2 fertilization in greenhouses, for cost-related political reasons as a consequence of tax on CO_2 emissions, as in the case of Norwegian oil production, or to cover industrial demand for CO_2 .

 CO_2 capture in power plant should therefore be viewed as a future option, which could come into practical use on a large-scale in 20 to 30 years time, and which could then be used to significantly reduce CO_2 emissions, serving as an interim solution on the path towards carbon-free power supply.

6 APPENDIX

6.1 Supplementary Information on the Climate Issue

As far back as the last century, scientists such as Fourier (in 1827) and Arrhenius (in 1896) referred to the natural greenhouse effect of the earth's atmosphere, without which the average temperature of the earth's surface would, according to current calculations, be around 33 K lower (average temperature is presently approx. 15° C). The most important natural greenhouse gas is water vapor, followed by CO₂ and ozone.

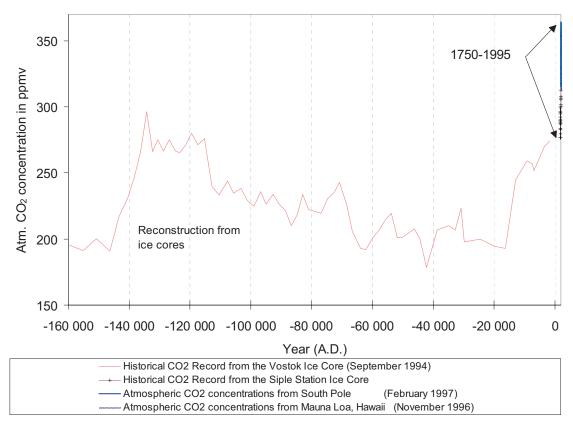


Figure 6.1: Development of CO₂ concentration in the earth's atmosphere from 160,000 B.C. to 1995 [184, 185, 186, 187]

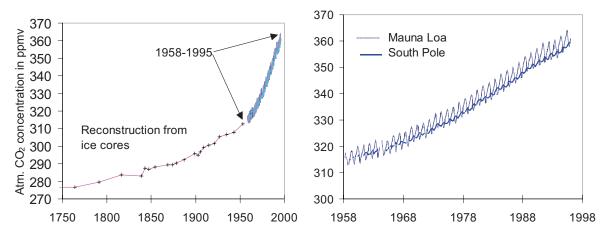
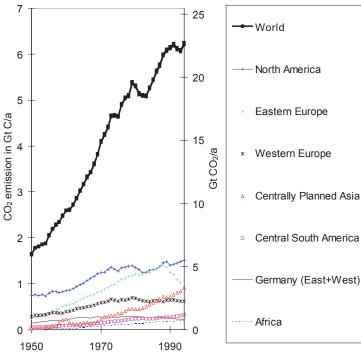
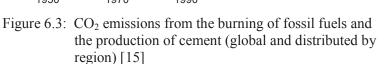


Figure 6.2: Excerpts from Figure 6.1: 1750 to 1995 and 1958 to 1995


Findings presented by the "Intergovernmental Panel on Climate Change" (IPCC) suggest there is a "discernible" human influence on world climate [10]. Indeed, average global temperature has already risen by between 0.3 and 0.6 K since the 19th century, and has contributed, to a large extent, to the rise of between 10 and 25 cm in sea level over the last 100 years. The possible warming of the earth's atmosphere is primarily caused by anthropogenic emissions of CO₂, CH₄ and some other gases (Figure 1.1). In terms of individual molecules, other greenhouse gases cause a far more significant greenhouse effect than CO₂, even taking into account the lifespan of these gases, which is generally far shorter. In relation to molecular weight and impact over a time horizon of 100 years, the greenhouse potential of the gases CO₂, CH₄, N₂O, R11, R12, R22, R113, R114, R115, CH₃CCl₃, CCl₄ is expressed in the following ratios: 1:11:270:3400:7100:1600:4500:7000:100:1300. However, seen from an absolute perspective, CO₂ is the main cause of the anthropogenic greenhouse effect, due to its concentration in the earth's atmosphere, and is the second most pronounced cause (after water vapor) of the natural greenhouse effect.


Based on an "average" scenario ("IS92a"), IPCC calculations estimate that the volume fraction of CO_2 in the atmosphere will increase from the current figure of 360 ppm to a figure of 750 ppm by the year 2100, and that annual CO_2 emissions will climb from the current figure of 24 Gt CO_2 to approx. 73 Gt CO_2 (approx. 44 Gt CO_2 in 2025, and 55 Gt CO_2 in 2050). Average global temperature is expected to increase by between 1.5 and 3.5 K by 2100 [10]. The IPCC concludes that annual CO_2 emissions will have to be limited to around 26 Gt CO_2 if the CO_2 volume fraction is to be stabilized at 500 ppm [13].

 CO_2 emissions worldwide have more than tripled since 1950 (Figure 6.3). Even in the short period between 1990 and 1996, CO_2 emissions increased by 6.4% from 22.4 Gt CO_2 to 23.9 Gt CO_2 [11] and primary energy demand increased by 7.3% from 94 \cdot 10⁶ TWh to 101 \cdot 10⁶ TWh [12]. In order to counter the threat of a global increase in temperature, a decision was made at the UN conference on climate change in Kyoto in December 1997 to achieve an initial, average reduction of 5.2% in greenhouse gases by the period 2008-2012. However, predictions suggest that CO_2 emissions will lie between 23 and 24 Gt CO_2 in the year 2000, and between 28 and 31 Gt CO_2 in the year 2010 [188]. Energy conservation efforts have already been taken into account in calculating the lower of these figures. This growth will primarily be caused by the increased demand for primary energy in countries outside the OECD and in Eastern Europe.

In 1992, 13% of the primary energy, or 12220 TWh, was used in the form of end-use electrical energy [188]. Assuming an average efficiency of between 25% and 35%, this means that electricity supply makes up a proportion of between 38% and 53% of primary energy consumption. Of this, 39% comes from coal-fired power plants [188]. With fossil energy fuels representing 64% [188] of this electricity supply, the proportion of CO_2 emissions from power plants is estimated to be around 30%, and that of coal-fired power plants around 20% [189]. Total coal consumption as a proportion of primary energy consumption lies at 29% (3.4 Gt coal equivalent) and contributes 38.5% (1992) of total CO_2 emissions (Figure 1.2). The proportion represented by coal of primary energy consumption, which, taken as a whole, is rising, has been steadily decreasing since 1950, as liquid and gaseous fossil fuels have gained ground [15].

If a CO_2 volume fraction limit of 500 ppm were to be enforced over the long term, this would require that no more than 26 Gt CO_2 be emitted (see above), according to IPCC figures. Based on anticipated CO_2 production of between 28 and 31 Gt in the year 2010, and 44 Gt in 2025, this would necessitate CO_2 removal of between 7% and 16% in 2010, and 41% in 2025. With CO_2 production expected to increase to 55 Gt in 2015, and 73 Gt in 2100, it would become necessary to separate and sequester 53% and 64%, respectively, of the CO_2 . Since CO_2 separation from some sources of emissions is barely feasible and cannot, in many cases, be financed by less developed countries, significantly higher CO_2 separation and emissions reduction would have to be achieved in industrialized countries, particularly in the power plant arena.

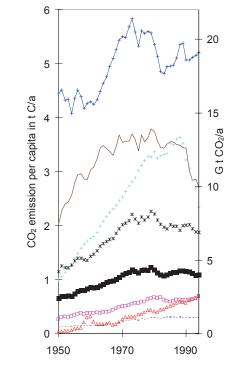
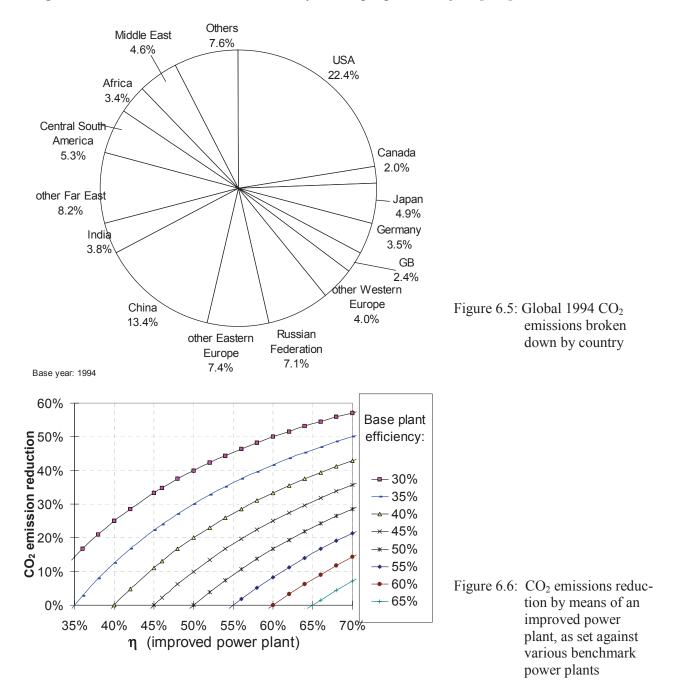


Figure 6.4: How CO₂ emissions per capita have developed in the various parts of the world since 1950 [15].


6.2 Possible Approaches Towards Reducing CO₂ Emissions in the Energy Supply Sector

Anthropogenic CO_2 emissions may be assigned to the fields of tapping and mining of deposits, and also of consumption. In the field of energy conversion and consumption, there are a variety of possible ways of reducing CO_2 emissions:

- Reduced end-use energy consumption
- Improved utilization of energy
- Switching from carbon-rich fossil fuels (coal) to carbon-lean fossil fuels (natural gas)
- Increased use of renewable energies
- Increased use of nuclear power plants
- CO₂ capture in power plants, which are fired with fossil fuels, and CO₂ sequestration.

Reducing End-Use Energy Consumption

End-use energy consumption depends heavily on the industrial structure, patterns of consumption and climate of a specific region. Figure 6.4 and 6.5 clearly show the differences in CO_2 emissions connected to energy consumption in specific regions of the world. The figures also show how emissions in Germany (taken as a whole) and Eastern Europe have dropped, due to the collapse of inefficient industries when the centrally planned economy came to an end. Reducing end-use energy consumption will require changes to be made to the structure of industry and to peoples' lifestyles [190].

Improved Utilization of Energy

By improving efficiencies, CO₂ emissions can be reduced within the context of the possibilities for technical improvement. For example, by replacing a power plant, which has an efficiency of 35% (LHV),

with a new power plant, which has an efficiency of 45%, and which uses the same fuel, CO₂ emissions can be reduced by 22% (Figure 6.6). According to Pruschek et al. [207], average efficiencies in Germany in 1990 were:

- 32.0% for all electricity-generating installations of the public power supply system,
- 30.0% for the lignite-fired power plants in the public power supply system,
- 34.3% for the hard coal-fired power plants in the public power supply system,
- 90.0% for heat generation in heating furnaces in the industrial sector.

With the current state of the technology, the following efficiencies can be achieved for newlyconstructed plants:

- >43% for lignite-fired power plants⁶⁸,
- >47% for hard coal-fired power plants⁶⁸,
- >58% for natural gas-fired combined cycle power plants.

By replacing all of the old plants with this more up-to-date technology, using the same fuel, the following reductions in CO₂ emissions could be achieved:

- $\approx 30\%$ in lignite-fired power plants,
- $\approx 27\%$ in hard coal-fired power plants.

With primary energy consumption remaining the same, and taking 1990 (1997) figures for the proportion of electricity generation represented by lignite-fired power plants of 29.4% (25%) and hard coal-fired power plants of 27.8% (26%) [208], the improvements to both types of coal-fired power plants would achieve a reduction in CO_2 emissions in Germany of 16.3% (14.5%).

According to Pruschek et al. [207], if the separate generation of electrical power and heat were to be replaced with industrial cogeneration, the potential CO_2 savings in the industrial sector alone would come to between 1.4% and 7.8% by the year 2020, related to CO_2 emissions in 1990.

Switching from Carbon-Rich Fossil Fuels (Coal) to Low-Carbon Fossil Fuels (Natural Gas)

In terms of energy content, natural gas has the lowest specific CO_2 emissions of the fossil energy fuels, followed by crude oil, hard coal and lignite (Table 6.1).

By replacing coal in power plants with natural gas, on a worldwide basis, with 41% less CO₂ emissions per fuel energy, CO₂ emissions could be reduced by approx. 8%. The savings potential of this measure could actually be even higher, since higher efficiencies can be obtained with natural gas-fired combined cycle power plants than with coal-fired power plants.

⁶⁸ Steam power plants

Fuel	Heating Value LHV in MJ/kg	kg CO ₂ /GJ (LHV)	kg CO ₂ /MWh (LHV)	t CO ₂ /t coal equivalent	Relative CO ₂ emissions
coke	29.3	107	385	3.13	119%
hard coal(anthracite)	31.0	98	354	2.87	110%
hard coal (bituminous	31.0	90	323	2.62	100%
coal)					
lignite	16.7	109	392	3.18	121%
crude oil	41.9	80	289	2.35	90%
natural gas	50.0	53	191	1.55	59%

Table 6.1: CO₂ emissions from fossil fuels

Increased Use of Renewable Energies

Operating power plants using renewable energies such as hydroelectric power, biomass, wind power, geothermal energy or solar power results in virtually zero CO_2 emissions⁶⁹. However, some CO_2 emissions are caused by the consumption of fossil energy fuels to produce the plants and/or the biomass. Measured against electricity production, the overall reduction in CO_2 emissions can be extremely high. It is, however, important to take into account the yield factor⁷⁰, which is a significant issue in the case of photovoltaic plants, for example.

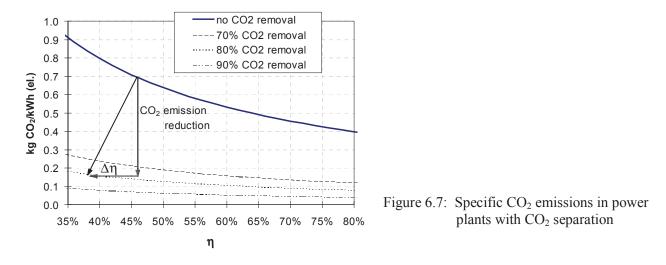
There are several factors which continue to limit the potential for expansion of renewable energies: high costs (e.g. in the case of solar power, wind power), irregular availability (e.g. in the case of solar power, wind power), low energy density (solar power), and issues involving the availability of land or competition with other agricultural products (biomass). An increase in the use of wind power and solar power would have to be accompanied by appropriate storage systems, or by fossil fuel-fired power plants working on a standby basis.

In the case of hydroelectric power plants, it should also be noted that, when areas previously covered with vegetation are flooded, climate-affecting CH_4 and CO_2 emissions are produced as the original vegetation dies off.

Increased Use of Nuclear Power Plants

Taking into consideration the whole chain of electricity generation in nuclear power plants, including fuel acquisition and disposal, the figures show energy-specific CO_2 emissions amounting to between a tenth and a hundredth of the CO_2 emissions from fossil fuel-fired power plants. This wide spread is the result of various factors including the type of fossil fuel-fired power plant used for the comparison, the quality of the uranium ore and of the uranium enrichment process, and the way in which the radioactive waste is treated [191]. By increasing the number of additional power plants to be built, global CO_2 emissions from the power supply sector could be reduced by 7% of their current value [209].

CO₂ Capture in Power Plants Fired with Fossil Fuels, and CO₂ Sequestration


As explained in this study, CO_2 capture in power plants is certainly possible in principle, though it does require high additional input of energy and equipment, which ultimately results in lower efficiencies, greater fuel utilization, and higher plant costs and electricity generating costs (Figure 6.7). Long-term

⁶⁹ Biomass can be taken to be neutral in terms of CO₂ emissions, since the carbon emitted when it is burnt has already been extracted from the atmosphere through photosynthesis.

⁷⁰ Yield factor: quotient of the electrical energy output and the accumulated energy used in manufacturing the plant

sequestration of the separated CO_2 is also feasible, e.g. in dissolved state in the deep ocean, or in geological aquifers.

Since the number of power plants is relatively small, in comparison to other sources of CO_2 emissions, and the CO_2 mass stream emitted in each case is very large, it is possible to capture a relatively large percentage of the CO_2 emissions using relatively few CO_2 separation installations.

6.3 The Natural, Geochemical Carbon Cycle and Global Carbon Reservoirs

In the natural carbon cycle, the ocean marks the end of a chain of processes, which begins with CO_2 emissions (e.g. emissions from volcanic eruptions or anthropogenic activities) and which ends with CO_2 being fixed in sediments and, eventually, deposited on the ocean floor. This cycle involves various reactions, including examples such as [60]:

A) Weathering of carbonate rock:	$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{Ca}\mathrm{CO}_3 \rightarrow \mathrm{Ca}^{++} + 2 \ \mathrm{HCO}_3^-$
B) Weathering of silicate rocks:	$2 \text{ CO}_2 + \text{H}_2\text{O} + \text{CaSiO}_3 \rightarrow \text{CO}_2 + \text{H}_2\text{O}$
C) Carbonate precipitation in the ocean:	$2 \operatorname{HCO}_{3}^{-} + \operatorname{Ca}^{++} \rightarrow \operatorname{CaCO}_{3} + \operatorname{CO}_{2} + \operatorname{H}_{2}\operatorname{O}$
D) Silicate weathering plus carbonate precipitation (B+C):	$CO_2 + CaSiO_3 \rightarrow CaCO_3 + SiO_2$
E) Metamorphic or magmatic decomposition of carbonates:	$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$.

Over time, similar reactions also bind a portion of the CO_2 in the form of rock in cases where CO_2 is injected into geological deposits, which potentially increases the long-term storage capacity [49]. However, the natural process of sedimentation is an extremely slow-acting process, which would require between 10000 and 300000 years to absorb the entire quantity of atmospheric CO_2 , without even taking into account new emissions [60]. More rapid absorption of large quantities of CO_2 can be achieved by dissolving CO_2 in seawater.

The current CO_2 volume fraction of the atmosphere of around 360 ppm should be viewed in the context of the Earth's development. From an initial point where the original atmosphere of the Earth consisted mainly of CO_2 , geochemical and biological processes (see Muschelkalk) subsequently reduced the CO_2 content to its current value over the course of millions of years. The major part of all the carbon currently present on the Earth is bound up in the form of rock [192]. The oceans and seas also contain large quantities of CO_2 in the form of dissolved gas, carbonates, carbohydrates and carbonic acids. A further portion is bound up in fossil fuel deposits and in the biosphere.

	Gt C/year	Gt CO ₂ /year
Global emissions from fossil fuels (1996)	· · · ·	· · · · ·
all fossil fuels	~ 6.5	~ 23.7
coal	~ 3.2	~ 11.7
Emissions from a hard coal-fired power plant:		
700 MW (el.), $\eta = 45\%$, 7000 h/a, Pittsburgh Nr. 8	3 0.00095	0.0035
Natural reservoirs, sequestration sites and exchange processes (carbon and C	O ₂)	
Earth's atmosphere (with 348 ppm CO ₂ volume fraction)	718	2631
Earth's crust (calcium carbonate/ limestone CaCO ₃ , magnesium carbonate/ dolo- mite CaCO ₃ MgCO ₃ , among other substances) [79]	1.5 10 ¹⁶	$5.5 \ 10^{16}$
Oceans and seas (dissolved gas, carbonates, hydrogen carbonate and carbonic acids) [79]	38182	140000
Biosphere [138]	600	2200
Proven, minable deposits of fossil fuels [193]	272	1000
(including deposits which it is not economically viable to extract)	>1090	>4000
Carbon conversion through photosynthesis [138]	110-120	400
Exhaled by all of mankind [138]	0.46	1.7

Table 6.2:	Comparison of	CO ₂ reservoirs	and emissions
------------	---------------	----------------------------	---------------

6.4 CO₂ Pipeline Transport

For a velocity of between 2 and 3 m/s, the pressure loss in a CO_2 pipeline may be estimated using the equation [194]:

$$\Delta p = \rho \lambda \frac{Lu^2}{2d}$$

$$\begin{split} \lambda &\approx 0.093 \frac{1}{(d \cdot 1000)^{0.249}} \quad (Pipe \ friction \ coefficient \ with \ a \ roughness \ of \ 0.5mm) \\ u &= Flow \ rate \left[\frac{m}{s} \right] \qquad d = Pipeline \ diameter \ [m] \\ L &= Pipeline \ length \ [m] \qquad \rho = Density \approx 877 \frac{kg}{m^3} (CO_2 110 bar, 25^{\circ}C) \\ \eta &= Viscosity \approx 773 \cdot 10^7 \ N \frac{s}{m^2} (110 bar, 25^{\circ}C) \end{split}$$

The largest available diameters, which can be used for CO_2 pipelines, are 1600 mm for land-based pipelines and 1500 mm for ocean pipelines [64]. Table 6.5 shows the results of pressure drop calculations and estimated figures for capacity. Assuming a pipeline diameter of 1600 mm, and a CO_2 flow spread evenly over the whole year, somewhere between 8 and 14 pipelines would be required to transport the CO_2 emissions of all the fossil-fuels power plants in Germany. Between 220 and 370 of these pipelines would be needed to deal with the energy-related CO_2 emissions of the whole world.

Emissions tests in the USA have demonstrated that, in the event of pipeline breakage, CO_2 is discharged too slowly to allow dangerously high concentrations of CO_2 to build up around the pipeline or to lead to extremely low temperatures in the pipeline [195].

Diameter	0.4 m	0.75 m	1 m	1.6 m
\$ per meter	450-950	800-1800	1100-2500	200-6600

Table 6.3: Pipeline costs per meter ($\pm 40\%$) [64]

Project	Pipeline	Pipe	Pressure,	Gas Composition	Source
	Length	Diameter	Temperature		
Sheep Mountain	676 km	0.5m / 0.6 m	Initial pressure 117-131 bar	97% mol CO ₂	[196]
$Colorado \rightarrow Texas$			Minimum (at height of 2515 m):	1.7% mol CH ₄	
USA			82.7 bar	0.6% mol N ₂	
				0.7% mol C ₂ H ₆	
Cortez	807 km	0.3-0.6 m	96.5- 186 bar	95% mol CO ₂	[197]
$Colorado \rightarrow Texas$				Limit: 5% mol CH ₄ max.	
USA				4 % mol N ₂ max.	
				0.7% mol H ₂ S max.	
Central Basin	278 km	0.65 m	117-152 bar	98.5% mol CO ₂	[198]
West Texas			-4°C to +43°C	1.3% mol N ₂	
USA				0.7% mol Cl	
Budafa	33 km	0.15m / 0.3m	140 bar	81 % mol CO ₂	[65]
Hungary			45°C	15.5% mol CH ₄	
				1.9% mol N ₂	
1				0.3% mol H ₂ S	

Table 6.4: Example CO_2 pipelines used to transport CO_2 for Enhanced Oil recovery (EOR)
--

Table 6.5: Pressure drop per 100 km and respective power plant size for CO₂ pipelines with an inlet pressure of 110 bar. Power plant size is based on Pittsburgh Nr. 8 coal, 90% CO₂ separation and a net power plant efficiency of 37%. The costs shown are based on information from Table 6.3.

Pipeline Ø	Velocity in m/s	CO ₂ mass flow	Capacity for coal-	Pressure drop per	Pipeline costs in	Specific costs in
		(98% CO ₂) in Gt	fired power plant	100 km in bar	10 ⁶ US\$/100km	10^{6} [US\$ /(kg
		CO ₂ /a	in MW			CO ₂ /s)] /100 km
0.30	1.2	0.0023	342	47.3		
	1.5	0.0029	427	73.9		
	2	0.0038	570	131.4		
0.40	1.2	0.0041	608	33.0	42.3 - 89.2	0.40 - 0.84
	1.5	0.0051	760	51.6	42.3 - 89.2	0.32 - 0.68
	2	0.0068	1013	91.7	42.3 - 89.2	0.24 - 0.50
0.50	1.2	0.0064	949	25.0		
	1.5	0.0080	1187	39.1		
	2	0.0107	1582	69.4		
0.60	1.2	0.0092	1367	19.9		
	1.5	0.0115	1709	31.1		
	2	0.0153	2279	55.3		
0.75	1.2	0.0144	2136	15.1	75.0 - 102. 1	0.20 - 0.27
	1.5	0.0180	2670	23.5	75.0 - 102. 1	0.16 - 0.22
	2	0.0240	3560	41.8	75.0 - 102.1	0.12 - 0.16
0.80	1.2	0.0164	2430	13.9		
	1.5	0.0204	3038	21.7		
	2	0.0273	4051	38.6		
1.06	1.2	0.0287	4267	9.8	103 - 234	0.14 - 0.31
	1.5	0.0359	5334	15.3	103 - 234	0.11 - 0.25
	2	0.0479	7112	27.2	103 - 234	0.09 - 0.19
1.50	1.2	0.0575	8545	6.3		
	1.5	0.0719	10681	9.9		
	2	0.0959	14241	17.6		
1.60	1.2	0.0654	9722	5.8	188 - 619	0.11 - 0.36
	1.5	0.0818	12152	9.1	188 - 619-	0.09 - 0.29
	2	0.1091	16203	16.2	188 - 619-	0.06 - 0.22

6.5 Data Tables

The data tables presented below are referred to in the preceding chapters of this study. They provide more precise details of process data.

Table 6.6: Accuracy of the notations of physical characteristics used in this paper for the heat capacity of ideal gases according to Hougen et al. [160]

Gas Component	Max. Error in %	Average Error in %
O ₂	1.19	0.28
H ₂ O	0.53	0.24
CO ₂	0.67	0.22
N ₂	0.59	0.34
SO ₂	0.45	0.24
H ₂	1.01	0.26
СО	0.89	0.37
CH ₄	1.33	0.57
H ₂ S	0.76	0.47
COS	0.94	0.49

Table 6.7: Common absorption techniques for CO₂ scrubbing [79, 95, 176]. Figures for heat in enthalpy (desorber temperature) and equivalent electrical work⁶⁵ (\cong ... *el.*)

Method	Absorbent	Operating Conditions	Gases Absorbed	Energy Requirements	Purity Separation factor
PHYSICAL	ABSORBENTS				
Rectisol	Methanol	Absorber: $\approx -10/-70^{\circ}\text{C}$ $p_{CO_2} > 10 \text{ bar}$	H ₂ S, COS, organic S-compounds, CO ₂ , NH ₃ , HCN, aro- matic compounds and higher hydro- carbons	Work: 0.038 kWh/kg CO ₂ (incl. H ₂ S) Heat: 0.025kWh/kg CO ₂ (≅0.01 kWh (el.) /kg CO ₂) <i>≅Total (el.): 0.048 kWh/kg</i> CO ₂	CO_2 separation factor $\leq 90\%$ Clean gas: $H_2S<0.1$ ppm vol. frac. $CO_2<5$ ppm vol. frac.
Purisol	N-methyl-2- pyrrolidone (NMP)	Absorber: -20/+40°C $p_{tot} > 20$ bar $p_{CO_2} \approx 10$ bar	H ₂ S, COS, CO ₂ , NH ₃ , HCN, higher hydrocarbons, COS \rightarrow H ₂ S H ₂ S sol. matter 12 times higher than CO ₂	Work: 0.07 kWh/kg CO ₂ Heat: 0.07 kg steam (20bar) per kg CO ₂ (\cong 0.02 kWh (el.)/kg CO ₂) \cong Total (el.): 0.09 kWh/kg CO ₂	CO_2 separation factor $\leq 90\%$ Clean gas: $H_2S < 1$ ppm vol. frac- tion $CO_2 \leq 1000$ ppm vol. frac.
Selexol	Dimethylether polyethylene glycol (DMPEG)	Absorber: $p_{tot} = 20-140 \text{bar}$ $p_{Co_2} = 7-30 \text{ bar}$ without cooling: $\approx 20^{\circ}\text{C}$ (120°C) with cooling: $\approx 0^{\circ}\text{C}$	H ₂ S, COS, organic S-compounds, CO ₂ , NH ₃ , HCN, aro- matic compounds, higher hydrocar- bons, H ₂ S sol. matter 9 times higher than CO ₂	Work: 0.03-0.06 kWh/kg CO ₂ Heat: 0.016-0.024kWh/kg CO ₂ (≅0.03-0.05 kWh el./kg CO ₂) <i>≅Total:</i> 0.06-0.11 kWh el./kg CO ₂	Clean gas <0.5% vol. fraction CO ₂ <1 ppm vol. fraction H ₂ S
Sepasolv	n-oligoethylene glycol + methyl isopropyl ether	Absorber: p _{tot} ≈ 70 bar		Work: 2.22 kWh/kg CO ₂ Heat: 0.05 kWh/kg CO ₂ (\cong 0.01 kWh el./kg CO ₂) \cong Total: 2.3 kWh el./kg CO ₂ .	
Fluor Sol- vent	Propylene car- bonate	Absorber: below ambi- ent temp. 3.1-6.9 MPa	H ₂ S, COS, CO ₂ , acetylene, propane, butane, methane		

APPENDIX

Method	Absorbent	Operating Conditions	Gases Absorbed	Energy Requirements	Purity
	1100010011	operating contributions	Cubes Hoboro eu		Separation factor
	ABSORBENTS	•	•	•	
Amine-based	1	1	1	1	1
MEA	Mass frac. 12%	Absorber: $\approx 40^{\circ}$ C,	SO_2 , H_2S , COS ,	Power. 0.05-0.3 kWh/kg CO ₂	CO ₂ separation factor
monoethano- lamine	aqueous sol. + additives	1 - 5 bar	CS_2, CO_2	Heat: 2.3 kWh/kg CO_2 ($\cong 0.48$ kWh el./kg CO_2)	<99% (80-95%)
lamme	adultives	Regenerator. 95-120°C		$(= 0.48 \text{ kWh el./kg CO}_2)$ =Total:0.53-0.78 kWh el./kg CO ₂	(80-9376)
MEA	Mass frac. 20%	-"-	-"-	Power: 0.02-0.4 kWh/kg CO ₂	-"-
	aqueous sol.			Heat: 1.0-1.7 kWh/kg CO ₂	
	+ additives			$(\cong 0.21-0.35 \text{ kWh el./kg CO}_2)$	
				\cong Total: 0.23-75 kWh el./kg CO ₂ .	
MEA	Mass frac. 30% aqueous sol. +	-"-	-"-	Power: $\approx 0.036 \text{ kWh/kg CO}_2$	-"-
	additives			Heat: $\approx 1.1 \text{ kWh/kg CO}_2$	
	additives			$(\cong 0.23 \text{ kWh el./kg CO}_2)$ $\cong Total: 0.27 \text{ kWh el./kg CO}_2$	
Amine	5 n MEA +	Absorber 3.4-138 bar,	CO ₂ , H ₂ S (selec-	Power: 4-12 10^{-4} kWh/m ³	Separation factor:
Guard FS	inhibitors	80-132°C	tive), COS	CO_2+H_2S	$H_2S \approx 100\%$
(MEA)				Heat: 10.3- 165 kWh/m^3	CO ₂ 20-99.9%
				$CO_2 + H_2S$	2
Econamine	6 n diglycola-	Absorber: 80-120°C	H_2S , COS, CS ₂ ,		
(DGA)	mine,	p _{tot} =63 raw	CO_2 , aromatic com-		
	mass frac.: 5-90%		pounds		
	aqueous sol.	120-140°C, p _{tot} =1.3-2 bar			
DEA and	2 n diethanola-	Absorber: 18-55°C	H ₂ S, COS, CS ₂ , CO ₂		
SNEA-DEA	mine or 3n	$p_{tot}=5-75$ bar	1120, 000, 002, 002		
	diethanolamine,	$p_{CO_2} = 0.5-26$ bar			
	mass frac. 20-	1 002			
	30% aqueous				
Flexsorb	sol. Amine + hot	Abaarbarum (Obar		Power: 0.43 kWh/kg CO ₂	
r lexsor	potassium car-	Absorber: p _{tot} ≈60 bar (flue gases)		Fower: $0.43 \text{ kW} \text{ll/kg} CO_2$	
	bonate	(liue gases)			
Inorganic che	emical absorbents	L	•	•	
Benfield [*]	Potassium car-	Absorber: 70-120°C	SO ₂ , H ₂ S, HCN,	Power:	
(variants)	bonate & cata-	$p_{tot} = 3-140 \text{ bar}$	COS, CO_2	0.2-0.7 kWh/kg CO ₂	
	lysts	$p_{CO_2} = 0.6-30$		Heat:	
	(borate/ arsenic trioxide)	Regenerator:		$1-2 \text{ kWh/kg CO}_2$	
	uloxide)	temp. as in abs.		$(\cong 0.21-0.42 \text{ kWh el./kg CO}_2)$ =Total:0.41-1.1 kWh el./kg CO ₂	
		p≈ 1.2 bar			
Vacuum	Sodium carbon-	Absorber: 20-40°C	SO_{2} , H_2S , HCN,		
carbonate [*]	ate + catalysts	p_{tot} = 1-3 bar CO ₂ < 5% vol. fraction	CO ₂		
PHYSICAL-	L CHEMICAL ABS				
Activated	2 n methyldi-	Absorber: 40-90°C	CO ₂ , H ₂ S, COS	Power:	Clean gas:
MDEA	ethanolamine	$p_{tot} < 120 bar,$	002,1120,000	0.023-0.027 kWh/kg CO ₂	<20 ppm vol. frac. CO ₂
	mass fraction:	1-stage abs.:		Heat: 0.202kWh/kg CO _{2.}	Product:
	40-50% aqueous	p_{CO_2} 0.5-5 bar		$(\cong 0.04 \text{ kWh el./kg CO}_2)$	>99.8% vol. frac. CO ₂
	sol.	2-stage abs.:		<i>≅ Total:0.063-0.067 kWh</i>	CO_2 separation factor
		p_{CO_2} 2-15 bar		el./kg CO _{2.}	>99%
		Regenerator:			
		0.5 - 1.9 bar			
Adip (DIPA	aqueous sol.	absorber 25-75°C	H ₂ S (selective),	Wide range	Clean gas:
& MDEA)	alkanolamine	$p_{tot} < 130 \text{ bar}$	COS, CO_2	LP steam:	< 10 ppm vol. frac. H ₂ S
	2-4n diisopropyl	(wide range)		0.4-2.8 kg/kg acid gas	< 5 ppm vol. frac. COS
	amine			(≅0.07-0.48 kWh el./ kg acid	
	2 n methyldiethanol			gas)	
	amine				
	1	1	1		1

Method	Absorbent	Operating Conditions	Gases Absorbed	Energy Requirements	Purity Separation factor
Sulfinol-D Sulfinol-M	Mixture of DIPA or MDEA, H ₂ O + tetrahy- drothiopene dioxide	Absorber: $\approx 40^{\circ}$ C $p_{tot} = 45-70$ bar	H ₂ S, COS, Methyl Mercaptan, hydro- carbons, aromatic compounds, CO ₂		Clean gas: H ₂ S <1 ppm vol. frac.
Amisol	Mixture of methanol + MEA, DEA, diisopropyl amine (DIPAM) / diethylamine	Absorber: 35-80°C >1MPa	H ₂ S, COS, organic sulfur, HCN, NH ₃ , CO ₂ , aromatic com- pounds, higher hydrocarbons		Clean gas: CO ₂ : 5-100 ppm vol. frac.
Optisol	aqueous amine + physical ab- sorbent	Absorber: 20-30°C, 17-55 bar			$\label{eq:clean gas:} \begin{array}{c} Clean gas: \\ H_2S < 4.2\% \mbox{ vol. fraction} \\ CO_2 \ 0.1\mbox{-}12\% \mbox{ vol. fraction} \\ fraction \end{array}$

* alkaline components may lead to problems with corrosion in downstream gas turbines

Plant Type	Raw Gas	Adsorption	Desorption	Separation Factor	Product Purity	Energy Require- ments (in kWh/kg CO ₂)	Source
PSA	flue gas 28-34% CO ₂	1 bar	0.05-0.9 bar	>60%		0.16-0.18	[199]
PSA	reformed natural gas	13-21 bar	<1 bar	>89%	>99%		[200]
PSA	low CO ₂ con- centration			high		0.4	[201]
PTSA Ca-Fe + zeolite	flue gases 10% CO ₂ 11.5% CO ₂	1 bar		90%	≤99%	0.7 0.55	[202]
TSA zeolites	synthesis gas	/ 25°C	0.0012 bar / 200°C	60-90%			[203]
Thermal regeneration (Rektisorb / Hypersorb) activated coke	coke oven waste gas	continuous process	fluidized bed				[79]
Thermal regeneration MgO + CaO	flue gas / synthesis gas	high tem- peratures	high tem- perature			Power generation in the power plant reduced by around 1/3	[96]

Table 6.8:	Data from the	literature on	CO ₂ adsorption p	lants

Manufacturer/	GKSS	DELAIR	Ube	Ube	UBE	SEPAREX	PERMEA	GKSS	Dow
Brand Name			Type C	Туре В-Н	Туре А				
Material	polydi- methyl- siloxane	poly- phenyle- neoxide	polyimide	polyimide	polyimide	acetyl cellulose	polysulfone/ silicone rubber	polyther- mide	polyole- fine
Working temp.	30°C	30°C	60°C	60°C	60°C	30°C	30°C	30°C	
Selectivity (per	meability of	f Gas 1 / per	meability o	f Gas 2)	•				÷
O_2/N_2		5	6.1	5.0	5.0	5.5	6	9	4
CO_2/N_2	11.4	20	33.3	18.3	17.0	30	30	29	
CO ₂ /CH ₄				27.5	25.5				
H ₂ /CO				55.6	91.7				
H_2/CO_2	5		2.8	4.5	10.8				
H_2/N_2	190		94.4	83.3	183.3	67	72	190	
CO_2/O_2	5.2	4.1	5.5	3.7	3.4	5	6	3	
H ₂ /CO				55.6	91.7	30-50	60	100	

Table 6.9:Selectivity of commercial membranes [204, 205, 206]

Table 6.10:	Input values and results for a simplified estimation of the energy requirements of CO ₂ separation
	with methanol at -30°C (similar to Rectisol process)

Reference values			
CO_2 separation factor (in %)	90	Feed gas	Volume frac- tion in %
Pressure loss in solvent circulation (in bar)	5	H ₂ O	28.4
Efficiency of refrigerating unit		CO ₂	29.4
$\eta_{RU} = \eta_{RU,rev} \cdot \varepsilon$ (in %)	35		
Pinch cold recovery (in K)	15	N_2	0.6
Absorption:		Ar	0.6
T_{abs} (in °C)	-30.0	H ₂	38.3
P _{abs,tot} (in bar)	20.0	CO	2.5
Desorption:		CH ₄	0.05
T _{desorption} (in bar)	-5	H ₂ S	0.17
$p_{CO_2,desorption}$ (in bar)	1.2		
Results			
Absorption		Refrigerating work	
Charge (in kg CO_2 /kg methanol)	0.049	Refrigerating unit efficiency η_{RU} (in %)	35
Desorption		Carnot factor η_c (in %)	22.6
Charge (in kg CO_2 /kg methanol)	0.015	max. coefficient of perf. $\varepsilon_{rev} = Q/P = 1/\eta_c$	4.42
Absorbent balance		actual coefficient of perf. $\epsilon_{RU} = \epsilon_{rev} \eta_{RU}$	1.55
Absorbent circulation		Feed gas cooling work (in kJ/kg CO ₂ sepa-	80.6
(in kg methanol/kg CO ₂ , separated)	29.3	rated) $(=\frac{c_p\Delta T}{x_{CO2}r_{CO2}\varepsilon_{Cc}})$	
Average density of methanol $(in kg/m^3)$	835	Feed gas cooling work (kWh/kgCO ₂ sepa- rated)	0.022
Pump work = $v \Delta p/\eta_{pump}$ (in kJ/kg CO ₂)	119.2		
Expansion, recovery $(in kJ/kg CO_2)$	-33.0	Total energy required	
Pump work + recovery $(in kJ/kg CO_2)$	86.3	(in kJ/kg CO ₂)	166.9
Pump work + recovery (in kWh/kg CO_2)	0.024	(in kWh/kg CO ₂)	0.046

Gas	^	Coal gas after CO	Flue gas	Flue gas	Flue gas
		shift conversion	Ũ	Ũ	U
Power plant		IGCC power	Steam power	IGCC	GTCC
Ĩ		plant	plant (coal)	power plant	power plant
CO ₂ capture ratio (in %)		90	90	90	90
Pressure loss in solvent circulati	on Δp (in bar)	5	5	5	5
Absorption					
P_1 (gas inlet)	(in bar)	1.013	1.013	1.013	1.013
T _{abs}	(in °C)	20.0	20.0	20.0	20.0
P _{abs,tot}	(in bar)	20.0	20.0	20.0	20.0
p_{CO2}	(in bar)	5.9	2.2	1.5	0.6
Absorption					
Charge (in kg	g CO ₂ /kg water)	0.010	0.004	0.002	0.001
Absorbent balance	•				
Solvent circulation (in kg water/	kg CO _{2,separated})	99.8	264.7	402.4	937.5
Pump work	(in kJ/kg CO ₂)	341.5	905.9	1377.1	3208.1
Water expansion, recovery	(in kJ/kg CO ₂)	-132.8	-352.3	-535.5	-1247.6
Water: pump work - recovery	(in kJ/kg CO ₂)	208.7	553.6	841.6	1960.5
(in kWh/kg CO ₂)		0.058	0.154	0.234	0.545
Gas compression	(in kJ/kg Gas)	612.8	432.6	449.6	453.6
Gas expansion (recovery) (in kJ	/kg Gas)	-400.1	-160.1	-164.3	-159.1
Gas compression - recovery	(in kJ/kg CO ₂)	765.5	1972.8	2931.2	6702.1
Gas compression - recovery	(in kWh/kg CO ₂)	0.2	0.5	0.8	1.9
Pump and compressor work (wa	ter+gas) (in kJ/kg CO ₂)	974.1	2526.4	3772.8	8662.6
	(in kWh/kg CO ₂)	0.271	0.702	1.048	2.406
		Volume fraction	Volume frac-	Volume	Volume
Feed gas		in %	tion in %	fraction in	fraction in
				%	%
O ₂			6.1	12.2	13.9
H ₂ O		28.4	6.2	13.8	6.4
CO ₂		29.4	11.2	7.4	3.2
N ₂		0.6	75.3	65.6	75.6
Ar		0.6	1.0	1.0	0.9
H ₂		38.3			
CO		2.5			
CH ₄		0.05			
H_2S		0.17			

Table 6.11: Input values and results for CO₂ absorption using water as an absorbent

 Table 6.12:
 Input values and results in calculating the energy requirements of various chemical CO₂ scrubbing processes (see Table 6.13 for details of physical characteristics)

processes (see Table 6.13 for		1 2					1	1	
Absorbent	MEA						Hot potas- sium car- bonate K ₂ CO ₃	DIPA	DGA
, , ,	12	20	30	30	50	50	40	40	40
H ₂ O in CO ₂ product	<u></u>				1				
Volume fraction in %	44.8	44.8	44.8	44.8	44.8	44.8	44.8	44.8	44.8
Mass fraction in %	24.9	24.9	24.9	24.9		24.9	24.9	24.9	24.9
Temperature of CO ₂ product (in °C)	92.2	92.2	92.2	92.2		92.2	92.2	92.2	92.2
Desorption pressure (in bar)		1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
Temp. of desorption (in °C)		115.2		115.2			115.2		115.2
Pinch heat exchanger lean/rich solution (in K)		23	23	23	23	23	23	23	23
Regeneration rate		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Heating (assuming heat capacity of solution as	1								
Difference in enthalpy Δh (in kJ/kg H ₂ O)	96.7	96.7	96.7	96.7	96.7	96.7	96.7	96.7	96.7
Solvent circulation									
(in kg/s MEA/ kg/s CO ₂)		5.0	5.0	5.0	4.0	4.0	5.0	5.0	5.0
(in kg/s H ₂ O / kg/s CO ₂)		25.0	16.7	16.7	8.0	8.0	12.5	12.5	12.5
Heating (in kJ/kg CO ₂)		2996			1257	1257	1788	1788	1788
Vaporization of water (amount determined by p									
enthalpy of vaporization h _r (in kJ/kg CO ₂)	551.6	551.6	551.6	551.6	551.6	551.6	551.6	551.6	551.6
Vaporization of absorbent									
kg vaporized absorbent/kg CO2 (target)	0.03	0.03	0.03				0.01	0.01	0.01
Enthalpy of vaporization h _{r,sol} (in kJ/kg CO ₂)	123.9	123.9	123.9	33.5	21.4	22	0	0	0
Reaction enthalpy (In kJ/kg CO ₂)	1636	1636	1636	1477	1409	1209	603	1674	1976
in relation to total energy consumption (in %)	19	25	29	28	35	32	16	33	37
Total energy expended on regeneration	1	1					I		
kJ/kg CO ₂	6919	5308	4503	4253	3238	3039	2943	4013	4315
kWh/kg CO ₂	1.92	1.47				0.84	0.82	1.11	1.20
Total energy required (regeneration as proportio							0.02	1.11	1.20
kJ/kg CO ₂	8648	6635				, 3799	3678	5017	5394
kWh/kg CO ₂	2.40	1.84	1.56		1.12	1.06	1.02	1.39	1.50
Equivalent electrical power (exergy efficiency of					1.12	1.00	1.02	1.57	1.00
	0.48	0.37	0.31	0.31	0.24	0.23	0.22	0.29	0.32
$\frac{1}{10000000000000000000000000000000000$	0.10	0.57	0.51	0.51	0.21	0.25	0.22	0.27	0.52
Pump work (additional assessment)	<u> </u>	I							
Absorber pressure (in bar)	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Pressure loss in solvent circulation (in bar)	3	3	3	3	3	3	3	3	3
Pump work (in kJ/kg CO_2)	36.5	23.7	17.4			10.0	14.2	14.2	14.2
CO_2 mass fraction in feed gas in %	10	10	17.4	17.4	10.0	10.0	14.2	14.2	14.2
Pressure loss in absorber (in bar)	0.05	0.05	0.05			0.05	0.05	0.05	0.05
Absorber-compressor work (in kJ/kg CO ₂)	42.2	42.2	42.2	42.2	42.2	42.2	42.2	42.2	42.2
		42.2	42.2	42.2	4 <i>2.</i> 2	42.2	42.2	42.2	42.2
With stripper (with recovery of the expansion w		0	0	0	0	0	0	0	0
Expansion (in kJ/kg CO ₂)	0	0	0	0			0	0	0
Pump work, total (in kJ/kg CO ₂)	78.7	65.9				52.1	56.3		56.3
Pump work, total (in kWh/kg CO ₂)	0.022	0.018	0.017	0.017	0.014	0.014	0.016	0.016	0.016

Absorbent	Concentration	Max. concen-	CO ₂ charg-	Reaction enthalpy		Enthalpy of	Reaction
	(M)	tration	ing (approx.)	with CO ₂	enthalpy	vaporization of	rate
				of solu	tion)	the absorbent	
	M=mol absor-	kg MEA	kg CO ₂ /kg	kJ/mol	kJ/kg	kJ/kg	mol/L.s
	bent/ mol H ₂ O	/kg H_2O in %	MEA	CO_2	CO_2	_	
MEA	5	30	0.4	72	1635.9	826	7600
DEA	3.5	36	0.4	65	1476.9	670	1500
TEA	3.35	50	0.5	62	1408.8	535	16.8
MDEA	4.28	50	0.5	53.2	1208.8	550	9.2
DIPA			0.4*		1673.6		400
DGA			0.4*		1975.8		
Hot potas-			0.4*		603.1		
sium car-							
bonate							
K_2CO_3							

Table 6.13: Characteristics of chemical absorbents used in removing CO₂ [168]

*notional value

Table 6.14:	Input values and results for calculating the energy requirements of CO ₂ separation by means of con-
	densation/sublimation of CO ₂ from the flue gas of a gas/steam turbine combined cycle power plant

Flue gas of gas/steam turbine combined cycle power plant									
Conden		Freezing							
T in °C	0	-20	-56.45	-56.75	-100	-130			
p ₀ in bar	1.05	1.05	1.05	1.05	1.05	1.05			
p _{tot} in bar	9706	5460	1455	1430	39	0.86			
p _{sat,subl} in bar	34.85	19.70	5.21	5.12	0.14	0.0031			
CO ₂ capture ratio in %	90.0	89.9	90.0	90.0	90.0	90.0			
Carnot coefficient of performance in %	9.2	17.8	37.6	37.8	72.2	108.3			
ζ refrigerating unit (RU) in %	35	35	35	35	35	35			
RU performance figure	3.8	2.0	0.9	0.9	0.5	0.3			
Pinch in K	40	40	40	40	40	40			
Refrigeration power in kJ/kg CO ₂	231.5	448.2	941.1	945.8	1795.3	2678.3			
Refrigerating work in kWh/kg CO ₂	0.06	0.12	0.26	0.26	0.50	0.74			
T after compression in °C	2798	2440	1753	1746	573	10.5			
Compressor work in kJ/kg Gas	3509	3014	2084	2074	599	-15			
Compressor work in kJ/kg CO ₂	74947	64413	44496	44274	12802	-320			
T after expansion in °C	418.0	368.1	272.3	271.2	109.4	28.9			
Expansion work in kJ/kg Gas	-3085	-2646	-1821	-1812	-511	19			
Expansion work in kJ/kg CO ₂	-62478	-53613	-36869	-36682	-10350	385			
Total compr. work in kJ/kg CO ₂	12470	10801	7628	7592	2452	65			
Total compr. work in kWh/kg CO ₂	3.46	3.00	2.12	2.11	0.68	0.02			
Total energy required in kWh/kg CO ₂	3.53	3.12	2.38	2.37	1.18	0.76			

Table 6.15:	Input values and results for calculating the energy requirements of CO ₂ separation by means of con-
	densation/sublimation of CO ₂ from the flue gas of an IGCC power plant

Flue gas of IGCC power plant						
		Freezing				
T in °C	0	-20	-56.6	-56.8	-100	-120
p ₀ in bar	1.05	1.05	1.05	1.05	1.05	1.05
p _{tot} in bar	3741	2114	556	555	14.85	1.4
p _{sat,subl} in bar	34.8	19.7	5.2	5.1	0.14	0.013
CO_2 capture ratio in %	90.0	90.0	90.0	90.1	90.0	90.0
Carnot coefficient of performance in %	9.2	17.8	37.7	37.8	72.2	94.7
ζ refrigerating unit in %	35	35	35	35	35	35
RU performance figure	3.8	2.0	09	0.9	0.5	0.4
Pinch in K	40	40	40	40	40	40
Refrigeration power in kJ/kg CO ₂	99.2	191.8	403.0	403.8	765.3	998.4
Refrigerating work in kWh/kg CO ₂	0.03	0.05	0.11	0.11	0.21	0.28
T after compression in °C	2053	1788	1273	1272	366	53
Compressor work in kJ/kg Gas	2613	2237	1528	1526.3	378.4	29.3
Compressor work in kJ/kg CO ₂	23303	19953	13622	13596	3376	261
T after expansion in °C	318.7	281.2	208.6	208.4	81.0	30.5
Expansion work in kJ/kg Gas	-2289	-1956	-1328	-1327	-318	-23
Expansion work in kJ/kg CO ₂	-17871	-15271	-10365	-10345	-2486.7	-183.0
Total compressor work in kJ/kg CO ₂	5432	4682	3257	3251	889	79
Total compr. work in kWh/kg CO ₂	1.51	1.30	0.90	0.90	0.25	0.02
Total energy required in kWh/kg CO ₂	1.54	1.35	1.02	1.02	0.46	0.30

Table 6.16:Input values and results for calculating the energy requirements of CO2 separation by means of con-
densation/sublimation of CO2 from the flue gas of a coal-fired steam power plant

Flue gas SPP						
	Condensation			Freezing		
T in °C	0	-20	-56.6	-56.8	-100	-120
p ₀ in bar	1.05	1.05	1.05	1.05	1.05	1.05
p _{tot} in bar	2600	1466	386	390	10.4	0.97
p _{sat,subl} in bar	34.8	19.7	5.2	5.1	0.139	0.013
CO ₂ separation factor in %	90.0	89.9	89.9	90.2	90.0	90.0
Carnot coefficient of performance in %	9.2	17.8	37.7	37.8	72.2	94.7
ζ refrigerating unit (RU) in %	35	35	35	35	35	35
RU performance figure	3.8	2.0	0.9	0.90	0.5	0.4
Pinch in K	40	40	40	40	40	40
Refrigeration power in kJ/kg CO ₂	68.5	132.4	277.9	278.0	526.6	687.4
Refrigerating work in kWh/kg CO ₂	0.02	0.04	0.08	0.08	0.15	0.19
T after compression in °C	1879	1641	1151	1155	308	19
Compressor work in kJ/kg Gas	2273	1953	1312	1316	299	-6
Compression in kJ/kg CO ₂	14579	12531	8413	8418	1918	-37
T after expansion in C	294	263	192	192	73	26.5
Expansion work in kJ/kg Gas	-1989	-1703	-1138	-1141	-250	7
Expansion in kJ/kg CO ₂	-10544	-9032	-6033	-6037	-1327	39
Total compressor work in kJ/kg CO ₂	4034	3499	2380	2381	591	1.7
Compressor work in kWh/kg CO ₂	1.12	0.97	0.66	0.66	0.16	0.00
Total power required in kWh/kg CO ₂	1.14	1.01	0.74	0.74	0.310	0.19

Table 6.17: Input values and results for calculating the energy requirements of CO₂ separation by means of condensation/sublimation of CO₂ from the synthesis gas of an IGCC power plant after CO shift conversion

	Cor	ndensation	Free	zing	
T in °C	0	-20	-56.57	-56.75	-75
p_0 in bar	25	25	25	25	25
p _{tot} in bar	591.8	335.6	87.9	88.22	22.67
p _{sat,subl} in bar	34.8	19.7	5.2	5.1	1.3
CO ₂ capture ratio in %	90.0	90.0	90.0	90.1	89.9
Carnot coefficient of performance in %	9.2	17.8	37.7	37.8	50.5
ζ of refrigerating unit (RU) in %	35	35	35	35	35
RU performance figure	382.4	196.9	92.9	92.6	69.4
Pinch in K	40	40	40	40	40
Refrigeration power in kJ/kg CO ₂	22.1	42.4	88.2	88.3	117.0
Refrigerating work in kWh/kg CO ₂	0.01	0.01	0.02	0.02	0.03
T after compression in °C	409.6	322.4	149.9	150.3	18.4
Compression work in kJ/kg Gas	682.7	519.6	210.8	211.4	-10.9
Compression work in kJ/kg CO ₂	880.9	670.2	271.9		56.3
T after compression in °C	88.8	75.7	48.2		30.3
Expansion work in kJ/kg Gas	-577	-436	-173		-35
Expansion work in kJ/kg CO ₂	-103	-78.0	-30.9		-6.2
Total compr. work in kJ/kg CO ₂	777.7	592.3	241.0		50.1
Total compressor work in kWh/kg CO ₂	0.22	0.16	0.07		0.01
Total power required in kWh/kg CO ₂	0.22	0.18	0.09		0.04

Table 6.18: Expenditures and potential recovery of energy for CO conversion / CO₂ adsorption with CaO / CaCO₃ (without CO₂ liquefaction).

H ₂ O : CO (mol/mol): 2.1 : 1		
Desorption: 750°C / pCO ₂ <0.086 bar		
iciency Penalty in		
ercentage Points		
ŀ		
)		
3		
5		
3		
8		
7		
3		
1		
5		
5		

* Conversion of enthalpy to electrical energy where: $\eta \approx 0.3$

** Conversion of enthalpy to electrical energy where: $\eta = \eta_{IGCC}/\eta_{(clean gas to coal)} \approx 0.4/0.766 = 52.2\%$

*** Conversion of enthalpy to electrical energy where: $\eta \approx 0.28$

**** Conversion of enthalpy to electrical energy where: $\eta \approx 0.25$

temperatures of 10/20/2.	e (bingie b	uige 01, in	ee stage me		inpression).			
TIT in °C	1300	1300	1300	1190	1190	1190		
Condenser temperature in °C	18	20	23	18	20	23		
CO ₂ condensation pressure in bar	67.45	69.7	73.12	67.45	69.7	73.12		
T-recuperator/CO ₂ in °C	769	771	774	669	672	674		
Power output (positive = delivery of electric power, negative = consumption)								
GT in kW	31282	31213	31213	31178	30982	30905		
ST in kW	10069	10070	10097	9855	9817	9812		
O ₂ compression in kW	-1883	-1883	-1883	-1883	-1883	-1883		
CO ₂ compression in kW	-9110	-9195	-9195	-9862	-9909	-9767		
pump in kW	-1415	-1453	-1557	-1539	-1573	-1681		
ASU in kW	-3957	-3957	-3957	-3957	-3957	-3957		
net output in kW	24986	24795	24719	23791	23476	23429		
Efficiencies in %	•				•			
η (LHV)	50.0	49.6	49.4	47.6	46.9	46.8		
η (HHV)	45.0		44.5	42.9	42.3	42.2		
Composition of separated CO ₂ stream	•				•			
Mass fractions of CO ₂ in %	96.5	96.5	96.5	96.5	96.5	96.5		
Mass fractions of Ar in %	2.7	2.7	2.7	2.7	2.7	2.7		
kg CO ₂ /s	2.735	2.735	2.735	2.735	2.735	2.735		
CH ₄ input in kg/s	1		•		•			
LHV (CH ₄)	50010							
HHV (CH ₄)	55495							
O ₂ mass flow in kg/s	4.071							
Energy expended in O_2 production in 0.27 kWh/kg (at 1 bar, O_2 purity: 98% Volume fraction O_2) kWh/kg O_2								

Table 6.20: Potential for reducing CO₂ emissions

Measure	Potential for reducing CO ₂ emissions	Notes
Worldwide use of natural gas instead of coal as a power plant fuel	8% (global)	Assuming that power plant efficiency remains the same
Replacing all existing power plants in Germany with new higher-efficiency models (43% for lignite power plants, 47% for hard coal power plants, 58% for natural gas power plants)	 30% in relation solely to lignite power plants 27% in relation solely to hard coal power plants 14.5% in Germany (total emissions) 	 Average efficiencies [207]: 32.0% for all the electricity generating plants of the public power supply system 30.0% for the lignite power plants of the public power supply system 34.3% for the hard coal power plants of the public power supply system Share of electricity generation (1997) [208]: 25% for lignite power plants, 26% for hard coal power plants
Replacing the separate generation of electrical energy and heat with power and heat cogeneration (<i>German</i> : KWK)	1.4% to 7.8% in Germany (total emissions)	Literature source: Pruschek et al. [207]
Increased construction of nuclear power plants on a global level	7% (only power supply sector, global)	Literature source: van de Vate [209]

6.6 Electrical Equivalence Factor of Heat Utilization (Extraction Steam)

Chemically-acting solvents (chemical absorption) are regenerated through an increase in temperature. Normally, steam is used to heat the regenerator. This steam is extracted from the low-pressure section of the steam turbine and fed back into the steam cycle as condensate. Extracting the steam leads to a reduction in the output of the steam turbine cycle.

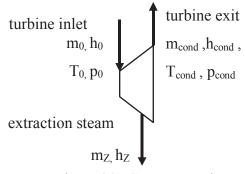


Figure 6.8: Steam extraction

The reduced output of the steam turbines ΔP_T (mechanical equivalent of the steam) is calculated from heat consumption \dot{Q} through multiplication with a conversion factor (equivalence factor $\alpha_{0,Q}$):

$$\Delta P_T = \alpha_{0,Q} \cdot Q_{use} \tag{6.1}$$

Heat flow Q_{use} , used in the heat consumer, is the difference $\Delta H_{D,use}$ between the enthalpy flow of the steam prior to heat utilization and the condensed, warm water after heat utilization.

 Q_{use} corresponds approximately to enthalpy $H(p_Z, T_Z)$ of the extraction steam:

$$Q_{use} = \Delta H_{D,use} = m_Z h(p_Z, T_Z)$$
(6.2)

The ratios at the steam turbine are shown in Figure 6.8. Equivalence factor $\alpha_{0,Q}$ of the heat utilization is the ratio of the modified turbine output ΔP_T to the heat used Q_{use} :

$$\alpha_{0,\mathcal{Q}} = \frac{\Delta P_T}{Q_{use}} = \frac{\Delta P_T}{m_Z h(p_Z, T_Z)}$$
(6.3)

With the modified turbine output (mechanical equivalent of the steam):

$$\Delta P_T = m_Z |w_t| = m_Z [h(p_Z, T_Z) - h''(p_{cond}, x_{cond})]$$
(6.4)

equivalence factor $\alpha_{0,O}$ is calculated:

$$\alpha_{0,Q} = \frac{\Delta P_T}{Q_{use}} = \frac{\Delta P_T}{m_Z h(p_Z, T_Z)} = \frac{h(p_Z, T_Z) - h''(p_{cond}, x_{cond})}{h(p_Z, T_Z)}$$
(6.5)

The enthalpy of the condensate flowing back from the heat consumer could be used to preheat the feed water. This would enable a higher equivalence factor to be achieved. The enthalpy of fuel saved through preheating corresponds to enthalpy $m_z h'(p_Z)$ of the condensate from the heat consumer minus enthalpy $m_z h'(p_{Kond})$ of the condensate after the steam turbine:

$$\Delta H_{B} = m_{Z}(h'(p_{Z}) - h'(p_{cond}))$$
(6.6),

To perform a more precise calculation of the change in power output through using the hot return flow condensate from the heat consumer for regenerative preheating in the steam turbine cycle with the same utilization of fuel, it would be necessary to take into consideration the exact process arrangement of the steam cycle with the number of preheatings, and the states and mass flow rates of the vapor. To enable a generalized statement to be given, the simplified assumption is made that efficiency $\eta_{D,el}$ of the steam cycle is known. This enables the calculation of equivalence factor $\alpha_{v,Q}$ of heat utilization with preheating:

$$\alpha_{V,Q} = \frac{\Delta P_T + \eta_{D,el} m_Z (h'(p_Z) - h'(p_{cond}))}{m_Z h(p_Z, T_Z)}$$

$$= \frac{h(p_Z, T_Z) - h''(p_{cond}, x_{cond}) + \eta_{D,el} (h'(p_Z) - h'(p_{cond}))}{h(p_Z, T_Z)}$$
(6.7).

If technical limitations mean that the steam can only be expanded by the turbine to a residual humidity of around 85%, for some live steam states this will mean having to increase the condenser pressure. High wet steam pressure at the turbine inlet means that maximum humidity has already been achieved at a high pressure, which produces a higher turbine exit temperature. This also reduces the equivalence factor.

Figure 6.9 (using the enthalpy of the hot condensate from the heat consumer for preheating purposes) and Figure 6.10 (using the enthalpy of the hot condensate) show the equivalence factor for the three cases, in which the difference in enthalpy usable in the turbine:

- occurs through expansion to 0.04 bar (29°C), whereby residual humidity is dependent on the inlet state of the steam (Figure 6.11),
- is the difference between the enthalpy of the extraction steam and the enthalpy at a fixed condenser state of 0.04 bar and wet steam of 85%, or
- occurs through expansion to wet steam of 85%, and to the associated condenser pressure in dependence on the inlet state of the steam (Figure 6.12).

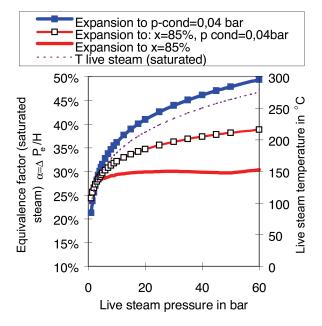


Figure 6.9: Equivalence factor using the hot condensate from the heat consumer for preheating.

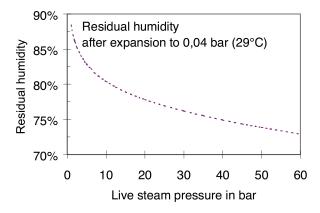


Figure 6.11: Equivalence factor using the hot condensate from the heat consumer for preheating.

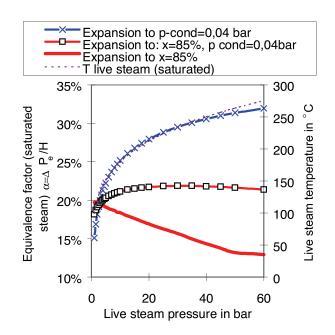


Figure 6.10: Equivalence factor without use of the hot condensate from the heat consumer

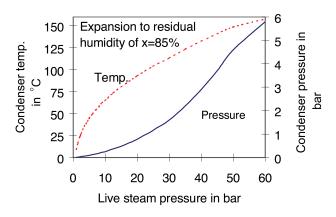


Figure 6.12: Equivalence factor without use of the hot condensate from the heat consumer

6.7 Calculation of Electricity Generating Costs

In calculating the electricity generating costs, it is assumed that the investment during the period of construction is made in equal annual installments, at the mid-point of each year. Table 4.2 on page 143 summarizes the values of the factors which influence the calculation.

The method of calculating the electricity generating costs is described in more detail by Pruschek et al. [180].

$$k_{el} = \frac{I}{T_a} \cdot \alpha \cdot \beta \cdot \gamma + \frac{k_b}{\eta} \cdot \delta \cdot \varepsilon \qquad (6.8)$$

where:

$$\begin{aligned} \alpha &= \left(1 + \frac{f_E}{100}\right) \cdot \left(1 + \frac{f_I}{100}\right)^{n_P} \\ \beta &= \frac{1}{n_B} \left(\sum_{x=1}^{n_B} \left(1 + \frac{f_I}{100}\right)^{(x=0.5)} \cdot \left(1 + \frac{f_{ZB}}{100}\right)^{(n_B - (x=0.5))}\right) \\ \gamma &= \frac{q^{n_L} \cdot (q-1)}{q^{n_L} - 1} + \frac{f_S}{100} + \frac{f_V}{100} + \frac{f_W}{100} & \text{in 1/a} \\ \delta &= \frac{3.6}{1000} \cdot e^{(n_P + n_B)} & \text{in GJ/kWh} \\ \varepsilon &= \frac{\left(q^{n_L} - \left(1 + \frac{f_I}{100}\right)^{n_L}\right)}{q^{n_L} \cdot \left(q - \left(1 + \frac{f_I}{100}\right)\right)} \cdot \frac{q^{n_L} \cdot (q-1)}{(q^{n_L} - 1)} \\ q &= 1 + \frac{f_Z}{100} & e = 1 + \frac{f_I}{100} + \frac{f_e}{100} \end{aligned}$$

Table 6.21: Influencing factors in the calculation of electricity generating costs

k_{el}	standardized electricity generating costs in	Ι	specific plant costs in base year in US\$/kW
	US\$/kWh		
Ta	annual utilization factor in h/a	k_B	fuel costs in base year in US\$/GJ
η	net efficiency of power plant	n_P	duration of planning period prior to start of con-
			struction in years
n_B	construction period in years	n_L	period of depreciation, operating life in years
f_E	client's own contribution as % of plant costs	f_I	general price escalation (inflation) in %/a
f _{ZB}	imputed rate of interest during construction	fs	standardized tax rate during period of construc-
	period (discount rate) in %/a		tion in %/a
f_V	standardized rate of insurance over period of	f_W	standardized rate of maintenance and repair
	operation in %/a		costs + staff costs in %/a
f_Z	imputed rate of interest during period of opera-	f_e	increase in fuel prices in %/a
	tion in %/a	-	_

7 LITERATURE

- [1] Keith, D.W.; E.A. Parson (2000): A Breakthrough in Climate Change Policy. Scientific American Feb. 2000.
- [2] Strömberg, L. (2001): "Discussion on the Potential and Cost of Different CO2 Emission Control Options in Europe." VGB power Tech, 10/2001, S. 92-97
- [3] Berner, R.A.; A.C. Lasaga (1989): "Simulation des geochemischen Kohlenstoffkreislaufs." Spektrum der Wissenschaft, Mai 1989, 54-61
- [4] Griffin A., Bill J., Marion N., Nskala N.: Controlling Power Plant CO2 Emissions: A Long Range View. Power-Gen Europe, Brüssel, 2001
- [5] Winkler Ph.,: Evolution of Combustion Technology to Support National Energy Needs. January 15, 2002, www.airproducts.com
- [6] Asen, K.; K. Wilhelmsen(2003): "CO₂ Capture in Power Plants Using Mixed Conduction Membranes (MCM)." PowerGen Europe 2003.
- [7] Lackner K. S., Ziock H-J.: "The US Zero Emission Coal Alliance Technology," VGB PowerTech 12/2001, S. 57 bis 61, Essen 2001, http://www.vgb.org.
- [8] Köhler, D.; Krammer, Th.; Schwärzer, M. (2003): "Der Zero Emission Coal Process." BWK 3-2003, pp. 63-66.
- [9] Arrhenius, S. (1896): "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground". Philosophical Magazine and Journal of Science, Fifth Series, April 1896, London, Edinburgh and Dublin.
- [10] Houghton, J. T.; Meira Filho, L. G.; Callander, B. A.; Harris, N.; Kattenberg, A.; Maskell, K., (Eds) (1996): "*Climate Change. The science of climate change*". Cambridge University Press. 1996
- [11] WEC (1997): World Energy Council Journal, London, Juli 1997
- [12] BP (1998): "BP Statistical Review of World Energy 1998", British Petroleum Company p.l.c.
- [13] (ed.) Lakeman, J.A. (1995): "*Climate Change 1995, The Science of Climate Change*". Intergovernmental Panel on Climate Change, Cambridge University Press, 1996
- [14] Schönwiese, Chr. D. (1997): "Sichere Vorhersagen?", Interview in der Süddeutschen Zeitung vom 07.08.1997, Blickpunkt Wissenschaft.
- [15] Marland, G.; T. Boden (1997): "Regional Annual CO₂ Emission Estimates from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1950-94." (Oak Ridge National Laboratory), Februar 1997.
- [16] Hendriks, C.A. (1994): "*Carbon Dioxide Removal from Coal-Fired Power Plants*". Kluwer Academic Publishers, Dordrecht, 1994.
- [17] Koetzier, H.; van Rijen S.P.N.; Bresser, H. (1992): "*Calculations on Some Complete Systems for Electricity Production with CO₂ Recovery, Transport and Storage*". KEMA, Arnhem, The Netherlands, Juni 1992 (in Holländisch).
- [18] IEA GHG (1993): "*Carbon Dioxide Capture from Power Stations*". IEA Greenhouse Gas R&D Programme, Cheltenham, UK.
- [19] Pruschek, R.; Oeljeklaus, G.; Göttlicher, G.; Kloster, R. (1997): "*Gas-Dampfkraftwerke mit hohen Wirkungsgraden*", VDI-GET Tagung: Fortschrittliche Energiewandlung und -anwendung. Bochum, 1997.
- [20] Pruschek, R., Oeljeklaus, G.; Boeddicker, D.; Brand, V.; Folke, C.; Göttlicher, G.; Kloster, R.; Haupt, G.; Zimmermann, G.; Moricet, M.; Tränkenschuh, H.-Chr.; Schwarzott, W.; Jansen, D.; Ribberink, J. S.; Iwanski, Z. (1997): Contract JOU2-CT92-0185: "Coal-fired multicycle power generation systems for CO₂ control in IGCC-systems for minimum noxious gas emissions, CO₂ control and CO₂ disposal". In: "JOULE II - Clean Coal Technology Programme 1992-95, Volume III: Combined Cycle Project, Final

Reports". Europäische Kommission, Directorate-General XII - Science, Research and Development, 1997, EUR 17524 EN, ISBN 92-828-0007-5.

- [21] Pruschek, R.; D. Jansen; B. C. Williams (1998): "*Advanced cycle technologies, Improvement of IGCCs starting from the state of the art (Puertollano)*". Second Conference: "Coal and Biomass: High-Tech Fuels for the Future, Clean Coal Technologies for Solid Fuels" (JOULE-THERMIE, 1996-1998), 11./12. November 1998, Brüssel.
- [22] Pruschek, R.; G. Oeljeklaus; V. Brand; G. Göttlicher; R. Kloster. (1995): "COMBINED CYCLES, Including Technologies such as IGCC, PFBC, on which there Exist Considerable RD & D Efforts". Für: Institute for Prospective Technological Studies. Sevilla, Juli 1995
- [23] van Heek, K. H. (1995): "*Erzeugung und Konditionierung von Gasen für den Einsatz in Brennstoffzellen*". VDI-Berichte Nr. 1174, 1995, pp. 97-115.
- [24] Riensche, E. (1995): "Verfahrenstechnik der Hochtemperaturbrennstoffzelle". VDI-Berichte Nr. 1174, 1995, p. 63-78.
- [25] IEA GHG (1998): "*Fuel Cells with Carbon Dioxide Removal*". IEA Greenhouse Gas R&D Programme, Cheltenham, UK. Report Number PH2/13, 1998.
- [26] Kjær, S. (1993): "Die zukünftigen 400 MW-ELSAM-Blöcke in Aalborg und Skærbæk" VGB Kraftwerkstechnik 73 (1993), 11, pp. 933-940.
- [27] Eichholtz, A.; Hourfar, D.; Kübler, D. (1994): "Der 700-MW-Steinkohleblock der VEBA Kraftwerke Ruhr AG in Gelsenkirchen-Heβler". VGB Kraftwerkstechnik 74 (1994), Nr. 1, pp. 25-29.
- [28] Kjaer, S. (1996): "The Advanced Pulverized Coal-Fired Power Plants Status and Future". POWER-GEN EUROPE '96.
- [29] Hald, J.; B. Nath (1998): "New High Temperature Steels for Steam power Plants". POWER-GEN EUROPE '98, Milano, Juni 1998.
- [30] Thomsen, F.; C. M. Hansen; S. Kjær (1998): "Danish Experiences from new USC Plants at Skærbækværket and Nordjyllandsværket". POWER-GEN EUROPE '98, Milano, Juni 1998.
- [31] Campbell, P. E.; McMullan, J. T.; Williams, B. C. (1995): "Fuel Cells in "Clean" Coal Power Generation". Proceedings of the 3rd International Symposium on Coal Combustion, Science and Technology. Beijing, China, Sept. 18-21, 1995, 633-642. Science Press, Beijing, 1995.
- [32] McMullan, J.T; Williams, B.C; Campbell, P.E; McIlveen-Wright, D.R.; Brennan, S.; McCahey, S. (1996): "Fuel Cell Optimisation Studies". JOULE II Programme. Final Report, Contract JOUL2-CT93-0278. 1996.
- [33] Marchetti, C. (1977): "*On Geoengineering and the CO₂ Problem*". Climatic Change 1 (1977), pp. 59-68, D. Reidel Publishing Company, Dordrecht-NL.
- [34] Horn, F.L.; Steinberg, M. (1982): "An Improved Carbon Dioxide Power Plant". Energy Progress Vol.2 No.3, Sep. 1982.
- [35] Horn, F.L.; Steinberg, M. (1982): "Control of Carbon Dioxide Emissions from a Power Plant (and Use in Enhanced Oil Recovery)". Fuel Vol. 61, Mai 1982.
- [36] Steinberg, M.; Cheng, H. C.; Horn, F. (1984): "A Systems Study for the Removal, Recovery and Disposal of CO₂ from Fossil Fuel Power Plants in the US". DOE /CH/000 16-2, Dez. 1984.
- [37] Steinberg, M.; Grohse, E.W. (1991): "*A feasibility study for the coprocessing of fossil fuels with biomass by the Hydrocarb process*". Research report US EPA-600/7-91-007 (NTIS DE91-011971), 1991.
- [38] Steinberg, M.; Dong, Y.; Borgwardt, R.H. (1993): "*The Coprocessing of Fossil and Biomass for CO*₂ *Emission Reduction in the Transportation Sector*". Energy Convers. Mgmt. Vol.33 No.5-8, Pergamon Press, Oxford, 1992, pp.1015-1023.

- [39] Sander, M.T.; Mariz, C. L.; (1992): "*The Fluor Daniel ECONAMINE FG Process: Past Experience and Present Day Focus*". Energy Convers. Mgmt. Vol.33 No.5-8, Pergamon Press, Oxford, 1992, pp.341-348.
- [40] Barchas, R.; Davis, R. (1992): "*The Kerr-McGee/ABB Lummus Crest Technology for the Recovery of CO*₂ *from Stack Gases*". Energy Convers. Mgmt. Vol.33 No.5-8, Pergamon Press, Oxford, 1992, pp.333-340.
- [41] Collins, S. (1992): "Cogen plant cycles large CFB boilers, recovers CO₂". Power, pp.47-52, Apr. 1992.
- [42] Rushing, S.A.; (1993): "*Cogeneration projects can profit from CO₂ recovery*". Power Engineering, pp.33-34, Mai 1993.
- [43] Suda, T.; Fujii, M.; Yoshida, K.; Iijima, M.; Seto, T.; Mitsuoka, S. (1992): "Development of flue gas carbon dioxide recovery technology". Energy Convers. Mgmt. Vol.33 No.5-8, Pergamon Press, Oxford, 1992, pp.317-324.
- [44] IEA GHG (1996): "*Pioneering CO₂ Reduction*". Greenhouse Issues, Number 27, Nov. 1996. IEA Greenhouse Gas R&D Programme, Cheltenham. ISSN 0967 2710.
- [45] IEA GHG (1996): "*CO*₂ *Capture and Storage in the Natuna LNG Project*". Greenhouse Issues, Number 22, Jan. 1996. IEA Greenhouse Gas R&D Programme, Cheltenham. ISSN 0967 2710.
- [46] Seifritz, W. (1993): "*The Terrestrial Storage of CO₂-Dry-Ice*". IEA Carbon Dioxide Disposal Symposium, Oxford, Energy Conv. Mgmt. Vol. 34, No. 9-11, Pergamon Press, Oxford, March 1993, pp. 1121-1141.
- [47] Marchetti, C. (1979): "Constructive Solutions to the CO₂ Problem". In: W. Bach, J. Pankrath, W. Kellog (Eds.): "Man's Impact on Climate", Elsevier, New York 1979.
- [48] Baes, C.F.; Beall, S. E.; Lee, D.W. (1980): "*The Collection, Disposal and Storage of Carbon Dioxide*".
 In: Bach, W.; Pankrath J.; Williams, J. (Eds.): "*Interactions of Energy and Climate*", pp. 495-519, D. Reidel Publishing Company 1980.
- [49] Gunter, W.D.; E.H. Perkins; T.J. McCann (1993): "*Aquifer Disposal of CO₂ rich gases: reaction design for added capacity*". Energy Convers. Mgmt. 34, 941-948.
- [50] Segen, G. R.; K. H. Cole (1993). Energy Convers. Mgmt. 1993, 34, pp.857-864.
- [51] Nakashiki, N.; Oshumi, T.; Shitashima, K. (1991): "Sequestering of CO₂ in a Deep- Ocean". Central Research Institute of Electric Power Industry, Japan, 1991.
- [52] Stevens, S. C., D. Spector; P. Riemer (1998): "Enhanced Coalbed Methane Recovery Using CO₂ Injection: Worldwide Resource and CO₂ Sequestration Potential". Presentation STG-06 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [53] IEA GHG (1999): "CO₂ Sequestration in Deep Coal Seams". Greenhouse Issues, Number 40, Jan. 1999.
- [54] Freund, P.; W.G. Ormerod (1997): "*Progress Toward Storage of Carbon Dioxide*". Energy Convers. Mgmt. Vol. 38, Suppl., pp. S199-S204, 1997.
- [55] Haugen, H. A.; L. I. Eide (1996): "*CO*₂ *Capture and Disposal: The Realism of Large Scale Scenarios*". Energy Convers. Mgmt. Vol. 37, Nos. 6-8, pp. 1061-1066, 1996.
- [56] Bundesministerium für Wirtschaft (BMWi): "Energiedaten 1992/1993"
- [57] Riemer, P. W.; W.G. Ormerod (1995): "International Perspectives and Results of Carbon Dioxide Capture Disposal and Utilisation Studies". Energy Convers. Mgmt. Vol. 36, No. 6-9, pp.-813-818, 1995.
- [58] Mohn, F. H.; J. U. Grobbelaar; C. J. Soeder (1998): "*Can Microalgal Biotechnology be used to reduce the CO*₂ *Atmospheric Burden*?". Presentation BIO-P01 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [59] Jones, IS.F: (1996): "*Enhanced Carbon Dioxide Uptake by the World's Oceans*". Energy Convers. Mgmt. Vol. 37, Nos. 6-8, pp. 1049-1052, 1996.

- [60] Berner, R.A.; A.C. Lasaga (1989): "Simulation des geochemischen Kohlenstoffkreislaufs". Spektrum der Wissenschaft, Mai 1989, 54-61
- [61] Lackner, K. S.; D. P. Butt; Chr. H. Wendt (1997): "*Progress in binding CO₂ in Mineral Substrates*". Energy Convers. Mgmt. Vol. 38, Suppl., pp. S259-S264, 1997.
- [62] Kojima, T.; A. Naamine; N. Ueno; S. Uemiya (1997): "*Absorption and Fixation of Carbon Dioxide by Rock Weathering*". Energy Convers. Mgmt. Vol. 38, Suppl., pp. S461-S466, 1997.
- [63] Sparrow, F. T.; Wolsky, A.M.; Berry, G.F.; Brooks, C.; Cobb, T. B.; Lynch, E. P.; Jankowski, D. J.; Walbridge, E.W. (1988): "Carbon Dioxide From Flue Gases For Enhanced Oil Recovery". Argonne National Laboratory, ANL/CNSV-65, 1988
- [64] Skovholt, O. (1993): "*CO₂ Transportation System*". Energy Convers. Mgmt. Vol.34, No. 9-11, pp.1095-1103, Pergamon Press, Oxford, 1993.
- [65] Udvardi, G.; Gerecs, L.; Ouchi, Y.; Nagakura, F.; Thoes, E.A.; Wallace, C.B. (1990): "*CO*₂ dehydration scheme aids Hungarian EOR project". Oil & Gas Journal, Okt. 22, 1990, pp. 74-79.
- [66] Case, J. L.; Ryan, B. F.; Johnson, J. E. (1985): "CO₂ streams pose new design considerations". Oil & Gas Journal, Mai 6, 1985, pp. 175-179.
- [67] Hein, M. (1986): "Pipeline design model addresses CO₂'s challenging behaviour". Oil & Gas Journal, Juni 2, 1986, pp. 71-75.
- [68] Riemer, P. W.; W. G. Ormerod (1995): "International Perspectives and Results of Carbon Dioxide Capture Disposal and Utilisation Studies". Energy Convers. Mgmt. Vol. 36, No. 6-9, pp.813-818, 1995.
- [69] Johnson, J. E.; Walter, F. B. (1985): "*Gas processing needs for EOR*". Hydrocarbon Processing, Oktober 1985, pp. 62-63.
- [70] Trieloff, H.-J.; Andriessen, B. J.; Zeller, R.; (1981.): "*Beschaffung großer Kohlendioxidmengen für Erdöl-Flutprojekte*". Erdöl und Kohle-Erdgas-Petrochemie / Brennstoff-Chemie, Bd.34, 10, 1981, pp.433-437.
- [71] Hendriks, C. A.; Blok, K.; Turkenburg, W. C. (1990): "*The Recovery of Carbon Dioxide from Power Plants*". In: P.A. Okken, R.J. Stuart and S. Zwerer (Eds.): "*Climate and Energy*". Kluwer Academic Publisher, Dordrecht 1990, pp.125-142.
- [72] Hwang, S.-K; Kammermeyer, K. (1975): "Membanes in Separation". John Wiley, New York, 1975.
- [73] van der Sluijs, J. P.; Hendriks, C. A.; Blok, K. (1992): "Feasibility of Polymer Membranes for Carbon Dioxide Recovery from Flue Gases". Energy Convers. Mgmt. Vol.33, No.5-8, Pergamon Press, Oxford, 1992, pp.429-436.
- [74] Kümmel, R.; Groscurth, H.-M.; Schüßler, U. (1992): "*Thermoeconomic Analysis of Technical Greenhouse Warming Mitigation*". Int. J. Hydrogen Energy, Vol. 17, No. 4, April 1992, pp.293-298.
- [75] Matson, S. L.; Lonsdale, H. K. (1987): "*Liquid membranes for the production of oxygen-enriched air, III. Process design and economics*". Journal of membrane sciences, 31 (1987) pp.69-87.
- [76] Springmann, H. (1974): "Auslegung moderner Tieftemperatur-Anlagen zur Gewinnung von Sauerstoff, Stickstoff und Edelgasen". Chemie-Ing.-Techn. 46 (1974), No.21, pp. 881-887.
- [77] IEA GHG (1993): "*The capture of carbon dioxide from fossil fuel fired power stations*". IEAGHG/SR2. IEA Greenhouse Gas R&D Programme, Cheltenham.
- [78] Nowack, R. (1992): "*CO₂-Emissionen aus Steinkohlekraftwerken*". Reihe Energietechnik, Shaker, Aachen, 1992 (Diss.).
- [79] Gerhartz, W.(ed.) (1985): "*Ullmann's Encyclopaedia of Industrial Chemistry*". VCH Verlagsgesellschaft, Weinheim, Germany, 1985. ISBN 3-527-20102-5.
- [80] Haldor-Topsoe: Informationsbroschüren zum Katalysatorprogramm, 1993.

- [81] Shell International Petroleum Maatschappij and Koninklijke/Shell Explorati en Produktie Laboratorium (1990): "*Carbon dioxide disposal from coal based combined cycle power stations in depleted gas fields in the Netherlands*". Publikatiereeks Lucht nr. 91, Ministry of Housing, Physical Planning and Environment, Air Directorate, Leidschenham, NL, 1990.
- [82] BASF (1995): Lieferprogramm für Katalysatoren.
- [83] Nakayama, T. et al. (1990): "Development of fixed-bed type hot gas clean-up technology for integrated coal gasification combined cycle power generation", CRIEPI-EW-89015, Tokyo, Japan, Central Research Institute of Electric Power Industry, April 1990.
- [84] Gangwal, S. K. (1991): "Hot-Gas Desulphurisation Sorbent Development for IGCC Systems", IChemE Symposium series No. 123, Rugby, UK, 1991, pp 159 171.
- [85] Brand, V. (1996): "*Rückhaltung von Kohlendioxid in Kohlekraftwerken mit integrierter Kohlevergasung*". Dissertation Universität GH Essen, 1996.
- [86] Condorelli, P.; Smelser, S.C.; McCleary, G.J.; Booras, G.S.; Stuart, R.J. (1991): "Engineering and Economic Evaluation of CO₂ Removal from Fossil-Fuel-Fired Power Plants. Volume 2: Coal Gasification Combined-Cycle Power Plants". EPRI IE-7365. Vol. 2. 1991.
- [87] Daun, M (1993): "Bewertung von Technologien zur Verringerung der Emission und zur Entsorgung von Kohlendioxid". Dissertation Universität Dortmund D290, Verlag Shaker, Aachen 1993.
- [88] Booras, G.S.; Smelser, S.C. (1991): "An Engineering And Economic Evaluation Of CO₂ Removal From Fossil-Fuel-Fired Power Plants". Energy Vol.16 (1991), No.11/12, pp.1295-1305.
- [89] Goldthorpe, S.H.; Cross, P.J.I.; Davison, J.E. (1992): "System Studies on CO₂ Abatement From Power Plants". Energy Convers. Mgmt. Vol.33, No.5-8, Pergamon Press, Oxford, 1992, pp.459-466.
- [90] Hendriks, C.A.; Blok, K.; Turkenburg, W.C. (1991): "*Technology and Cost of Recovering and Storing Carbon Dioxide from an Integrated-Gasifier, Combined-Cycle Plant*". Energy Vol.16 (1991); No.11/12, pp.1277-1293.
- [91] Doctor, R.D., J. C. Molburg; P.R. Thimmapuram; G.F. Berry; C.D. Livengood (1994): "Gasification Combined Cycle: Carbon Dioxide Recovery, Transport and Disposal". Argonne National Laboratory ANL/ESD-24, 1994.
- [92] Jansen, D.; Oudhuis, A.B.J.; Van Veen, H.M. (1991): "*CO*₂-*Verwijdering Bij KV-Steg-Installaties Ujtgerust Met Een Heet-Gasreinigungssysteem*". Netherlands Energy Research Foundation, Petten, The Netherlands, ECN-C-91-021, March 1991.
- [93] Jansen, D.; Oudhuis, A.B.J.; Van Veen, H.M. (1991): "CO₂ reduction potential of future coal gasification based power generation technologies". Energy Convers. Mgmt. Vol. 33, No. 5-8, Pergamon Press, Oxford, 1992, pp. 365-372.
- [94] Alderliesten, P. T.; Bracht, M.; Kloster, R.; Oeljeklaus, G.; Pruschek, R.; Haupt, G.; Zimmermann, G.; Xue, E.; O'Keeffe, M.; Ross, J.; Koukou, M.; Papayanakos, N.; Bos, A.; Hemmes, K.; Oudhuis, A.; Pex, P. (1997): "An attractive option for CO₂ control in IGCC systems: Water gas shift with Integrated Hydrogen/carbon dioxide Separation (WIHYS process), Phase I: Proof of principle". In: "JOULE II Clean Coal Technology Programme 1992-95, Volume III: Combined Cycle Project, Final Reports". Europäische Kommission, Directorate-General XII Science, Research and Development, 1997, EUR 17524 EN, ISBN 92-828-0007-5.
- [95] Kohl, A., L.; Riesenfeld, F., C. (1985): "*Gas Purification*". Gulf Publishing Company, Houston, Texas, fourth edition 1985.
- [96] Heesink, A. B. M. (1993): "*Process for removing carbon dioxide regeneratively from gas streams*". International Patent Appl. No. PCT/NL93/00136, Juni, 1993.

- [97] Ito, S.; H. Makino (1998): "Carbon Dioxide Separation from Coal Gas by physical Adsorption at Warm Temperature". Presentation CAP-19 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [98] Bower, C.; Goldthorpe, S.; Summerfield, I.; Fynes, G. (1992): "*CO*₂ *Removal As A Fallback Option For Power Generation?*". Energy and Environment (Brentwood), 1992, v.3(3), pp.222-237.
- [99] Mori, Y.; Masutani, S.M.; Nihous, G.C.; Vega, L. A.; Kinoshita, C. M. (1993): "*Pre-combustion removal of carbon dioxide from hydrocarbon-fuelled power plants*". Fuel 1993, Vol. 72 (9), pp.1293-1299.
- [100] Hille, J.E (1992): "*Removal of CO₂ from Reformer Gas in a Power Plant*". KTI/Mannesmann, Zoetermeer, The Netherlands, Juni 1992.
- [101] Audus, H.; O. Kaarstad; G. Skinner (1998): "CO₂ capture by pre-combustion decarbonisation of natural gas". Presentation ENT-01 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [102] Bolland, O; H. Undrum (1998): "Removal of CO₂ from gas turbine power plants: Evaluation of pre- and post combustion methods". Presentation CAP-18 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [103] Jørgensen, S.L.; Nielsen, P.E.H.; Lehrmann, P. (1995): Catal. Today 25 (303), 1995.
- [104] Moritsuka, H. (1998): "Hydrogen decomposed turbine systems for carbon dioxide recovery". Presentation ENT-02 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [105] Weller, A. W.; Rising, B. W. et al. (1985): "Experimental Evaluation of Firing Pulverized Coal in a CO₂ / O₂ Atmosphere". Battelle Columbus Division for Argonne National Laboratory, ANL/CNSV-[™]-168 (Oct. 1985).
- [106] Wolsky, A.M. (1986): "*A new method of CO₂ recovery*". 79th Annual Meeting of the Air Pollution Control Association, Minneapolis, Minnesota, Juni 22-27, 1986.
- [107] Abele, A.R.; Kindt, G.S.; Clark, W.D.; Payne, R.; Chen, S.L. (1987): "An Experimental Program to Test the Feasibility of Obtaining normal Performance from Combustors Using Oxygen and Recycled Flue Gas Instead of Air". Argonne National Laboratory, Argonne, Illinois, 1987, ANL/CNSV-TM--204, DE89 002383.
- [108] Roberts, P.A. (1997): "Atmospheric Pulverised Coal Combustion, Final Report". In: "JOULE II Clean Coal Technology Programme 1992-95, Volume II: Powder Coal Combustion Project, Final Reports". Europäische Kommission, Directorate-General XII - Science, Research and Development, 1997, EUR 17524 EN, ISBN 92-828-0006-7.
- [109] Kimura, K.; Takano, S.; Kiga, T.; Miyamae, S. (1990): "*Experimental Studies on Pulverized Coal Combustion with Oxygen/Flue Gas Recycle for CO*₂ *Recovery*".
- [110] Boeddicker, D. (1997): "Thermodynamische und energiewirtschaftliche Bewertung eines Kombikraftwerks mit integrierter Kohlevergasung und CO₂-Rezyklierung". Dissertation Universität GH Essen, 1997.
- [111] Bammert, K.; Mukherjee, S. K. (1975): "*Gasturbinenanlagen für Kernkraftwerke mit CO*₂ als *Arbeitsmittel*". VDI Fortschrittberichte Reihe 6, Nr. 40. VDI Verlag, Düsseldorf 1975.
- [112] Mathieu, Ph.; Dechamps, P.; Distelmans, M. (1994): "*Concepts and Applications of CO*₂ *Gas Turbines*". Power-Gen Europe '94, Köln, Mai 1994, Vol.6, pp. 7-28.
- [113] Angelino, G. (1968): "Carbon Dioxide Condensation Cycle for Power Production". Combustion 40 (Sept. 1968), No. 3, pp. 31-40 or ASME 68-GT-23 (1969).

- [114] Gasparovic, N. (1969): "Fluide und Kreisprozesse für Wärmekraftanlagen mit großen Einheitenleistungen". BWK 21, No.7, July 1969, pp. 347-359.
- [115] Pfost, H.; Seitz, K. (1971): "Eigenschaften einer Anlage mit CO₂-Gasturbinenprozeβ bei überkritischem Basisdruck". Brennst.-Wärme-Kraft Sept. 1971, 23 (9), pp. 400-405.
- [116] Griepentrog, H. (1989): "Kohlekraftwerke mit CO₂-armen Rauchgasen". Rheinisch-Westfälischer Technischer Überwachungsverein e.V., Essen, 1989.
- [117] Iantovski, E.I.; Zwagolsky, K.N.; Gavrilenko, V.A. (1992): "Computer Exergonomics Of Power Plants Without Exhaust Gases". Energy Convers. Mgmt. Vol.33, No.5-8, Pergamon Press, Oxford, 1992, pp.405-412.
- [118] Mathieu, Ph.; E. Iantovski; R. Nihart (1998): "The Zero Emission MATIANT cycle: technical issues of a novel technology". 2nd International Workshop on Zero Emission Power Plants, University of Liege, Institut de Mecanique, Januar 1998.
- [119] Jericha, H.; M. Fesharaki; A. Lukasser; H. Tabesh (1998): "Graz-Cycle eine Innovation zur CO₂-Minderung". BWK 10/98, pp. 30-34.
- [120] Jody, B.J.; E.J. Daniels; A.M. Wolsky (1997): "Integrating O₂ Production with Power Systems to Capture CO₂". Energy Convers. Mgmt. Vol.38, Suppl., pp.S135-S140.
- [121] Ishida, M.; H. Jin (1998): "Greenhouse gas control by a novel combustion: no separation equipment and energy penalty". Presentation ENT-13 at 4th Int. Conf. Greenhouse Gas Control Technologies, Interlaken 1998. Energy Convers. Mgmt., 1999.
- [122] Knoche, K.F.; H. Richter (1968): "Verbesserung der Reversibilität von Verbrennungsprozessen". Brennstoff-Wärme-Kraft 20 (1968), No. 5, Mai 1968.
- [123] McMullan, J.T.; Williams, B.C.; Campbell, P. E.; McIlveen-Wright, D.R. (1997): "Techno-Economic Assessment Studies of Fossil Fuel and Wood Power Generation Technologies". Contract JOUF0017, In: "JOULE II - Clean Coal Technology Programme 1992-95, Volume III: Combined Cycle Project, Final Reports". Europäische Kommission, Directorate-General XII - Science, Research and Development, 1997, EUR 17524 EN, ISBN 92-828-0007-5.
- [124] Herzog, H.; Golomb, D.; Zemba, S. (1991): "Feasibility, Modelling and Economics of Sequestering Power Plant CO₂ Emissions In the Deep Ocean". Environmental Progress, Vol.19, No.1, Feb. 1991
- [125] Allam, R.J.; Spilsbury, C.G. (1992): "A Study of the Extraction of CO₂ from the Flue Gas of a 500 MW Pulverized Coal-Fired Boiler". Energy Convers. Mgmt Vol.33, No. 5-8, Pergamon Press, Oxford, 1992, pp. 477-485.
- [126] Sijercic, M.; Hanjalic, K. (1994): "Application of Computer Simulation in a Design Study of a New Concept of Pulverized Coal Gasification: Part II: Model of Coal Reactions and Discussion of Results". Combust. Sci. and Tech., 1994, Vol.97, pp.351-375.
- [127] van Heek, K. H.; Mühlen, H.-J.; Jüntgen, H. (1987): "Progress in the Kinetics of Coal and Char gasification". Chem. Eng. Technol. 10 (1987), pp. 411-419.
- [128] Teggers, H.; Jüntgen, H. (1984): "Stand der Kohlevergasung zur Erzeugung von Brenngas und Synthesegas". Erdöl und Kohle Erdgas Petrochemie, 1984, Vol. 37 (4), pp.163-174.
- [129] Azuma, T.; Hegermann, R.; Hüttinger, K.J. (1991): "*Pressure Gasification of Brown Coal in Steam and Carbon Dioxide Atmospheres*". Erdöl und Kohle Erdgas Petrochemie, 1991, 44 (7/8), pp. 301-305.
- [130] Kühl, H.; Kashani-Motlagh, M. M.; Mühlen, H.-J.; van Heek, K.H. (1992): "Controlled Gasification of different carbon materials and development of pore structure". Fuel, Vol. 71, Aug. 1992, pp. 879-882.

- [131] Andries, J.; Becht, J.G.M. (1995): "Pressurized Fluidized Bed Gasification of Coal Using Flue Gas Recirculation and Oxygen Injection". IEA Greenhouse Gases: Mitigation Options Conference, London, Aug. 1995.
- [132] Tomita, A.; Ohtsuka, Y.; Tamai, Y. (1983): "Low-temperature gasification of brown coals catalysed by nickel". Fuel, 1983, Vol.62, pp.150-154.
- [133] van Steenderen, P. (1992): "*Carbon dioxide recovery from coal gas and natural gas-fired combined cycle power plants by combustion in pure oxygen and recycled carbon dioxide*". Comprimo Consulting Services, "First International Conference on Carbon Dioxide Removal", March 1992, Amsterdam, NL.
- [134] Pak, P. S.; Nakamura, K.; Suzuki, Y. (1989): "Closed Dual Fluid Gas Turbine Power Plant without Emission of CO₂ into the Atmosphere". Energy and the Environment (III), IFAC Symposia Series No. 14, Pergamon Press, 1991, pp.229-234.
- [135] Shao, Y.; Golomb, D. (1995): "Power Plants with CO₂ Capture using Integrated Air Separation and Flue Gas Recycling". IEA Greenhouse Gas R&D: Mitigation Options Conference, London, Aug. 1995.
- [136] Pechtl, P. A. (1991): "CO₂-Emissionsminderung". Erdöl und Kohle Erdgas Petrochemie vereinigt mit Brennstoff-Chemie, Bd. 44 (4), 1991, pp. 159-165.
- [137] Wessel, R. (1988): "Thermodynamische Analyse kombinierter Gas-Dampf-Kraftwerke mit integrierter Kohlevergasung". Dissertation Essen, 1988.
- [138] Knoche, K.F.; Roth, M.; Poptodorow, H. (1990): "Conversion of Carbon in Combustion Processes and in Nature". VGB Conference "Power Plant Engineering 2000 - conservation of Resources and CO₂ Control", Essen, FRG, Feb. 1990. VGB-TB 120, pp. 178-181.
- [139] Leithner, R.; Wang, J.; Stamatelopoulus, G. (1994): "New Concepts for Coal-Fired Combined Cycle Power Plants". Power-Gen Europe '94, Köln, Mai 1994, Vol.6, pp. 177-196.
- [140] Davison, J.E.; Eldershaw, C. E. (1990): "A Study of Coal-Fired MHD Power Generation for the Commission of the European Communities". Coal Research Establishment (CRE, British Coal Corporation) Assessment Branch report no. 90/1, Cheltenham, March 1990.
- [141] Davison, J.E.; Eldershaw, C. E. (1992): "A Flowsheet Model of a Coal-Fired MHD / Steam Combined Electricity Generating Cycle, Using the Acess Computer Model- Part II: Oxygen-blown Firing with CO₂ Recirculation". In: P.F. Sens (Ed.): "Coal-fired magnetohydrodynamic (MHD) electric power generation", Office for Official Publications of the European Communities, EUR13928, Luxembourg, 1992, pp. 206-227.
- [142] Hendriks, C.A.; Blok, K. (1992): "Carbon Dioxide Recovery Using a Dual Gas Turbine IGCC Plant". Energy Convers. Mgmt. Vol.33, No.5-8, Pergamon Press, Oxford, 1992, pp.387-396.
- [143] Syed, M. A.; Masutani, S.M.; Nihous, G.C.; Vega, L. A.; Kinoshita, C. M. (1992): "A Comparison of Carbon Dioxide Removal Strategies Applied to Natural Gas Power Plants". Society of Automotive Engineers, Warrendale: Proceedings of the 27th intersociety energy conversion engineering conference, Vol.5, pp. 5.349-5.352, San Diego CA, Aug. 1992.
- [144] Bolland, O.; Saether, S. (1992): "New Concepts For Natural Gas-Fired Power Plants Which Simplify The Recovery Of Carbon Dioxide". Energy Convers. Mgmt. Vol.33, No.5-8, Pergamon Press, Oxford, 1992, pp.467-475.
- [145] de Ruyck, J. (1992): "*Efficient CO*₂ Capture Through A Combined Steam and CO₂ Gas Turbine Cycle". Energy Convers. Mgmt. Vol.33, No.5-8, Pergamon Press, Oxford, 1992, pp.397-403.
- [146] de Ruyck, J.; Bram, S.; Allard, G.; Mathieu, Ph.; Ulizar, I.; Pilidis, P.; Haug, M.; Katzler, G.; Brüggemann, D.; Sjöström, K.; Liliedahl, L.; Sakelleropoulos, G. P.; Skodras, G.; Verelst, H.; van Mierlo, T.; van de Voorde, M.; Elseviers, W.; Maniatis, K. (1997): "CO₂ Mitigation through CO₂ / Steam Gas Turbine Cycles and CO₂ / Steam Gasification". In: "JOULE II - Clean Coal Technology Programme

1992-95, Volume III: Combined Cycle Project, Final Reports". European Commission, Directorate-General XII - Science, Research and Development, 1997, EUR 17524 EN, ISBN 92-828-0007-5.

- [147] Iantovski, E.I.; Zwagolsky, K.N.; Gavrilenko, V.A. (1995): "Stack Downward: the Concept of Zero Emission Fuel-Fired Power Plants". IEA Greenhouse Gases: Mitigation Options Conference, London, Aug. 1995.
- [148] Blok, K.; Hendriks, C.; Turkenburg, W. (1989): "The Role of Carbon Dioxide Removal in the Reduction of the Greenhouse Effect". Dept. of Science, Technology and Society, University of Utrecht, NL, April 1989, W 89019.
- [149] Hansen, M.W. (1991): "*Fysiske Metoder Til Fjernelse Af CO₂ Fra Roggas*", Presentiert auf der Konferenz "Løsning af kuldioxidproblemet", Dansk Ingeniørforening, Kopenhagen, Dänemark, Feb. 1991.
- [150] Miller, D. B.; Soychak, T.J.; Gosar, D. M. (1986): "Economics of Recovering CO₂ from Exhaust Gases". Chemical Engineering Progress, Oct. 1986, pp. 38-46.
- [151] Rao, A., D.; Day, W., H. (1995): "Mitigation of Greenhouse Gases from Gas Turbine Power Plants". IEA Greenhouse Gases: Mitigation Option Conference, London, Aug. 1995.
- [152 Golomb, D. (1993): "Ocean Disposal of CO₂: Feasibility, Economics and Effects". IEA Carbon Dioxide Disposal Symposium, Oxford, Energy Conv. Mgmt. Vol. 34, No. 9-11, Pergamon Press, Oxford, March 1993, pp. 967-976.
- [153] Stookey, D. J.; Pope, W. M. (1985): "Application of Membranes in Separation of Carbon Dioxide from Gases". In: "Recovering Carbon Dioxide from Man-Made Sources", Argonne National Laboratory Workshop, Argonne National Laboratory, ANL/CNSV-TM-166, February 1985, pp. 63-75.
- [154] Smelser, S.C.; Stock, R.M.; McCleary, G.J.; Booras, G. S.; Stuart, R.J. (1991): "Engineering and Economic Evaluation of CO₂ Removal from Fossil-Fuel-Fired Power Plants. Volume 1: Pulverized Coal-Fired Power Plants". EPRI IE-7365, Vol. 1, 1991.
- [155] Doctor, R.D., J. C. Molburg; P.R. Thimmapuram (1996): "KRW Oxygen-Blown Gasification Combined Cycle: Carbon Dioxide Recovery, Transport and Disposal". Argonne National Laboratory ANL/ESD-34, 1996.
- [156] Jansen, D.; Oudhuis, A.B.J.; Ribberink, J.S. (1992): "Different Options for Integrated Coal Gasification Fuel Cell Power Generation Plants and their Potential to Reduce CO₂ Emissions". Netherlands Energy Research Foundation, Petten, The Netherlands, ECN-RX-92-070, Nov. 1992.
- [157] IEA GHG (1997): "Advanced Systems: Report on Expert Workshop". 11th-12th Juni, 1997, Essen. IEA Greenhouse Gas R&D Programme, Cheltenham, Report Number PH12/16.
- [158] Schmidt, E.; U. Grigull (1989): "Zustandsgrößen von Wasser und Wasserdampf in SI-Einheiten". Springer-Verlag, Berlin, 4. Auflage, 1989.
- [159] Wagner, W. (1998): "Properties of Water and Steam /Zustandsgrössen von Wasser und Wasserdampf", Springer Berlin, 1998.
- [160] Hougen, Watson, Regatz: "Chemical Process Principles, Part 2". Wiley, New York, 1964.
- [161] Baehr, H.D.; E.F. Schmidt (1964): "Die Berechnung der Exergie von Verbrennungsgasen unter Berücksichtigung der Dissoziation." Brennstoff-Wärme-Kraft 16 (1964) 62-66.
- [162] Shindo, Y.; Hakuta, T.; Yoshitome, H. (1985): "Calculation Methods for Multicomponent Gas Separation by Permeation". Separation Science and Technology, 20 (5&6), pp. 445-459, 1985.
- [163] Angus, S.; Armstrong, B.; Renck, K. (1976): "Carbon Dioxide International Tables of the Fluid State (IUPAC), Vol.3". Pergamon Press, Oxford-New York, 1976.
- [164] Steiner, A. (1976): "Hilfsmittel, Ansätze und Beispiele zu Berechnung von Gas- und kombinierten Gas-/Dampfturbinenanlagen mit integrierten Gaserzeugern". Dissertation ETH Zürich.

- [165] Renfro, J. J. (1979): "Colorado's Sheep Mountain CO₂ project moves forward". Oil & Gas Journal, Dec.17, 1979, pp. 51-56.
- [166] Landolt, Hans [Begr.]: "Eigenschaften der Materie in ihren Aggregatzuständen 2. Teil; Bandteil b: Lösungsgleichgewichte 1". Springer-Verlag, Berlin, 1962. (aus: Landolt-Börnstein / Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik / Hans Landolt u. Richard Börnstein. - 6. Aufl. / hrsg. von Arnold Eucken. Berlin [u.a.]: Springer, 1950)
- [167] Crovetto (P. Scharlin (ed.) (1996): "Carbon Dioxide in water and aqueous electrolytes solutions. IUPAC Solubility data series, Vol. 62". Oxford University Press, Oxford, 1996.)
- [168] Chakma, A. (1997): "CO₂ Capture Processes Opportunities for Improved Energy Efficiencies". Energy Convers. Mgmt. Vol. 38, Suppl., pp. S51-S56, 1997
- [169] Adorni, M (1997): "Energieaufwand zur CO₂-Abtrennung aus Kraftwerksgasen durch Druckwechseladsorption". Diplomarbeit, Januar 1997; Betreuer: G. Göttlicher, R. Pruschek. Universität GH Essen.
- [170] Kast, W. (1988): "Adsorption aus der Gasphase". VCH 1988, 26
- [171] Kapoor, A.; J. A. Ritter; R. T. Yang(1988): "Gas Separation by Pressure Swing Adsorption for Producing Hydrogen from Coal". Final Report, 1988, US Department of Energy, Report No. DOE/MC/22060-2643, Contract No. DE-AC21-85MC22060.
- [172] Burkert, J. (1979): "Ermittlung von Gleichgewichtsdaten für die adsorptive Reinigung von Gasen bei hohen Drücken mit Molekularsieben". Dissertation Universität Karlsruhe,1979.
- [173] Stern, S.A.; Wang, S.C. (1978): "Countercurrent and Cocurrent -Gas Separation in a Permeation Stage. Comparison of Computation Methods". Journal of Membrane Science, 4 (1978), pp. 141-149.
- [174] Bosnjakovic, F.; K. F. Knoche (1988): "Technische Thermodynamik". 7. Aufl., 1988. ISBN 3-7985-0759-7. Verlag Steinkopff, Darmstadt.
- [175] Harrison, D.,P; Han, C.; Silaban, A. (1993): "A Calcium Oxide Sorbent Process for Bulk Separation of Carbon Dioxide". Proceedings of the coal-fired power systems 1993, p.335-344.
- [176] Thambimuthu, K. V. (1993): "*Gas cleaning for advanced coal-based power generation*". IEA Coal Research, IEACR/53, March 1993.
- [177] Koerdt, M (1996): "*Wirkungsgradberechnungen für eine chemisch rekuperierte Gasturbine mit CO*₂-*Abtrennung*". Diplomarbeit, September 1996; Betreuer: G. Göttlicher, R. Pruschek. Universität GH Essen, Technik der Energieversorgung und Energiewirtschaft (Prof. Pruschek).
- [178] Rostrup-Nielsen, J. R.; Aasberg-Petersen, K.; Højlund Nielsen, P. E. (1995): "Chemical recuperation and gas turbines". EPRI Conference on New Power Generation Technology, 25.-27. Oktober 1995, San Francisco, California
- [179] Janes, J. (1990): "Chemically Recuperated Gas Turbine". California Energy Commission, Staff report P500-90-001, Januar 1990.
- [180] Pruschek, R.; U. Renz; E. Weber (1990): "Kohlekraftwerk der Zukunft". Im Auftrag des Ministers für Wirtschaft, Mittelstand und Technologie des Landes Nordrhein-Westfalen, Düsseldorf, 1990.
- [181] Informationsdienst IWD Online (1998): "CO₂-Emissionen in Deutschland, Klima vom Menschen beeinfluβbar?". Ausgabe Nr. 6, Jg. 24, 5. Februar 1998, Institut der deutschen Wirtschaft (IW), Köln.
- [182] Borsch, P.; H. J. Wagner: "Energie und Umweltbelastung". Springer Verlag, Berlin, 2. Auflage, 1998
- [183] World Energy Council / IIASA (1998). "Global Energy Perspectives", Report 1998.
- [184] Keeling, C.D.; Whorf, T.P. (1996): "Atmospheric CO₂ records from sites in the SIO air sampling network." In: Boden, T.A.; Kaiser, D. P.; Sepanski, R.J.; Stoss, F.W.: "Trends '97: A Compendium of

Data on Global Change", pp. 18-28. ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA. Updates im Internet veröffentlicht.

- [185] Barnola, J. M.; Raynaud, D.; Lorius, C.; Korotkevich, Y.S. (1994): "Historical record from the Vostok ice core". In: Boden, T.A. et al.: "Trends '97: A Compendium of Data on Global Change", pp. 7-10. ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA. Updates im Internet veröffentlicht.
- [186] Neftel, A. H.; Friedli, H.; Moor, E.; Lötscher, H.; Oeschger, H.; Siegenthaler, U.; Stauffer, B. (1994): "Historical CO₂ record from the Siple Station ice core". In: Boden, T.A. et al.: "Trends `97: A Compendium of Data on Global Change", pp. 11-14. ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA. Updates im Internet.
- [187] Keeling, C.D.; T.P. Whorf (Februar 1997): "*Atmospheric CO₂ concentrations from South Pole*". Scripps Institution of Oceanography, University of California, Daten über Internet veröffentlicht.
- [188] IEA (1996): "World Energy Outlook 1995". International Energy Agency, 1996
- [189] Freund, P. (1998): "Abatement and mitigation of carbon dioxide emissions from Power Generation". Power Gen Europe '98.
- [190] Levi, W. (1997): "Nachhaltige Entwicklung und Energieversorgung". atw 42. Jhg. Heft 1
- [191] The Netherlands Ministry of Economic Affairs (1993): "Nuclear Energy Dossier". Den Haag, The Netherlands.
- [192] Allegre, C.J.; S.H. Schneider (1995): "*Die Entwicklung der Erde*". Spektrum der Wissenschaft. SPEZIAL: Leben und Kosmos, 1995.
- [193] O'Callaghan, P.W. (1993): "Energy Resources, CO₂ Production and Energy Conservation". Applied Energy 44 (1993) pp. 65-91.
- [194] Kowaczeck, J.; Kurth, K.; Schubert, H. (1974): "*Tabellenbuch für die Gastechnik*". VEB Deutscher Verlag für die Grundstoffindustrie, Leipzig 1974.
- [195] Eagleton, H.,N. (1980): "*Transportation of carbon dioxide by pipeline*". Int. Pipeline Tech. 8th Interpipe Conf., Houston, Feb. 1980, pp. 225-242.
- [196] Price, B., C.; Gregg, F., L. (1983): "CO₂ / EOR from source to resource". Oil & Gas Journal, Aug. 22, 1983, pp. 116-122.
- [197] Barry, D. W. (1985): "Design of Cortez CO₂ system detailed". Oil & Gas Journal, July 22, 1985, pp. 96-104.
- [198] McCollough, D. E. (1986): "The Central Basin Pipeline: A CO₂ Systems in West Texas". Energy Progress, Vol.6, No.4, Dec. 1986, pp. 230-234.
- [199] Wakamura, O.; Shibamura, K.; Uenoyama, K. (1992): "Development of PSA Plant for Manufacture of Carbon Dioxide from Combustion Waste Gas". Nippon Steel Technical Report No. 55, October 1992, pp. 51-55.
- [200] Sircar, S.; Kratz, W.C. (1988): "Simultaneous Production of Hydrogen and Carbon Dioxide from Steam Reformer Off-Gas by Pressure Swing Adsorption". Separation Science and Technology, 23 (14&15), pp.2397-2415, 1988.
- [201] Richter, E.; Harder, K.; Knoblauch, K.; Jüntgen, H. (1984): "Neue Entwicklungen zur Druckwechsel-Adsorption." Chem. Ing. Tech. 56 (1984), Nr.9, p. 684-691.
- [202] Ishibashi, M., H. Ohta, N. Akutsu, S. Umeda, M. Tajlka, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama (1995): "Technology for Removing Carbon Dioxide from power Plant Flue Gas by the Physical Adsorption Method". Energy Convers. Mgmt. Vol. 37, No. 6-8, pp. 929-933.

- [203] Makino, H.; Kimoto, M. (1995): "Activities of CO₂ control technology in Japanese electric industry." CRIEPI -Veröffentlichung.
- [204] Koros, W.J.; Fleming, G. K.; Jordan, S. M.; Kim, T. H.; Hoehn, H. H. (1988): "Polymeric Membrane Materials for Solution-Diffusion Based Permeation Separations." Prog. Polm. Sci., Vol.13, pp. 339-401, 1988.
- [205] Baker, R.W., et al. (1990): "Low Cost Hydrogen / Novel Membrane Technology for Hydrogen Separation from Synthesis Gas (Final Report)". US Department of Energy, Office of Fossil Energy, Morgantown, West Virginia, USA, DOE/MC/22130-2983, Oct. 1990.
- [206] UBE (1990): Firmenprospekt
- [207] Pruschek, R.; G. Oeljeklaus; A. Lokurlu; H. Vogelsang (1995): "Ermittlung und Verifizierung der Potentiale und Kosten der Treibhausgasminderung durch Kraft-Wärme-Kopplung in der Industrie". Universität GH Essen, Studie im Auftrag der Enquete Kommission "Schutz der Erdatmosphäre", 1994
- [208] Bundesministerium für Wirtschaft (BMWi): "Energiedaten 1997/1998"
- [209] Van de Vate (1993): "*Electricity generation and alleviating global climate change; the potential role of nuclear power*". Paper presented at the UNIPEDE/IEA conference on Thermal Power Generation and the Environment, Hamburg, 1.-3. September 1993

