Carbon Sequestration

04/2008

U.S. DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY

R & D

C

CONTACTS

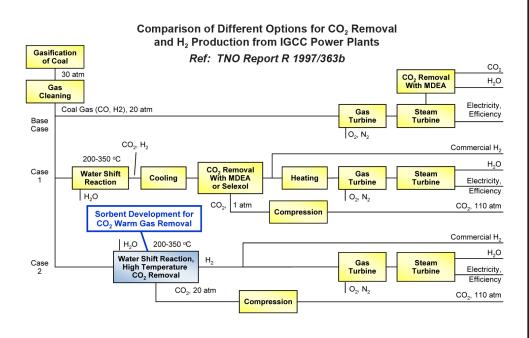
Sean I. Plasynski Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

Abbie Layne

Director Separations and Fuels Processing Division National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4603 abbie.layne@netl.doe.gov

Ranjani Siriwardane

Group Leader National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4513 ranjani.siriwardane@netl.doe.gov


Solid Sorbents for CO₂ Capture from Precombustion Gas Streams

Background

According to the President's Global Climate Change Initiative as described in NETL's carbon sequestration technology roadmap and program plan, CO_2 capture from coal gasification systems is critical for the Department of Energy's CO_2 sequestration program. Current commercial CO_2 capture technology is expensive and energy intensive. In addition, most of the techniques require gas cooling for CO_2 capture, which contributes to the loss of thermal efficiency. It is important to develop low-cost processes that utilize materials with high CO_2 adsorption capacity, high selectivity for CO_2 , high diffusivity, high rates of adsorption, and high rates of regenerability.

Primary Project Goal

The primary goal of this research project is to develop regenerable sorbents that can capture CO_2 from high-pressure gas streams from such sources as coal gasification systems and are superior to existing commercial technologies.

CONTACTS (cont.)

George Richards

Focus Area Leader National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4458 george.richards@netl.doe.gov

PROJECT PARTNERS

Süd-Chemie Inc. (Louisville, KY)

Carnegie Melon University (Pittsburgh, PA)

COST

Total Estimated Cost \$25,000 per year

ADDRESS

National Energy Technology Laboratory 1450 Oueen Avenue SW

Albany, OR 97321-2198 541-967-5892

2175 University Avenue South
Suite 201
Fairbanks, AK 99709
907-452-2559

```
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4764
```

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687

One West Third Street, Suite 1400 Tulsa, OK 74103-3519 918-699-2000

CUSTOMER SERVICE

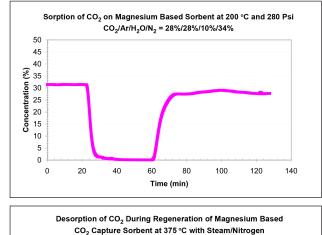
1-800-553-7681

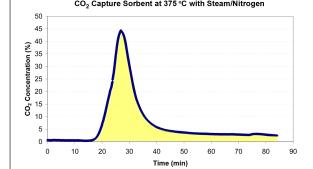
WEBSITE

www.netl.doe.gov

Objectives

The major objective of this work is to develop solid regenerable sorbents that have high rates, selectivity, high regenerablity, and high sorption capacity for precombustion CO_2 capture. Specific objectives include:


- Develop regenerable sorbents that operate at higher temperatures suitable for CO₂ capture from precombustion gas streams, such as those from Integrated Gasification Combined Cycle (IGCC) systems.
- Conduct a complete system analysis incorporating sorbent-enhanced water-gas shift reaction.
- Test and evaluate the feasibility of utilizing the sorbent for sorbent-enhanced water-gas shift reaction.


Accomplishments

- Regenerable sorbents that can capture CO₂ at water-gas shift reactor temperatures were successfully developed.
- High pressure CO₂ capture and high pressure regeneration were demonstrated.
- A U.S. patent for the NETL-developed, high-temperature CO₂ capture sorbent has been awarded.
- The evaluation of zeolites for higher-temperature applications was completed and the good CO₂ capture capacity at 120 °C observed. Process optimization studies and model development with zeolites were completed in collaboration with Carnegie Mellon University.

Benefits

Development of a cost-effective CO_2 capture technology suitable for coal gasification systems is necessary to achieve the President's Global Climate Change Initiative without increasing the cost of electricity from coal.

