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ABSTRACT—D. H. Levinson' and AM. Waple' (Eds).

The earth’s climate was influenced
by a moderate El Niiio in the
tropical Pacific Ocean at the
beginning of 2003. This ENSO
warm event developed during
October-November of 2002, and
eventually dissipated during
March-April 2003, giving way to
near-neutral ENSO conditions for
the remainder of the year. Despite
the cessation of El Nifio during the
boreal spring, the ENSO warm
event affected regional precipita-
tion anomalies over a broad area of
the Pacific basin, including wet
anomalies along the west coast of
South America, and dry anomalies
in eastern Australia, the southwest
Pacific, and Hawaii.

The global mean surface
temperature in 2003 was within
the highest three annual values
observed during the period of
regular instrumental records
(beginning in approximately 1880),
but below the 1998 record-high
value. Global surface temperatures
in 2003 were 0.46°C (0.83°F)
above the 1961-90 mean, accord-
ing to one U.K. record, which
ranked as third highest in this
archive. In the U.S. temperature
archive, the 2003 anomaly was also
0.46°C (0.83°F), equivalent to the
2002 value, which ranked second
over the period of record. Similar
to the surface temperature
anomalies, satellite retrievals of
global midtropospheric tempera-
tures ranked 2003 as third warm-
est relative to the 1979-98 mean
value.

The hurricane season was
extremely active in the Atlantic
basin, with a total of 16 tropical
storms, seven hurricanes, and
three major hurricanes in 2003.
Five of these tropical cyclones
made landfall in the United States,
three made landfall in northeastern
Mexico, and a tropical storm
affected Hispaifiola. In addition,
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Nova Scotia and Bermuda
experienced devastating impacts
from hurricanes in 2003. Another
notable aspect of the season in
the Atlantic was the formation of
five tropical storms over the Gulf
of Mexico, which tied the season
high observed in 1957. In addition,
three tropical storms formed
outside of the normal (June-
November) hurricane season in
2003—one in April and two in
December—which made this the
first season since 1887 that two
tropical storms have formed
during December in the Atlantic
basin. Also of note was the below-
normal activity in the eastern
North Pacific basin. There were
no major hurricanes in this basin
during the 2003 season, which
made this the first year since 1977
with no category 3-5 storms.
Despite the below-normal
activity, four tropical cyclones
made landfall on the Pacific coast
of Mexico, two as hurricanes and
two as tropical storms, which was
twice the long-term mean.

The summer of 2003 was one
of the warmest on record across
parts of Europe, where a heat
wave affected most of Central and
Western Europe. Two distinct
periods of exceptional heat
occurred during the season—the
first in June and the second during
the latter half of July and the first
half of August. The July-August
heat wave was the more serious of
the two, since it coincided with
the normal peak in summer
temperatures and was accompa-
nied by an almost complete
absence of rainfall. The high
temperatures and dry conditions
exacerbated forest fires that
burned across southern France
and Portugal in July and August.
The record heat wave spread
across most of Western Europe in
August, and it was likely the

warmest summer since 1540 in
parts of Central Europe. In
France, 11,000 heat-related
deaths were reported between
late July and mid-August. In
Germany, both June and August
were the warmest such months
since at least the beginning of
the twentieth century. The
summer was also the hottest in
Germany since 1901, and, with
the exception of some stations
in northern and northwestern
Germany, it was the hottest
summer since the beginning of
recorded measurements.

Other climatic events of note
during 2003 included I) record
wet conditions across parts of
the southeast, mid-Atlantic, and
eastern coast of the United
States; 2) record cold tempera-
tures and anomalous June
snowfalls in European Russia; 3)
546 tornadoes during May 2003
in the United States, which was
an all-time record of reported
tornadoes for any month; 4)
continuing drought conditions
across the western United
States, with some areas experi-
encing their fourth and fifth
years of significant precipitation
deficits; 5) severe bushfires in
eastern Australia in January, the
worst wildfire season on record
in British Columbia during
August, as well as severe
wildfires across southern
California in October; 6) above-
average rainfall across West
Africa and the Sahel, which had
its second wettest rainy season
since 1990; 7) a return to normal
rainfall across the Indian subcon-
tinent during the summer
monsoon; and 8) a near-record
extent of the Antarctic ozone
hole, which was 28.2 million km?
at its maximum in September
2003.



central extratropical Pacific were evident along the
poleward flanks of the anomalous subtropical ridges
in both hemispheres (Fig. 4.5a). These anomalies re-
flected an eastward extension of the midlatitude jet
streams in both hemispheres, and an eastward shift in
the areas of strong upper-level diffluence that defined
the jet exit regions.

These El Nifio conditions dissipated during MAM
2003 as anomalous cross-equatorial flow at 850-hPa
developed across the Pacific (Fig. 4.4b), and resulted in
enhanced oceanic upwelling and a rapid cooling of
ocean temperatures across the eastern Pacific.

b. Tropical Storms
)  ATLANTIC HURRICANE SEASON—G. D. BeLL’ §. GoLoengere,
C. Lansen,'s E. Buake,” R. Pasci,” M. Checumn,® anp K. Mo®

() Overview

The North Atlantic hurricane season officially runs
from June through November. An average season pro-
duces 10 tropical storms (TSs), six hurricanes (Hs), and
two major hurricanes [MHs; defined as maximum
sustained wind speeds at or above 100 kts, and mea-
sured by categories 3-5 on the Saffir-Simpson scale
(Simpson 1974)]. In 2003, the Atlantic basin was ex-
tremely active, with 16 TSs, seven hurricanes Hs, and
three MHs.

Five of these Atlantic storms made landfall in the
United States, one as a tropical depression (Henri), two
as tropical storms (Bill and Grace), and two as hurri-
canes (Claudette and Isabel). A sixth system, H Erika,
made landfall in northeastern Mexico, and brought
tropical storm—force winds and precipitation to south-
ern Texas. Mexico also experienced tropical storm con-
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FiG. 4.6. Seasonal values of the ACE index for the entire
Atlantic basin (blue) and for the MDR (red). The MDR
consists of the tropical Atlantic to 21.5°N and the Carib-
bean Sea (see inset). The ACE index for the MDR is based
on systems that first became tropical storms in that re-
gion. NOAA defines near-normal seasons as having a total
ACE value in the range of 65-103 x 10* kt? (green lines).
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ditions from Claudette and Larry, and TS Odette af-
fected Hispaiola. In addition, Nova Scotia and Ber-
muda experienced devastating impacts from hurri-
canes Juan and Fabian, respectively.

Most of the activity during Atlantic hurricane seasons
occurs during August-October, primarily in response
to systems developing from African easterly wave dis-
turbances. During the above-normal 2003 season, 10
tropical storms, of which 4 became hurricanes, developed
between mid-August and mid-October. Three of these
systems became major hurricanes. Above-normal hur-
ricane seasons also feature a high concentration of activ-
ity in the main development region (MDR) (Goldenberg
and Shapiro 1996), which consists of the tropical At-
lantic and Caribbean Sea beween 9° and 21.5°N (see
map inset in Fig. 4.6). Eight tropical storms formed in
the MDR during 2003; four of these systems became
hurricanes, with three becoming major hurricanes.

Another notable aspect of the season was the for-
mation of five tropical storms over the Gulf of Mexico,
which tied the season high observed in 1957. On aver-
age, one to two tropical storms form in this region dur-
ing a given season. Also, three tropical storms formed
outside of the normal (June-November) hurricane sea-
son in 2003. Tropical Storm Ana formed on 22 April,
and TS Odette and TS Peter formed on 4 and 9 De-
cember, respectively. This was the first season since 1887
that two tropical storms have formed in December.

Important aspects of the atmospheric circulation
during the peak of the 2003 season (Fig. 4.7) can be at-
tributed to the ongoing active Atlantic multidecadal sig-
nal (Chelliah and Bell 2004), including 1) an amplified
subtropical ridge, 2) reduced vertical wind shear in the
MDR resulting from upper-level easterly wind anoma-
lies (green arrows) and lower-level westerly anoma-
lies (light blue arrows), 3) an exceptionally favorable
African easterly jet (AEJ; dark blue arrow), 4) an active
West African monsoon system, and 5) above-average
SSTsin the MDR. During August the exceptionally con-
ducive nature of the total signal was also related to a
pre-existing midlatitude circulation pattern known as
the positive phase of the East Atlantic teleconnection
pattern, and during September—October it was related
to an anomalous atmospheric warming across the en-
tire tropical Atlantic in association with a broader warm-
ing of the global tropical atmosphere.

(ii) Seasonal activity

NOAA quantifies “total seasonal activity” with the
accumulated cyclone energy (ACE) index, which ac-
counts for the combined strength and duration of
tropical storms and hurricanes during a given season
(Bell et al. 2000). The ACE index is a wind energy in-



dex, calculated by summing the squares of the estimated
6-hourly maximum sustained wind speed in knots
(Vmax?) for all periods while the system is either a tropi-
cal storm or hurricane (Fig. 4.6, blue bars). The total
ACE index for the 2003 season was 174.75 x 10* kt?, or
200% of the 1951-2000 median value (87.5 X 10* kt?).

NOAA classifies an above-normal Atlantic hurri-
cane season based on two criteria. The seasonal ACE
value must exceed 105 X 10* kt? (120% of the median),
and at least two of the following three must be above
average: the number of tropical storms, hurricanes, and
major hurricanes. The 2003 Atlantic hurricane season
satisfied both criteria, thus marking a continuation of
generally above-normal activity that began in 1995.

The eight tropical systems first named in the MDR
accounted for most (86.6%) of the total ACE value
during 2003 (Fig. 4.6, red bars), with the three major
hurricanes (Fabian, Isabel, and Kate) accounting for
74% of the total. Isabel produced one of the largest ob-
served ACE values (63.3 x 10* kt*) of any Atlantic hur-
ricane on record, lasting 8 days as a major hurricane
and 1.75 days at category 5 status (wind speeds at or
above 140 kts). Fabian and Kate contributed an addi-
tional 43.2 X 10*kt*and 21.9 X 10* kt* to the ACE index,
lasting 7.25 days and 1.5 days as major hurricanes, re-
spectively. The combined duration of these three
storms at major hurricane status was 16.75 days, which
is fourth largest on record behind 1961 (24.5 MH days),
1950 (18.5 MH days), and 1955 (17.25 MH days).

The ACE index has shown large multidecadal fluc-
tuations in total seasonal activity, characterized by
above-normal activity during 1950-69 and 1995-
2003, and below-normal activity during 1970-94
(Goldenberg et al. 2001; Bell 2003). During 1995-2003,
Atlantic hurricane seasons have averaged 13.6 TSs,
7.7 Hs, and 3.6 MHs. The average numbers of tropical
storms and hurricanes were larger than any consecu-
tive 9-yr period in the reliable record dating back to
1944. However, because of continuous

the 1995-2003 mean MDR-based ACE index of 114 X
10* kt? nearly triple the 1970-94 average of 41 x 10* kt>.

(iii) Rainfall from landfalling U.S. tropical systems

Five named Atlantic storms made landfall in the
United States during 2003, with a sixth system (H Erika)
making landfall in northern Mexico and bringing tropi-
cal storm-force winds and rain to southern Texas. This
compares with seven landfalling U.S. systems during
2002, when six hit as tropical storms and one hit as a
hurricane (Bell 2003). For the period 2002-03, 12 named
storms have made landfall in the United States, with 9
(4in 2003 and 5 in 2002) striking the Gulf Coast.

The storm-total precipitation associated with the
Gulf Coast landfalling tropical storms and hurricanes
during 2003 is shown in Fig. 4.8. The first of these sys-
tems (TS Bill) produced more than 150 mm of rain
across eastern Louisiana, Mississippi, and western Ala-
bama during 30 June-1 July. Hurricane Claudette then
crossed eastern Texas on 15-16 July, generally produc-
ing totals of 75-100 mm. One month later Hurricane
Erika made landfall in northeastern Mexico on 16-17
August, and brought tropical storm-force winds to
extreme southern Texas. Erika produced 75-100 mm
of rain in northeastern Mexico and a range of 25-
75 mm in southern Texas. Tropical Storm Grace
brought 75-100 mm of rain to southeastern Texas on
31 August. This system was followed by TS Henri, which
generally brought 100-125 mm of rain to west-central
Florida on 6 September.

The sixth Atlantic system to make U.S. landfall was
Hurricane Isabel, which came onshore along the Outer
Banks of the North Carolina coast as a category 2 hur-
ricane on 18 September. Rainfall totals associated with
Isabel averaged 100-200 mm across eastern North
Carolina and Virginia, and 50-100 mm across West
Virginia and eastern Ohio (Fig. 4.8f). This storm was
directly responsible for 17 fatalities and produced mas-

improvements in the observational
network, including satellite technology,
aircraft measurements, and Doppler
radar, it is likely that more systems were
identified in the latter part of the record
than during the above-normal decades
of the 1950s and 1960s (Goldenberg et
al. 2001). During the below-normal pe-
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Stronger Tropical '

Easterly Jet (200-hPa)

riod, Atlantic hurricane seasons aver-
aged only 9 TSs, 5 Hs,and 1.5 MHs. This
multidecadal variability primarily re-
flects changes in activity originating in
the MDR (Landsea and Gray 1992,
Landsea 1993; Landsea et al. 1999), with

AMERICAN METEOROLOGICAL SOCIETY

Low Vertical 850-hPa Westerlies ¥

Wind Shear (Weaker Easterly Trades e
‘5200-350 hPa) ~
-

FiG. 4.7. Schematic representation of conditions during the peak (Aug-
Oct) of the above-normal 2003 Atlantic hurricane season.
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FiG. 4.8. Total rainfall (mm) over land associated with the
six U.S. landfalling named storms during 2003: (a) TS Bill
during 30 Jun-1 Jul, (b) H Claudette during 15-16 Jul, (c)
H Erika during 16—-17 Aug, (d) TS Grace on 31 Aug, (e)
TS Henri on 6 Sep, and (f) H Isabel during 18-19 Sep.

sive power outages in the mid-Atlantic region, with total
damages estimated by NOAA’s National Hurricane
Center at U.S. $3.4 billion.

(iv) Environmental conditions influencing the 2003 At-
lantic hurricane season

(a) 200- AND 850-HPA CIRCULATION AND VERTICAL WIND SHEAR

During August-October 2003, the mean 200-hPa
subtropical ridge axis was stronger and farther north
of its normal position from the Gulf of Mexico to
northern Senegal (Fig. 4.7). South of the ridge axis,
upper-level easterly wind anomalies covered the en-
tire MDR in association with an enhanced tropical east-
erlyjet (Fig. 4.7, green arrows). The ongoing multidec-
adal signal can account for the amplified subtropical
ridge and enhanced tropical easterly jet over the east-
ern North Atlantic and Africa (Chelliah and Bell 2004).
These features were not related to the ENSO-neutral
conditions observed during the peak of the season.

During August, the extensive area of positive
200-hPa height anomalies across the tropical North
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Atlantic was also partly related to a continuation of
the positive phase of the eastern Atlantic teleconnec-
tion pattern (see Fig. 6.21). This pattern has strong links
to both the subtropics and extratropics, and during
April-August was associated with a marked amplifi-
cation of the 200-hPa subtropical ridge across the
North Atlantic (see Fig. 6.20). During September and
October, the amplified subtropical ridge was partly re-
lated to an anomalous warming throughout the tropi-
cal Atlantic (red in Fig. 4.9), which occurred in associa-
tion with a warming of the global Tropics (Fig. 4.9,
green).

At 850-hPa, westerly zonal wind anomalies across
the North Atlantic and western Africa during August-
October 2003 (Fig. 4.10a) reflected weaker-than-av-
erage tropical easterlies. This anomaly pattern was al-
ready evident during the preceding 4 months
(Fig. 4.10b), indicating it did not result from the in-
creased hurricane activity (Goldenberg and Shapiro
1996). In both periods these westerly anomalies con-
tributed to anomalous cyclonic relative vorticity at
850 hPa across the heart of the MDR.

The combination of upper- and lower-level zonal
wind anomalies resulted in easterly vertical wind shear
anomalies between 200 and 850 hPa from the eastern
tropical Pacific to western Africa (Fig. 4.11a). The
anomalous easterly shear resulted in lower total verti-
cal shear over the heart of the MDR, and higher total
shear over both tropical western Africa and portions
of the eastern tropical Pacific (Fig. 4.11b). This three-
celled anomaly pattern was typical of other above-
normal Atlantic hurricane seasons. It was also consis-
tent with the enhanced 2003 West African monsoon
system (see section 6e1), and with a below average 2003
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Fic. 4.9. Standardized values of the 3-month running
mean area-averaged 200-hPa height anomalies calcu-
lated for the entire global Tropics (20°N-20°S) (green
curve) and for the region centered on the tropical At-
lantic (120°W-40°E, 20°N-20°S) (red curve). Anoma-
lies are departures from the 1971-2000 base period

monthly means.



eastern North Pacific hurricane season
that featured a record low of no major
hurricanes [see section 4b(ii)].

(b) 700-HPA AFRICAN EASTERLY JET, CONVEC-
TIVE AVAILABLE POTENTIAL ENERGY, AND

SSTs
During August-October, tropical
cyclogenesis in the MDR is typically as-
sociated with amplifying African east-
erly wave disturbances (Reed et al.
1977) moving within the region of high
cyclonic relative vorticity along the
equatorward flank of the 700-hPa AE].
The AE] was well defined during 2003,
(Fig. 4.12a, contours), with high values
of cyclonic relative vorticity extending
along its entire equatorward flank
(shading). The AE] was also shifted to
almost 20°N over the central MDR,
roughly 5° of latitude farther north than

L ] ]
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Fic. 4.10. Anomalous 850-hPa zonal winds (contours, interval is .0 ms™)
and relative vorticity (shading, x 10 s™') during (a) Aug-Sep 2003, and
(b) Apr-Jul 2003. Solid (dashed) contours indicate westerly (easterly)
wind anomalies. Cyclonic (anticyclonic) relative vorticity anomalies are
shaded orange (blue). Green box denotes the MDR. Anomalies are de-
partures from the 1971-2000 base period monthly means.

its climatological mean position (Bell
etal. 2000, see their Fig. 31). This struc-
ture was consistent with the weaker-than-average
tropical easterlies and enhanced 850-hPa cyclonic rela-
tive vorticity previously noted across the heart of the
MDR (Fig. 4.10a).

54 3 -2 -1 0 1

2 3 4 5

Fic. 4.11. Aug-Sep 2003 (a) anomalous 200-850-hPa
vertical shear of zonal wind (shaded, m s') and anoma-
lous vertical shear vector, and (b) anomalous strength of
the total 200-850-hPa vertical shear. In (a) red indicates
anomalous easterly shear and blue indicates anomalous
westerly shear. In (b) red indicates lower total shear and
blue indicates higher total shear. Green box denotes the
MDR. Anomalies are departures from the 1971-2000
base period monthly means.
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An enhanced cross-equatorial flow of deep tropi-
cal moisture was also evident at low levels, which con-
tributed to high values of convective available poten-
tial energy (CAPE) extending well into the central MDR
along the equatorward flank of the AE] (Fig. 4.13a). The
high CAPE values were also associated with near-
record warm SST's (0.5°-1°C above average) through-
out the MDR (Fig. 4.13b). Area-averaged SSTs in the
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Fic. 4.12. Aug-Sep 2003 mean 700-hPa (a) zonal winds
(contours, interval is 1.0 m s™') and relative vorticity
(shading, x 107¢ s7'), and (b) potential vorticity
[x 1077 K (s hPa)']. In (a) only cyclonic vorticity values
are shaded. Green box denotes the MDR.
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MDR were two standard deviations above normal dur-
ing August-October 2003, which is comparable to the
record warmth seen during the extremely active 1998
season (Fig. 4.13c).

These results indicate that the tropical disturbances
during the peak of the 2003 season experienced a linearly
unstable mean current and an extended region of in-
creased cyclonic vorticity as they propagated westward
over very warm SST's into the low-shear, high CAPE
environment in the heart of the MDR. These conditions
were exceptionally conducive to tropical cyclogenesis,
as has also been described for the above-normal 1998-
2000 Atlantic hurricane seasons by Bell et al. (1999, 2000)
and Lawrimore et al. (2001). These very prominent
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Fic. 4.13. Aug-Oct 2003 (a) CAPE (shaded, in J kg™'),
700-hPa wind speeds (contours, interval is 2.0 ms™'), and
anomalous 925-hPa wind vector, and (b) anomalous SST
(°C). (c) Standardized, area-averaged SST anomalies
(°C) in the MDR (20°-90°W and 9°-21.5°N) for consecu-
tive Aug-Oct periods from 1950 to 2003. Green box in
panels (a) and (b) shows the MDR. Anomalies in (a) and
(b) are departures from the 1971-2000 base period
means. SST anomalies in (c) are departures from the
1951-2000 base period means.
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circulation anomalies have prevailed throughout the
above-normal period of 1995-2003, with the exception
of the two El Nifio years (1997, 2002) (Fig. 4.14).

These low-frequency fluctuations in key circulation
anomalies over the tropical North Atlantic are consis-
tent with the strong relationship between multidecadal
variations in the seasonal Atlantic basin activity and the
West African monsoon system (Hastenrath 1990;
Landsea and Gray 1992; Goldenberg and Shapiro 1996).
They are also consistent with the observed transition
to the warm phase of the Atlantic multidecadal mode
during the early and mid-1990s (Landsea et al. 1999;
Mestas-Nuiiez and Enfield 1999). Chelliah and Bell
(2004) have shown that these multidecadal fluctuations
are associated with SST and convective rainfall anoma-
lies spanning the global Tropics. The associated atmo-
spheric circulation anomalies are also Tropics-wide,
and are important to seasonal Atlantic hurricane ac-
tivity because they include key circulation features in
the MDR (Fig. 4.14).
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the 1979-95 base period monthly means.
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