Procedure for Maintenance of A3R5 Cells in Culture

(December 2011)

I. Introduction

The performance of neutralizing antibody assays under properly standardized and optimized conditions requires that the cells are at their log phase of growth and at least 80-90% viable when performing neutralization assays using A3R5 (A3.0/R5.7) cells. This is a derivative of the human lymphoblastoid cell line CEM, that naturally expressed CD4 and CXCR4 [1] and was engineered by Dr. Robert McLinden in Colonel Kim's laboratory of the US Medical HIV Research Program (USMHRP) to express the CCR5 receptor. The cells are mainlined in growth medium containing 1.0 mg/ml geneticin (G418) to select for cells containing this receptor.

II. <u>Definitions</u>

GM: Growth Medium

RPMI-1640: Roswell Park Memorial Institute Growth Medium

FBS: Fetal Bovine Serum

HEPES: N-2-Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid

DMSO: Dimethyl Sulfoxide

CO₂: Carbon Dioxide

III. Reagents and Materials

Recommended vendors are listed. Unless otherwise specified, products of equal or better quality than the recommended ones can be used whenever necessary.

A3R5 Cells

Provided by: Col. Jerome Kim and Dr. Robert McLinden of the USMHRP

Complete Growth Medium for A3R5 Assay (see Protocol for Reagent Preparation for Use in the Neutralizing Antibody Assay for HIV-1 in A3R5 Cells)

Geneticin (G418), 250 mg/ml

Vendor: Gibco BRL Life Technologies

For every 10 ml of Complete GM, add 40 μl of G418

Microliter pipettor tips, sterile

Vendor: Biohit

Trypan Blue (0.4%) *Vendor:* Sigma

Disposable serological pipettes, sterile, individually wrapped

Vendor: Fisher

Culture flasks with vented caps, sterile

Vendor: Fisher T-25 cm² T-75 cm²

70% Ethanol *Vendor:* VWR

Microtubes

Vendor: Sarstedt Brand Products

IV. <u>Instrumentation</u>

Biological Safety Cabinet *Manufacturer:* Baker Co.

CO₂ Incubator

Manufacturer: Forma Scientific

Water bath

Manufacturer: VWR

Hemacytometer

Manufacturer: INCYTO

Pipettor

Manufacturer: Biohit Single channel 5-50 μl Single channel 40-200 μl

Light Microscope

Manufacturer: Olympus

Liquid Nitrogen Freezer *Manufacturer:* MVE, Inc.

4°C Refrigerator

Manufacturer: Sci-Cool

-20°C Freezer

Manufacturer: Sci-Cool

Countess Automatic Cell Counter

Manufacturer: Invitrogen

V. Protocol

1. Thawing and Recovering A3R5 Cells

NOTE 1: All personnel must wear a full-face shield during the handling of frozen specimens.

- **1.1.** Transfer microtube containing frozen cells from liquid nitrogen to a room temperature water bath in the biological safety cabinet.
- **1.2.** If liquid nitrogen has seeped into the microtube, loosen the cap slightly to allow the nitrogen to escape during thawing.
- **1.3.** Hold the microtube on the surface of the water bath with an occasional gentle "flick" during thawing. Thawing only takes a few seconds.

NOTE 2: Cells should be thawed quickly to prevent formation of ice crystals that can cause cell lysis.

- **1.4.** Dry off the outside of the microtube and wipe it with 70% ethanol before opening to prevent contamination.
- **1.5.** Transfer the thawed cells to a T-75 cm² culture flask containing 30 ml of Complete GM.
- **1.6.** Record the information from the label of the vial to the T-75 cm² flask and add the thaw date.

NOTE 3: It is important to dilute the cryo-protective DMSO present in the microtube at least 30-fold at this point to avoid cell toxicity.

1.7. Incubate the cells at 37°C/5% CO₂ overnight.

- **1.8.** The next day, remove the medium from the T-75 cm² flask without disturbing the cells, and replace with 10 to 15 ml of fresh Complete GM containing the specified concentration of G418, pre-warmed to 37°C, and transfer the cell suspension to a T-25 cm² flask.
- **1.9.** Examine the cells via light microscopy, observing the morphology and density to ensure they are healthy and growing as expected (see NOTE 4). If the cells are allowed to become too dense, they will go into stationary phase where their metabolic action decreases.

NOTE 4: The cells should look round and refracting light around their membrane. The medium should have a pink-orange hue. Discard the culture if the cells do not appear to be growing at all.

- **1.10.** After 3 to 4 days, remove the Complete GM and replace with fresh GM. Add $40 \mu l$ of G418 to the flask(s).
- **1.11.** If the cells appear to be growing well, transfer them into a T-75 cm² flask.

<u>NOTE 5:</u> Cells will initially go through a lag phase. Then they will go into an exponential growth phase where they have the highest metabolic activity (log phase).

2. Splitting, Cutting and Maintaining A3R5 Cells in Culture

- **2.1.** Warm the Complete GM to 37°C.
- **2.2.** Label the T-75 cm² flask(s) appropriately with the cell line name and date of thawing.
- **2.3.** Carefully remove GM from the flask using a pipette, leaving approximately 1 ml of cell suspension.
- **2.4.** Add 9 ml of fresh Complete GM, gently mix the cells and pipette about 100 μl into a microtube. Place the flask into the incubator while performing the cell viability test.
- **2.5.** In a separate microtube, pipette 30 µl of Trypan Blue (0.4%).
- **2.6.** Take the vial containing the 100 μl of cell suspension, gently mix the cells and pipette 30 μl of cell suspension into the vial containing 30 μl of Trypan Blue and then mix gently.
- 2.7. Pipette 10 µl of this mixture into a hemacytometer and count viable cells. Dead cells will stain blue and live cells are bright. As an alternative, one may use an automated cell counter with viability check capabilities. Viability should be at least 80%.
- **2.8.** Based on the cell count, seed the cells into a T-75 cm² flask(s), as needed.

<u>NOTE 6:</u> Split ratios can be used to ensure cells should be ready for an experiment on a particular day or just to keep the cell culture running for future use. Recommended split ratio should be about 2×10^5 cells per ml or 1:10 in a total volume of 50 ml of GM if the cells are needed in 3 days. If the cells are needed in less than 3 days, consider the split ratio at about 4×10^5 cells per ml, or a 1:5 in a total volume of 50 ml of GM.

<u>NOTE 7:</u> Cells seeded at too low density may be inhibited or delayed in entry into log phase growth. Overcrowded cells will enter stationary phase and start to die off. Split cells when they reach 1.5×10^6 cells per ml. Do not allow cells to grow at a density higher than 2.0×10^6 cells per ml.

- **2.9.** Take the flask containing the cells from the incubator and based on the viable cell count, seed the flask(s) as needed at a ratio of about 2×10^5 cells per ml in a total volume of 50 ml of warmed fresh Complete GM. Add 200 μ l of G418 to the flask. Return the flask(s) to the incubator.
- **2.10.** Observe the cells every other day. If the GM start to turn orange rather than pink and the cells are not too dense, change the GM to replenish the nutrients and keep the correct pH.
- **2.11.** As cells reach their steady growth rate, they should be sub-cultured at least 2 to 3 times per week, depending on the density.
- **2.12.** Thaw a new batch of cells every 3 months. Cells in culture will undergo changes in growth, morphology, and genetic characteristics over time. Such changes can adversely affect reproducibility of laboratory results.
- **2.13.** Cells should be tested for the detection of *Mycoplasma* species after 3 months (see Protocol for Preparation of Cells for Detection of *Mycoplasma* Species). A3R5 cells should only be cultured for 3 months total.
- **2.14.** A Master Archive Lot and a Master Working Lot should be established to ensure that enough cell supply is available to complete studies (see Protocol for Preparation of Cells for Detection of *Mycoplasma* Species).

VI. References

 Folks, T., Benn, S., Rabson, A., Theodore T., Hoggan, M.D., Martin, M., Lightfoote, M., and Sell, K. (1985) Characterization of a continuous T-cell susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc. Natl. Acad. Sci. (USA) 82: 4539-4543.