Appendix 1. List of meeting attendees and working group participants (black box indicates attendance on the specific meeting day)

Appendix 2. Additional material presented during SARC 53 including ASAP sensitivity runs and an evaluation of biomass scale and estimates of ASAP-estimated survey catchability.

A2.1 Additional ASAP sensitivity runs

During the SARC 53 meeting, the Panel requested several additional sensitivity runs of the ASAP model to a) better understand the development of the base assessment model, and b) to better characterize overall model uncertainty. The types of sensitivity runs requested included:

1. A better description of some of the preliminary Age Structured Assessment Program (ASAP) models that were explored when transitioning from the previous Virtual Population Assessment (ADAPT-VPA) base model to the ASAP model.
2. Accounting for greater uncertainty in total catch by increasing the coefficients of variation (CVs) inputs in the model.
3. Limiting the survey indices to only those age classes that exhibited internal consistency in terms of correlations between successive ages (ages 1-6).
4. Start the assessment in 2000 so that the assessment is not confounded by changes in fishery selectivity and/or biology that may have occurred earlier on in the assessment period.
5. Run the assessment with each survey index individually to better understand the influences of each survey on the assessment.

A2.1.1. Preliminary development of an ASAP model

There were well over 20 different preliminary ASAP model configurations that were explored prior to the development of the ASAP base model (BASE). Many of these preliminary models attempted to take advantage of the complexity and flexibility of ASAP by partitioning fishery catch into its various fleet (commercial, recreational) and disposition (retained, discarded) components. These preliminary explorations, while informative in broad terms for demonstrating the robustness of the base model results with respect to the trend and magnitude of the resource, were untenable for consideration as a base model. This is primarily because the more complex model configurations tended to be over-parameterized (and therefore unstable to even minor perturbations) or the model diagnostics were poor.

Although there were many different model configurations and parameterizations considered, they can be categorized into three main configurations. When viewed in this way, it is more straightforward to trace the transition from a VPA-based assessment to development of the statistical catch-at-age model, ASAP. The first formulation explored was similar to the VPA model formulation (BASE_VPA). Two additional configurations, PRELIM_2FLEET and PRELIM_4FLEET, explored the possibility of decomposing the single VPA catch-at-age matrix into two or four subcomponents, respectively. Details of these three broad categories are discussed below in more detail.

In the BASE_VPA formulation, a single catch-at-age matrix with an age $11+$ group was considered, and survey indices were fit to individual indices-at-age rather than tuning to the aggregate indices with the age compositions fit separately. A single fishery selectivity ogive was assumed to operate for the period 1982 to 2010. This selectivity assumption differs from the VPA, where fishery selectivity can vary annually. To estimate the single fleet selectivity, age six was assumed to be fully selected, and the remaining ages were freely estimated. The coefficient of variation (CV) on the aggregate fishery catch was set at 0.05 . All survey indices used in the base VPA model (run 10) were incorporated including the MADMF fall survey (which was later dropped in the final BASE model). Unlike in the VPA, where fall survey indices were
lagged forward an age and a year, ASAP can account for survey timing within the year, so survey indices-at-age were entered as true ages and years. The CVs on all survey indices-at-age were fixed at 0.3.
Recruitment steepness was fixed at 1 , so recruitment was estimated as deviations about the geometric mean rather that attempting to fit to a stock-recruit function. Unlike the base VPA model (run 10), the time of spawning was updated to April 1 in the BASE_VPA model similar to VPA run 10g.

The time series of spawning stock biomass (SSB) and average fishing mortality on ages 5-7 (F_{5-7}) was similar between the BASE and BASE_VPA runs from approximately 1998 onward (Appendix Fig. A2.1). There were large differences in the SSB time series early on (1982-1988) that are primarily the result of differences in the model estimates of age 9^{+}fish (Appendix Fig. A2.2). The large amount of age $9+$ fish in the BASE_VPA model is an artifact of the ASAP burn in period where a large pulse of older fish is necessary to support the strong doming of the fishery selectivity estimated in the BASE_VPA model (Appendix Fig. A2.3). While the doming of the fishery selectivity is quite strong, the selectivity at age 9 and older is imprecisely estimated with CVs exceeding 0.50 (Appendix Table A2.1). The selectivity for ages 1 through 7 is similar, though not identical to the selectivity of the BASE model in the 1991 - 2010 time block. Overall, the current perception of the Gulf of Maine cod stock based on the BASE_VPA model is similar in terms of current stock biomass and fishing mortality rates.

Subsequent formulations of the ASAP model did not tune to the survey indices-at-age separately, rather they tuned to the aggregate survey indices with age compositions fit assuming a multinomial error distribution. All preliminary ASAP runs used three survey indices (NEFSC spring, NEFSC fall, MADMF spring) with age compositions fit to ages 1 through 11^{+}. Survey selectivities were estimated assuming a double logistic fit. All preliminary ASAP runs attempted to break the fishery catch into separate fleets (commercial and recreational). Selectivity was fit as a double logistic with three separate selectivity blocks per fleet. The timing of the selectivity block varied slightly by fleet, but generally, there was a single selectivity block per decade. Two main categories of the two fleet formulations were explored in the preliminary runs: 1) catch was divided into two fleets and within each fleet, discards are accounted for assuming a release mortality option. Release mortality was set at 100\% (PRELIM_2FLEET); and 2) for each fleet (commercial and recreational), catch was divided into retained and discarded catch, with each disposition constituting its own fleet such that there were 4 fleets total (PRELIM_4FLEET).

The results from these preliminary runs were not substantially different than the BASE run in terms of SSB or F_{5-7} (Appendix Fig. A2.4). The PRELIM_2FLEET had slightly higher estimates of SSB and F owing to greater doming of the fleet selectivities. The effects of the doming are evident in the number of fish surviving to the age 9^{+}group (Appendix Fig. A2.5). Recruitment was nearly identical in the preliminary runs relative to the BASE run. While the results of these preliminary runs were similar to the BASE run, the preliminary runs suffered from diagnostic issues. Specifically, the PRELIM_2FLEET model suffered from strong residual patterning in the fits to catch combined with generally poor fits to the discard components. For both the commercial and recreational fleet the retained catch tended to have strong positive residuals while the discarded catch had strong negative residuals (see Appendix Fig. A2.6 for an example from the commercial fleet). Alternate configurations of the PRELIM_2FLEET model were attempted to address the residual patterning with limited success.

The development of the PRELIM_4FLEET model was an attempt to provide greater model flexibility and reduce the tension between landings and discards leading to the strong residual patterning. The PRELIM_4FLEET configuration was successful in this regard, but still resulted in poor overall fits to the discard fraction of the catch (Appendix Fig. A2.7). Subsequent attempts to improve the fit of the PRELIM_4FLEET were largely unsuccessful. Moreover, the model appeared to be highly unstable and many of subsequent model formulations failed to converge. Given the problems experienced with these complex ASAP formulations, a decisions was made to simplify the model formulation. Subsequent formulations fit to the aggregate catch as was done in the BASE run rather than attempting to treat fleet
catches explicitly.

A2.1.2. Accounting for additional catch uncertainty

The SARC Panel expressed some concern that the CVs on the aggregate catch used in the BASE model ($\mathrm{CV}=0.05$) assumed higher precision than was warranted given the CV estimates of $0.11-0.38$ for commercial discards (Table A.20) and recreational catch percent standard errors (PSE) around 20\% (Table A.34). The Panel felt that CVs of 0.10 (BASE_CV10) or 0.15 (BASE_CV15) on the aggregate catch should be explored to examine the sensitivity of the BASE model to alternate assumptions. In these sensitivity runs only the CVs on the aggregate catch were adjusted; all model inputs and parameters were held constant. The results of the sensitivity runs showed little impact on overall results in terms of SSB, F, age-1 recruitment and total stock size (Appendix Fig. A2.8 and A2.9). The largest impacts, while small, occurred during the late 1980s and early 1990s when large catches of Gulf of Maine cod occurred. Increasing the CVs on aggregate catch reduced the overall fit on catch; models with higher CVs were less inclined to fit to the high catch estimates during this period (Appendix Fig. A2.10). Lower catches lead to lower model estimates of recruitment and subsequent stock size, thus accounting for the small discrepancies observed in the late 1980s and early 1990s.

Increasing catch CVs lead to slight improvements in the model fits to the survey indices, but only marginally (Appendix Fig. A2.11). The root mean square error on the NEFSC spring survey went from 1.05 under the BASE model to 1.00 in the BASE_CV15 model. There was no noticeable change in the NESFC fall survey. The MADMF spring survey improved from a RMSE of 1.07 in the BASE model to 1.04 under the BASE_CV15 model. Overall, increasing CVs on the aggregate catch had negligible impacts on the assessment results.

A2.1.3. Restricting the age range in the survey to those ages that exhibit internal consistency

The SARC Panel was interested in examining the sensitivity of the BASE model to inclusion of only those survey ages that showed internal consistency across time (i.e., ages for which cohorts were traceable across years). An examination of cohort tracking within the survey suggested that in general, cohorts could be tracked from one age to the next at ages 1-6 on average across all surveys (Appendix Table A2.2). The division was not distinct, but does provide a basis for restricting surveys to an age range where there is sufficient information. Additionally, at survey ages greater than age 6 , there is a notable increase in the number of zero indices-at-age (Tables A.48, A. 49 and A. 53).

The SSB and F trends of the survey, age-6 truncated run (BASE_AGE6) were identical to the BASE run, though the scale of the BASE_AGE6 run was scaled up in terms of SSB and down in terms of F (Appendix Fig. A2.12). The estimated recruitment in both runs were nearly identical, but there were large differences in the estimates of age 9^{+}fish between the two runs (Appendix Fig. A2.13). The large increase in the numbers of age $9+$ fish in the BASE_AGE6 run are the result of the strong doming in the fleet selectivity at older ages in the BASE_AGE6 run compared to the BASE run (Appendix Fig. A2.14). The large doming in the BASE_AGE6 run is a likely product of the absence of survey age composition out beyond age 6 . With no information to anchor the catch at age, the model tends to fit a much stronger dome to the catch selectivities, leading to a buildup of older age fish and increase in SSB relative to the BASE run.

Over the course of the BASE assessment time series (1982-2010) there have been documented changes in fishery regulations, including increases in mesh size and minimum fish size and though less well documented, possible changes in fish biology (e.g., distribution and size at age). Both regulatory changes and biological changes can alter fishery and survey selectivity. The BASE model attempts to account for these changes by creating two discrete fishery selectivity blocks; the first between 1982-1990 and the second between 1991-2010. While the selectivity blocks represented a 'best' attempt to account for changes affecting fishery selectivity, they likely do not account for all changes. A sensitivity run starting in 2000 was conducted (BASE_2000) to give the model greater flexibility in the most recent period such that it is not confounded by changes to fishery and biology over the last two decades (i.e., block 2, 19912010).

The assessment results of the BASE_2000 are similar to the BASE run between 2000 and 2007, but become increasingly divergent from 2008 onward (Appendix Fig. A2.15). The BASE_2000 run estimated increasingly lower SSB and higher fishing mortality between 2008 and 2010 relative to the BASE model. The 2010 estimates of SSB and F fell outside of the 90% probability intervals (PI) of the BASE model (SSB PI $=9,479-16,301 \mathrm{mt}, \mathrm{F}_{\text {full }} 90 \% \mathrm{PI}=0.79-1.54$), with SSB estimated at $8,815 \mathrm{mt}$ and F estimated at 1.59. The CVs on the terminal estimates of the two model runs are identical ($\mathrm{SSB}=0.16, \mathrm{~F}=0.21$). The differences between the two models are primarily the result of the differences in selectivity, with the BASE_2000 run having greater selectivity on the age 9^{+}group relative to the BASE model (Appendix Fig. A2.16).

A2.1.5. Exploring the impacts of individual survey indices on model results

To better understand how the model results are being influenced by each of the survey indices the BASE model was run using only one index at a time. The three sensitivity runs were BASE_INDEX1 (NEFSC spring survey), BASE_INDEX2 (NEFSC fall survey) and BASE_INDEX3 (MADMF spring survey). In all three sensitivity runs all other model configurations were left unchanged.

There are minor differences between the BASE_INDEX1, BASE_INDEX2 and the BASE run, notably in the early 1990s, but over the most recent five year period the three runs are similar with respect to SSB and F (Appendix Fig. A2.17). There are minor differences in the recruitment estimates and age 9^{+} population estimates but there are no major differences beyond the initial burn in period of 1982 to 1990 (Appendix Fig. A2.18). The BASE_INDEX3 which tunes only to the MADMF spring survey exhibits large differences in SSB and F over the last decade compared to the BASE model, with the BASE_INDEX3 model estimating higher terminal SSB and lower F relative (Appendix Fig. A2.19). The recruitment estimates between the two models are similar, but there are large differences in the estimates of age 9^{+}fish. The increase in older age fish is a product of the sharp dome that exists in block 2 of the BASE_INDEX3 run, with selectivity on age $9+$ fish near 0.19 compared to 0.67 in the BASE run (Appendix Fig. A2.20). The CVs on the selectivity estimates of age 8 and age $9+$ in block2 of the BASE_INDEX3 run are nearly double those of the BASE run, additionally, the age9+ selectivity in block1 appears to be hitting a bound of 1.0 (Appendix Table A2.3). These results suggest that the BASE_INDEX3 model has difficulty estimating the fleet selectivity at older ages. This is consistent with the results of the BASE_AGE6 run which illustrated the sensitivity of model estimated selectivity curves when there was limited survey information for older age classes. The MADMF spring survey, which encompasses only nearshore waters, catches few old fish as indicated by the estimated survey selectivity in the BASE run (Fig. A.126).

A2.1.6. Summary of ASAP sensitivity runs and how the results inform the perception of model uncertainty

Including the 10 ASAP sensitivity runs explored in this Appendix, there are 14 sensitivity runs presented in this report. In $7(50 \%)$ of the sensitivity runs, the 2010 SSB was above the $11,868 \mathrm{mt}$ estimate of the BASE run (Appendix Table A2.4). Estimates of $\mathrm{F}_{\text {full }}$ exceeded the BASE estimate of 1.14 in 9 of the 14 runs (64.3%) 2010. All but two of the sensitivity runs had 2010 terminal SSB and $\mathrm{F}_{\text {full }}$ estimates that fell within the 90% PIs of the BASE run. The two exceptions were the BASE_INDEX3 run which estimated substantially higher SSB and lower F and the BASE_2000 run which estimated lower SSB and higher F. Over the assessment time series, the majority of sensitivity runs have fallen within the $90 \% \mathrm{PI}$ of the BASE run both with respect to SSB (Appendix Fig A2.22) and to a greater extent, $\mathrm{F}_{\text {full }}$ (Appendix Fig. A2.23). While approximately 5 of the sensitivity runs fell outside the SSB 90% PI at some point in the time series, they all follow the same general trends of the BASE model, with the differences resulting primarily due to scale. The scaling issues are primarily related to the estimated fleet selectivity in each of the models. Given the robustness of the assessment results to different model formulations, there is a high degree of confidence that the 90% PI of the BASE model adequately characterizes the uncertainty in the assessment results.

A2.2. Exploration of survey catchability and its implications on estimated biomass

The scale of model estimates of biomass is sensitive to the estimated fleet (fishery) selectivity as illustrated by the sensitivity runs. In addition to fishery selectivity, the relative scale of the estimated biomass can be affected by assumptions of the estimated efficiency of the surveys. Further work was conducted to 1) evaluate the sensitivity of the BASE model results to alternate assumptions of survey catchability (q), and 2) generate model-independent estimate of total biomass and compare to the model estimates to determine whether the BASE results are reasonable.

A2.2.1.1. Model profiling across a range of NEFSC spring survey q values

The sensitivity of the BASE model to alternate assumptions of survey catchability was evaluated by profiling across a range of q values from 0.1 to 1.0 . Priors were specified for catchability ranging from 0.1 to 1.0 in 0.1 increments. The input CV on catchability was set to 0.1 and given lambda values of 1 (i.e., the initial q values were given little latitude to deviate from the initial conditions and a penalty was imposed for any deviations).

Results of the sensitivity runs are summarized in Appendix Fig. A2.24. On the basis of the objective function, the BASE model preferred q values in the range of 0.7 to 1.0 . There was a general tendency for the model to estimate higher q values than inputted despite the low CV and a penalty was placed on deviations. Within the 0.7 to 1.0 range there was little impact in terms of SSB scaling ($<5 \%$ difference from BASE run). Even when forcing q to a minimum believable range (≈ 0.4) the SSB scaling differences only amount to $10-20 \%$ differences from the base run q preference of 0.92 . The tradeoff in lower q reduces the overall fit in the NEFSC spring survey and by necessity, reduces q on the NEFSC fall survey. Additionally, a lower q requires an approximate 22% decrease in the selectivity on the oldest age in the second fishery selectivity block (i.e., a considerable increase in the doming assumption). The profiling across a range of q values shows strong model preference for the BASE model results, with little impact in terms of SSB within the range of believable alternatives.

A2.2.1.2. Sensitivity of BASE results and estimates of survey q to area expansion factors

The Gulf of Maine cod stock boundary (Fig. A.1) encompasses a surface area of approximately 54.5 thousand km^{2}. The survey strata used in the Gulf of Maine cod stock assessment encompass 61.4
thousand km^{2} which is approximately 17.1% larger than the stock area. Included in the survey strata set are three strata, 29, 30 and 36, that extend beyond the United States Exclusive Economic Zone (EEZ) into Canadian waters. A sensitivity analyses was conducted to evaluate whether using a survey strata set that included only survey strata contained entirely inside the US EEZ would affect model results and estimates of survey q.

NEFSC spring and fall survey indices, including indices at age, were recalculated using only strata 26-28 and 37-40 (exclude 29, 30 and 36). The revised survey area has a surface area of 34.2 thousand km^{2} (37.2% smaller than the stock area).The recalculated aggregate abundance indices were nearly identical in terms of trends, but tended to be slightly higher (Appendix Fig. A2.25). The rescaling of the survey indices is a product of dropping survey strata that have historically not contained high abundances of cod, thus increasing the stratified mean number/tow without impacting overall survey trends. When converted to area swept indices by accounting for the survey trawl area and revised surface area, the indices tended to be lower than those that included in the full strata set (Appendix Fig. A2.26). The raising factor used to convert the mean number per tow to their area-swept equivalents was disproportionately smaller than the increases in the stratified mean number per tow. The revised survey indices were inputted into a revised ASAP model (BASE_revAS).

The BASE_revAS model is nearly identical to the BASE model with respect to the SSB, F and the age 1 recruitment time series (Appendix Fig. A2.27). There are small deviations early on in the time series, particularly in F, but over the last decade, the BASE and BASE revAS are similar. The slight deviations in the two runs are likely due to the small differences in the survey indices when calculated using the reduced strata set. While there were no major differences in estimates of SSB and F, using the reduced strata sets resulted in q estimates that were much lower relative to the BASE model. The NEFSC spring q went from 0.92 to 0.57 , NEFSC fall from 0.53 to 0.42 and the MADMF spring survey was unchanged at 0.16 . The model estimates of q are highly sensitive to the estimated survey area used to expand mean number per tow survey indices to their area-swept equivalents. In addition to the assumptions about total survey area considered here, estimates of q are also likely to be sensitive to assumptions about the total trawl area, effective trawl sweep and the extent of cod herding that occurs in the survey net.

A2.2.2. Model independent estimates of total biomass

All previous analyses have examined the sensitivity of the biomass estimates to different assumptions on model parameters. While these analyses show that the model-based biomass estimates are robust to alternate model configurations, they do not provide a sense for whether the model-based estimates are realistic relative to model-independent estimates of total stock biomass. Several different modelindependent approaches are taken below to evaluate whether the ASAP estimates of biomass are realistic.

A2.2.2.1. Model independent estimates of total biomass from the Bigelow survey years (2009-2011)

 The conversion of Bigelow survey catches to Albatross equivalents is an uncertain, but necessary step in order to maintain a consistent time series and fully utilize the very short Bigelow time series. To avoid any confounding effects of the Bigelow conversion in deriving model-independent estimates of biomass, an attempt was made to use raw (i.e., unconverted) Bigelow time series data (2009-2011) to estimate total biomass. Total survey area-swept biomass can be estimated using Appendix Equation 1.(1) $B_{A W}=I / 1000 \cdot A / f \cdot 1 / q$
where:

$$
\begin{aligned}
& B_{A W}=\text { Area swept biomass } \\
& I=\text { survey index } \\
& A=\text { survey area } \\
& f=\text { trawl area } \\
& q=\text { survey catchability }
\end{aligned}
$$

The survey area depends on the strata set included. For the purposes of these analyses, the inshore survey strata were included to better characterize total catch across all age classes (strata 57-69) in addition to the offshore survey strata (strata 26-30, 36-40). The nearshore area that makes up the inshore survey strata has higher abundance of juveniles relative to the offshore areas. The differences in availability of young age classes between the inshore and offshore regions is evident when comparing the selectivity of NEFSC offshore surveys to the MADMF survey in the BASE model (Fig. A.126). The total surface area of strata 26-30, 36-40 and 57-69 is 63.8 thousand km^{2} and 36.5 thousand km^{2} when strata 29,30 and 36 are excluded. The total trawl area of the Bigelow is $0.024 \mathrm{~km}^{2}$ when using wing spread to define the effective trawl area and $0.061 \mathrm{~km}^{2}$ when using door spread. Comparatively, the Albatross tow area in terms of wing spread is $0.038 \mathrm{~km}^{2}$.

Assumptions on the effective trawl area and q can have large impacts on survey-based estimates of total biomass. Moving from a q of 1.0 to 0.2 will result in a fivefold increase in terms of biomass (Appendix Fig. A2.28). Assuming that the door spread best characterizes the effective trawl area results in biomass estimates less than half that compared to calculations made using wing spread. If there is herding between the doors and an assumption of wing spread is used to determine area swept biomass, biomass estimates may be inflated (or in the case of the model, q estimates, may be higher than reality). The true effective trawl area and survey catchability is not known, but an assumption that a wing spread-based estimate of effective trawl area and 80% efficiency ($\mathrm{q}=0.8$) appears reasonable. Using these assumptions to estimate a survey-based estimate of total biomass yielded results similar to the BASE model estimates of total biomass at the time of the survey (i.e., total January 1 biomass decremented by total mortality, z, occurring before the survey; Appendix Fig. A2.29). In 2009 and 2010 the BASE biomass estimates are all within the 80% bootstrap CI of the Bigelow-based biomass estimates. Excluding the offshore survey strata does not impact the overall perception of Bigelow-based total biomass.

Given an assumption that the Bigelow survey $q=0.8$, it's reasonable to conclude that a comparative q for the Albatross survey is approximately 0.5 if the Bigelow to Albatross conversion coefficient of 1.602 on fish $\geq 54 \mathrm{~cm}$ is used as a rough estimate of differences in catchability (i.e., the Bigelow survey is 60% more efficient at catching cod compared to the Albatross survey). By performing a similar analysis on the Albatross survey series, but using a q assumption of 0.5 , a time series of survey-estimated total biomass can be constructed. The survey-based time series is not inconsistent with the BASE model estimates of total biomass at the time of the survey (z-decremented to the time of the survey). The BASE biomass estimates generally fall within the 80% CI of both the NEFSC spring and fall survey-based biomass estimates (Appendix Fig. A2.30). While the estimates are not exact, they are all of the same relative scale, suggesting that the BASE model estimates are realistic.

A2.2.2.2. Thinking of q in terms of the catchability of 'survey-able' biomass

The BASE model estimate of NEFSC spring survey $q(0.92)$ seems unreasonably high when thought of in terms of total survey efficiency. However, when interpreting the model q values, the impact of survey selectivity on the q estimates needs to be considered. Effectively, the BASE model q estimates represent
the q in terms of fully selected fish (i.e., after accounting for survey selectivity). To examine whether the BASE q estimates were reasonable, the model estimates have been used to estimate survey-based total biomass as was done above. Unlike the previous analysis that incorporated the inshore survey strata, only the offshore survey strata are included here, as this is consistent with the NEFSC survey indices used in the BASE model. This maintains consistency between the survey index and model-based estimates of q and selectivity at age. Survey-based biomass indices were generated using both the full offshore strata set (26-30, 36-40) and with strata 29,30 and 36 excluded. The model estimates of q applied to estimate total biomass were: NEFSC spring $=0.92$ (full strata set), 0.57 (exclude 29, 30 and 36) and NEFSC fall $=0.53$ (full strata set), 0.42 (exclude 29, 30 and 36).

Total survey-based estimates of biomass were compared to the 'survey-able' biomass estimated from the BASE model. 'Survey-able' biomass was estimated by decrementing the January 1 biomass (Table A.63) by total z between January 1 and the time of the survey (spring vs. fall) and filtering the z-decremented biomass through the survey selectivity ogive. The BASE-estimated 'surveyable' biomass generally fell within the 80% survey CI on total biomass for both the spring (Appendix Fig. A2.31) and fall (Appendix Fig. A2.32) surveys. How q is defined, whether in terms of absolute efficiency (as was done in section A2.2.2.1) or in terms of only fully selected ages, does impacts the q value. However, when the q is properly applied in a model-independent exercise, the calculations yield biomass estimates that are comparable with those estimated by the BASE model.

Tables

Appendix Table A2.1. Coefficients of variation associated with the estimates of Gulf of Maine cod selectivity-at-age between block 2 (1991-2010) of the ASAP base (BASE) model run and the sensitivity run BASE_VPA. *The BASE_VPA run includes catch out to age 11^{+}whereas the BASE run only includes catch out to age 9^{+}.

AGE	BASE BASE_VPA	
AGE1	0.17	0.13
AGE2	0.10	0.09
AGE3	0.08	0.08
AGE4	0.08	0.08
AGE5	0.00	0.00
AGE6		
AGE7	0.20	0.20
AGE8	0.33	0.36
AGE9	0.54	0.65
AGE10		0.89
AGE11		1.41

Appendix Table A2.2. Significance (p-values) of Pearson correlation coefficients across survey cohorts for the NEFSC spring, fall and MADMF spring surveys. P-values >0.05 are highlighted in bold.

NEFSC spring (Index 1)								
Age	Age 1	Age2	Age3	Age4	Age5	Age6	Age 7	Age8
Age2	0.37							
Age3	0.75	0.00						
Age4	0.58	0.35	0.20					
Age5	0.59	0.83	0.34	0.00				
Age6	0.49	0.21	0.95	0.02	0.01			
Age7	0.46	0.49	0.04	0.47	0.15	0.10		
Age8	0.90	0.42	0.97	0.22	0.34	0.68	0.11	
Age9	0.45	0.25	0.45	0.69	0.56	0.86	0.81	0.74
NEFSC fall (Index 2)								
Age	Age1	Age2	Age3	Age4	Age5	Age6	Age 7	Age8
Age2	0.00							
Age3	0.00	0.00						
Age4	0.43	0.35	0.37					
Age 5	0.90	0.64	0.63	0.04				
Age6	0.92	0.82	0.90	0.22	0.16			
Age7	0.58	0.60	0.35	0.05	0.03	0.04		
Age8	0.42	0.71	0.79	0.03	0.07	0.11	0.00	
Age9	0.39	0.15	0.77	0.74	0.35	0.35	0.63	0.68
MADMF spring (Index 3)								
Age	Age1	Age2	Age3	Age4	Age5	Age6	Age 7	Age8
Age2	0.52							
Age3	0.91	0.00						
Age4	0.83	0.09	0.00					
Age5	0.68	0.87	0.12	0.00				
Age6	0.22	0.30	0.56	0.24	0.00			
Age7	0.85	0.26	0.53	0.75	0.08	0.00		
Age8	0.43	0.11	0.33	0.80	0.51	0.04	0.00	
Age9	0.45	0.11	0.38	0.69	0.04	0.26	0.06	0.02

Appendix Table A2.3. Gulf of Maine cod fleet selectivities and coefficients of variation (CV) in blocks 1 (19821990) and block 2(1991-2010) for the sensitivity run tuned to only the MADMF spring survey index (BASE_INDEX3).

Block	Age	Selectivity	CV
1982-1990	Age 1	0.05	0.18
	Age2	0.32	0.12
	Age3	0.64	0.11
	Age4	1.00	0.00
	Age5	1.00	
	Age6	0.83	0.30
	Age7	0.77	0.46
	Age8	0.70	0.66
	Age9	1.00	0.01
1991-2010	Age 1	0.02	0.20
	Age2	0.12	0.15
	Age3	0.42	0.13
	Age4	0.89	0.11
	Age5	1.00	0.00
	Age6	1.00	
	Age7	0.66	0.32
	Age8	0.48	0.55
	Age9	0.19	0.95

Appendix Table A2.4. Summary of 2010 estimates of Gulf of Maine cod spawning stock biomass (SSB) and fully recruited fishing mortality ($\mathrm{F}_{\text {full }}$) from 14 different ASAP sensitivity runs. Those runs that fell outside of the 90% probability intervals (PI) of the ASAP base run (BASE) are shown in bold; $\mathrm{SSB} 90 \% \mathrm{PI}=9,479-16,301 \mathrm{mt}, \mathrm{F}_{\text {full }}$ $90 \% \mathrm{PI}=0.79-1.54$. Note: PRELIM_2FLEET and PRELIM_4FLEET fishing mortalities are reported as the average fishing mortality on age 6, which is analogous to $F_{\text {full }}$ for these two preliminary runs.

Model	2010 SSB (mt)	2010 F full
BASE_11	11,777	1.15
BASE_DOME	14,476	1.04
BASE_1964	10,346	1.34
BASE_1970	9,664	1.46
BASE_VPA	12,318	1.21
PRELIM_2FLEET	15,488	1.00
PRELIM_4FLEET	12,134	1.21
BASE_CV10	11,635	1.16
BASE_CV15	11,347	1.16
BASE_AGE6	14,931	1.01
BASE_2000	$\mathbf{8 , 8 1 5}$	$\mathbf{1 . 5 9}$
BASE_INDEX1	10,726	1.28
BASE_INDEX2	12,144	1.13
BASE_INDEX3	$\mathbf{2 0 , 4 3 2}$	$\mathbf{0 . 7 4}$

Appendix A2 Figures

Appendix Figure A2.1. Comparison of the Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) and an ASAP sensitivity run configured similar to the updated base VPA model (BASE_VPA).

Appendix Figure A2.2. Comparison of the Gulf of Maine cod estimated age-1 recruitment in numbers (thousands of fish; top) and estimates of age 9^{+}fish (thousands of fish; bottom) between the ASAP base run (BASE) and an ASAP sensitivity run configured similar to the updated base VPA model (BASE_VPA).

Appendix Figure A2.3. Comparison of the Gulf of Maine cod estimated fishery selectivity-at-age between the ASAP base run (BASE; top) and an ASAP sensitivity run configured similar to the updated base VPA model (BASE_VPA; bottom).

Appendix Figure A2.4. Comparison of Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) two preliminary configurations of the ASAP model, PRELIM_2FLEET and PRELIM_4FLEET.

Appendix Figure A2.5. Comparison of Gulf of Maine cod age-1 recruitment (thousands of fish; top) and population estimates of age 9^{+}fish (thousands of fish; bottom) between the ASAP base run (BASE) two preliminary configurations of the ASAP model, PRELIM_2FLEET and PRELIM_4FLEET.

Appendix Figure A2.6. Example of the residual patterns observed in the model fits to Gulf of Maine cod commercial landings (left) and commercial discards (right) from the preliminary ASAP model, PRELIM_2FLEET.

Appendix Figure A2.7. Example of poor model fits to Gulf of Maine cod commercial discards (top) and recreational discards (bottom) from a preliminary ASAP model run, PRELIM_4FLEET.

Appendix Figure A2.8. Comparison of Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) and two ASAP sensitivity runs where the coefficient of variation (CV) on total catch was increased to 0.10 (BASE_CV10) and 0.15 (BASE_CV15). The CV of the BASE run was set at 0.05 .

Appendix Figure A2.9. Comparison of Gulf of Maine cod total stock abundance (thousands of fish; top) and age-1 recruitment (thousands of fish; bottom) between the ASAP base run (BASE) and two ASAP sensitivity runs where the coefficient of variation on total catch was increased to 0.10 (BASE_CV10) and 0.15 (BASE_CV15). The CV of the BASE run was set at 0.05 .

Appendix Figure A2.10. Model fits to the total catch of Gulf of Maine cod from three different ASAP model runs: BASE, BASE_CV10, and BASE_CV15. The differences in model runs are restricted to the inputted coefficient of variation on total catch; CVs were set at $0.05,0.10$ and 0.15 , respectively, in each of the different model runs.

Appendix Figure A2.11. Model fits to the three Gulf of Maine cod survey indices from three different ASAP model runs: BASE, BASE_CV10, and BASE_CV15. The three survey indices are NEFSC spring (Index1), NEFSC fall (Index2) and MADMF spring (Index3). The differences in model runs are restricted to the inputted coefficient of variation on total catch; CVs were set at $0.05,0.10$ and 0.15 , respectively, in each of the different model runs.

Appendix Figure A2.12. Comparison of the Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) and an ASAP sensitivity run where survey indices were restricted to ages 1-6 (BASE_AGE6).

Appendix Figure A2.13. Comparison of Gulf of Maine cod age-1 recruitment (thousands of fish; top) and population estimates of age 9^{+}fish (thousands of fish; bottom) between the ASAP base run (BASE) and an ASAP sensitivity run where survey indices were restricted to ages 1-6 (BASE_AGE6).

Appendix Figure A2.14. Comparison of the Gulf of Maine cod estimated fishery selectivity-at-age between the ASAP base run (BASE; top) and an ASAP sensitivity run where survey indices were restricted to ages 1-6 (BASE_AGE6; bottom).

Appendix Figure A2.15. Comparison of the Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) and an ASAP sensitivity run where the assessment began in 2000 (BASE_2000).

Appendix Figure A2.16. Comparison of Gulf of Maine cod age-1 recruitment (thousands of fish; top) and total population size (thousands of fish; bottom) between the ASAP base run (BASE) and an ASAP sensitivity run where the assessment began in 2000 (BASE_2000).

Appendix Figure A2.16. Comparison of the Gulf of Maine cod estimated fishery selectivity-at-age between the ASAP base run (BASE; top) and an ASAP sensitivity run where the assessment began in 2000 (BASE_2000).

Appendix Figure A2.17. Comparison of the Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) and ASAP sensitivity runs that included only the NEFSC spring survey (BASE_INDEX1) or the NEFSC fall survey (BASE_INDEX2).

Appendix Figure A2.18. Comparison of Gulf of Maine cod age-1 recruitment (thousands of fish; top) and population estimates of age 9^{+}fish (thousands of fish; bottom) between the ASAP base run (BASE) and ASAP sensitivity runs that included only the NEFSC spring survey (BASE_INDEX1) or the NEFSC fall survey (BASE_INDEX2).

Appendix Figure A2.19. Comparison of the Gulf of Maine cod estimated spawning stock biomass (top) and average fishing mortality (F) on fish age 5-7 (bottom) between the ASAP base run (BASE) and an ASAP sensitivity run that includes only the MADMF spring survey (BASE_INDEX3).

Appendix Figure A2.20. Comparison of Gulf of Maine cod age-1 recruitment (thousands of fish; top) and population estimates of age 9^{+}fish (thousands of fish; bottom) between the ASAP base run (BASE) and an ASAP sensitivity run that includes only the MADMF spring survey (BASE_INDEX3).

Appendix Figure A2.21. Comparison of the Gulf of Maine cod estimated fishery selectivity-at-age between the ASAP base run (BASE) and ASAP sensitivity runs that included only the NEFSC spring survey (BASE_INDEX1), the NEFSC fall survey (BASE_INDEX2), or the MADMF spring survey (BASE_INDEX3).

Appendix Figure A2.22. Estimates of Gulf of Maine cod spawning stock biomass (SSB) from 14 sensitivity runs of the ASAP model. The 90% probability intervals (PI) for the base ASAP model (BASE) are shown in red. The two sensitivity runs that fell outside the 90% PI in 2010 (BASE_INDEX3 and BASE_2000) are identified by bold text.

Appendix Figure A2.23. Estimates of Gulf of Maine cod fully recruited fishing mortality ($\mathrm{F}_{\text {full }}$) from 14 sensitivity runs of the ASAP model. The 90% probability intervals (PI) for the base ASAP model (BASE) are shown in red. The two sensitivity runs that fell outside the 90% PI in 2010 (BASE_INDEX3 and BASE_2000) are identified by bold text.

Appendix Figure A2.24. Sensitivity analysis showing the response of the ASAP base model (BASE) to different assumptions of Gulf of Maine Atlantic cod survey catchability (q) of the Northeast Fisheries Science Center spring survey.

Spring abundance index

Fall abundance index

Appendix Figure A2.25. Gulf of Maine cod NEFSC spring (top) and fall (bottom) survey indices of abundance (numbers per tow) when estimated from all NEFSC offshore strata (26, 27, 28, 29, 30, 36, 37, 38, 39, 40; black line) and when strata 29,30 , and 36 are excluded (red line).

Spring area swept abundance index

Fall area swept abundance index

Appendix Figure A2.26. Gulf of Maine cod NEFSC spring (top) and fall (bottom) survey indices of abundance in terms of area swept abundance (thousands of fish) when estimated from all NEFSC offshore strata (26-30 and 3640 ; black line) and when strata 29,30 , and 36 are excluded (red line).

Appendix Figure A2.27. Comparison of Gulf of Maine cod spawning stock biomass (top), average fishing mortality (F) on ages 5-7 (middle) and age-1 recruitment (thousands of fish; bottom) between the ASAP base run (BASE) and a sensitivity run excluding NEFSC offshore survey strata 29,30 and 36 (BASE_revAS).

Appendix Figure A2.28. Area swept estimates of total Gulf of Maine cod biomass under different assumptions of NEFSC spring Bigelow survey catchability (q) and effective trawl area (wing spread vs. door spread). The 80% bootstrap confidence interval (CI) is shown by the dashed lines.

Appendix Figure A2.29. Area swept estimates of total Gulf of Maine cod biomass from 2009 to 2011 based on the NEFSC spring (top) and fall (bottom) Bigelow survey when the effective area is set equal to the wing spread and the survey is assumed to be 80% efficient ($q=0.8$). Biomass has been estimated using the full strata set (red line, with 80% bootstrap confidence intervals) and using a strata set that excludes strata 29,30 and 36 (blue line). In these analyses, the full strata set also includes inshore survey strata 57-69. Biomass estimates are compared to the annual total biomass estimated from the ASAP base model (black line) after accounting for total mortality between January 1 and the survey seasons. *NEFSC fall 2011 survey information were not available at the time of this report.

Appendix Figure A2.30. Area swept estimates of total Gulf of Maine cod biomass from 1982 to 2011 based on the NEFSC spring (top) and fall (bottom) survey when a the effective trawl area is set equal to the wing spread and strata set 29,30 and 36 are excluded from the indices calculation. In these analyses, the full strata set also includes inshore survey strata 57-69. Survey efficiencies of $50 \%(q=0.5)$ and $80 \%(q=0.8)$ were assumed for the Albatross IV (1982-2008) and Bigelow (2009-2011) survey time series respectively (the vertical blue line delineates the split in survey time series). The 80% bootstrap confidence intervals of area swept estimates of biomass area shown by the dashed red lines. Biomass estimates are compared to the annual total biomass estimated from the ASAP base model (black line) after accounting for total mortality between January 1 and the survey seasons. *NEFSC fall 2011 survey information were not available at the time of this report.

Appendix Figure A2.31. Comparison of the ASAP estimated total 'survey-able' biomass (metric tons; black line) and the 80% confidence intervals (red lines) of area swept estimates of total Gulf of Maine cod biomass from 1982 to 2011 based on the NEFSC spring survey. Area swept biomass indices have been calculated using all strata (strata 26-30 and 36-40; top) and excluding strata 29, 30 and 36 (bottom). Survey efficiency was set at ASAP model estimates of $q=0.92$ when using all strata and $q=0.53$ when excluding strata 29, 30 and 36 . ASAP 'survey-able' biomass was derived from total biomass by accounting for both total mortality since January 1 and survey selectivity at age.

Appendix Figure A2.32. Comparison of the ASAP estimated total 'survey-able' biomass (metric tons; black line) and the 80% confidence intervals (red lines) of area swept estimates of total Gulf of Maine cod biomass from 1982 to 2011 based on the NEFSC fall survey. Area swept biomass indices have been calculated using all strata (strata 2630 and $36-40$; top) and excluding strata 29,30 and 36 (bottom). Survey efficiency was set at ASAP model estimates of $q=0.57$ when using all strata and $q=0.42$ when excluding strata 29,30 and 36 . ASAP 'survey-able' biomass was derived from total biomass by accounting for both total mortality since January 1 and survey selectivity at age.

Appendix 3. ASAP BASE model input file.

```
# ASAP VERSION 2.0
# ASAP GoM cod 1982 start flat survey selectivity (no LPUE)
#
# ASAP GUI - 15 JAN 2008
#
# Number of Years
29
# First Year
1982
# Number of Ages
9
# Number of Fleets
1
# Number of Selectivity Blocks (sum over all fleets)
2
# Number of Available Indices
5
# Fleet Names
#$Catch
# Index Names
#$NEFSCspring
#$NEFSCfall
#$MAspring
#$MAfall
#$ComLPUE
#
# Natural Mortality Rate Matrix
0.2}00.20.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2
0.2}00.20.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2}00.
0.2}00.
0.2
0.2}00.
0.2}00.20.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2
0.2
```

$\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{llllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{llllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ $\begin{array}{lllllllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}$ \# Fecundity Option 0
\# Fraction of year that elapses prior to SSB calculation ($0=\mathrm{Jan}-1$) 0.25
\# Maturity Matrix
$\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$
$\begin{array}{llllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999\end{array} 1.000$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ 0.0940 .2870 .6100 .8590 .9590 .9890 .9970 .9991 .000 $\begin{array}{llllllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{lllllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ $\begin{array}{llllllllllllllll}0.094 & 0.287 & 0.610 & 0.859 & 0.959 & 0.989 & 0.997 & 0.999 & 1.000\end{array}$ \# Weight at Age for Catch Matrix
$\begin{array}{llllllll}0.347 & 0.813 & 1.480 & 2.560 & 5.084 & 7.058 & 9.630 & 9.724 \\ 15.637\end{array}$ $\begin{array}{lllllllll}0.226 & 0.720 & 1.520 & 2.415 & 3.806 & 6.055 & 6.097 & 10.268 & 13.399\end{array}$ $\begin{array}{llllllllllll}0.236 & 0.617 & 1.434 & 2.678 & 3.621 & 5.533 & 8.315 & 10.087 & 14.898\end{array}$ $\begin{array}{llllllllllll}0.210 & 0.694 & 1.336 & 2.818 & 4.694 & 5.951 & 8.517 & 11.245 & 13.476\end{array}$ $\begin{array}{llllllllllllll}0.278 & 0.488 & 1.668 & 2.736 & 4.803 & 6.565 & 8.139 & 10.295 & 14.686\end{array}$ $\begin{array}{llllllllllllllllll}0.160 & 0.600 & 1.257 & 3.054 & 4.634 & 7.340 & 10.159 & 11.136 & 14.354\end{array}$ $\begin{array}{llllllllll}0.124 & 0.550 & 1.606 & 2.339 & 5.182 & 5.166 & 6.142 & 10.141 & 12.818\end{array}$ $\begin{array}{llllllllllllllllll}0.248 & 0.689 & 1.433 & 2.925 & 4.294 & 5.990 & 9.247 & 12.272 & 20.776\end{array}$ $\begin{array}{llllllllll}0.195 & 0.766 & 1.271 & 2.104 & 4.500 & 7.697 & 10.705 & 11.641 & 18.635\end{array}$ $\begin{array}{llllllllll}0.236 & 1.020 & 1.506 & 2.216 & 3.825 & 7.138 & 10.613 & 12.261 & 14.028\end{array}$ $\begin{array}{llllllllll}0.058 & 0.949 & 1.416 & 2.679 & 2.935 & 5.541 & 10.900 & 10.389 & 14.483\end{array}$ $\begin{array}{lllllllllll}0.095 & 0.624 & 1.625 & 2.001 & 4.367 & 5.628 & 9.869 & 13.673 & 15.661\end{array}$ $0.074 \quad 0.601 \quad 1.5363 .023 \quad 3.221 \quad 6.328 \quad 7.650 \quad 12.58311 .691$ $\begin{array}{llllllllll}0.123 & 1.048 & 1.404 & 2.535 & 5.028 & 6.806 & 11.466 & 13.096 & 22.443\end{array}$ $\begin{array}{llllllllllllllllll}0.146 & 1.038 & 1.902 & 2.164 & 3.374 & 7.572 & 11.717 & 14.388 & 16.225\end{array}$ $\begin{array}{lllllllllll}0.076 & 1.103 & 1.941 & 2.928 & 2.973 & 4.570 & 8.993 & 12.150 & 16.938\end{array}$ $\begin{array}{llllllllllll}0.203 & 0.881 & 1.790 & 2.491 & 3.941 & 4.163 & 7.086 & 12.118 & 16.676\end{array}$ $\begin{array}{lllllllllllll}0.247 & 0.577 & 1.532 & 2.733 & 3.845 & 5.671 & 6.593 & 9.736 & 12.279\end{array}$ $\begin{array}{lllllllllllllllllll}0.278 & 0.853 & 1.882 & 3.181 & 4.192 & 5.821 & 5.302 & 9.409 & 12.704\end{array}$ $\begin{array}{llllllllllll}0.316 & 0.733 & 1.866 & 2.919 & 4.482 & 6.014 & 7.193 & 9.066 & 9.488\end{array}$ $\begin{array}{lllllllll}0.171 & 0.652 & 1.433 & 2.535 & 3.366 & 6.078 & 6.948 & 8.542 & 12.374\end{array}$ $\begin{array}{lllllllllllll}0.263 & 0.671 & 1.600 & 1.994 & 3.273 & 4.745 & 7.666 & 9.252 & 12.116\end{array}$ $\begin{array}{lllllllllllllll}0.117 & 0.498 & 1.357 & 2.696 & 3.262 & 5.094 & 7.118 & 9.729 & 13.320\end{array}$ $\begin{array}{llllllllll}0.148 & 0.531 & 1.356 & 1.955 & 3.984 & 4.337 & 6.319 & 7.983 & 12.490\end{array}$ $0.2950 .6111 .2432 .6393 .0624 .125 \quad 5.4937 .22612 .131$ $\begin{array}{lllllllllllllllll}0.211 & 0.685 & 1.389 & 2.531 & 3.424 & 4.535 & 6.153 & 7.295 & 12.400\end{array}$
$\begin{array}{lllllllll}0.272 & 0.833 & 1.779 & 2.496 & 3.219 & 3.710 & 5.780 & 7.723 & 12.267\end{array}$
$\begin{array}{lllllllll}0.326 & 0.854 & 1.823 & 2.804 & 3.266 & 4.027 & 5.852 & 7.760 & 12.895\end{array}$
$\begin{array}{lllllllllllll}0.281 & 1.057 & 1.521 & 2.730 & 3.354 & 3.828 & 5.687 & 8.876 & 11.865\end{array}$
\# Weight at Age for Spawning Stock Biomass Matrix
0.24090 .59461 .15862 .09954 .65867 .59399 .32609 .676915 .6370 $\begin{array}{llllllllllllllllll}0.1368 & 0.4998 & 1.1116 & 1.8906 & 3.1214 & 5.5483 & 6.5599 & 9.9439 & 13.3990\end{array}$ $\begin{array}{lllllllllllll}0.1376 & 0.3734 & 1.0161 & 2.0176 & 2.9571 & 4.5890 & 7.0956 & 7.8422 & 14.8980\end{array}$ 0.13780 .40470 .90792 .01023 .54554 .64206 .86479 .669713 .4760 $\begin{array}{llllllllll}0.1892 & 0.3201 & 1.0759 & 1.9119 & 3.6790 & 5.5512 & 6.9595 & 9.3639 & 14.6860\end{array}$ 0.08630 .40840 .78322 .25703 .56075 .93758 .16669 .520314 .3540 $\begin{array}{llllllllll}0.0526 & 0.2966 & 0.9816 & 1.7147 & 3.9782 & 4.8928 & 6.7143 & 10.1500 & 12.8180\end{array}$ 0.14110 .29230 .88782 .16743 .16925 .57146 .91168 .681920 .7760 $\begin{array}{lllllllllllllllll}0.0853 & 0.4359 & 0.9358 & 1.7364 & 3.6280 & 5.7490 & 8.0077 & 10.3752 & 18.6350\end{array}$ $\begin{array}{llllllllllll}0.1177 & 0.4460 & 1.0741 & 1.6783 & 2.8369 & 5.6675 & 9.0382 & 11.4566 & 14.0280\end{array}$ $0.01770 .47321 .20182 .0086 \quad 2.55034 .60378 .820710 .500414 .4830$ $\begin{array}{lllllllll}0.0378 & 0.1902 & 1.2418 & 1.6833 & 3.4204 & 4.0643 & 7.3949 & 12.2080 & 15.6610\end{array}$ $0.01970 .2389 \quad 0.9790 \quad 2.21642 .53875 .25686 .561611 .143711 .6910$ $\begin{array}{lllllllllll}0.0423 & 0.2785 & 0.9186 & 1.9733 & 3.8987 & 4.6821 & 8.5180 & 10.0092 & 22.4430\end{array}$ $\begin{array}{llllllllll}0.0531 & 0.3573 & 1.4118 & 1.7431 & 2.9246 & 6.1703 & 8.9301 & 12.8442 & 16.2250\end{array}$ $\begin{array}{lllllllllllllllll}0.0223 & 0.4013 & 1.4194 & 2.3599 & 2.5364 & 3.9267 & 8.2520 & 11.9315 & 16.9380\end{array}$ $\begin{array}{lllllllllll}0.1204 & 0.2588 & 1.4051 & 2.1989 & 3.3969 & 3.5180 & 5.6906 & 10.4392 & 16.6760\end{array}$ $\begin{array}{llllllllllll}0.1329 & 0.3422 & 1.1618 & 2.2118 & 3.0948 & 4.7275 & 5.2390 & 8.3060 & 12.2790\end{array}$ $\begin{array}{lllllllllll}0.1712 & 0.4590 & 1.0421 & 2.2076 & 3.3848 & 4.7309 & 5.4834 & 7.8761 & 12.7040\end{array}$ 0.22000 .45141 .26162 .34383 .77595 .02106 .47076 .93319 .4880 $\begin{array}{llllllllll}0.0863 & 0.4539 & 1.0249 & 2.1749 & 3.1345 & 5.2193 & 6.4642 & 7.8385 & 12.3740\end{array}$ 0.19110 .33871 .02141 .69042 .88053 .99656 .82608 .017712 .1160 0.05490 .36190 .95422 .07692 .55044 .08325 .81168 .636113 .3200 $\begin{array}{lllllllll}0.0728 & 0.2493 & 0.8218 & 1.6288 & 3.2773 & 3.7613 & 5.6735 & 7.5381 & 12.4900\end{array}$ 0.19360 .30070 .81241 .89172 .44674 .05394 .88096 .757312 .1310 $\begin{array}{llllllllllllll}0.1062 & 0.4495 & 0.9212 & 1.7737 & 3.0060 & 3.7264 & 5.0380 & 6.3302 & 12.4000\end{array}$ $0.15350 .41921 .10391 .86202 .85433 .56415 .1198 \quad 6.893412 .2670$ $\begin{array}{llllllllllll}0.1810 & 0.4820 & 1.2323 & 2.2335 & 2.8552 & 3.6004 & 4.6595 & 6.6972 & 12.8950\end{array}$ $\begin{array}{llllllllllllll}0.1345 & 0.5870 & 1.1397 & 2.2309 & 3.0667 & 3.5359 & 4.7856 & 7.2071 & 11.8650\end{array}$ \# Weight at Age for Jan-1 Biomass Matrix
$\begin{array}{lllllllllll}0.2409 & 0.5946 & 1.1586 & 2.0995 & 4.6586 & 7.5939 & 9.3260 & 9.6769 & 15.6370\end{array}$ 0.13680 .49981 .11161 .89063 .12145 .54836 .55999 .943913 .3990 $\begin{array}{llllllllllll}0.1376 & 0.3734 & 1.0161 & 2.0176 & 2.9571 & 4.5890 & 7.0956 & 7.8422 & 14.8980\end{array}$ 0.13780 .40470 .90792 .01023 .54554 .64206 .86479 .669713 .4760 $\begin{array}{llllllllllll}0.1892 & 0.3201 & 1.0759 & 1.9119 & 3.6790 & 5.5512 & 6.9595 & 9.3639 & 14.6860\end{array}$ $\begin{array}{llllllllllll}0.0863 & 0.4084 & 0.7832 & 2.2570 & 3.5607 & 5.9375 & 8.1666 & 9.5203 & 14.3540\end{array}$

[^0]2 2 2
2 2 2 2 2 2 2 2 2 2
2
\# Selectivity Options for each block 1=by age, 2=logisitic, 3=double logistic
11
\# Selectivity initial guess, phase, lambda, and CV
\# (have to enter values for nages +6 parameters for each block)

0.1	1	0	1
0.3	1	0	1
0.5	1	0	1
0.8	1	0	1
1	-1	0	1
1	2	0	1
0.9	2	0	1
0.8	2	0	1
0.8	2	0	1
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
$\#$ Sel Block 2			
0.1	1	0	1
0.3	1	0	1
0.5	1	0	1
0.8	1	0	1
0.9	1	0	1

143.700	265.100	-517.200	401.600	213.200	64.200	71.700	13.900	1.10038	3883.1
75.400	1033.700	795.600	949.400	196.900	91.500	13.600	11.900	0.0006	6961.4
0.8009	946.000	1778.300	882.300	457.000	120.300	63.100	$9.100 \quad 1$	$12.100 \quad 10$	10009.8
42.200	95.100	801.000	1359.500	440.700	182.700	74.100	34.500	24.200	8366.5
105.300	330.100	318.600	1041.100	946.900	226.100	83.500) 32.400	30.300	8314.4
250.300	233.600	-1136.700	0347.000	522.600	290.900	74.300) 35.400	29.200	7072.0
41.500	526.900	335.400	1568.500	103.300	278.500	117.700) 30.700	34.500	6845.4
42.400	134.100	768.500	364.600	562.400	$35.400 \quad 8$	$84.400 \quad 42$	$42.400 \quad 2$	$28.600 \quad 4$	4996.5
19.400	262.900	615.200	1289.400	161.300	249.100	8.000	19.300	22.100	6447.8
31.300	358.000	1028.000	942.800	937.000	102.400	117.800	- 4.400	17.700	8817.5
28.300	263.900	1012.800	1400.100	581.100	367.900	22.500	33.900	10.600	9918.2
29.000	344.700	1138.800	1488.900	1046.800	- 249.100	0888.200	0 14.300	$00 \quad 11.000$	$0 \quad 11392.4$
\# Fleet 1 Discards at Age - Last Column is Total Weight									
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
$0.0 \quad 0.0$	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
$0.0 \quad 0.0$	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
$0.0 \quad 0.0$	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
$0.0 \quad 0.0$	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
$0.0 \quad 0.0$	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
0.00 .0	0.0	$0.0 \quad 0.0$	0.00 .0	0.00 .0	0.0				
$0.0 \quad 0.0$	0.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0				

\# Index-3			
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0.25	1	0	1
10	-1	0	1
2	2	0	1
1	3	0	1
\# Index-4			
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
11	-1	0	1
11	-1	0	1
2	2	0	1
0.1	3	0	1
\# Index-5	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0		0
			0
0	0	0	
0	0	0	

1982	12410.2	0.736	1333.9000	05214.6000	03955.6000	01551.70	$000 \quad 354.50$	$5000 \quad 0.0000$	$000 \quad 0.0000$	000.000	$00 \quad 0.0000$	30
983	4450.2	0.27	487.9000	1445.1000	1208.5000	426.7000	400.0000	350.2000	0.0000	$0 \quad 0.0000$	$0 \quad 131.7940$	30
1984	3912.1	0.32	819.4000	668.4000	$936.5000 \quad 6$	612.8000	313.1000	309.9000	99.2000	0.0000	152.8810	30
1985	4159.3	0.276	711.2000	1465.4000	1000.8000	321.3000	392.7000	0101.900	$00 \quad 0.0000$	$0 \quad 54.300$	000 111.6650	30
1986	3115.6	0.33	628.8000	644.8000	999.70005	588.0000	116.1000	66.1000	$0.0000 \quad 0$. 0000	$72.0470 \quad 30$	
1987	4581.3	0.408	910.7000	2217.3000	936.6000	316.9000	199.7000	0.0000	0.0000	0.0000	$0.0000 \quad 30$	
1988	9429.6	0.449	3018.2000	- 3778.9000	- 1707.4000	$0 \quad 586.0000$	233.100	000.0000	70.0000	0.0000	O 36.1040	30
1989	7272.8	0.323	232.0000	3941.8000	2329.3000	451.3000	219.8000	84.2000	0.0000	14.4000	00.0000	30
1990	4770.5	0.29	90.9000	$348.3000 \quad 2$	$2856.0000 \quad 9$	975.6000	407.5000	77.0000	15.2000	0.0000	0.000030	
1991	1985.7	0.367	229.2000	241.4000	367.4000	991.2000	120.3000	0.0000	36.1000	0.0000	0.000030	
1992	2196.1	0.313	461.7000	716.3000	229.9000	64.7000	522.4000	201.1000	0.0000	0.0000	0.000030	
1993	1919.1	0.359	334.8000	918.4000	577.2000	27.60000	$0.0000 \quad 61$.	$1.0000 \quad 0.0$	$0000 \quad 0.00$	$0000 \quad 0.00$	000030	
1994	3351.4	0.409	293.1000	1452.0000	1303.7000	148.6000	81.6000	0.0000	72.4000	0.0000	0.0000	
1995	3194.2	0.401	108.6000	492.5000	1958.7000	485.2000	131.2000	18.1000	0.0000	0.0000	0.000030	
1996	2074.7	0.354	195.4000	605.3000	369.7000	824.5000	79.9000	$0.0000 \quad 0$.	$0.0000 \quad 0.00$	$0.0000 \quad 0.0$. 000030	
1997	1393.2	0.399	474.1000	145.7000	263.9000	268.5000	240.9000	0.0000	0.0000 0.00	0.0000 0.	0.000030	
1998	1267.1	0.446	135.8000	545.5000	176.4000	295.1000	65.3000	49.0000	$0.0000 \quad 0$.	$0.0000 \quad 0$.	0.000030	
1999	2845.9	0.281	690.3000	599.4000	942.0000	389.0000	195.1000	30.2000	0.0000	0.0000	0.000030	
2000	4146.5	0.406	862.8000	1566.8000	636.8000	786.6000	223.0000	16.1000	0.0000	54.3000	- $0.0000 \quad 30$	
2001	3135.3	0.371	0.00002	$273.0000 \quad 11$	150.4000763	763.80005	568.1000	197.5000	146.3000	0.0000	36.2630	30
2002	8511.8	0.678	429.9000	165.8000	531.6000	4286.1000	1709.8000	01197.50	$000 \quad 122.2$	$2000 \quad 68$	$8.9000 \quad 0.000$	0
2003	3175.2	0.407	737.1000	297.0000	344.4000	827.0000	721.0000	113.1000	99.5000	0.0000	36.1040	30
2004	3458.3	0.427	1056.3000	275.4000	922.1000	406.2000	399.4000	237.9000	090.6000	36.300	34.1870	
2005	2082.8	0.165	244.9000	604.3000	124.0000	728.0000	36.3000	143.8000	131.2000	36.3000	O 34.1870	
2006	5640	0.401	1982.3000	956.6000	1609.2000	402.6000	467.4000	- 59.3000	83.9000	057.200	$00 \quad 21.5660$	
2007	3163.8	0.468	217.3000	1378.2000	631.7000	793.0000	36.6000	107.2000	0.0000	0.0000	0.000030	
008	5263.9	0.489	1038.1000	1960.3000	1693.0000	0301.1000	0222.100	000.0000	0.0000	0.0000	- 49.3630	30
2009	5475.1	0.635	1053.9000	3348.5000	0501.6000	442.0000	72.5000	56.6000	0.0000	0.0000	0.000030	
2010	1501	0.333	150.5000	211.5000	$463.4000 \quad 4$	460.2000	147.1000	37.1000	21.1000	0.0000	10.064030	
\# Inde	-3											
1982	4734.4	0.52	2599.6000	1326.1000	-554.7000	184.8000	43.4000	9.1000	6.8000	9.8000	$0.0000 \quad 15$	
1983	10611.8	0.46	6757.6000	- 2928.7000	0544.0000	321.6000	29.6000	15.9000	14.3000	0.0000	0.000015	5
1984	1974.7	0.58	399.5000	963.6000	$451.7000 \quad 1$	114.1000	28.8000	$16.9000 \quad 0$	$0.0000 \quad 0.0$	$0.0000 \quad 0$.	0.000015	
1985	1399	0.51	297.4000	554.4000	$432.2000 \quad 87$	87.90007 .5	. 50000.00	19.6000	$000 \quad 0.000$	$00 \quad 0.000$	00015	
1986	4511.7	0.85	1704.3000	2414.3000	185.7000	183.3000	19.4000	4.5000	$0.0000 \quad 0$	$0.0000 \quad 0$	$0.0000 \quad 15$	
1987	3230.8	0.52	1631.9000	940.1000	569.0000	35.6000	30.1000	$10.4000 \quad 0$	$0.0000 \quad 0.000$	0.000013 .7	$3.7420 \quad 15$	
1988	3991.5	0.5	1959.8000	1346.1000	363.1000	308.6000	0.0000	7.40006.	$6.4000 \quad 0.00$	$0.0000 \quad 0.0$. 000015	
1989	10189.9	0.57	4214.0000	- 4498.4000	01348.4000	097.5000	22.1000	9.4000	0.0000	0.0000	$0.0000 \quad 15$	
1990	5384.5	0.58	879.3000	1216.6000	2775.8000	443.5000	55.2000	14.1000	0.0000	0.0000	$0.0000 \quad 15$	
1991	2615.9	0.52	1020.9000	544.5000	336.5000	651.4000	60.2000	2.40000	$0.0000 \quad 0.0$	$0.0000 \quad 0$.	0.000015	

\# Phase for F mult in 1st Year
3
\# Phase for F mult Deviations
3
\# Phase for Recruitment Deviations
4
\# Phase for N in 1st Year
1
\# Phase for Catchability in 1st Year
1
\# Phase for Catchability Deviations
-3
\# Phase for Stock Recruitment Relationship
2
\# Phase for Steepness
-3
\# Recruitment CV by Year
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

11111
\# Lambda for Total Catch in Weight by Fleet
1
\# Lambda for Total Discards at Age by Fleet
0
\# Catch Total CV by Year and Fleet
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050

0.050
0.050
\# Discard Total CV by Year and Fleet
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
$\#$ Input Effective Sample Size for Catch at Age by Year \& Fleet
75
75
75
75
75
75
75

75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
$\#$ Input Effective Sample Size for Discards at Age by Year \& Fleet
0
0
0
0
0
0

```
0
0
0
0
0
0
0
0
0
0
0
0
# Lambda for F mult in first year by fleet
0
# CV for F mult in first year by fleet
1
# Lambda for F mult Deviations by Fleet
0
# CV for F mult deviations by Fleet
1
# Lambda for N in 1st Year Deviations
0
# CV for N in 1st Year Deviations
1
# Lambda for Recruitment Deviations
1
# Lambda for Catchability in first year by index
0 0 0 0 0
# CV for Catchability in first year by index
11111
# Lambda for Catchability Deviations by Index
0 0 0 0 0
# CV for Catchability Deviations by Index
11111
# Lambda for Deviation from Initial Steepness
0
# CV for Deviation from Initial Steepness
1
# Lambda for Deviation from Initial unexploited Stock Size
0
```

```
# CV for Deviation from Initial unexploited Stock Size
1
# NAA for Year 1
11397 13272 5773 3454 1941 212 296 163 103
# F mult in 1st year by Fleet
0.05
# Catchability in 1st year by index
0.3 0.3 0.1 0.05 0.0001
# Initial unexploited Stock Size
200000
# Initial Steepness
1.00
# Maximum F
3
# Ignore Guesses
0
# Projection Control Data
# Do Projections? (1=yes, 0=no), still need to enter values even if not doing projections
0
# Fleet Directed Flag
1
# Final Year of Projections
2011
# Year Projected Recruits, What Projected, Target, non- directed F mult
2011 0 0 0 0
# MCMC info
# doMCMC (1=yes)
0
# MCMCnyear option (0=use final year values of NAA, 1=use final year + 1 values of NAA)
1
# MCMCnboot
10000
# MCMCnthin
1 0
# MCMCseed
548623
# R in agepro.bsn file (enter 0 to use NAA, 1 to use stock-recruit relationship, 2 to used geometric mean of previous years)
2
# Starting year for calculation of R
1982
```

\# Starting year for calculation of R
2008
\# Test Value
-23456
\#\#\#\#\#
\# ---- FINIS ----

Appendix 4. The Statistical Catch-at-Age Model (SCAA)

The text following sets out the equations and other general specifications of the SCAA followed by details of the contributions to the (penalised) log-likelihood function from the different sources of data available and assumptions concerning the stock-recruitment relationship. Quasi-Newton minimization is then applied to minimize the total negative log-likelihood function to estimate parameter values (the package AD Model Builder ${ }^{\mathrm{TM}}$, Otter Research, Ltd is used for this purpose).

4.1. Population dynamics

4.1.1 Numbers-at-age

The resource dynamics are modelled by the following set of population dynamics equations:

$$
\begin{align*}
& N_{y+1,0}=R_{y+1}(4.1) \\
& N_{y+1, a+1}=\left(N_{y, a} e^{-M_{a} / 2}-C_{y, a}\right) e^{-M_{a} / 2} \quad \text { for } 0 \leq a \leq m-2 \\
& N_{y+1, m}=\left(N_{y, m-1} e^{-M_{m-1} / 2}-C_{y, m-1}\right) e^{-M_{m-1} / 2}+\left(N_{y, m} e^{-M_{m} / 2}-C_{y, m}\right) e^{-M_{m} / 2} \tag{4.3}
\end{align*}
$$

where
$N_{y, a} \quad$ is the number of fish of age a at the start of year y (which refers to a calendar year),
R_{y} is the recruitment (number of 0 -year-old fish) at the start of year y,
M_{a} denotes the natural mortality rate for fish of age a,
$C_{y, a} \quad$ is the predicted number of fish of age a caught in year y, and
m is the maximum age considered (taken to be a plus-group).

These equations reflect Pope's form of the catch equation (Pope, 1972) (the catches are assumed to be taken as a pulse in the middle of the year) rather than the more customary Baranov form (Baranov, 1918) (for which catches are incorporated under the assumption of steady continuous fishing mortality). Pope's form has been used in order to simplify computations. As long as mortality rates are not too high, the differences between the Baranov and Pope formulations will be minimal.

4.1.2. Recruitment

The number of recruits (i.e. new 0 -year old) at the start of year y is assumed to be related to the spawning stock size (i.e. the biomass of mature fish) by either a modified Ricker or a Beverton-Holt stockrecruitment relationship, allowing for annual fluctuation about the deterministic relationship:
for the modified Ricker:

$$
\begin{equation*}
R_{y}=\alpha B_{y}^{\text {sp }} \exp \left[-\beta\left(B_{y}^{\mathrm{sp}}\right)^{y}\right] e^{\left(\varepsilon_{y}-\left(\sigma_{\mathrm{R}}\right)^{2} / 2\right)} \tag{4.4}
\end{equation*}
$$

where
and for Beverton-Holt:

$$
\begin{equation*}
R_{y}=\frac{\alpha B_{y}^{\mathrm{sp}}}{\beta+B_{y}^{\text {sp }}} e^{\left(\varsigma_{y}-\left(\sigma_{\mathrm{R}}\right)^{2} / 2\right)} \tag{4.5}
\end{equation*}
$$

where
α, β and γ are spawning biomass-recruitment relationship parameters,
ς_{y} reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation σ_{R} (which is input in the applications considered here); these residuals are treated as estimable parameters in the model fitting process.
$B_{y}^{\text {sp }}$ is the spawning biomass at the start of year y, computed as:
$B_{y}^{\mathrm{sp}}=\sum_{a=0}^{m} f_{y, a} w_{y, a}^{\mathrm{str}}\left[N_{y, a} e^{-M_{a} / 12}-C_{y, a} / 6\right] e^{-M_{a} / 12}$
because spawning for the cod stocks under consideration is taken to occur two months after the start of the year and some mortality (natural and fishing) has therefore occurred,
where
$w_{y, a}^{\text {strt }}$ is the mass of fish of age a during spawning, and
$f_{y, a}$ is the proportion of fish of age a that are mature.

In order to work with estimable parameters that are more meaningful biologically, the stock-recruitment relationship is re-parameterised in terms of the pre-exploitation equilibrium spawning biomass, $K^{\text {sp }}$, and the "steepness", h, of the stock-recruitment relationship, which is the proportion of the virgin recruitment that is realized at a spawning biomass level of 20% of the virgin spawning biomass. In the fitting procedure, both h and $K^{\text {sp }}$ are estimated with γ being either fixed on input or estimated as well.

4.1.3. Total catch and catches-at-age

The total catch by mass in year y is given by:
$C_{y}=\sum_{a=0}^{m} w_{y, a}^{\mathrm{mid}} C_{y, a}=\sum_{a=0}^{m} w_{y, a}^{\mathrm{mid}} N_{y, a} e^{-M_{a} / 2} S_{y, a} F_{y}^{*}$
where
$w_{y, a}^{\text {mid }} \quad$ denotes the mass of fish of age a landed in year y,
$C_{y, a} \quad$ is the catch-at-age, i.e. the number of fish of age a, caught in year y,
$S_{y, a}$ is the commercial selectivity (i.e. combination of availability and vulnerability to fishing gear)-at-age a for year y; when $S_{y, a}=1$, the age-class a is said to be fully selected, and
F_{y}^{*} is the proportion of a fully selected age class that is fished.

The model estimate of the mid-year exploitable ("available") component of biomass is calculated by converting the numbers-at-age into mid-year mass-at-age (using the individual weights of the landed fish) and applying natural and fishing mortality for half the year:

$$
\begin{equation*}
B_{y}^{\mathrm{ex}}=\sum_{a=0}^{m} w_{y, a}^{\mathrm{mid}} S_{y, a} N_{y, a} e^{-M_{a} / 2}\left(1-S_{y, a} F_{y}^{*} / 2\right) \tag{4.8}
\end{equation*}
$$

whereas for survey estimates of biomass in the beginning of the year (for simplicity spring and autumn surveys are treated as mid-year surveys):

$$
\begin{equation*}
B_{y}^{\text {surv }}=\sum_{a=0}^{m} w_{y, a}^{\text {sttt }} S_{a}^{\text {surv }} N_{y, a} e^{-M_{a} / 2}\left(1-S_{y, a} F_{y}^{*} / 2\right) \tag{4.9}
\end{equation*}
$$

where
$S_{a}^{s u r v}$ is the survey selectivity for age a, which is taken to be year-independent.

4.1.4. Initial conditions

As the first year for which data (even annual catch data) are available for the cod stock considered clearly does not correspond to the first year of (appreciable) exploitation, one cannot necessarily make the conventional assumption in the application of ASPM's that this initial year reflects a population (and its age-structure) at pre-exploitation equilibrium. For the first year $\left(y_{0}\right)$ considered in the model therefore, the stock is assumed to be at a fraction (θ) of its pre-exploitation biomass, i.e.:

$$
\begin{equation*}
B_{y_{0}}^{\mathrm{sp}}=\theta \cdot K^{\mathrm{sp}} \tag{4.10}
\end{equation*}
$$

with the starting age structure:

$$
\begin{equation*}
N_{y_{0}, a}=R_{\text {start }} N_{\text {start }, a} \quad \text { for } 1 \leq a \leq m \tag{4.11}
\end{equation*}
$$

where

$$
N_{\text {start }, 1}=1(4.12)
$$

$$
\begin{equation*}
N_{\text {start }, a}=N_{\text {start }, a-1} e^{-M_{a-1}}\left(1-\phi S_{a-1}\right) \quad \text { for } 2 \leq a \leq m-1 \tag{4.13}
\end{equation*}
$$

$$
\begin{equation*}
N_{\text {start }, m}=N_{\text {start }, m-1} e^{-M_{m-1}}\left(1-\phi S_{m-1}\right) /\left(1-e^{-M_{m}}\left(1-\phi S_{m}\right)\right) \tag{4.14}
\end{equation*}
$$

where ϕ characterises the average fishing proportion over the years immediately preceding y_{0}.

4.2. The (penalised) likelihood function

The model can be fit to (a subset of) CPUE and survey abundance indices, and commercial and survey catch-at-age data to estimate model parameters (which may include residuals about the stock-recruitment function, facilitated through the incorporation of a penalty function described below). Contributions by each of these to the negative of the (penalised) log-likelihood $(-\ell \ln L)$ are as follows.
4.2.1 LPUE relative abundance data

The likelihood is calculated assuming that an observed CPUE abundance index for a particular fishing fleet is log-normally distributed about its expected value:
$I_{y}=\hat{I}_{y} \exp \left(\varepsilon_{y}\right) \quad$ or $\quad \varepsilon_{y}=\ln \left(I_{y}\right)-\ln \left(\hat{I}_{y}\right)(4.15)$
where
I_{y} is the LPUE abundance index for year y for ages 2 to 6 ,
$\hat{I}_{y}=\hat{q} \widehat{N}_{y}^{\mathrm{ex}}$ is the corresponding model estimate, where $\widehat{N}_{y}^{\mathrm{ex}}$ is the model estimate of exploitable resource numbers for ages 2 to 6 , given by

$$
\begin{equation*}
N_{y}^{\mathrm{ex}}=\sum_{a=2}^{6} S_{y, a} N_{y, a} e^{-M_{a} / 2}\left(1-S_{y, a} F_{y}^{*} / 2\right) \tag{4.16}
\end{equation*}
$$

\hat{q} is the constant of proportionality (catchability) for the LPUE abundance series, and ε_{y} from $N\left(0,\left(\sigma_{y}\right)^{2}\right)$.

The contribution of the LPUE data to the negative of the log-likelihood function (after removal of constants) is then given by:

$$
\begin{equation*}
-\ln L^{\mathrm{LPUE}}=\sum_{y}\left\{\ln \left(\sqrt{\left(\sigma_{y}^{2}+\sigma_{A d d}^{2}\right)}\right)+\left(\varepsilon_{y}\right)^{2} /\left[2\left(\sigma_{y}^{2}+\sigma_{A d d}^{2}\right)\right]\right\} \tag{4.17}
\end{equation*}
$$

where
σ_{y} is the standard deviation of the residuals for the logarithm of index i in year y (which is input), and
$\sigma_{\text {Add }} \quad$ is the square root of the additional variance for the LPUE abundance series, which is estimated in the model fitting procedure, with an upper bound of 0.5 .

The catchability coefficient q^{i} for CPUE abundance index i is estimated by its maximum likelihood value:

$$
\begin{equation*}
\ln \hat{q}^{i}=1 / n_{i} \sum_{y}\left(\ln I_{y}^{i}-\ln \hat{B}_{y}^{\mathrm{ex}}\right) \tag{4.18}
\end{equation*}
$$

D2.2. Survey abundance data
In general, data from the surveys are treated as relative abundance indices in exactly the same manner to the CPUE series above, with survey selectivity function $S_{a}^{\text {surv }}$ replacing the commercial selectivity $S_{y, a}$. Account is also taken of the time of year when the survey is held. For these analyses, selectivities are estimated as detailed in section 4.4 .2 below.

4.2.3. Commercial catches-at-age

The contribution of the catch-at-age data to the negative of the log-likelihood function under the assumption of an "adjusted" lognormal error distribution is given by:

$$
\begin{equation*}
-\ln L^{\mathrm{CAA}}=\sum_{y} \sum_{a}\left[\ln \left(\sigma_{\mathrm{com}} / \sqrt{p_{y, a}}\right)+p_{y, a}\left(\ln p_{y, a}-\ln \hat{p}_{y, a}\right)^{2} / 2\left(\sigma_{\mathrm{com}}\right)^{2}\right] \tag{4.19}
\end{equation*}
$$

where
$p_{y, a}=C_{y, a} / \sum_{a^{\prime}} C_{y, a^{\prime}}$ is the observed proportion of fish caught in year y that are of age a,
$\hat{p}_{y, a}=\hat{C}_{y, a} / \sum_{a^{\prime}} \hat{C}_{y, a^{\prime}}$ is the model-predicted proportion of fish caught in year y that are of age a,
where

$$
\begin{equation*}
\hat{C}_{y, a}=N_{y, a} e^{-M_{a} / 2} S_{y, a} F_{y} \tag{4.20}
\end{equation*}
$$

and
$\sigma_{\text {com }} \quad$ is the standard deviation associated with the catch-at-age data, which is estimated in the fitting procedure by:
$\hat{\sigma}_{\mathrm{com}}=\sqrt{\sum_{y} \sum_{a} p_{y, a}\left(\ln p_{y, a}-\ln \hat{p}_{y, a}\right)^{2} / \sum_{y} \sum_{a} 1}$

The log-normal error distribution underlying equation (4.19) is chosen on the grounds that (assuming no ageing error) variability is likely dominated by a combination of interannual variation in the distribution of fishing effort, and fluctuations (partly as a consequence of such variations) in selectivity-at-age, which suggests that the assumption of a constant coefficient of variation is appropriate. However, for ages poorly represented in the sample, sampling variability considerations must at some stage start to dominate the variance. To take this into account in a simple manner, motivated by binomial distribution properties, the observed proportions are used for weighting so that undue importance is not attached to data based upon a few samples only.

Commercial catches-at-age are incorporated in the likelihood function using equation (4.19), for which the summation over age a is taken from age $a_{\text {minus }}$ (considered as a minus group) to $a_{\text {plus }}$ (a plus group).

4.2.4. Survey catches-at-age

The survey catches-at-age are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, assuming an adjusted log-normal error distribution (equation (4.19)) where:

$$
p_{y, a}=C_{y, a}^{\text {surv }} / \sum_{a^{a}} C_{y, a^{\prime}}^{\text {surv }} \text { is the observed proportion of fish of age } a \text { in year } y \text {, }
$$

$\hat{p}_{y, a}$ is the expected proportion of fish of age a in year y in the survey, given by:
$\hat{p}_{y, a}=S_{a}^{\text {surv }} N_{y, a} / \sum_{a^{\prime}=0}^{m} S_{a}^{\text {surv }} N_{y, a} \quad$ for begin-year surveys.
4.2.5. Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be log-normally distributed and serially correlated. Thus, the contribution of the recruitment residuals to the negative of the (now penalised) log-likelihood function is given by:
$-\ell n L^{\mathrm{pen}}=\sum_{y=y_{1}+1}^{y_{2}}\left[\left(\frac{\lambda_{y}-\rho \lambda_{y-1}}{\sqrt{1-\rho^{2}}}\right)^{2} / 2 \sigma_{\mathrm{R}}^{2}\right]$
where
$\lambda_{y}=\rho \lambda_{y-1}+\sqrt{1-\rho^{2}} \varepsilon_{y}$ is the recruitment residual for year y, which is estimated for year y_{1} to y_{2} (see equation (4.4)),
$\varepsilon_{y} \quad$ from $N\left(0,\left(\sigma_{R}\right)^{2}\right)$,
σ_{R} is the standard deviation of the log-residuals, which is input, and
ρ is the serial correlation coefficient, which is input.

In the interest of simplicity, equation (4.23) omits a term in $\lambda_{y_{1}}$ for the sensitivity when serial correlation is assumed $(\rho \neq 0)$, which is generally of little quantitative consequence to values estimated.

The analyses conducted in this paper have however all assumed $\rho=0$.

4.3. Estimation of precision

Where quoted, 95% probability interval estimates are based on the Hessian.

4.4. Model parameters

4.4.1. Fishing selectivity-at-age:

The commercial fishing selectivity, S_{a}, as well as the fishing selectivities for the NEFSC offshore and Massachusetts inshore spring and autumn surveys, are estimated separately for ages $a_{\text {minus }}$ to $a_{\text {plus. }}$. The estimated decrease from ages $a_{\text {plus }}-1$ to $a_{\text {plus }}$. is assumed to continue exponentially to age $11+$ if otherwise not specified (see Table below for $a_{\text {minus }}$ to $a_{\text {plus. }}$).

The commercial selectivity is taken to differ over the 1893-1991 and 1992+ periods. The decrease from ages $a_{\text {plus }}-1$ to $a_{\text {plus. }}$. however is taken to be the same throughout the period. The decision to incorporate a change after 1991 was made to remove non-random residual patterns in the fit to the commercial catch-atage data if time-independence in selectivity was assumed.

Selectivity is taken to differ for the surveys, but the decrease from ages $a_{\text {plus }}-1$ to $a_{\text {plus }}$. is taken to be the same for both spring and autumn surveys.
4.4.2. Other parameters

Model plus group	
m	11
Commercial CAA	
$a_{\text {minus }}$	1
$a_{\text {plus }}$	9
Survey CAA	NEFSC spr NEFSC fall MASS spr MASS fall
$a_{\text {minus }}$	100
$a_{\text {plus }}$	$\begin{array}{llll}9 & 9 & 4 & 3\end{array}$
Natural mortality:	
M	age independent or not, fixed
Proportion mature-at-age:	
$f_{y, a}$	input, see Table A10
Weight-at-age:	
$w_{y}{ }^{\text {strt }}$	input, see Table A2
$w_{y}{ }^{\text {mid }}$	input, see Table A3
Initial conditions (unless otherwise specified):	
θ ϕ	estimated (with upper bound of 0.95)

[^0]: $\begin{array}{llllllllll}0.0526 & 0.2966 & 0.9816 & 1.7147 & 3.9782 & 4.8928 & 6.7143 & 10.1500 & 12.8180\end{array}$
 $\begin{array}{llllllllll}0.1411 & 0.2923 & 0.8878 & 2.1674 & 3.1692 & 5.5714 & 6.9116 & 8.6819 & 20.7760\end{array}$
 0.08530 .43590 .93581 .73643 .62805 .74908 .007710 .375218 .6350
 $\begin{array}{llllllllll}0.1177 & 0.4460 & 1.0741 & 1.6783 & 2.8369 & 5.6675 & 9.0382 & 11.4566 & 14.0280\end{array}$ $0.01770 .47321 .20182 .0086 \quad 2.55034 .60378 .820710 .500414 .4830$ $\begin{array}{lllllllll}0.0378 & 0.1902 & 1.2418 & 1.6833 & 3.4204 & 4.0643 & 7.3949 & 12.2080 & 15.6610\end{array}$ $\begin{array}{lllllllll}0.0197 & 0.2389 & 0.9790 & 2.2164 & 2.5387 & 5.2568 & 6.5616 & 11.1437 & 11.6910\end{array}$ $\begin{array}{llllllllllllllll}0.0423 & 0.2785 & 0.9186 & 1.9733 & 3.8987 & 4.6821 & 8.5180 & 10.0092 & 22.4430\end{array}$ $\begin{array}{lllllllll}0.0531 & 0.3573 & 1.4118 & 1.7431 & 2.9246 & 6.1703 & 8.9301 & 12.8442 & 16.2250\end{array}$ 0.02230 .40131 .41942 .35992 .53643 .92678 .252011 .931516 .9380 $\begin{array}{llllllllllllll}0.1204 & 0.2588 & 1.4051 & 2.1989 & 3.3969 & 3.5180 & 5.6906 & 10.4392 & 16.6760\end{array}$ 0.13290 .34221 .16182 .21183 .09484 .72755 .23908 .306012 .2790 $\begin{array}{llllllllllll}0.1712 & 0.4590 & 1.0421 & 2.2076 & 3.3848 & 4.7309 & 5.4834 & 7.8761 & 12.7040\end{array}$ $\begin{array}{llllllllll}0.2200 & 0.4514 & 1.2616 & 2.3438 & 3.7759 & 5.0210 & 6.4707 & 6.9331 & 9.4880\end{array}$ $\begin{array}{lllllllllllllllll}0.0863 & 0.4539 & 1.0249 & 2.1749 & 3.1345 & 5.2193 & 6.4642 & 7.8385 & 12.3740\end{array}$ $\begin{array}{lllllllllll}0.1911 & 0.3387 & 1.0214 & 1.6904 & 2.8805 & 3.9965 & 6.8260 & 8.0177 & 12.1160\end{array}$ $0.0549 \quad 0.3619 \quad 0.95422 .07692 .55044 .08325 .81168 .636113 .3200$ $\begin{array}{llllllllll}0.0728 & 0.2493 & 0.8218 & 1.6288 & 3.2773 & 3.7613 & 5.6735 & 7.5381 & 12.4900\end{array}$ 0.19360 .30070 .81241 .89172 .44674 .05394 .88096 .757312 .1310 $\begin{array}{lllllllllllll}0.1062 & 0.4495 & 0.9212 & 1.7737 & 3.0060 & 3.7264 & 5.0380 & 6.3302 & 12.4000\end{array}$ $\begin{array}{llllllllll}0.1535 & 0.4192 & 1.1039 & 1.8620 & 2.8543 & 3.5641 & 5.1198 & 6.8934 & 12.2670\end{array}$ $0.1810 \quad 0.48201 .23232 .23352 .85523 .60044 .6595 \quad 6.697212 .8950$ $\begin{array}{lllllllllllllll}0.1345 & 0.5870 & 1.1397 & 2.2309 & 3.0667 & 3.5359 & 4.7856 & 7.2071 & 11.8650\end{array}$ \# Selectivity Blocks (fleet outer loop, year inner loop)
 \# Sel block for fleet 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 2
 2
 2
 2
 2
 2

