Partnering for Innovation: Critical Materials

Roe-Hoan Yoon, Lead Paul King, Business Development Critical Materials Strategic Growth Area NETL-Regional University Allience

2nd Energy & Innovation Conference November 28-29, 2012

Critical Materials-Definition

• Critical:

- Intrinsically rare, low grade, or currently unavailable in the United States.
- Energy Critical Elements:
 - Chemical elements that are essential for the deployment of transformative energy technologies.

Atomic number, Z

Application of Critical Materials

Top sa Bh I

Hs

	Photovoltaic Films	Wind Turbines	Vehicles		Lighting
MATERIAL	Coatings	Magnets	Magnets	Batteries	Phosphors
Indium	•				
Gallium	•				
Tellurium	•				
Dysprosium		•	•		
Praesodymium		•	•	•	
Neodymium		•	•	•	
Lanthanum				•	•
Cobalt				•	
Manganese				•	
Nickel				•	
Lithium				•	
Cerium				•	•
Terbium					•
Europium					•
Yttrium					•

Criticality Matrix

A THE TOP STATES

□ Short Term (present t - 2015)

□ Mid Term (2015 - 2025)

Why Critical Materials?

Heavy Rare Earth Prices

Advanced Manufacturing Initiative (AMI)

Initiated by the Executive Office of the President, June 2011

- \circ \$500 million to \$1 billion over four years
 - Part of the funding comes from existing programs
- Energy Innovation Hub on Critical Materials
- □ Jobs that came back (USA Today, July 16, 2012)
 - o Service
 - 114.8 million jobs
 - 71%
 - Goods-producing
 - 18.3 million
 - 15%

8

Critical Materials Workshop

April 3, 2012, Arlington, VA

□ Secretary Steven Chu:

 "most of the material scientists haven't really been focused on <u>mining, extraction, purification,</u> <u>recycling</u>, which might seem mundane, but it will become increasingly important. We do have finite resources, and we are going to have to deal with that. And nothing focuses a mind more than \$150 a kilogram, or higher."

Assistant Secretary David Sandalow:

- Three pillars of research:
 - Supply chain diversification
 - Substitute materials
 - Recycling

NETL-RUA Team

- Team consists of university consortia, federal labs and industry with long history of working together
- Implements under-one-roof principle:
 - Virginia Tech provides 15,000 ft² central office space
 - 4,742 ft² nano-scale characterization lab below
 - 20,000 ft² pilot plant at Virginia
 - \circ 5,994 ft² pilot plant at Utah
 - Use a virtual presence technology
 - DOE user facilities

Proposed Hub Activities

- Three Research Pillars are cross-linked and leverage diverse expertise via
 - o Life Cycle Analysis
 - Tech Transfer & Outreach
- Integrated
 Interdisciplinary Project
 Teams (IIPT)
 - o PI driven
 - Crosscutting
 - o Grass root

Supply Chain Diversification

- Feedstock Recovery
- Separation & Processing
- Process Design & Testing
- Environmental Control

Substitute Materials & Alternate Technologies

- Materials Discovery
- Magnets

•

•

- Phosphors
- Advanced Manufacturing

Recycling & Reuse

- Recyclability Improvement
- Separation & Recovery
- Post-Industrial Byproducts

Lifecycle Analysis

- Criticality of Materials
- Economics & Market Assessment
- Environmental Impact
- Criticality Assessment

Tech Transfer & Outreach

- Training & Workforce Development
- Commercialization Alliance
- Policy Development

Supply Chain Diversification

The U.S. can produce critical materials at low cost

- Rare earth elements (REEs) can be produced as **byproducts** from
 - Phosphate industry
 - Florida has 7 operating plants, which could produce 30,000 Mt REO per year
 - Heavy sand industry
 - Virginia, Carolinas, Georgia
 - Iron ore industry
- Need to develop
 - advanced separation and processing technologies
 - adaptive technologies

Supply Chain Diversification

- Feedstock Recovery
- Separation & Processing
- Process Design & Testing
- Environmental Control

Phosphate Separation Plant

Minoral (%)	+106	106x75	75x53	-53	Total
wineral (70)	μm	μm	μm	μm	(%)
Apatite	0.7	0.5	0.5	0.1	1.8
Chlorite	0.3	1.0	0.3	0.0	1.6
Epidote	0.2	0.8	0.3	0.1	1.4
Fe-Oxides	0.0	0.7	2.6	1.2	4.5
Grossular	0.6	1.6	0.5	0.1	2.8
Ilmenite	1.3	9.6	7.4	1.4	19.7
Micas/Clays	0.0	0.2	0.2	0.1	0.5
Monazite	0.1	1.9	3.5	0.7	6.2
Other Silicates	0.0	0.1	0.0	0.0	0.1
Pyrite	0.1	0.5	1.3	1.2	3.1
Quartz/Feldspar	0.1	0.0	0.1	0.0	0.2
Rutile	1.1	5.6	3.8	0.9	11.4

Sphene

Zircon

Total

Xenotime

0.0

0.0

6.2

10.7

0.3

0.1

21.9

44.8

0.3

0.2

14.1

35.1

0.1

0.0

3.4

9.3

0.7

0.3

45.6

100.0

from Mosaic

Monazite and Xenotime Byproducts

REE	Pla Pla Relative co	cers ID ID ntent of REE in	ore	NET IL A	Supply Diversite • Feed
oxide of:	Monazite	Bastnaesite	Xenotime	3 Same And Mark	 Separation
Y	2	0.1	60		Proc
La	23	32		Placers	Test
Се	46	50	11	GA	• Env
Pr	5	4	11		
Nd	19	13		FL	
Sm	3	0.5	1.2		
Eu	0.1	0.1	0.01		
Gd	1.7	0.15	3.16	From USGS	
Tb	0.16	0	1		
Dy	0.5	0	7.5		
Но	0.09	0	2		
Er	0.13	0	6.2	Byproducts are of low cost	in the
Tm	0.01	0	1.27	and rich in heavy rare earths	
Yb	0.06	0	6		STATISTICS OF STATISTICS
Lu	0.006	0	0.63		

ain ition

- ck Recovery
- on & ng
- Design &
- mental Control

13

Feedstocks Recovery

First principle flotation model

Improving recovery by developing novel separation method

• Hydrophobic-Hydrophilic Separation (HHS)

14

Supply Chain Diversification

- Feedstock Recovery
- Separation & Processing
- Process Design & Testing
- Environmental Control

POC-Scale Testing

- Mineral Refining Company has licensed the HHS process
 - Proof-of-Concept (POC) unit is being built at Virginia Tech
 - \$500,000 as industry cost share for an ongoing NETL-sponsored project.
 - o >80% complete
 - Board meeting scheduled
 - December 12, 2012
 - Commercialization plan

Supply Chain Diversification

- Feedstock Recovery
- Separation & Processing
- Process Design & Testing
- Environmental Control

16

Thrusts of the Materials Pillar

High throughput materials discovery

- Focus on key applications
 - o Magnets
 - o Phosphors

	Global I	%Savings		
	Magnets	Phosphors	Total	Projected
Dy	1120	-	1120	66
Eu	-	359	359	65
Nd	13600	-	13600	50
Tb	64	159	223	66
Y	-	10345	10345	95

MRS Bulletin, 37, p.325, 2012

Develop materials processes for advanced manufacturing

Substitute Materials & Alternate Technologies

- Materials Discovery
- Magnets
- Phosphors
- Advanced
- Manufacturing

Advanced Manufacturing

Substitute Materials & Alternate Technologies • Materials Discovery

Post-consumer Products

Permanent magnets and batteries

- Molten salt electrolysis process
 - Use Mg to reduce the melting points of heavy rare earths
 - Potential: 6,000 Mt/yr of rare earth
- Li-ion batteries
 - Shredding, solid-solid separation, leaching, precipitation as carbonate
- Phosphor powders
 - Liquid-liquid separation and ion exchange
 - **>90% Eu**
 - o 84% Tb
 - **>70% Y**

Recycling & Reuse

- Recyclability Improvement
- Separation & Recovery
- Post-Industrial Byproducts

Research Plans

- Critical Materials Hub
 - $\circ~$ Did our best and wait for the best
 - o Focus on rare earth materials
- Baseline R&D activities
 - o Broad spectrum of critical materials
 - V, Mg, Mo, Co, PGM, Li, etc.
 - REEs
 - o Materials development
 - Magnets, phosphors, catalysts, sensors, and other applications
 - Substitute elements and materials
 - Alternative technologies
 - White papers submitted
 - Dave Waldeck on phosphors to ONR
 - Andy Gellman on substitute materials ONR
- Seed money has been made available by NETL

Vertical Integration of Industry Essential for Commercialization

Summary

Defense Applications

Excalibur Artillery Shell (NdFeB magnets)

AIM-120 AMRAAM (SmCo magnets)

Virginia Class Submarine (Terfenol-D)

Phalanx CIWS (Alnico – SmCo – NdFeB magnets)

F135 engine – F35 JSF (Yttria-stabilized zirconia)

F/A-18 HUD (Tb: Gd₂O₂S)

Blackhawk Helicopter (Mg-Y alloys, NdFeB magnets, Terfenol-D [stealth systems])

Ground Laser Target Designator III (Nd: YAG garnet)

Materials Discovery

- Computational screening
- Combinatorial synthesis and property screening
- □ Structure and functional property characterization

New Materials

Substitute Materials & Alternate Technologies

- Materials Discovery
- Magnets
- Phosphors
- Advanced
- Manufacturing

Designed Extractants and Solvents

Highly selective separations

- Molecular recognition
- Volume-phase transition

Supply Chain Diversification

- Feedstock Recovery
- Separation & Processing
- Process Design & Testing
- Environmental Control

Electrodeposition and recovery of REEs from room temperature ionic liquids

Can replace molten salt electrolysis