Developing a Shale Gas Research Strategy: water and waste

Paul Ziemkiewicz, PhD, Director

West Virginia University Water Research Institute Morgantown WV

29 Nov 2012

West Virginia University

Water Research Institute

Marcellus Shale Coalition/Research Collaboration:

Developing a database for water treatment technologies

Technology Showcase at Shale Gas Insight Sept. 2012

Developed a questionnaire to allow vendors to summarize their technologies and performance

Provided a forum for vendors to present their technologies to the membership

Regarding water/waste treatment, we found out that:

- Most treatment processes used combinations of pre-existing technologies:
 - membranes
 - evaporation/distillation
 - filtration
- Most were not developed for shale gas water
- Compliance and cost performance were poorly understood
- Need for a systematic technology development

Shale Energy Resources Alliance (SERA) Water Program Plan

Objective:

to assist E&P companies and their contractors by improving the economics and performance of water and waste treatment and reuse.

Key Personnel:

- West Virginia University-Paul Ziemkiewicz, PhD, Lead
- URS Corporation-Timothy Murin, CPG, PG
- University of Pittsburgh-Radisav Vidic, PhD
- Virginia Tech-Gregory Boardman, PhD
- NETL-Jason Monnell, PhD

Water treatment technology: Research strategy

- Technology market: E&P production and service sectors, regulatory, policy sector
- Identify partners: Industry/Federal Gov't
- Engagement: meaningful role for industry/gov't partners
 - priorities
 - funding
 - program review

Task 1. Develop a Treatment Technology Evaluation Protocol

Performance:

- throughput
- footprint
- potential for on- or off-site deployment
- scalability
- treatment performance
- secondary waste stream characterization
- residuals disposal and
- regulatory acceptance

Cost estimation:

- CapX, OpX
- Identify a cost accounting standard

Water treatment technology: Evaluation protocol

- 1. Identify treatment endpoints
 - quality criteria
- 2. Identify/standardize performance metrics
 - economic
 - technical
- 3. Develop and operate a technology test bed

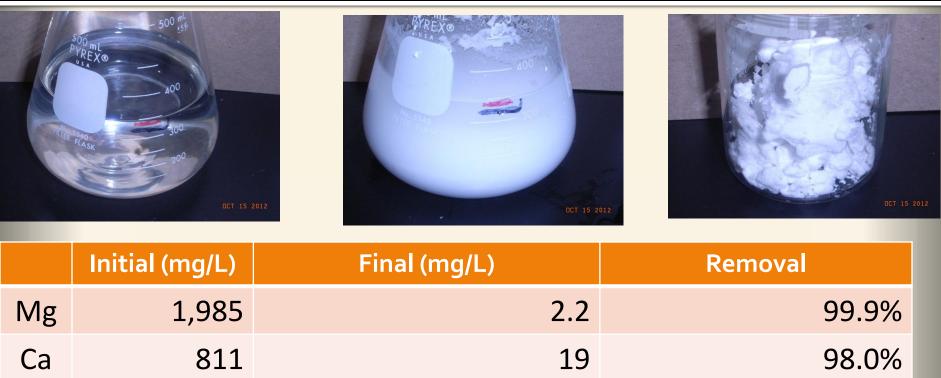
Task 2. Develop a Technology Test Bed

- Accurately estimate site specific costs
- Accurately estimate site specific performance
 - specific waste streams
 - geologies
 - flowback vs. produced water
- Eliminate unsuitable technologies
- Perform reliable comparisons with other technologies

Task 3. Develop a Technology Performance Database

- Distinguish industry proprietary vs. public information
- Results will be included in a database that will be available to partners
- Technology reports:
 - cost and performance information
 - scalability
 - transferability
 - compliance with treatment endpoints

Task 4. Develop Innovative Technologies


- Develop annual technology assessments
- Identify technology needs
- Develop innovative treatment technologies
- Test and report
- Add to treatment technology database

Non-membrane salt removal-WVU

Before treatment

After treatment

Precipitate

04	011	20	001070
Na	79,910	26,113	67.3%
Cl	106,740	35,924	66.3%
SO ₄	3,260	2,810	13.8%

West Virginia University

Water Research Institute

Thank you

Paul Ziemkiewicz, PhD, Director

West Virginia Water Research Institute West Virginia University

pziemkie@wvu.edu

Water Research Institute West Virginia University