

NATIONAL ENERGY TECHNOLOGY LABORATORY

Advanced Simulation Tools for Reservoir Performance

Grant S. Bromhal, NETL ORD, Geosciences Division

NETL-RUA Fall Meeting Canonsburg, PA November, 28, 2012

NETL leads the National Risk Assessment Partnership

NRAP is a multilab effort to develop simulation tools needed to provide confidence in CO₂ storage safety and security.

ф

Integrated assessment models (IAMs) allow us to break the system into manageable components.

from NRAP and other sources

Integrated assessment models (IAMs) allow us to break the system into manageable components.

- Applications to:
 - Risk assessment for oil and gas sites (e.g., permitting, site selection)
 - Risk management for oil and gas sites (e.g., operations for risk reduction, decreasing monitoring costs)
 - Operational management and decision making
 - Systems-level analysis of individual sites
- Future areas for growth:
 - Integration with monitoring operations for efficient operation
 - Development of systems to handle high resolution real-time data
 - Systems-level analysis of entire basins

- R&D coordination & collaboration tool
 - Share information across networks
 - Rapid access through one site
 - Online access for historical data
 - Venue for newly released datasets
- Security, database design, and structure leverage DHS system
- Built to accommodate both open access and restricted access data
 - Role-based security allows for groups or "communities" within the system
 - Future FY13 roll outs will incorporate spatial/mapping tools, displays and other opportunities

More information on EDX: http://www.netl.doe.gov/publications/factsheets/rd/R%26D184%20.pdf

Data Exchange for Energy Solutions

NATIONAL ENERGY TECHNOLOGY LABORATORY

Now available at: <u>https://edx.netl.doe.gov</u>

Several types of modeling techniques are being used to study hydrocarbon reservoirs.

- Commercial software (IMACS, GEM, Eclipse)
- Lab developed codes (TOUGH2, FEHM)
- NETL and RUA developed codes:
 - Modified dual porosity, multiphase, compositional, multidimensional flow model
 - NFFLOW discrete fracture network and flow modeling
 - Reduced order and surrogate models for stochastic analysis

Several types of modeling techniques are being used to study hydrocarbon reservoirs.

Applications to:

- Enhanced oil recovery
- Unconventional oil and gas recovery
- Methane hydrates
- Geothermal systems
- Understanding mechanisms for shale gas recovery is of particular interest

We have developed multiple workflows for simulation of shale gas production.

Well Logs

Hydraulic Fracture -LGR But there is still a great amount of uncertainty in our models.

Property Modeling

Natural Fracture Modeling

NATIONAL ENERGY TECHNOLOGY LABORATORY History matching

Reduced Order Models (ROMs) allow us to generate

Shale Experimental Characterization Model Validation and Grounding

Stress Dependent Effective porosity

Stress Dependent Permeability

Imaging shale matrix heterogeneity

CO₂ and CH₄ Sorption Capacity

Flow and mechanical models predict fracture growth.

- Allows the study of several operational and subsurface parameters:
 - Rock strength
 - Type of frac fluid (CO₂, slickwater)
 - Amount and type of proppant
 - Injection rates and pressures

Also can predict pressure changes and ground deformations due to natural and injection activity.

Modeling reservoir behavior involves processes from the pore to field scale.

Flow through and imaging tools help validate models, understand behavior.

Data from CT scans can be used to develop CFD models.

- Computed tomography scans can be converted to computational fluid dynamics (CFD) simulations that solve the full Navier-Stokes equations of fluid conservation
 - Systematic downscaling of highresolution CT data required.
 - Automated conversion codes to generate permeable media representation in CFD model.

Simulated velocity vectors through fractured coal core ENERGY TECHNOLOGY LABORATORY

Modeling allows us to develop scaling relationships, study other processes.

• Applications to:

- Shale interactions with frac fluid
- Long term production from shale
- Geothermal reservoir management
- Enhanced oil recovery techniques

Simulated thermal transport from rock walls to geothermal fluids

Air displacement of water from an open fracture in sandstone used to develop a relative permeability curve

Specific Focus: CO₂ as a Frac Fluid

- Detection of gas/liquid phase (and sorption) fronts in sandstone, coal, shale
 - CO₂ vs. brine vs. oil vs. gas
 - Detect saturation of different phases in different parts of the core
- Simulation of production from shale given known saturations/sorption
 - Discrete fracture flow simulator
 - Pore-scale modeling to determine k_r , etc.

Thank You

(#)

Chemical reactions change flow pathways in reservoirs and seals.

- Altered flow pathway within fractured cement obtained from flow through tests in the industrial CT scanner
- Link between geometric alteration and permeability
- Applicable to shales, wells, seals, reservoirs

(**d**b)

Mean value of gas saturation contour map obtained with TOUGH2

Mean value of gas saturation contour map obtained with PCE models

NATIONAL ENERGY TECHNOLOGY LABORATORY

(ക)

Multiscale and Multiphase Flow

PSU-SHALECOMP model (Ertekin, PSU)

- Define a "crushed zone" with same gas production performance) as an equivalent discrete fracture network model
- Apply this fracture zone representation in simulations using dual porosity, dual permeability compositional model of fractured low perm reservoirs
- Validate "crushed zone" model using available production data
- ✤ Use the validated "crushed zone" model to predict CO₂ storage potential

PSU-SHALECOMP

Single lateral

Multi-lateral Well Pad

NATIONAL ENERGY TECHNOLOGY LABORATORY PENNSTATE.

Initiated Development of Fracture Network-Based Simulation of CO₂ Storage in Shale

2D view of FracGen/NFFlow realization for Marsellus shale.

Engineered hydraulic fractures (in this case a single lateral with 20 fractured stages) are introduced into a network of preexisting natural fractures.

Conventional Simulation & Al-based modeling (Mohaghegh et al.)

- Acquire real data on gas production from a set of shale gas wells
- Use that set of data to develop population statistics
- Develop a history-matched model of shale gas production (29 month production history) using a conventional reservoir model
- Project forward to economic limit before initiating CO₂ injection
- Develop a surrogate reservoir model based on the history matched model to predict wellpad performance under CO₂ loading

etroleum & Natural Gas

Engineering

CT Scans to CFD Simulations: Pore Level Models

Mt Simon sandstone pores

- 1 x 1 x 3.5 mm domain. CO₂ & brine properties @ depth approximate of 5800 ft
- Series of variations to complement flow through tests in the medical CT scanner performed with a university partner looking at bulk transport

Simulated CO₂ transport within individual sandstone pores

Experimental CO₂ transport within a sandstone core

Advanced numerical techniques are being applied to enhance simulation efficiency.

ക

		⊕			

Global Grid Refinement

Local Grid Refinement

	Time Consumed on each Newton-Raphson Iteration (seconds)						
Number of Unknowns	Direct solver	GMRES	Parallel and Preconditioned GMRES				
100	0.001	0.003	0.079				
900	0.047	0.090	0.095				
9000	3.950	0.137	0.145				
40000	84.620	0.610	0.342				