High-Speed Data Links in CMOS Technology

Ping Gui Jinghong Chen

Department of Electrical Engineering Southern Methodist University

Fermi Lab Oct. 05, 2010

pgui@smu.edu

Outline

The GigaBit Transceiver (GBT) Project with CERN

- A 5-Gbit/s Radiation-Tolerant Optical Receiver of the GBT Project for SLHC
- A High-Resolution Phase Shifter (50-ps-Resolution and 25ns Range) of the GBT Project for SLHC

Serializer and Laser Driver Design

PLL Design

- Wideband LC Fractional-N PLL
- Ring PLL

GigaBit Transceiver (GBT) Link Architecture

GBT-SERDES

A 5 Gbit/s Radiation-hard Optical Receiver for GBT

- A single chip consisting of
 - A Transimpedance amplifier
 - A Limiting amplifier
 - A 50 Ω line driver
- Main specifications:
 - Bit rate: 5 Gb/s (min)
 - Sensitivity: 20 μA p-p (10⁻¹² BER)
 - Total jitter: < 40 ps P-P</p>
 - Dark current: 0 to 1 mA
 - Power supply : 2.5V ± 10%
 - Power consumption < 250 mW
 - Die size: 0.75 mm × 1.25 mm
 - Pin diode capacitance Cd ~ 400 fF
 - Large range of temperature : From -20 C to 80 C
 - Radiation tolerant (up to 200 Mrad)
- Additional features :
 - Internal voltage regulator (with enable/disable control)
 - Leakage-current magnitude indicator
 - Squelch function (with enable/disable control)

Overview of GBT Optical Receiver Design

- A fully differential architecture
 - Good power supply noise and common-mode noise rejection (PSRR and CMRR)
 - Minimize the effects of cross talk between the TIA and LA stages
 - On-chip AC coupling between the PD and TIA
- Transimpedance amplifier (TIA)
 - Define the sensitivity of the optical receiver-- low noise
 - High bandwidth, and high gain
 - Biasing and leakage current compensation for the PD
- Limiting Amplifier and output buffer (LA)
 - High gain and large output swing
 - Wide bandwidth
 - Offset level compensation

Transimpedance Amplifier

- Shunt (resistive) feedback amplifier is widely used for high speed receiver designs
- To increase the bandwidth:
 - Lowering the Rf
 - Increasing the amplifier open loop gain
 - Lowering the input node capacitance
- The noise contribution of the amplifier mainly comes from the input transistor
- To minimize this noise
 - Increasing the Rf
 - Lowering the input node capacitance
 - Increasing the amplifier transconductance
- Large Rf for low noise and high transimpedance gain
- R and C limit the bandwidth
- Techniques to extend the bandwidth

Bandwidth Extension Technique

- Inductive(shunt) peaking
 - Introduction of an inductor in series to resonant with the C, enhancing the bandwidth
 - The frequency response of this inductive peaking amplifier is characterized by the ratio m

m=L/(R²C)

Factor m	Normalized f3dB	Response
0	1.00	No shunt peaking
0.32	1.60	Optimum group delay
0.41	1.72	Maximally flat
0.71	1.85	Maximum bandwidth

GBT Transimpedance Amplifier

pgui@smu.edu

GBT Limiting Amplifier

- Modified Cherry and Hopper with resistive loading for high bandwith
- Active inductive peaking
 - BW is increased by 34% by active inductive peaking
- Four gain stages
 - Four gain stages are used to keep the power from being too high.
 - Stages with increasingly larger driving strength to drive the 50-ohm output stage with high bandwidth.
 - "High gain" first stage to reduce the noise contribution from the following stages.

	SS, 100°C	тт, 27°С	FF, - 20°C
Gain	24	100	236
BW	4.0 GHz	4.5 GHz	5.0 GHz
Noise	200 μ V	309 μ V	465 μ V
Power Dissipat ion	$V_{dd} = 2.5 V, I_{dd} = 24 mA, P = 60 mW$		

pgui@smu.edu

Optical Receiver Chip Layout, Photograph, and Test Setup

- Chip layout, implemented using 0.13 µm IBM CMOS Process
- Die size 0.75 mm x 1.25 mm

Fermi Lab, 10/05/2010

Chip along with the PD on testboard
 2010

Eye Diagram Measurements

- Measured differential eye diagrams at 5 Gbit/s for different optical power at the input (-6 dBm and -18 dBm)
 - Well opened eye diagram for -6 dBm and still correct at -18 dBm
 - The test PRBS sequence length is 2⁷-1
 - A constant output swing of 400 mV
- For -6 dBm input :
 - Rise time = 30 ps
 - Total jitter = 0.15 UI @ BER = 10⁻¹² (UI = 200 ps)
- For -18 dBm input :
 - Rise time = 60 ps
 - Total jitter = 0.55 UI @ BER = 10⁻¹²

Eye diagrams versus the Total Dose

- Electrical board used for irradiation test
- Irradiation test done at CERN Xray facility 4 Mrad/hour
- Only the GBTIA chip is exposed to Xray beam
- No degradation is observed after a dose rate of 200 Mrad

Bit Error Rate Measurements

BER v.s. Total Dose

- For Vdd=2V and T=25 °C
- Data pattern : PRBS7
- The sensitivity for a BER of 10⁻¹² is estimated to be better than -19 dBm

 Effects of total dose (as high as 100MRad) is negligible.

Performance Summary of the GBT Optical Receiver

Main Specifications in term of bandwidth and sensitivity are respected

- Eye diagram is well opened at 5 Gbit/s
- BER v.s. the input current shows a good sensitivity
- The effect of the leakage current is estimated
 - The sensitivity is degraded by 4 dB
 - The value of the high pass cut off frequency still compatibility with the data encoding used for the GBT

Radiation effects :

- TID tolerance is proven
- We have to estimate the single event upset tolerance

Bit rate	5 Gbit/s
Transimpedance gain	40 kΩ
Output voltage	± 0.2 V (50 Ω)
Sensitivity for BER =10-12	-19 dBm
Supply voltage	2 V ± 10%
Power consumption	95 mW
Radiation tolerance	> 200 Mrad
Penalty for high dark current	4 dB

Phase Shifter in the GBT

- To provide multiple (~8) clocks synchronized with the main clock for front-end ASICs with frequency of 40 MHz, 80 MHz, and 160 MHz.
- To allow for compensation of the cable/fiber lengths, the time-of-flight of particles and delays in the electronic circuits.
- The 8 reference clocks are programmable both in phase and frequency.
- The required phase resolution is 50 ps independently of the clock frequency.

Phase Shifter Specs

#	specification	min	typ	max	unit	note
	Number of outputs	8	-	-		
	Frequencies	40, 8	0 and	160	MHz	programmable per output, set by control word Freq[1:0]
	Phase resolution	50			ps	Set by Delay[8:0]
	DNL			20%	LSB (50ps)	
	INL			30%	LSB (50ps)	
	Jitter RMS			5	ps	
	Jitter P-P			30	ps	
	Temperature coefficient			5	ps/deg	
	Supply coefficient			50	ps/V	
	Logic levels					Programmable: CMOS/LVDS
	Synchronized with the 40Mhz main clock					

pgui@smu.edu

Phase Shifter Architecture #1

 500 stages of delays are needed for a resolution of 50 ps in a range of 25 ns.

Considerable amount of switching power and switching noise.

Phase Shifter: Architecture #2

Main features:

- 3 channels in the GBT SerDes
- 1 PLL + Counter generates the three frequencies: 40 / 80 and 160 MHz
- 1 DLL per channel: 48.83 ps resolution
- Mixed digital/analogue phase shifting technique:
 - Coarse deskewing Digital: ∆t(coarse) = 781.25 ps
 - Fine deskewing Analogue: ∆t(fine) = 48.83 ps
- Power consumption: 5.6 mW/channel (simulated)
- Simulated Differential non-linearity: <6.7% LSB
- Simulated Integral non-linearity: INL<6.5% LSB

GBT-SerDes Chip Layout

Packaged in a custom 13 × 13 bump-pad C4 package (168 pin)

Test Setup

pgui@smu.edu

21

Phase Shifter: Measurements

Q Resolution: $\Delta t = 50 \text{ ps}$

Differential Non-Linearity

 $\Box \sigma$ = 4.7 ps (9.6% of Δt)

□pp = 21.5 ps (44% of ∆t)

 \Box Jitter: σ = 5 ps (pp = 30 ps)

Integral Non-Linearity

□ σ = 4.3 ps (8.7% of ∆t)

□pp = 21.9 ps (48.7% of ∆t)

Transmitter Driver

Must interface to the receiver

- Signal swing
- Common mode
- AC couple (baseline wander)
- Best signal integrity for the least amount of power
 - Double termination to reduce reflections?
 - Drive strength? Pre emphasis?

 Current Mode Logic (CML) v.s. Single-ended Dynamic-Logic such as Truely-Single-Phase-Clock (TSPC)

Dynamic-Logic Serializer and Driver

Dynamic CMOS gates (TSPC), no CML logic.

"Christmas Tree" architecture (recursive).

Poly phase clocking maximizes timing margin (speed).

pgui@smu.edu

Dynamic CMOS – TSPC (Truly Single Phase Clock)

Push-Pull CML Driver for TSPC Serializer

Dynamic-Logic Serializer and Driver Layout

400um

Serializer, Driver, and Pre-Driver	
Power @ 250MSPS (2G high speed clock)	34 mW
Area	400 μm x 160 μm

Eye Diagram of 4Gbps 0.5inch FR4

CML Serializer and Driver

Synchronous TX (excluding serializer, etc.)	Power	Power (No PE)
Timing: bit alignment, sign swaps, etc.	12.2 mW	4.1 mW
Driver power (VDD)	27.0 mW	10.3 mW
Output power (max DC, max PE) (VTTO) (40mA max)	72.0 mW	25.6 mW
Total	109.2mW	40 mW

CML Driver

CML Serializer and Driver Layout

Synchronous TX (excluding serializer, etc.)	Area (⊥ x)	
Timing Cell	100 µm x 140 µm	
Driver (including inductors and pads)	470 μm x 210 μm	

CML Transmitter (3Gbps 2.5inch FR4)

TJ = 48ps pp = 0.15UI pp

pgui@smu.edu

Silicon-on-Sapphire CMOS Technology

- Insulating sapphire substrate
- A very thin silicon layer (100 nm)
- Reduced parasitic capacitance
 - Low power consumption
 - Minimum crosstalk
 - High integration of RF, mixed-signal, passive elements and digital functions on a single device.
- Optically transparent substrate
- Good immunity to SEEs
- Substrate is a good thermal conductor
- Sustaining low temperature

Low Power CMOS OE Transceiver ICs in Silicon-on-Sapphire Technology

Performance: 4-channel optoelectronic transceiver 0.6Gb/s

Innovation: Dynamic adjust power at the transmitting side

DARPA OE-center

Performance: 4-channel optoelectronic transceiver 2-3Gb/s

Innovation: Instant power-up/down

DARPA PCA/RATS

Performance: 4-channel optoelectronic transceiver 3-4Gb/s

Innovation: Dual-rate (power-performance trade off)

DARPA C2OI

All using 0.5 μ m CMOS Silicon-on-Sapphire Technology

pgui@smu.edu

Transceiver IC with OE Devices

Optical Receiver ASIC

VCSEL Driver ASIC

VCSEL chip attached

VCSEL Driver Circuit

DAC structure for Bias and Modulation Current b3 b2 b1 b0 are digital control bits

adjustment of individual greater flexibility.

pgui@smu.edu

150

1101

Laser Driver Eye Diagram

(2¹⁵-1 Pseudo random data pattern were used)

2.0 Gb/s

pgui@smu.edu

Dynamic Power Optimization Optical Link

pgui@smu.edu

Fermi Lab, 10/05/2010

Bias current

(mA)

1.5

1.5

Instant On/off optical link demonstration

Complete power cycling (on/off) for a gigabit optical link demonstrated at <u>5-10nSec</u>.

Dual Rate Optical Link

Low Phase Noise, 0.2 to 6 GHz Wideband LC Fractional-N PLL

W WIDNIN WW	QVCO	DIV	HR-SSBMIXER	- HA MADALA
A MANA P	SDM AFC		PFD_CP PF	Julie

- TSMC 0.13 μm CMOS
- Frequency range: 0.2 to 6 GHz
- I and Q outputs
- Phase noise: -122 dBc/Hz
 @1MHZ offset (2.4 GHz band)
- Reference spur: better than -69 dBc@40MHz
- Fractional spur: better than -73 dBc@1MHz
- Die area:1.36 mm ×1.37mm
- Power: 35.6 ~ 52.62 mW
- Supports multi-band wireless communication standards including DCS1800, WCDMA, TD-SCDMA, Bluetooth, 802.11 a/b//g

Frequency Synthesizer Architecture

QVCO with HR-SSB mixer

- Two cross-coupled LC oscillator to provide I and Q
- HR-SSB mixer is used to suppress spurs
- High frequency VCO with divider is avoided by QVCO
- Achieves both low power and lower-spur

Measurement Results—Phase noise

Measurement Results Summary

Standards	Phase noise	RMS phase noise	
DCS1800 (1805~1880MHz)	-119.18dBc/Hz@600kHz -129.43dBc/Hz@1.6MHz -133.17dBc/Hz@3MHz	0.904°	
WCDMA (2110~2170MHz)	-94.72dBc/Hz@100kHz -118.4dBc/Hz@600kHz -124.3dBc/Hz@1MHz	0.975°	
TD-SCDMA (1880~2400MHz)	-93.46dBc/Hz@100kHz -122.55dBc/Hz@1MHz -126.29dBc/Hz@1.6MHz	1.789°	
Bluetooth (2400~2480MHz)	-92.81dBc/Hz@100kHz -121.69dBc/Hz@1MHz -125.83dBc/Hz@1.6MHz	1.267°	
802.11b/g (2400~2480MHz)	-92.81dBc/Hz@100kHz -121.69dBc/Hz@1MHz -125.83dBc/Hz@1.6MHz	1.267°	
802.11a (5180~5805MHz)	-85dBc/Hz@100kHz -107.63dBc/Hz@600kHz -114.17dBc/Hz@1MHz	2.65°	
Loop bandwidth	60 kHz ~ 90 kHz		
Locking time	<50 μs		
Reference Spur	<-69dBc@40MHz		
Fractional Spur	-72.93dBc@1MHz		
Power	35.6 ~ 52.62 mW		
Die Area	$1.36 \times 1.37 \text{mm}^2$ (core circuits)		

pgui@smu.edu

Ring PLL

- 0.35 µm CMOS
- Area: 600 μm x 500 μm
- Power: 18 mW
- Frequency range: 400Mhz to 2GHz
 - Support data-rate from 800 Mb/s to 4 Gb/s
- Jitter is less than 5 ps rms supporting BER of 10⁻¹²
 - VCO phase noise: -92 dBc/Hz at 1MHz offset
 - VCO phase noise with bias circuit: -85 dBc/Hz at 1MHz offset
- CML outputs for efficient chip clock distribution

Ring VCO Phase Noise

VCO phase noise: -92 dBc/Hz at 1MHz offset

Research Experience

High-Speed Transmitter and Receiver

- Serializer, Line Driver and Laser Driver
- Radiation-Tolerant Optical Receiver

Phase Locked Loops

- LC-Tank Based PLL
- Ring PLL

Collaboration with Fermi Lab

Thank You!