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Outline
– Physics and pixels at the ILC
– Simulation and Physics Studies
– Sensor Development
– Readout and Drive Electronics 
– Mechanical Studies
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The International Linear Collider

o The way forward…
– Standard model is an incomplete picture of nature.
– LHC experiments will study pp collisions √s = 14 TeV giving large mass reach 

for discovery of new physics.
– Precision measurements (masses, BRs, etc) are greatly complicated by the 

hadronic environment.
– International consensus: e+e- LC operating at up to √s ~ 1 TeV needed in 

parallel with the LHC, i.e. start-up in next decade.
– Detailed case presented by LHC/LC Study Group: hep-ph/0410364.

o Timeline and recent events
– Superconducting RF technology selected for accelerating cavities.
– Global effort now underway to design ILC, director Barry Barish.
– Current timeline: Formation of experimental collaborations in 2008 and 

writing of Technical Design Reports in 2009.
– Pixel vertex detector technology chosen following module tests in 2010.
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Flavour and Quark Charge Identification at the ILC

o Understanding the new physics will require identifying heavy quarks.
– Higgs Branching ratios; are they as expected in the Standard Model?
– Separation of b from b, and c from c will be important, eg. e+e- HHZ
– Leads to reduced combinatorial background.
– Allows determination of Higgs self-coupling.

Not just b/c tagging, but also determine quark charge

- -
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Quark Charge Identification

o Provides a new tool for physics studies
– Allows study of polarisation in top decays, e.g. t bW+ b(cs)
– Determine tan β and tri-linear couplings At and 

Ab through measurements of top polarisation in 
sbottom and stop decays.

o Gives increased sensitivity to physics studies
– Large Extra Dimensions; e+e- ff.  LED not visible 

in ALR = (σL – σR)/σtot as a function of cos θ for muons.
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Vertex Detector Performance Goals

o Physics environment:
– Average impact parameter, d0, of B 

decay products ~ 300 µm, of 
charmed particles less than 100 µm.

– d0 resolution given by convolution 
of point precision, multiple 
scattering, lever arm, and 
mechanical stability.

– Multiple scattering significant 
despite large √s, as charged track 
momenta extend down to ~ 1 GeV.

– Resolve all tracks in dense jets.
– Cover largest possible solid angle: 

forward/backward events are 
important.

– Stand-alone reconstruction 
desirable.

o In terms of impact parameter, 
require  resolution in rφ and rz:

o Implies typically:
– Pixels ~ 20 x 20 µm2.
– First measurement at r ~ 15 mm.
– Five layers out to radius of about 

60 mm, i.e. total ~ 109 pixels
– Material ~ 0.1% X0 per layer.
– Detector covers |cos θ| < 0.96.
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LCFI Physics Studies

o Identification of b/c quarks
– ZVTOP algorithm plus neural net
– Modest improvement in b tagging 

over that achieved at SLD.
– Improvement by factor 2 to 3 in 

charm tagging efficiency.
– Charm tag interesting e.g. for 

Higgs BR measurements.

o Identification of quark charge
– Must assign all charged tracks to 

correct vertex.
– Multiple scattering critical, 

lowest track momenta ~1 GeV.
– Sum charges associated with b 

vertex:
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Physics Studies: From MIPS to Physics

The sensors we study are new devices; we need to model how they work.  
o We will need to develop understanding of:

– Charge generation, propagation, and collection in new sensor types
– Cluster finding, sparsification, fitting to tracks
– Background effects and environment 

Provides feedback to sensor and electronics design 

Charge deposition, 
clustering, sparsification, 

track fitting

Vertexing, track 
attachment, 

topological dependence

Impact on physics 
quantities, individual 

physics channels

dE/dx for 
1 GeV π in 
1 µm Si
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Physics Studies: From MIPS to Physics

o Study factors affecting flavour identification and quark charge
– Optimise flavour ID and extend quark charge determination to B0.
– Examine effects of individual sensor failures.
– Detector alignment procedures and effects of misalignments.
– Polar angle dependence of flavour and charge identification.

Provides feedback to mechanical design; can shape overall detector design, 
e.g. additional layers, increased detector length
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clustering, sparsification, 

track fitting

Vertexing, track 
attachment, 

topological dependence

Impact on physics 
quantities, individual 

physics channels
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Physics Studies: From MIPS to Physics

o With complete simulation, study physics processes for which vertex 
detector is crucial, for example:
– Higgs branching fractions, requires flavour ID.
– Higgs self-coupling, requires flavour and charge ID.
– Charm and bottom asymmetries, requires flavour and charge ID.

Plan to be prepared to react to discoveries at the LHC, and to show 
detector impact on physics.
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track fitting
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Tracking and Timing Features at the Linear Collider
What sort of tracking and vertexing is needed for the Linear Collider?
o Vertex detectors for the Linear Collider will be precision devices

– Need very thin, low mass detectors
– No need for extreme radiation tolerance
– Need high precision vertexing eg ~20 µm pixels
– Can not simply recycle technologies used in LHC or elsewhere 

o High pixelization and readout implications
– 109 pixels: must break long bunch trains into small bites (2820/20 = 141)
– Read out detector many (ie 20) times during a train susceptible to pickup
– …or store info for each bite and read out during long inter-train spaces

337 ns

x2820

0.2 s

0.95 ms

Bunch Train

Bunch Spacing



Steve Worm – LCFI August 10, 2005 12

Sensors for the ILC vertex detector

Read out during the bunch train:

o Fast CCDs
– Development well underway 
– Need to be fast (50 MHz)
– Need to increase speed, size
– Miniaturise drive electronics

Read out in the gaps:

o Storage sensors
– Store the hit information, 

readout between bunch trains 
(exploit beam structure) 

– Readout speed requirements 
reduced (~1MHz)

– Two sensor types under study; 
ISIS and FAPS

ILC long bunch trains, 
~109 pixels, relatively 

low occupancy
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Sensors:  Column-Parallel CCDs

o Fast Column-Parallel CCD’s (CPCCD) 
– CCD technology proven at SLD, but LC 

sensors must be faster, more rad-hard
– Readout in parallel addresses speed 

concerns
– CPCCD’s feature small pixels, can be 

thinned, large area, and are fast

o CPC1 design features (e2v technologies):
– Two phase, 400 (V) × 750 (H) pixels of 

size 20 × 20 µm2

– Metal strapped clock gates
– Different gate shapes and implant levels
– Single and double-stage source-followers

CPC1

“Classic CCD”
Readout time ≈

N×M/Fout

N

M

N

Column Parallel 
CCD

Readout time = 
N/Fout
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Column-Parallel CCDs:  Recent Results

o First-generation tests (CPC1):
– Noise ~100 e− (60 e− after filter).
– Minimum clock potential ~1.9 V.
– Max clock frequency above 25 

MHz (design 1 MHz).
– Limitation caused by clock skew

Extremely successful!

o Next generation in production (CPC2):
– Busline free design (two-level metal) 
– Large area ‘stitched’ sensor, choice of 

epi layers for varying depletion depth
– Range of device sizes for test of 

clock propagation (up to 50 MHz)
– Large chips are nearly the right size
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Column-Parallel CCDs:  Recent Results

o Wire and bump bonded Column-Parallel CCD 
and readout chip (CPR1)
– Source tests with 55Fe
– Noise ~130 e-

o Bump-bonding CCDs
– Bonded at VTT (with some teething pains)
– First time e2v CCDs bump bonded

Bump-Bonded
CPCCD + Readout
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CPC2/ISIS1 Wafer

o Currently in manufacture at e2v technologies
o Three different Column-parallel CCD sizes:

– CPC2-70:  92 mm x 15 mm image area
– CPC2-40:  53 mm long
– CPC2-10:  13 mm long

o Features include:
– Two charge transport regions
– Choice of epi layers for 

different depletion depth: 0.1 
to 1.0 kΩcm (25-50 µm)

– Largest size sensor designed 
for few MHz operation

Ready for delivery in August. 

ISIS1 
chips

CPC2-40

CPC2-10

CPC2-70
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Driver Design Issues for CPCCD

o High Current
– Problem supplying ~10A to driver IC 

(thick wires)
– Solution may be capacitive storage 

(charged at low rate between bunch 
trains, discharged at high rate when 
CCD is clocked during bunch train)

o Waveform shape and timing
– The driver IC will provide a high 

degree of control over the waveform 
– Shape and timing of CCD clock could 

be fine tuned to match readout IC 
timing

– Adjustable clock drive voltage  (aim to 
minimise power, without degrading 
charge transfer efficiency)

Driver
circuit
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Storage Sensors – ISIS

o In-situ storage image sensor (ISIS) details:
– CCD-like charge storage cells in CMOS technology
– Processed on sensitive epi layer
– p+ shielding implant forms reflective barrier (deep implant)
– Overlapping poly gates not likely in CMOS, may not be needed

o Basic structure of one pixel shown below:

p+ shielding implant

n+
buried channel (n)

Charge collection

p+ well 

reflected charge

reflected charge
High resistivity epitaxial layer (p)

storage 
pixel #1

sense 
node (n+)

row 
select

reset 
gate

Source follower

VDD
photogate

transfer
gate

Reset transistor Row select transistor

output
gate

to column 
load

storage 
pixel #20

substrate (p+)
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Storage Sensors:  ISIS

o “Linear” variant of ISIS
– Linear array of ~20 storage cells in 

each pixel
– Test device being built by e2v

o “Revolver” variant of ISIS
– Reduces number of charge transfers
– Increases radiation hardness and 

flexibility

No shortage of good ideas

20 µm

20 
µm
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Storage Sensors:  FAPS
o FAPS architecture

– Flexible active pixel sensors
– Adds pixel storage to MAPS
– Present design “proof of principle” test structure
– Pixels 20x20 µm2, 3 metal layers, 10 storage cells MAPS

FAPS

o Results with initial design:
– 106Ru β source tests: Signal to noise 

ratio between 14 and 17.
– MAPS shown to tolerate high radiation 

doses.
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Storage Sensors:  FAPS plans

o Next step:  Parametric test sensor 
– 64x64 identical pixels (at least) 
– Variants of write and read amplifiers and in 

storage cells
o Will evaluate pixels in terms of 

– Noise
– Signal
– Radiation hardness
– Readout speed

o Optimisation is between 
– size of the pixel
– readout speed 
– maximum amount of time available for readout
– charge leakage 

Read/Write 
variations 

Memory cell 
variations 
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Readout Electronics:  CPR2 Readout Chip

o Designed to match the Column Parallel 
CCD (CPC2) 
– 20µm pitch, maximum rate of 50MHz
– 5-bit ADC, on-chip cluster finding 
– Charge and voltage inputs

o New features for the CPR2 include
– Cluster Finding logic, Sparse read-out
– Better uniformity and linearity 
– Reduced sensitivity to clock timing 
– Variety of test modes possible
– 9.5 mm x 6 mm die size, IBM 0.25µm
– Recently delivered, testing beginning

Major piece needed for a full module



Steve Worm – LCFI August 10, 2005 24

CPR2 Readout Chip: Initial Tests

o First tests with CPR2 readout chip
– Tested with injected digital patterns (not testing analog yet)
– 2 x 2 clustering threshold, 4 x 9 readout
– Works(!) …but not perfect yet
– Some problems at boundary channels and with timing
– Will adjust timing, continue tests
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Vertex Detector Mechanical Studies

o Thin Ladder (module) construction Goals are ambitious;
– 0.1 % X/X0 Thinned silicon sensor, ultra-light support
– Uniformity over active area
– Wire or Bump bondable, robust under thermal cycling

o Mechanical development timeline
– Develop support technologies, fixturing, production techniques (mid 2007)
– In parallel, global design and cooling studies, mounting, power, etc 
– Natural evolution into baseline detector design

metrology & 
simulation

support 
technologies

materials 
studies

diamond
ladder 

(Element-6)

open-cell
foams
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Mechanical Studies:  Support Structures

o Thin Ladder Mechanical Considerations
– Stresses introduced in processing 

imply “unsupported” Si > 50µm.
– “Stretching” maintained longitudinal 

stability, but insufficient lateral support.
– Re-visit using thin corrugated carbon fibre 

to provide lateral support.
o Measurement and Stress Analysis

– Supporting CCD on thin substrate studied 
at low temperatures.

– Simulation (FEA) provides good guide.
– Under study: sandwiched structure  

with foams.

FEA analysis measurement
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Vertex Detector Global and Thermal Studies 

o Mounting schemes, layout, services, cooling etc 
– Must all be shown to be compatible with candidate technology
– Large dependence on decisions in other work (e.g. sensors, electronics)
– Thermal test stand under construction

o Many mechanical challenges ahead
– How to hold the ladders
– Full detector layout
– Thermal studies 
– How to cool the ladders 
– Stress analysis for candidate 

ladder support

Many interesting mechanical challenges
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Mechanical R&D: Foams

o Foam structures and prototyping
– Investigating silicon foam and silicon carbide foam (good CTE match)
– Foams are extremely rigid and also light weight (3-10% the normal density) 
– As they are so light, can be made more thick
– The co-efficient of thermal expansion is a close match to silicon

o First results: very promising!
– Silicon 20 micron thick on SiC foam ~40 µm deviation in ∆T = 90 °C

Profile DeviationSurface Profile

Preliminary Results 
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Conclusions
LCFI: Balanced programme of physics, sensors, readout, mechanical, testing.

Much work shown, but much more remaining to be done!


