LCFI: Pixels for the ILC

Steve Worm Rutherford Appleton Laboratory

Outline

- Physics and pixels at the ILC
- Simulation and Physics Studies
- Sensor Development
- Readout and Drive Electronics
- Mechanical Studies

Linear Collider Flavour Identification LCFI Collaboration

P Allport³, D Bailey¹, C Buttar², D Cussans¹, C J S Damerell³, N De Groot⁴, J Fopma⁵,
B Foster⁵, S Galagedera⁶, A R Gillman⁶, J Goldstein⁶, T J Greenshaw³, R Halsall⁶, B Hawes⁵,
K Hayrapetyan³, H Heath¹, S Hillert⁵, D Jackson^{5,6}, E L Johnson⁶, A J Lintern⁶, P Murray⁶,
A Nichols⁶, A Nomerotski⁵, V O'Shea², C Parkes², C Perry⁵, K D Stefanov⁶, P Sutcliffe³,
S L Thomas⁶, R Turchetta⁶, M Tyndel⁶, J Velthuis³, G Villani⁶, T Wijnen⁴, S Worm⁶, S Yang⁵

- 1. Bristol University
- 2. Glasgow University
- 3. Liverpool University
- 4. Nijmegen University
- 5. Oxford University
- 6. Rutherford Appleton Laboratory

UNIVERSITY of GLASGOW

The International Linear Collider

• The way forward...

- Standard model is an incomplete picture of nature.
- LHC experiments will study pp collisions \sqrt{s} = 14 TeV giving large mass reach for discovery of new physics.
- Precision measurements (masses, BRs, etc) are greatly complicated by the hadronic environment.
- International consensus: $e^+e^- LC$ operating at up to $\sqrt{s} \sim 1$ TeV needed in parallel with the LHC, i.e. start-up in next decade.
- Detailed case presented by LHC/LC Study Group: hep-ph/0410364.

• Timeline and recent events

- Superconducting RF technology selected for accelerating cavities.
- Global effort now underway to design ILC, director Barry Barish.
- Current timeline: Formation of experimental collaborations in 2008 and writing of Technical Design Reports in 2009.
- Pixel vertex detector technology chosen following module tests in 2010.

Flavour and Quark Charge Identification at the ILC

- Understanding the new physics will require identifying heavy quarks.
 - Higgs Branching ratios; are they as expected in the Standard Model?
 - Separation of b from \overline{b} , and c from \overline{c} will be important, eg. e⁺e⁻ \rightarrow HHZ
 - Leads to reduced combinatorial background.
 - Allows determination of Higgs self-coupling.

H

Quark Charge Identification

b.

 W^+

- Provides a new tool for physics studies
 - Allows study of polarisation in top decays, e.g. $t \rightarrow bW^+ \rightarrow b(c\bar{s})$
 - Determine $\tan \beta$ and tri-linear couplings A_{t} and A_{b} through measurements of top polarisation in sbottom and stop decays.
- Gives increased sensitivity to physics studies
 - Large Extra Dimensions; e+e- \rightarrow ff. LED not visible in $A_{LR} = (\sigma_L - \sigma_R)/\sigma_{tot}$ as a function of $\cos \theta$ for muons.

 $\tilde{\mathbf{S}}$

 $\tilde{\chi}^0$

C

Vertex Detector Performance Goals

- Physics environment:
 - Average impact parameter, d₀, of B decay products ~ 300 μm, of charmed particles less than 100 μm.
 - d₀ resolution given by convolution of point precision, multiple scattering, lever arm, and mechanical stability.
 - Multiple scattering significant despite large \sqrt{s} , as charged track momenta extend down to ~ 1 GeV.
 - Resolve all tracks in dense jets.
 - Cover largest possible solid angle: forward/backward events are important.
 - Stand-alone reconstruction desirable.

 \circ In terms of impact parameter, require resolution in r φ and rz:

$$\sigma = \sqrt{a^2 + \left(\frac{b}{p\sin^{\frac{3}{2}}\theta}\right)^2}$$

a < 5μm(point precision) b < 10μm (multiple scattering).

- Implies typically:
 - Pixels ~ 20 x 20 $\mu m^2.$
 - First measurement at r ~ 15 mm.
 - Five layers out to radius of about 60 mm, i.e. total ~ 10⁹ pixels
 - Material ~ 0.1% X_0 per layer.
 - Detector covers $|\cos \theta| < 0.96$.

LCFI Physics Studies

• Identification of b/c quarks

- ZVTOP algorithm plus neural net
- Modest improvement in b tagging over that achieved at SLD.
- Improvement by factor 2 to 3 in charm tagging efficiency.
- Charm tag interesting e.g. for Higgs BR measurements.

- Identification of quark charge
 - Must assign all charged tracks to correct vertex.
 - Multiple scattering critical, lowest track momenta ~1 GeV.
 - Sum charges associated with b vertex:

Physics Studies: From MIPS to Physics

clustering, sparsification, ____ track fitting

Vertexing, track Vertexing, track Impact on physics attachment, ____ quantities, individual topological dependence physics channels

Impact on physics

The sensors we study are new devices; we need to model how they work.

- We will need to develop understanding of: 0
 - Charge generation, propagation, and collection in new sensor types
 - Cluster finding, sparsification, fitting to tracks
 - Background effects and environment

\rightarrow Provides feedback to sensor and electronics design

Physics Studies: From MIPS to Physics

Charge deposition, clustering, sparsification, track fitting Vertexing, track attachment, topological dependence Impact on physics quantities, individual physics channels

• Study factors affecting flavour identification and quark charge

- Optimise flavour ID and extend quark charge determination to B⁰.
- Examine effects of individual sensor failures.
- Detector alignment procedures and effects of misalignments.
- Polar angle dependence of flavour and charge identification.

Physics Studies: From MIPS to Physics

Charge deposition, Vertexing, track Impact on physics clustering, sparsification, track fitting topological dependence physics channels

- With complete simulation, study physics processes for which vertex 0 detector is crucial, for example:
 - Higgs branching fractions, requires flavour ID.
 - Higgs self-coupling, requires flavour and charge ID.
 - Charm and bottom asymmetries, requires flavour and charge ID.

 \rightarrow Plan to be prepared to react to discoveries at the LHC, and to show detector impact on physics.

Steve Worm - LCFI

August 10, 2005

Tracking and Timing Features at the Linear Collider

What sort of tracking and vertexing is needed for the Linear Collider?

- Vertex detectors for the Linear Collider will be *precision* devices
 - Need very thin, low mass detectors
 - No need for extreme radiation tolerance
 - Need high precision vertexing \rightarrow eg ~20 µm pixels
 - Can not simply recycle technologies used in LHC or elsewhere
- High pixelization and readout implications
 - 10⁹ pixels: must break long bunch trains into small bites (2820/20 = 141)
 - Read out detector many (ie 20) times during a train \rightarrow susceptible to pickup
 - ... or store info for each bite and read out during long inter-train spaces

Sensors for the ILC vertex detector

ILC long bunch trains, ~10⁹ pixels, relatively low occupancy

Read out *during* the bunch train:

- Fast CCDs
 - Development well underway
 - Need to be fast (50 MHz)
 - Need to increase speed, size
 - Miniaturise drive electronics

Read out in the gaps:

- Storage sensors
 - Store the hit information, readout between bunch trains (exploit beam structure)
 - Readout speed requirements reduced (~1MHz)
 - Two sensor types under study;
 ISIS and FAPS

Sensors: Column-Parallel CCDs

- Fast Column-Parallel CCD's (CPCCD)
 - CCD technology proven at SLD, but LC sensors must be faster, more rad-hard
 - Readout in parallel addresses speed concerns
 - CPCCD's feature small pixels, can be thinned, large area, and are *fast*
- CPC1 design features (e2v technologies):
 - Two phase, 400 (V) \times 750 (H) pixels of size 20 \times 20 μm^2
 - Metal strapped clock gates
 - Different gate shapes and implant levels
 - Single and double-stage source-followers

Column-Parallel CCDs: Recent Results

- First-generation tests (CPC1):
 - Noise ~100 e⁻ (60 e⁻ after filter).
 - Minimum clock potential ~1.9 V.
 - Max clock frequency above 25 MHz (design 1 MHz).
 - Limitation caused by clock skew

- Next generation in production (CPC2):
 - Busline free design (two-level metal)
 - Large area 'stitched' sensor, choice of epi layers for varying depletion depth
 - Range of device sizes for test of clock propagation (up to 50 MHz)
 - Large chips are nearly the right size

Extremely successful!

Column-Parallel CCDs: Recent Results

- Wire and bump bonded Column-Parallel CCD and readout chip (CPR1)
 - Source tests with ⁵⁵Fe
 - Noise ~130 e-
- Bump-bonding CCDs
 - Bonded at VTT (with some teething pains)
 - First time e2v CCDs bump bonded

CPC2/ISIS1 Wafer

- Currently in manufacture at e2v technologies
- Three different Column-parallel CCD sizes:
 - CPC2-70: 92 mm x 15 mm image area
 - CPC2-40: 53 mm long
 - CPC2-10: 13 mm long

• Features include:

- Two charge transport regions
- Choice of epi layers for different depletion depth: 0.1 to 1.0 kΩcm (25-50 µm)
- Largest size sensor designed for few MHz operation

Ready for delivery in August.

Driver Design Issues for CPCCD

• High Current

- Problem supplying ~10A to driver IC (thick wires)
- Solution may be capacitive storage (charged at low rate between bunch trains, discharged at high rate when CCD is clocked during bunch train)

Waveform shape and timing

- The driver IC will provide a high degree of control over the waveform
- Shape and timing of CCD clock could be fine tuned to match readout IC timing
- Adjustable clock drive voltage (aim to minimise power, without degrading charge transfer efficiency)

Storage Sensors - ISIS

- In-situ storage image sensor (ISIS) details:
 - CCD-like charge storage cells in CMOS technology
 - Processed on sensitive epi layer
 - p+ shielding implant forms reflective barrier (deep implant)
 - Overlapping poly gates not likely in CMOS, may not be needed
- Basic structure of one pixel shown below:

Storage Sensors: ISIS

o "Linear" variant of ISIS

- Linear array of ~20 storage cells in each pixel
- Test device being built by e2v

"Revolver" variant of ISIS

- Reduces number of charge transfers
- Increases radiation hardness and flexibility

\rightarrow No shortage of good ideas

Storage Sensors: ISIS

Storage Sensors: FAPS

• FAPS architecture

- Flexible active pixel sensors
- Adds pixel storage to MAPS
- Present design "proof of principle" test structure
- Pixels 20x20 μ m², 3 metal layers, 10 storage cells

• Results with initial design:

- 106 Ru β source tests: Signal to noise ratio between 14 and 17.
- MAPS shown to tolerate high radiation doses.

Storage Sensors: FAPS plans

- Next step: Parametric test sensor
 - 64x64 identical pixels (at least)
 - Variants of write and read amplifiers and in storage cells
- Will evaluate pixels in terms of
 - Noise
 - Signal
 - Radiation hardness
 - Readout speed
- Optimisation is between
 - size of the pixel
 - readout speed
 - maximum amount of time available for readout
 - charge leakage

Readout Electronics: CPR2 Readout Chip

 Designed to match the Column Parallel CCD (CPC2)

- 20µm pitch, maximum rate of 50MHz
- 5-bit ADC, on-chip cluster finding
- Charge and voltage inputs

• New features for the CPR2 include

- Cluster Finding logic, Sparse read-out
- Better uniformity and linearity
- Reduced sensitivity to clock timing
- Variety of test modes possible
- 9.5 mm x 6 mm die size, IBM 0.25μ m
- Recently delivered, testing beginning

\rightarrow Major piece needed for a full module

Steve Worm - LCFI

CPR2 Readout Chip: Initial Tests

- First tests with CPR2 readout chip
 - Tested with injected digital patterns (not testing analog yet)
 - 2 x 2 clustering threshold, 4 x 9 readout
 - Works(!) ... but not perfect yet
 - Some problems at boundary channels and with timing
 - Will adjust timing, continue tests

channels above threshold (2 x 2) readout cluster (4 x 9)

Vertex Detector Mechanical Studies

- Thin Ladder (module) construction Goals are ambitious;
 - 0.1 % X/X₀ \rightarrow Thinned silicon sensor, ultra-light support
 - Uniformity over active area
 - Wire or Bump bondable, robust under thermal cycling
- Mechanical development timeline
 - Develop support technologies, fixturing, production techniques (mid 2007)
 - In parallel, global design and cooling studies, mounting, power, etc
 - Natural evolution into baseline detector design

Mechanical Studies: Support Structures

• Thin Ladder Mechanical Considerations

- Stresses introduced in processing imply "unsupported" Si > 50µm.
- "Stretching" maintained longitudinal stability, but insufficient lateral support.
- Re-visit using thin corrugated carbon fibre to provide lateral support.

• Measurement and Stress Analysis

- Supporting CCD on thin substrate studied at low temperatures.

FEA analysis

- Simulation (FEA) provides good guide.
- Under study: sandwiched structure with foams.

Steve Worm - LCFI

Time: 4 s

Time Step: 100 of 100 Maximum Value: 0 22047 mm

Animum Value -0.0338577 m

Vertex Detector Global and Thermal Studies

- Mounting schemes, layout, services, cooling etc
 - Must all be shown to be compatible with candidate technology
 - Large dependence on decisions in other work (e.g. sensors, electronics)
 - Thermal test stand under construction

• Many mechanical challenges ahead

- How to hold the ladders
- Full detector layout
- Thermal studies
- How to cool the ladders
- Stress analysis for candidate ladder support

Any interesting mechanical challenges

Mechanical R&D: Foams

- Foam structures and prototyping
 - Investigating silicon foam and silicon carbide foam (good CTE match)
 - Foams are extremely rigid and also light weight (3-10% the normal density)
 - As they are so light, can be made more thick
 - The co-efficient of thermal expansion is a close match to silicon
- First results: very promising!
 - Silicon 20 micron thick on SiC foam \rightarrow ~40 µm deviation in ΔT = 90 °C

Conclusions

LCFI: Balanced programme of physics, sensors, readout, mechanical, testing.

Much work shown, but much more remaining to be done!

