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I. Short Introduction to the 
Neutrinoless Double Beta 

Decay 
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About the Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay (0vbb):
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About the Neutrinoless Double Beta Decay
Consequences:

The neutrino is a Majorana particle. 
(→ Direct evidence for Physics beyond the SM !)

The neutrino (a Lepton !) is its own anti-particle.

Measurement of the effective neutrino mass.
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About the Neutrinoless Double Beta Decay
Solving the neutrino-mass hirarchie problem.

From F. Simkovic '12
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About the Neutrinoless Double Beta Decay
What happens with sterile neutrinos?

From F. Simkovic '12
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The Experimental Approach to the 0vbb: The Energy 
Signature
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The Experimental Approach to the 0vbb: The Energy 
Signature
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Main Idea: 
Build a highly precise particle calorimeter.

From T.Gleixner '11
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Main Problem: Background Reduction

Result of the Heidelberg-Moscow Experiment with a 
Germanium Calorimeter ['02 H.V. Klapdor-Kleingrothaus].



10decay material = detector sensor material

Shielding

e
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Idea: Background Reduction by Tracking
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Tracking

e

e

Idea: Background Reduction by Tracking

decay material = detector sensor material
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II. How Well Does Tracking 
Actually Work? 
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Timepix:
Pixelated Semiconductor X-ray 
Imaging Detector

Facts:
256 x 256 pixels per chip
55µm, 110 µm or 220 µm pixelsize
Si or CdTe Sensors
Energy measurement for each pixel 
Threshold limit at about 5 keV

Conceptual:
Cd-116, Te-128 and Te-130 are
0vbb isotopes.

Sensor layer

Read-out

Chipboard

The Timepix Detector
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Timepix Functionality

pixelelectrodepixelelectrode

sensormaterial

bumpbond

ASIC

From E. Guni (Dissertation '12)

pixelelectrode

sensormaterial

bumpbond

ASIC

backelectrode
HV
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Timepix Functionality

pixelelectrodepixelelectrode

sensormaterial

bumpbond

ASIC

From E. Guni (Dissertation '12)

pixelelectrode

sensormaterial

bumpbond

ASIC

backelectrode
HV

„Intelligent Pixels“
→ Can be way faster compared to a CCD. 
Readout @ ~ 60 fps; Timing resolution ~ 20ns.
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The Spectrum of a Co-57 source 

Timepix 
FWHM: 6.31 keV

CdZnTe-CPG-
Calorimeter
FWHM: 850 eV
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Tracks measured by a Timepix detector

Question: How good can different sorts of background 
be identified?
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Identification of Alphas

Alphas: 
Clusters of 20 – 30 pixels size with the pixels located 

around the energy deposition maximum.
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Identification of Muons
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Identification of Single Electron Tracks

2 electrons

2 electrons

1 electron

1 electron
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Identification of Single Electron Tracks

1 electron

1 electron

2 electrons

2 electrons
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Idea:
Electron-Positron pair production events produce the same 
tracking signature as 0vbb events.  

Compton Scattering

vs.

Pair Production

Use Tl-208 to induce pair production within the sensor. 

Th-232, BR:
35% Tl-208

Timepix 
sensor layer

The Main Experiment with Thallium-208 
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The Event Spectrum in the Region of Interest 

Before event classification with artificial neural 
networks. Resolution: 1.6 %
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The Reconstructed Spectrum in the Region of Interest 

After event classification with artificial neural networks 
and taking into account misclassification errors.

two 
electron
tracks

one
electron
tracks
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An Outlook on 3D Tracks
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What do we have so far?

Tracking is a valuable tool for background rejection, especially 
for alphas and muons. 

Electron tracking can also increase the sensitivity significantly. 

3D tracking is desirable, escpecially for fiducializing.
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What do we have so far?

Tracking is a valuable tool for background rejection, especially 
for alphas and muons. 

Electron tracking can also increase the sensitivity significantly. 

3D tracking is desirable, escpecially for fiducializing.

BUT

Semiconductor detectors are difficult to scale up..
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III. A New Detector Concept 
Based on Solid Xenon

In Collaboration with the 
Fermi National Accelator Laboratory
Jonghee Yoo
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Why Xenon?

Inert Gas 
→ Easy to enrich (Xe-136) and scale up in mass
(NEXT, EXO target mass 1t of Xenon)

No Beta emitting isotopes.

Q-value at about 2.5 MeV. 
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Why Xenon?

Inert Gas 
→ Easy to enrich (Xe-136) and scale up in mass
(NEXT, EXO target mass 1t of Xenon)

No Beta emitting isotopes.

Q-value at about 2.5 MeV. 

Why Solid?
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Three Signals in Solid Xenon

Electrons Photons

Phonons

e-
e-

Superb Energy Resolution

Good Energy ResolutionTracking
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SXe

Primary 
Electrons

e- e-

Vac

z

0

Electron and Scintilliation Signal Readout
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SXe

PMT-Array

Primary 
Electrons

Scintillation-Light

e- e-

Vac

z

0

Electron and Scintilliation Signal Readout
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SXe

Pixelated Electron Detector

PMT-Array

Primary 
Electrons

Secondary 
Electrons

Scintillation-Light

Ez

e- e-

Vac

z

0

Electron and Scintilliation Signal Readout
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SXe

Pixelated Electron Detector

PMT-Array

Primary 
Electrons

Secondary 
Electrons

Scintillation-Light

Ez

e- e-

Vac

z

z

E
SXe Vac

0.3 eV0

Electron and Scintilliation Signal Readout
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x,y, Ne

x,y, t

SXe

Pixelated Electron Detector

PMT-Array

Primary 
Electrons

Secondary 
Electrons

Scintillation-Light

Ez

e- e-

Vac

z

0

Electron and Scintilliation Signal Readout

3D tracks

2D Tracks
+ Energy
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x,y, Ne

x,y, t

SXe

Pixelated Electron Detector

Primary 
Electrons

Secondary 
Electrons

Ez

e- e-

Vac

z

0

Electron and Scintilliation Signal Readout

3D tracks

2D Tracks
+ Energy

The signal quality could be highly increased by the 
quality of the xenon crystal → Crystollography
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IV. Crystallographic 
Measurements on SXe

In Collaboration with the 
Crystalloraphy Institute Erlangen
M. Weißer, A. Magerl
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Focusing Laue Diffraction
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Focusing Laue Diffraction

Line focus perpendicular to scattering plane
Line width determined by source size
Vertical spatial resolution
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Focusing Laue Diffraction

Detector
Area

Up to 16 m

Focal 
line

Line focus perpendicular to scattering plane
Line width determined by source size
Vertical spatial resolution
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Example 1: Mosaic Crystal

X-ray 
source

The profile of the focal line represents the 
mosaic structure (with vertical spatial 
information)
Resolution ~0.005°

Area 
detector

Focal 
lines
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HEXBay Lab

Instruments can be changed without loosing alignment of the beam-path
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Example 2: Silicon and SiGe Crystals

Ideal Si
CCD-detail: 20 x 10 cm²

10‘

Shadow of the 
primary beam catcher

Single crystal 
reflections

Polycrystalline seed 
material

(partially crystallized)

SiGe by gas phase transport reaction
CCD-detail: 20 x 30 cm²
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Example 3: 6H SiC grown in inhomogeneous 
temperature field

25´

 
Ø Overall diameter 70mm
Ø Thickness about 20mm

Ø  exposure time 10min
Ø  single mesh size 2 x 12 
mm2 
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Example 3: 6H SiC grown in inhomogeneous 
temperature field

25´25´

 
Ø Overall diameter 70mm
Ø Thickness about 20mm

Ø  exposure time 10min
Ø  single mesh size 2 x 12 
mm2 
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Cryostat for Crystallography

Small SXe 
Crystall,
Ø ~ 1.0 cm

Inner Vessel designed to be 
removable, in order to test 
different seed crystals

Easielly available 
crystals could be perfect 
for the job:
BaF
KCl
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V. An Outlook on Barium 
Tagging
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Barium Tagging

e-
e-

-

Ba

→ Barium Colour Center in a Solid Xenon Matrix !

Question:
Can you see a single Barium atom in a Xenon crystal?
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Barium Jablonksky Diagram

SXe is transparent down to 180 nm!  

Γ ~ 10ns
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Single Atom Tagging Principle

Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)
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Single Atom Tagging Principle

Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

Sample thickness ~ 500 nm
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Single Atom Tagging Principle

Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

Taken from JLu: K. Rebane '02, 
DOI 10.1016/S0022-2313(02)00455-6

Sample thickness ~ 500 nm
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Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

Single Atom Tagging Principle
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Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

Single Atom Tagging Principle

Extinction tagging gives a stronger signal
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Single Atom Tagging Principle

The barium transition has a width of Γ ~ 10ns
→ Promising even with a „thick (~ 0.5 mm)“ xenon-layer
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The Big Plan
1t of SXe divided into 
smaller detection blocks
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The Big Plan
1t of SXe divided into 
smaller detection blocks

I. Energy 
Signature
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The Big Plan
1t of SXe divided into 
smaller detection blocks

I. Energy 
Signature

II. Tracking 
Signature



60

The Big Plan
1t of SXe divided into 
smaller detection blocks

I. Energy 
Signature

II. Tracking 
Signature

III. Barium 
Tagging

Ba
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The Big Plan
1t of SXe divided into 
smaller detection blocks

I. Energy 
Signature

II. Tracking 
Signature

III. Barium 
Tagging

Ba

Solid Xenon has the potenial to give more 
than just evidence for 0vbb !!
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Thank You 
and

Good Appetite! 



63

Isotope properties of Xe-136

Maybe not the best isotope but what's about practical 
issues?
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The Event Spectrum in the Region of Interest 

After event classification with artificial neural 
networks. 

two 
electron
tracks

one
electron
tracks
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Sensitivity

A rough evalutation of 3D tracks with ANNs gives an 
improvement of about a factor of 6 in sensitivity!
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HEXBay X-ray sources

Voltage Power Source size

Tube 1 225 keV 2,25 kW
0,4 x 0,4 mm2

or 1,5 x 1,5 mm2

Tube 2 450 keV 4,5 kW
1,0 x 1,0 mm2

or 6,0 x 6,0 mm2

usual
x-ray 

regime
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HEXBay Detector-Systems

2 Area detectors:

Active area 30 x 20 cm2
2 x 14 bit CCD- with 1280 x 1024 pixel
Resolution ~ 150 µm
Read out = 125 ms

Scintillator with a System of
cooled CCD-Cameras

Image plate System MAR 
345
Active area Ø 345 cm
Resolution ~ 100 µm
Read out incl. delay time = 2 min
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Spectrum of a Cs-137 source 

Energy resolution (FWHM) at 661.5 keV (Cs-137): 4.45 %
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Energy Resolution (σ/E) for Global Calibration, Pixel-
by-Pixel Calibration and Simulation  

0.54 %
1.01 %
4.09 %

Global 
Pixel-by-Pixel

Simulation (Sensor)
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The Calibration Curve
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Energy Resolution (σ/E) for Pair Production at 1588.53 
keV (Tl-208) 

Before applying the linear correction function: 
E = ~ 1610 keV, σ/E = 2.2 %
After applying the linear correction function: 
E = ~ 1588 keV, σ/E = 1.6 %

Expected Position: 
1588.53 keV
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Recognizing electrons: Neuronal artificial networks 
Idea:

I. Every event is classified by a vector of N quantities 

III. If v is bigger than a particular value v', the picture is
identified as a 0vbb event otherwise as a single electron

IV. Train the networks by simulations to optimize the 
weighting factors

II. For every vector a number v can be calculated due 
to the formula 
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Calibration Curve (Global Calibration)

Totally out of error bars!
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Energy Resolution under Various DAC Settings - 
Pixel-by-Pixel Calibration
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Energy Resolution with Different Bias Voltages
Highest voltage tested: ~800 V (leakage current ~13 µm)

Am-241
59.54 keV

Co-57
122.06 keV



76

Calibration Curve Reliability Quantity
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Calibration Curve Reliability within the calibration 
range



78

Calibration Curve Reliability within the calibration 
range

Non-linear 
part
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Calibration Curve Reliability within the calibration 
range

Non-linear 
part
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Calibration Error Distribution for Am-241
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Calibration Error on Extrapolation
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Energy Resolution (σ/E) for Tracks (Tl-208) 
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Experimental Approach to the 0vbb

Cadminum Zinc Telluride 0-Neutrino Double Beta Research 
Apparatus (COBRA):

Use a CdZnTe calorimeter with enriched Cd-116.

Large scale Experiment:
400 kg of Cd-116 observed for 5 years.
3 – 6 0vbb events are expected (for recent 

assumptions about the neutrino mass).

Main Task: Elimination of background. 
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Taking into Account Classification Errors
one energy bin

reality

one energy bin

after classification

two 
electron
tracks

one
electron
tracks

Number of correctly identified two electron tracks
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Taking into Account Classification Errors
one energy bin

reality

one energy bin

after classification

two 
electron
tracks

one
electron
tracks

Number of correctly identified two electron tracks
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Energy resolution under various DAC settings - GC 

Am-241
59.54 keV

Co-57
122.06 keV

Ba-133
80.99 keV
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Number of bad pixels with different bias voltages
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About the Neutrinoless Double Beta Decay

Regular Beta Decay:
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About the Neutrinoless Double Beta Decay

Double Beta Decay (2vbb):
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Identification of Muons

Muons: 
Straight lines with homogeneously distributed energy 
deposition per pixel. 
Identification by the reduced Hough Transformation.
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