New Concepts with Pixelated Detectors in the Search for the Neutrinoless Double Beta Decay

16th October 2012

Mykhaylo Filipenko, T. Gleixner, J. Durst, T. Michel, G. Anton

RTS Colloquium

Fermi National Accelerator Laboratory

RLANGEN CENTRE OR ASTROPARTICL

Friedrich-Alexander-Universität **Erlangen-Nürnberg**

I. Short Introduction to the Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay (0vbb):

$$2n \rightarrow 2p + 2e^{-1}$$

Consequences:

The neutrino is a Majorana particle. $(\rightarrow \text{Direct evidence for Physics beyond the SM })$

The neutrino (a Lepton !) is its own anti-particle.

Measurement of the effective neutrino mass.

$$\langle m_{\nu} \rangle = \sum_{i} |U_{ei}|^2 m_i$$

Solving the neutrino-mass hirarchie problem.

What happens with sterile neutrinos?

The Experimental Approach to the 0vbb: The Energy Signature

The Experimental Approach to the 0vbb: The Energy Signature From T.Gleixner '11

8

Main Problem: Background Reduction

Result of the Heidelberg-Moscow Experiment with a Germanium Calorimeter ['02 H.V. Klapdor-Kleingrothaus].

Idea: Background Reduction by Tracking

decay material = detector sensor material

Idea: Background Reduction by Tracking

decay material = detector sensor material

II. How Well Does Tracking Actually Work?

The Timepix Detector

Timepix: Pixelated Semiconductor X-ray Imaging Detector

Facts:

256 x 256 pixels per chip 55µm, 110 µm or 220 µm pixelsize Si or CdTe Sensors Energy measurement for each pixel Threshold limit at about 5 keV

Conceptual:

Cd-116, Te-128 and Te-130 are 0vbb isotopes.

Timepix Functionality

Timepix Functionality

From E. Guni (Dissertation '12)

"Intelligent Pixels" \rightarrow **Can be** way faster compared to a CCD. Readout @ ~ 60 fps; Timing resolution ~ 20ns.

The Spectrum of a Co-57 source

Tracks measured by a Timepix detector

Question: How good can different sorts of background be identified?

Identification of Alphas

Alphas:

Clusters of 20 – 30 pixels size with the pixels located around the energy deposition maximum.

Identification of Muons

Identification of Single Electron Tracks

Identification of Single Electron Tracks

21

The Main Experiment with Thallium-208

Idea:

Electron-Positron pair production events produce the same tracking signature as 0vbb events.

Use TI-208 to induce pair production within the sensor.

The **Event Spectrum in the Region of Interest**

Before event classification with **artificial neural networks**. Resolution: 1.6 %

The <u>Reconstructed</u> Spectrum in the Region of Interest

After event classification with **artificial neural networks** and taking into account misclassification errors.

An Outlook on 3D Tracks

"single_p110d10000t80e10000U5000.EventTree.00.01.bin_asci_out_17" +

What do we have so far?

Tracking is a valuable tool for background rejection, especially for alphas and muons.

Electron tracking can also increase the sensitivity significantly.

3D tracking is desirable, escpecially for fiducializing.

What do we have so far?

Tracking is a valuable tool for background rejection, especially for alphas and muons.

Electron tracking can also increase the sensitivity significantly.

3D tracking is desirable, escpecially for fiducializing.

BUT

Semiconductor detectors are difficult to scale up..

III. A New Detector Concept Based on Solid Xenon

In Collaboration with the Fermi National Accelator Laboratory Jonghee Yoo

Why Xenon?

Inert Gas \rightarrow Easy to enrich (Xe-136) and scale up in mass (NEXT, EXO target mass 1t of Xenon)

No Beta emitting isotopes.

Q-value at about 2.5 MeV.

Why Xenon?

Inert Gas \rightarrow Easy to enrich (Xe-136) and scale up in mass (NEXT, EXO target mass 1t of Xenon)

No Beta emitting isotopes.

Q-value at about 2.5 MeV.

Why Solid?

Three Signals in Solid Xenon

Electron and Scintilliation Signal Readout

The signal quality could be highly increased by the quality of the xenon crystal \rightarrow **Crystollography**

IV. Crystallographic Measurements on SXe

In Collaboration with the Crystalloraphy Institute Erlangen M. Weißer, A. Magerl

Line focus perpendicular to scattering plane Line width determined by source size Vertical spatial resolution

HEXBay Lab

Instruments can be changed without loosing alignment of the beam-path₄₃

Example 2: Silicon and SiGe Crystals

Ideal Si CCD-detail: 20 x 10 cm²

SiGe by gas phase transport reaction CCD-detail: 20 x 30 cm²

Example 3: 6H SiC grown in inhomogeneous temperature field

exposure time 10min
single mesh size 2 x 12 mm2

- Overall diameter 70mm
- Thickness about 20mm

Example 3: 6H SiC grown in inhomogeneous temperature field

exposure time 10min
single mesh size 2 x 12 mm2

- Overall diameter 70mm
- Thickness about 20mm

Cryostat for Crystallography

Inner Vessel designed to be removable, in order to test different seed crystals

> Easielly available crystals could be perfect for the job: BaF KCI

Small SXe Crystall, Ø ~ 1.0 cm

V. An Outlook on Barium Tagging

Barium Tagging

136
Xe \rightarrow 136 Ba + 2 e^{-}

 \rightarrow Barium Colour Center in a Solid Xenon Matrix !

Question:

Can you see a single Barium atom in a Xenon crystal?

Barium Jablonksky Diagram

Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

8-8-8

Taken from arXiv:0808.3300v1 (I. Gerhardt, V.Sagdoghdar et al. '08)

Extinction tagging gives a stronger signal

The barium transition has a width of $\Gamma \sim 10$ ns \rightarrow Promising even with a "thick (~ 0.5 mm)" xenon-layer

1t of SXe divided into smaller detection blocks

The Big Plan

The Big Plan

The Big Plan

Solid Xenon has the potenial to give more than just evidence for 0vbb !!

Thank You and Good Appetite!

Isotope properties of Xe-136

Maybe not the best isotope but what's about practical issues?

The **Event Spectrum in the Region of Interest**

After event classification with **artificial neural networks**.

Sensitivity

A rough evalutation of 3D tracks with ANNs gives an improvement of about a factor of 6 in sensitivity!

	Voltage	Power	Source size
Tube 1	225 keV	2,25 kW	0,4 x 0,4 mm2 or 1,5 x 1,5 mm2
Tube 2	450 keV	4,5 kW	1,0 x 1,0 mm2 or 6,0 x 6,0 mm2

HEXBay X-ray sources

HEXBay Detector-Systems

2 Area detectors:

Scintillator with a System of cooled CCD-Cameras

Active area 30 x 20 cm2 2 x 14 bit CCD- with 1280 x 1024 pixel Resolution ~ 150 μ m Read out = 125 ms

Image plate System MAR 345

Active area Ø 345 cm Resolution ~ 100 μ m Read out incl. delay time = 2 min

Spectrum of a Cs-137 source

Energy resolution (FWHM) at 661.5 keV (Cs-137): 4.45 %

Energy Resolution (σ/E) for Global Calibration, Pixelby-Pixel Calibration and Simulation

The Calibration Curve

$$TOT(E) = a \cdot E + b + \frac{c}{E - t}.$$

0

Energy Resolution (σ/E) for Pair Production at 1588.53 keV (TI-208)

Recognizing electrons: Neuronal artificial networks

Idea:

I. Every event is classified by a vector of N quantities

 $\vec{x} = (x_1, \dots, x_N)$

II. For every vector a number v can be calculated due to the formula

$$v_j = \sum_{i=1}^N w_i \cdot x_i$$

III. If v is bigger than a particular value v', the picture is identified as a 0vbb event otherwise as a single electron

$$v_j > v' \rightarrow 0\nu bb$$

IV. Train the networks by simulations to optimize the weighting factors

Totally out of error bars!

Energy Resolution under Various DAC Settings -Pixel-by-Pixel Calibration

DACs	^{241}Am	¹³³ Ba	$^{57}\mathrm{Co}$
Ik 10, THL 190	5.6	3.5	2.5
Ik 04, THL 210	3.4	3.2	2.3

Energy Resolution with Different Bias Voltages

Highest voltage tested: ~800 V (leakage current ~13 µm)

Calibration Curve Reliability Quantity

Calibration Curve Reliability within the calibration range

Calibration Curve Reliability within the calibration range

Calibration Curve Reliability within the calibration range

Calibration Error Distribution for Am-241

Calibration Error on Extrapolation

Energy Resolution (\sigma/E) for Tracks (TI-208)

Experimental Approach to the 0vbb

Cadminum Zinc Telluride **0**-Neutrino Double **B**eta Research **A**pparatus (COBRA):

Use a CdZnTe calorimeter with enriched Cd-116.

 $Q_{0\nu} = 2.809 \text{ MeV}$ $T_{0\nu} \approx 10^{27} a$

Large scale Experiment:

400 kg of Cd-116 observed for 5 years. 3 – 6 0vbb events are expected (for recent assumptions about the neutrino mass).

Main Task: Elimination of background.

$$\kappa_2 = \pi_2 \cdot \eta_2 + (1 - \pi_1) \cdot \eta_1$$
$$\eta_2 = \frac{1}{\pi_2} (\kappa_2 - (1 - \pi_1) \cdot \eta_1)$$

Energy resolution under various DAC settings - GC

Number of bad pixels with different bias voltages

The interdependency between the number of bad pixels on the matrix and the bias voltage. A power law (red) of the form $N(V) = a \cdot (V - b)^2 + c$ and an exponential function (green) of the form $N(V) = a \cdot \exp(-b \cdot V)$ are shown as possible fit functions. The parameters are $a = 1.3 \cdot 10^{-3} \pm 2.67202 \cdot 10^{-05}$, $b = 298.4 \pm 4.3$ and $c = 1.91 \pm 0.95$ (power law); $a = 3.94 \pm 0.11$ and $b = -5.81705 \cdot 10^{-03} \pm 4.51922 \cdot 10^{-05}$ (exponential).

About the Neutrinoless Double Beta Decay

Regular Beta Decay:

$$(T_{\frac{1}{2}})_{1\nu}^{-1} = \frac{2\pi}{\hbar} |H_{fi}|^2 G(E_f)$$

88

About the Neutrinoless Double Beta Decay

Double Beta Decay (2vbb):

$$2n \rightarrow 2p + 2e^- + 2\bar{\nu_e}$$

Identification of Muons

Muons:

Straight lines with homogeneously distributed energy deposition per pixel.

Identification by the reduced Hough Transformation.

