Imaging Sensor Technologies for Astronomy, Planetary Exploration & Earth Observation

(and possibly also for particle accelerators and synchrotrons)

Fermi National Accelerator Laboratory March 10, 2009

James W. Beletic

Teledyne

Providing the best images of the Universe

Teledyne – NASA's Partner in Astronomy

NICMOS, WFC3, ACS Repair Bands 1 & 2 NIRCam, NIRSpec, FGS

Rosetta

Mars **Reconnaissance** Orbiter

TELEDYNE

IMAGING SENSORS A Teledyne Technologies Company

Earth Mars cares

JDEMJoint Dark Energy Mission

JWST - James Webb Space Telescope **15 Teledyne 2K 15 Teledyne 2K**×**2K infrared arrays on board (~63 million pixels) 2K infrared arrays on board (~63 million pixels)**

FGS(Fine Guidance Sensors)

3 individual MWIR 2Kx2K

- **Acquisition and guiding**
- **Images guide stars for telescope stabilization**
- **Canadian Space Agency**

- International collaboration
- 6.5 meter primary mirror and tennis court size sunshield
- 2013 launch on Ariane 5 rocket
- L2 orbit (1.5 million km from Earth)

JWST will find the "first light" objects after the Big Bang, and will study how galaxies, stars and planetary systems form

NIRSpec (Near Infrared Spectrograph)

1x2 mosaic of MWIR 2Kx2K

- •**Spectrograph**
- • **Measures chemical composition, temperature and velocity**
- •**European Space Agency / NASA**

NIRCam(Near Infrared Camera)

- **Wide field imager**
- **Studies morphology of objects and structure of the universe**
- **U. Arizona / Lockheed Martin**

Wide Field Camera 3 Hubble Space Telescope

- • **High quality, substrate-removed 1.7** μ**m HgCdTe arrays delivered to Goddard Space Flight Center**
- \bullet **H1RG: 1024 x 1024 pixels (18 micron pixel pitch)**
- \bullet **Will be installed in Hubble Space Telescope in 2009**
- •**Nearly 30x increase in HST discovery efficiency**

Hubble Space Telescope Hubble Space Telescope Servicing Mission 4 Servicing Mission 4

Advanced Camera for Surveys (ACS)

Most used instrument on HST inoperable since electronics failure in Jan 2007

Teledyne SIDECAR ASIC is heart of the repair electronics

Teledyne is playing a key role in bringing wide field imaging to Hubble Space Telescope

CRISM Compact Reconnaissance Imaging Spectrometer for Mars

and there

NASA's and NOAA s and NOAA's Partner for Earth Observation s Partner for Earth Observation

Visible to 16.5 microns Visible to 16.5 microns

Moon Mineralogy Mapper - Visible / Near Infrared Imaging Spectrometer launched Wednesday, October 22, 2008

shipment to India

Sensor Chip Assembly

2 year mission will map the entire lunar surface

Moon Mineralogy Mapper resolves visible and infrared to 10 nm spectral resolution, 70 m spatial resolution

Journey Earth to Moon 100 km altitude lunar orbit

Completion of Chandrayaan-1 spacecraft integration Moon Mineralogy Mapper is white square at end of arrow

IMAGING SENSORS A Teledyne Technologies Company

Focal Plane Assembly

Teledvne Infrared FPA

- \cdot 640 x 480 pixels (27 µm pitch)
- Substrate-removed HgCdTe (0.4 to 3.0 µm)
- 650,000 e- full well, <100 e- noise
- 100 Hz frame rate (integrate while read)
-
- Package includes order sorting filter
- · Total FPA mass: 58 grams

Chandrayaan-1 in the Polar Satellite Launch Vehicle

Launch from SatishDhawan Space Centre

 \cdot < 70 mW power dissipation

Leading Supplier of IR Arrays To Ground-based Astronomy

- H2RG (2048×2048 pixels) is the leading IR FPA in ground-based IR astronomy
- 4096 [×]4096 pixel mosaic commissioned at European Southern Observatory in July 2007
	- 6th mosaic at major telescope, two more mosaics to be commissioned in 2009

Energy of a photon

 $h =$ Planck constant (6.63 \cdot 10⁻³⁴ Joule \cdot sec) v = frequency of light (cycles/sec) = λ /c 1 eV = $1.6 \cdot 10^{-19}$ J (J = joule)

 $E = hv$

- \bullet Energy of photons is typically stated in electron-volts (eV)
- •eV = energy that an electron gets when it "falls" through a 1 volt field.

JWST - James Webb Space Telescope

15 Teledyne 2K×2K infrared arrays on board (~63 million pixels)

- - **3 individual MWIR 2Kx2K**
- **Acquisition and guiding Images guide stars for telescope stabilization**
- **Canadian Space Agency**
- International collaboration
- 6.5 meter primary mirror and tennis court size sunshield
- 2013 launch on Ariane 5 rocket
- L2 orbit (1.5 million km from Earth)

JWST will find the "first light" objects after the Big Bang, and will study how galaxies, stars and planetary systems form

•

•

•

of SWIR 2Kx2KMWIR 2Kx2K

Wide field imager

•

•

- • **Studies morphology of objects and structure of the universe**
- **U. Arizona / Lockheed Martin**

•

•

•

The energy of a photon is VERY small

- \bullet The number of photons that will be detected by the James Webb Space Telescope in 5 years is about **4×1016 photons**
	- One image every 20 minutes (~150,000 images)
	- 15 arrays, each ~4 million pixels (63 million pixels)
	- Average pixel is at 4% full well (FW): ~4000 photons
		- 1% at 100% FW, 10% at 20% FW, 10% at 5% FW, 50% at 1% FW
- $\,$ Total photon energy is 2×10 16 eV
	- 2.5 micron IR photon is 0.5 eV
- \bullet Potential energy of a peanut M&M ® candy dropped from a height of 6 inches is $\sim 2 \times 10^{16}$ eV
	- $\,$ A peanut M&M® is ${\sim}2$ g
	- mgh = (2×10⁻³) (9.8 m/s²) (1.5×10⁻¹) / (1.6×10⁻¹⁹J per eV) ≈ 2×10¹⁶ eV
- \bullet **The amount of IR photon energy absorbed by the JWST over 5 years is the same energy as dropping a peanut M&M® candy 6 inches !**

1 eV = $1.6 \cdot 10^{-19}$ J (J = joule) $1 J = N \cdot m = kg \cdot m \cdot sec^{-2} \cdot m$ 1 kg raised 1 meter = $9.8 \text{ J} = 6.1 \cdot 10^{19} \text{ eV}$

The Technologies of High Performance Imagers The Technologies of High Performance Imagers

6 steps of optical / IR photon detection

6 Steps of CMOS-based X-ray → **IR Photon Detection**

Hybrid CMOS Infrared Imaging Sensors Hybrid CMOS Infrared Imaging Sensors

Large, high performance IR arrays Three Key Technologies

- 1. Growth and processing of the HgCdTe detector layer
- 2. Design and fabrication of the CMOS readout integrated circuit (ROIC)
- 3. Hybridization of the detector layer to the CMOS ROIC

Crystals are excellent detectors of light

•

Structure of An Atom

- Simple model of atom
	- – Protons (+) and neutrons in the nucleus with electrons orbiting

Silicon crystal lattice

- • Electrons are trapped in the crystal lattice
	- –by electric field of protons
- • Light energy can free an electron from the grip of the protons, allowing the electron to roam about the crystal
	- creates an "electron-hole" pair.
- \bullet The photocharge can be collected and amplified, so that light is detected
- $\mathop{\textstyle\mathrm{C}}$ The light energy required to free an electron depends on the material.

Photon Detection

For an electron to be excited from the valence band to the conduction band

$$
hv > E_g
$$

 $h =$ Planck constant (6.6310- 34 Joule•sec) v = frequency of light (cycles/sec) = λ /c E_s = energy gap of material (electron-volts)

Conduction Band	
E_g	Valence Band

$$
\lambda_c = 1.238 / E_g \text{ (eV)}
$$

*Lattice matched InGaAs ($In_{0.53}Ga_{0.47}As$)

Tunable Wavelength: Unique property of HgCdTe Tunable Wavelength: Unique property of HgCdTe

 $Hg_{1-x}Cd_xTe$ Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

G. L. Hansen, J. L. Schmidt, T. N. Casselman, J. Appl. Phys. 53(10), 1982, p. 7099

Absorption Depth

The depth of detector material that absorbs 63.2% of the radiation 1/e of the energy is absorbed

> 1 absorption depth(s) 63.2% of light absorbed 2 86.5%3 95.0% 4 98.2%

For high Quantum Efficiency, the thickness of detector material should be ≥ 3 absorption depths

Absorption Depth of Silicon

Absorption Depth of Photons in HgCdTe

Molecular Beam Epitaxy (MBE) Growth of HgCdTe

RIBER 3-in MBE Systems RIBER 3-in MBE Systems

3 inch diameter platen allows growth on one 6x6 cm substrate

RIBER 10-in MBE 49 System RIBER 10-in MBE 49 System

10 inch diameter platen allows simultaneous growth on four 6x6 cm substrates

More than 7500 HgCdTe wafers grown to date

HgCdTe Cutoff Wavelength

6 Steps of CMOS-based Optical / IR Photon Detection

HgCdTe hybrid FPA cross-section (substrate removed)

Cosmic Rays and Substrate Removal

• Cosmic ray events produce clouds of detected signal due to particle-induced flashes of infrared light in the CdZnTe substrate; removal of the substrate eliminates the effect

2.5um cutoff, substrate **on** 1.7um cutoff, substrate **on** 1.7um cutoff, substrate **off**

Substrate Removal Positive Attributes

- **1. Higher QE in the near infrared**
- **2. Visible light response**
- **3. Eliminates cosmic ray fluorescence**
- **4. Eliminates fringing in the substrate material**
- **5. Eliminates CTE mismatch with silicon ROIC**

30

Quantum Efficiency of substrate-removed HgCdTe

Example Anti-reflection coatings for HgCdTe

Dark Current Undesirable byproduct of light detecting materials

- The vibration of particles (includes crystal lattice phonons, electrons and holes) has energies described by the Maxwell-Boltzmann distribution. Above absolute zero, some vibration energies may be larger than the bandgap energy, and will cause electron transitions from valence to conduction band.
- • Need to cool detectors to limit the flow of electrons due to temperature, i.e. the **dark current** that exists in the absence of light.
- The smaller the bandgap, the colder the required temperature to limit dark current below other noise sources (e.g. readout noise)

Dark Current of MBE HgCdTe

HgCdTe cutoff wavelength (microns)

6 Steps of CMOS-based Optical / IR Photon Detection

MOSFET Principles

MOSFET = metal oxide semiconductor field effect transistor

Fluctuations in current flow produce "readout noise" Fluctuations in reset level on gate produces "reset noise"

IR multiplexer pixel architecture

IR multiplexer pixel architecture

Reduction of noise from multiple samples

CDS = correlated double sample

General Architecture of CMOS-Based Image Sensors

Pixel Amplifier Options

Special Scanning Techniques Supported by CMOS

- \bullet **Different scanning methods are available to reduce the number of pixels being read:**
	- **Allows for higher frame rate or lower pixel rate (reduction in noise)**
	- **Can reduce power consumption due to reduced data**

High Performance Hybrid CMOS Visible-Infrared Arrays

High Quality MBE HgCdTe + High Performance CMOS Design + Large Area Hybridization

H2RG Production - Standard SCA Build Cycle

HAWAII-2RG 2048×**2048 pixels**

HAWAII-2RG (H2RG)

- •2048×2048 pixels, 18 micron pitch
- •1, 2, 4, 32 ports
- •"R" = reference pixels (4 rows/cols at edge)
- •"G" = guide window
- •Low power: <1 mW (4 port, 100 kHz rate)
- •Detector material: HgCdTe or Si
- •Interfaces directly to the SIDECAR ASIC
- • **Qualified to NASA TRL-6**
	- Vibration, radiation, thermal cycling
	- •Radiation hard to ~100 krad

The SIDECAR ASIC – Focal Plane Electronics on a Chip

SIDECAR: System for Image Digitization, Enhancement, Control And Retrieval

The SIDECAR ASIC - Complete FPA Electronics on a Chip

SIDECAR: System for Image Digitization, Enhancement, Control And Retrieval

ASIC Floorplan

SIDECAR Feature List

- \bullet **36 analog input channels, each channel provides:**
	- **500 kHz A/D conversion with 16 bit resolution**
	- **10 MHz A/D conversion with 12 bit resolution**
	- **gain = 0 dB …. 27 dB in steps of 3 dB**
	- **optional low-pass filter with programmable cutoff**
	- **optional internal current source (as source follower load)**
- **20 analog output channels, each channel provides:**
	- **programmable output voltage and driver strength**
	- **programmable current source or current sink**
	- **internal reference generation (bandgap or vdd)**
- **32 digital I/O channels to generate clock patterns, each channel provides:**
	- **input / output / highohmic**
	- **selectable output driver strength and polarity**
	- **pattern generator (16 bit pattern) independent of microcontroller**
	- **programmable delay (1ns - 250µs)**
- **16 bit low-power microprocessor core (single event upset proof)**
	- **responsible for timing generation and data processing**
	- **16 kwords program memory (32 kByte) and 8 kwords data memory (16 kByte)**
	- **36 kwords ADC data memory, 24 bit per word (108 kByte)**
	- **additional array processor for adding, shifting and multiplying on all 36 data channels in parallel (e.g. on-chip CDS, leaky memory or other data processing tasks)**

SIDECAR ASIC – Focal Plane Electronics on a Chip

12-bit ADC Results

Measured at 7.5 MHz Sample Rate

• **Temporal Noise at 300 K < 0.4 LSB**

16-bit ADC Results

Measured at 125 kHz Sample Rate

Spaceflight packaging: JWST Fine Guidance Sensor

FPA - Backside - Cover Removed

Light Facing Side - Scene

- Package for H2RG 2048x2048 pixel array
- TRL-6 spaceflight qualified
- Interfaces directly to the SIDECAR ASIC
- Robust, versatile package

PINHOLE EYES | SILICONE OPT

• **Thermally isolated FPA can be stabilized to 1 mK when cold finger fluctuates several deg K**

SIDECAR ASIC & large mosaic focal plane arrays

A Teledyne Technologies Company

55

High Speed, Low Noise, Event Driven Readout

Large IR Astronomy Focal Plane Development The Next Step: 4096×4096 pixels

- 4096×4096 pixels, 15 µm pitch with embedded SIDECAR ASIC
- Design readout circuit for high yield (4 ROICs per 8-inch wafer)
	- New design process
- Minimize detector cost by growing HgCdTe on silicon substrate
- 4-side buttable for large mosaics
- Option: SIDECAR ASIC integrated into SCA package

HyViSITM – Hybrid Visible Silicon Imager

Focal plane array performance independently verified by:

- Rochester Institute of Technology
- European Southern Observatory
- US Naval Observatory & Goddard Space Flight Center

Readout noise, at 100 kHz pixel rate

• 7 e- single CDS, with reduction by multiple sampling Pixel operability > 99.99%

HyViSI Array Formats

Mars ReconnaissanceOrbiter (MRO)

TCM 6604A640 ×480 pixels 27 µm pitch **CTIA**

TEC Package by Judson

HyViSITM – Soft X-ray Imager

Energy, eV

Teledyne – Your Imaging Partner for Astronomy & Civil Space

CMOS Design Expertise

- Pixel amplifiers lowest noise to highest flux
- High level of pixel functionality (LADAR, event driven)
- Large 2-D arrays, pushbroom, redundant pixel design
- Hybrids made with HgCdTe, Si, or InGaAs
- Monolithic CMOS
- Analog-to-digital converters
- Imaging system on a chip
- Specialized ASICs
- Radiation hard
- Very low power

