The measurement of the SiPM photon detection efficiency at ITC-irst

Nicoleta Dinu

INFN – Trento, Italy

Fermi National Accelerator Laboratory, October 2006

Outline

- <u>Photon Detection Efficiency (PDE) of the SiPM</u>
- Experimental methods used for the PDE measurement
- PDE of the first SiPM prototypes developed at ITC-irst
- Summary and outlook

Photon detection efficiency of the SiPM

> Traditional PDE:

> PDE of the SiPM:

$$\eta = \frac{nr.of \ output \ pulses \ recorded}{nr.of \ photons \ emited \ by \ light \ source}$$

$$\eta_{SiPM} = QE \times P_{triggering} \times \varepsilon_{geom}$$

1. QE – the quantum efficiency

• probability that a photon generate an e/h pair in the active region of the device (e.g. n⁺/p junction of a pixel) - wavelength dependent

b) internal quantum efficiency

Photon detection efficiency of the SiPM (cont)

2. $P_{\text{triggering}}$ – the triggering probability ($P_t = P_e + P_h - P_e^* P_h$)

- probability that a carrier (e or h) traversing the high field region triggers an avalanche
- P_e & P_h are linked to the impact ionization rates of the electrons and holes
 - electrons have higher ionization rates than holes
 - both electrons and holes ionization rates increase with the electric field (e.g. overvoltage)

3. ε_{geom} – the geometrical efficiency (active area / total area)

(design not in scale)

SiPM

- Total area includes dead regions given by:
 - quenching resistors
 - trenches
 - metal layers

> <u>Active area:</u>

 ~ 15- 30% of total area depending of the layout design

Nicoleta Dinu

Fermi National Accelerator Laboratory, October 2006

The experimental set-up

The methods for the PDE measurement

Set-up calibration

$$N_{inc.ph./s/mm^{2}} = \Phi(W/mm^{2}) \cdot \frac{\lambda}{hc}$$
$$\Phi(W/mm^{2}) = \frac{1}{A_{phot}(mm^{2})} \cdot \frac{I_{phot}(A)}{R_{phot}(A/W)}$$

Photodiode sensibility:

• ~ 4 x 10^7 photons/s/mm²

➢ Calibration method:

- light beam without any filter
- each filter separately
- each filter factor is calculated at all wavelengths
- if 2 or 3 filters are inserted simultaneously, the optical power density is calculated based on each filter factor determined previously

PDE @ 550nm – DC & pulses counting methods (1)

$$N_{rec. ph./s/mm^2} = \frac{I_{light} - I_{dark}}{G_{SiPM} \cdot q}$$

8

PDE @ 550nm – DC & pulses counting methods (2)

Very good agreement in between the DC and counting pulses methods
PDE increases linearly with the overvoltage at least up to 5V overvoltage

Photon detection efficiency – DC method

- Maximum PDE in the range
 - <u>500 ÷ 600 nm</u>
 - ~ 16% @ 4V overvoltage for a SiPM of $\varepsilon_{geom} \sim 22\%$
- \succ For low λ
 - the PDE is reduced by the P_{triggering} (only holes trigger the avalanche)
- \succ For high λ
 - the PDE is reduced by the QE (QE was optimized for low λ)

10

Quantum efficiency

➢ <u>Diode:</u>

- Test structure with the same (n⁺/p junction + ARC) as each SiPM pixel
- Works as a photodiode at low reversed bias (0V, 1V or 2V)
- Allows the measurement of the QE (transmission through ARC & internal quantum efficiency)
- The impact ionization effect already visible at 3-4V

 $\ge \underline{\text{QE} > 95\% \text{ in the blue region}} \\ \text{(optimized for } \lambda \sim 420 \text{nm})$

Light absorption

Attenuation of the light intensity in silicon (Beer-Lambert law)

At low wavelengths only the holes cross the high field region & trigger the avalanche \Rightarrow triggering probability @ low λ (e.g. 385, 390, 395nm) = hole triggering probability

> At high wavelengths only the electrons cross the high field region & trigger the avalanche \Rightarrow triggering probability @ high λ (e.g. 700nm) = electron triggering probability

Electron & hole triggering probability

- P_e & P_h increase linearly with the overvoltage up to 4V
- The slight difference of 0V point could arises from the unavoidable statistical variation of the V_{breakdown} across the structure

- ➢ Ref. data: W. Oldham & all,
- "Triggering phenomena in avalanche diodes", IEEE Trans. on Electron Devices Vol. ED-19, No.9, Sept. 1972

0.0

2

EXCESS

BIAS

(VOLTS)

Summary

> Photon detection efficiency of the SiPM devices developed at ITC-irst

> Two experimental methods:

- DC & pulses counting
- very good agreement in between the two methods (λ =550nm)

Photon detection efficiency:

- Depends of three factors:
 - geometrical efficiency: ~15-30% (e.g. function of the layout design)
 - quantum efficiency: > 95% in the blue region (optimized for 420nm)
 - triggering probability: $P_e > P_h$
- Maximum in the range 500-600 nm :
 - ~ 16% @ 4V overvoltage for a device of $\varepsilon_{geom} = 22\%$
 - for low λ it is reduced by the P_{triggering} (only holes trigger the avalanche)
 - for high λ it is reduced by the QE (optimized for blue region)
- Increases linearly with the overvoltage (at least up to 4V overvoltage)