The measurement of the SiPM photon detection efficiency at ITC-irst

Nicoleta Dinu

INFN – Trento, Italy

Fermi National Accelerator Laboratory, October 2006

Outline

- \bullet Photon Detection Efficiency (PDE) of the SiPM
- \bullet Experimental methods used for the PDE measurement
- \bullet PDE of the first SiPM prototypes developed at ITC-irst
- \bullet Summary and outlook

Photon detection efficiency of the SiPM

 \triangleright **Traditional PDE:** $\eta = \frac{nr}{r}$

¾ **PDE of the SiPM:**

$$
\eta = \frac{nr. of \ output \ pulses \ recorded}{nr. of \ photons \ emitted \ by \ light \ source}
$$

$$
\eta_{\text{SiPM}} = QE \times P_{\text{triggering}} \times \varepsilon_{\text{geom}}
$$

1. QE – the quantum efficiency

• probability that a photon generate an e/h pair in the active region of the device (e.g. n^{+}/p) junction of a pixel) - wavelength dependent

Photon detection efficiency of the SiPM (cont)

2. $P_{\text{triggering}} -$ **the triggering probability** $(P_t = P_e + P_h - P_e * P_h)$

- probability that a carrier (e or h) traversing the high field region triggers an avalanche
- P_e & P_h are linked to the impact ionization rates of the electrons and holes
	- electrons have higher ionization rates than holes
	- both electrons and holes ionization rates increase with the electric field (e.g. overvoltage)

3. ^ε**geom – the geometrical efficiency (active area / total area)**

(design not in scale)

SiPM

- > Total area includes dead regions given by:
	- quenching resistors
	- trenches
	- metal layers

\triangleright Active area:

• \sim 15-30% of total area depending of the layout design

Nicoleta Dinu

Fermi National Accelerator Laboratory, October 2006 ⁴

The experimental set-up

The methods for the PDE measurement

Set-up calibration

$$
N_{inc.ph./s/mm^2} = \Phi(W/mm^2) \cdot \frac{\lambda}{hc}
$$

$$
\Phi(W/mm^2) = \frac{1}{A_{phot} (mm^2)} \cdot \frac{I_{phot}(A)}{R_{phot}(A/W)}
$$

¾ Photodiode sensibility:

• ~ 4 x 10^7 photons/s/mm²

\triangleright Calibration method:

- light beam without any filter
- each filter separately
- each filter factor is calculated at all wavelengths
- if 2 or 3 filters are inserted simultaneously, the optical power density is calculated based on each filter factor determined previously

PDE @ 550nm – DC & pulses counting methods (1)

PDE @ 550nm – DC & pulses counting methods (2)

 \triangleright Very good agreement in between the DC and counting pulses methods ¾ PDE increases linearly with the overvoltage at least up to 5V overvoltage

Photon detection efficiency – DC method

 \triangleright <u>Maximum PDE in the range</u>

- 500 ÷ 600 nm
	- \sim 16% @ 4V overvoltage for a SiPM of $\varepsilon_{\text{geom}} \sim 22\%$

 \triangleright For low λ

- the PDE is reduced by the $\mathrm{P_{triggering}}$ (only holes trigger the avalanche)
- \triangleright For high λ
	- the PDE is reduced by the QE (QE was optimized for low λ)

Quantum efficiency

¾ Diode:

- Test structure with the same (n^{2}/p) junction + ARC) as each SiPM pixel
- Works as a photodiode at low reversed bias (0V, 1V or 2V)
- Allows the measurement of the QE (transmission through ARC & internal quantum efficiency)
- ¾The impact ionization effect already visible at 3-4V

 \geq QE $>$ 95% in the blue region (optimized for $\lambda \sim 420$ nm)

Light absorption

Attenuation of the light intensity in silicon (Beer-Lambert law) Simulated doping profile and electric field of the SiPM

 \triangleright At low wavelengths only the holes cross the high field region & trigger the avalanche \Rightarrow triggering probability @ low λ (e.g. 385, 390, 395nm) = hole triggering probability

 \triangleright At high wavelengths only the electrons cross the high field region & trigger the avalanche \Rightarrow triggering probability @ high λ (e.g. 700nm) = electron triggering probability

Electron & hole triggering probability

FXCESS

BIAS

(VOLTS)

- \triangleright P_e & P_h increase linearly with the overvoltage up to 4V
- \triangleright The slight difference of 0V point could arises from the unavoidable statistical variation of the $V_{\text{breakdown}}$ across the structure

¾ *Ref. data: W. Oldham & all,*

 \bullet *"Triggering phenomena in avalanche diodes", IEEE Trans. on Electron Devices Vol. ED-19, No.9, Sept. 1972*

Summary

¾ Photon detection efficiency of the SiPM devices developed at ITC-irst

\triangleright Two experimental methods:

- DC & pulses counting
- very good agreement in between the two methods (λ =550nm)

¾ Photon detection efficiency:

- Depends of three factors:
	- geometrical efficiency: ~15-30% (e.g. function of the layout design)
	- quantum efficiency: > 95% in the blue region (optimized for 420nm)
	- triggering probability: $P_e > P_h$
- Maximum in the range 500-600 nm :
	- ~ 16% @ 4V overvoltage for a device of $\varepsilon_{\text{geom}}$ = 22%
	- for low λ it is reduced by the $\mathrm{P_{triggering}}$ (only holes trigger the avalanche)
	- for high λ it is reduced by the QE (optimized for blue region)
- \bullet Increases linearly with the overvoltage (at least up to 4V overvoltage)