

Silicon-Germanium as an Enabling Technology for Extreme Environment Electronics

John D. Cressler

Ken Byers Professor School of Electrical and Computer Engineering Georgia Tech, Atlanta, GA 30332-0250 USA cressler@ece.gatech.edu

Fermilab, Batavia, IL, June 9, 2009

This work was supported by NASA, DTRA, IBM, DARPA, JPL, TI, and NSC John D. Cressler. 6/09

A Level-Set on Miracles

1 Transistor – 1947

1 Transistor - 2009 50nm **200 atoms**

A Level-Set on Miracles

A few <u>atomic layers</u> of <u>SiGe</u> Goes Here ... Very Carefully!

John D. Cressler, 6/09

A Level-Set on Miracles

1 IC - 1958

4 Transistors

1,000,000,000 Transistors

1 IC - 2009

The Internet

The Internet

John D. Cressler, 6/09

- Some Reminders on SiGe
- Scaling Trends and Performance Limits
- Emerging Application Opportunities for SiGe
- Extreme Environment Electronics
- Using SiGe in a Radiation Context
- Cryogenic Operation of SiGe HBTs
- Cryogenic Operation of CMOS
- Summary

Strain Engineering in Si

Strained Si CMOS

SiGe MODFETs

SiGe HBTs

Georgia Institute of Technology

All Are: Strain-Enhanced Si-based Transistors Close Cousins!

SiGe Strained Layer Epi

John D. Cressler, 6/09

Georgia Institute of Technology

• Seamless Integration of SiGe into Si

No Evidence of Deposition!

Georgia Institute of Technology

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection $(\beta \uparrow)$
- field from graded base bandgap decreases base transit time $(f_T \uparrow)$
- base bandgap grading produces higher Early voltage (V_A⁺)
- decouples base profile from performance metrics

$$\frac{\beta_{SiGe}}{\beta_{Si}}\Big|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma}\,\widetilde{\eta}\,\Delta E_{g,Ge}(grade)/kT}{1 - e^{-\Delta E_{g,Ge}(grade)/kT}} \right\}$$

$$\frac{\beta_{SiGe}}{\beta_{Si}}\Big|_{V_{BE}} \equiv \frac{2}{\widetilde{\eta}}\frac{kT}{\Delta E_{g,Ge}(grade)}\left\{ 1 - \frac{kT}{\Delta E_{g,Ge}(grade)}\left[1 - e^{-\Delta E_{g,Ge}(grade)/kT}\right] \right\}$$

$$\frac{V_{A,SiGe}}{V_{A,Si}}\Big|_{V_{BE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/kT}\left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT}\right]$$

John D. Cressler, 6/09

The SiGe HBT

Conventional Shallow and Deep Trench Isolation + CMOS BEOL

Dopant Concentration (cm⁻³)

Ε

В

Si collector

- Unconditionally Stable, SiGe Epitaxial Base Profile
- 100% Si Manufacturing Compatibility
- SiGe HBT + Si CMOS on wafer

SiGe = III-V Speed + Si Manufacturing Win-Win!

10²¹ As **0**²⁰ 7.5 polv Germanium (%) As 10¹⁹ $Ge \rightarrow$ 5.0 Ρ 10¹⁸ В 2.5 10¹⁷ 10¹⁶ 200 400 600 800 Depth (nm) emitter pol Si emitter 50 nm SiGe SiGe base

С

John D. Cressler, 6/09

10.0

SiGe Success Story

- Rapid Generational Evolution (full SiGe BiCMOS)
- Significant In-roads in Communications / Analog ICs

John D. Cressler, 6/09

Important Point: 200 GHz @ 130 nm! (2G better than CMOS)

Georgia Institute of Technology SiGe Performance Limits

- f_T + f_{max} > 1 THz in SiGe Is Clearly Possible (<u>at very modest lith</u>) • Both f_T and f_{max} above 500 GHz at Cryo-T (T = scaling knob)
- Goal: Useful BV @ 500 GHz (BV_{CEO} > 1.5 V + BV_{CBO} > 5.5 V)

Some Application Bands for SiGe IC's

Defense

Some New Opportunities

- SiGe for Radar Systems
 - single chip T/R for phased arrays, space-based radar (2-10 GHz & up)

Georgia Instit

- automotive radar (24, 77 GHz)
- SiGe for Millimeter-wave Communications
 - Gb/s short range wireless links (60, 94 GHz)
 - cognitive radio / frequency-agile WLAN / 100 Gb Ethernet
- SiGe for THz Sensing, Imaging, and Communications
 - imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)
- SiGe for Analog Applications
 - the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)
- SiGe for Extreme Environment Electronics
 - extreme temperatures (4K to 300C) + radiation (e.g., space systems)
- SiGe for Electronic Warfare
 - extreme wideband transceivers (20 MHz 20 GHz)
 - dynamic range enhanced receivers

Some New Opportunities

- SiGe for Radar Systems
 - single chip T/R for phased arrays, space-based radar (2-10 GHz & up)

Georgia Instit of Technolog

- automotive radar (24, 77 GHz)
- SiGe for Millimeter-wave Communications
 - Gb/s short range wireless links (60, 94 GHz)
 - cognitive radio / frequency-agile WLAN / 100 Gb Ethernet
- SiGe for THz Sensing, Imaging, and Communications
 - imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)
- SiGe for Analog Applications
 - the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)
- SiGe for Extreme Environment Electronics
 - extreme temperatures (4K to 300C) + radiation (e.g., space systems)
- SiGe for Electronic Warfare
 - extreme wideband transceivers (20 MHz 20 GHz)
 - dynamic range enhanced receivers

- Some Reminders on SiGe
- Scaling Trends and Performance Limits
- Emerging Application Opportunities for SiGe
- Extreme Environment Electronics
- Using SiGe in a Radiation Context
- Cryogenic Operation of SiGe HBTs
- Cryogenic Operation of CMOS
- Summary

John D. Cressler, 6/09

Exploration

- Physics Experiments

Aerospace

Extreme Environment Electronics:

low-T, high-T, wide-T, radiation, shock, chemical ...

- Space Exploration (Moon, Mars ...)
- Automotive (on-engine electronics ...)

Drilling

Detectors for Particle Physics

Extreme Environments

Cars

Space Exploration

Georgia Institute of Technology

Moon

Mars

Outer Planets

Planet	$T_{surface}$ (K)	T_{sphere} (K)
Mercury	100-700	445
Venus	740	325
Earth	288-293	277
Mars	140-300	225
Jupiter	165	123
Saturn	134	90
Uranus	76	63
Neptune	72	50
Pluto	40	44

Space Exploration

Georgia Institute of Technology

Moon

Mars

Outer Planets

Planet	$T_{surface}$ (K)	T_{sphere} (K)
Mercury	100-700	445
Venus	740	325
Earth	288-293	277
Mars	140-300	225
Jupiter	165	123
Saturn	134	90
Uranus	76	63
Neptune	72	50
Pluto	40	44

The Moon: A Classic Extreme Environment!

Temperature Ranges:

- +120C to -180C (300C swings!)
- 28 day cycles

Radiation:

- 100 krad over 10 years
- single event upset (SEU)
- solar events

Many Different Circuit Needs:

- digital building blocks
- analog building blocks
- data conversion (ADC/DAC)
- RF communications
- power conditioning
- actuation and control
- switches
- sensors / sensor interfaces

Highly Mixed-Signal Flavor!

Rovers / Robotics

Requires Centralized "Warm Box"

Georgia Institute of Technology

Electronics Unit, circa 2009

REU in connector housing!

The ETDP Remote

Analog front Digital end die control die SiGe **Conceptual integrated REU** system-on-chip SiGe BiCMOS die **Specifications** Goals $5^{\circ} \times 3^{\circ} \times 6.75^{\circ} = 101 \text{ in}^3$ • $1.5^{\circ} \times 1.5^{\circ} \times 0.5^{\circ} = 1.1 \text{ in}^{3}$ (100x) < 1 kg (10x)</p> 11 kg 17 Watts < 2 Watts (10x) -55°C to +125°C -180°C to +125°C, rad tolerant **Supports Many Sensor Types:**

Remote Electronics Unit

The X-33

Remote Health

Unit, circa 1998

Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

Use This REU as a Remote Vehicle Health Monitoring Node

SiGe REU Architecture

Georgia Institute of Technology

Major Advantages:

- Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
- Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
- Commonality (easily adapted from one system to the next)

MISSE-6 ISS Mission

S123E009551

Recent NASA photograph of MISSE-6 after deployment, taken by the Space Shuttle Crew SiGe For Space Systems

- The Holy Grail of the Space Community
 - IC technology space-qualified without additional hardening (major cost adder)
 - high integration levels to support SoC / SiP (low cost)

proton + electron belts

Major Question: Can SiGe Play a Major Role in Space?

Georgia Institute of Technology

- Total Ionizing Dose (TID) ionizing radiation
 - TID is measured in "rads" (1 rad = 100 ergs per gram of energy absorbed)
 - 100-1000 krad(Si) over 10 years for typical orbit (300 rad(Si) is lethal to humans!)
- Single Event Upset (SEU) high energy heavy ions
 - measure data upset cross-section (σ) vs. Linear Energy Transfer (LET)
 - σ = # errors / particle fluence (ions/cm²): LET = charge deposition (pC/µm)
 - Goals: low cross-section + high LET threshold

 V_{T} shifts, I_{B} leakage, circuit bias

charged particles + photons

Displacement Damage

- neutral + charged particles
- vacancies + interstitials
- dopant de-activation

Radiation Effects

Ionization Damage

Single-Event Effects

- charged particles
- collection of excess carriers
- permanent: SEL, SEB, SEGR
- transient: SET, SEU, MBU

shallow trend

- 0.4

-06

-0.2

Lateral Distance (µm)

oundary

0.0

n[®] collector

0.2

Radiation Experiments

(1995-2009)

• SiGe Technology Generations (Devices + Circuits!):

- 1st Generation (50 GHz HBT + 0.35 um CMOS)
- 2rd Generation (100 GHz HBT + 180 nm CMOS)
- 3rd Generation (200 GHz HBT + 130 nm CMOS)
- 4th Generation (pre-production 300 GHz HBT)
- *many* different companies (*npn* + *pnp*; bulk + SOI)

• TID Radiation Sources:

- gamma ray (>100 Mrad + LDR)
- proton (1-24,000 MeV + 77K)
- x-ray
- neutron
- prompt dose (krad / nsec)

• Single Event Effects:

- broad beam heavy ion
- ion microbeam
- laser (top-side + TPA)

Total-Dose Response

- Multi-Mrad Total Dose Hardness (with no intentional hardening!)
 - ionization + displacement damage very minimal over T; no ELDRS!
- Radiation Hardness Due to Epitaxial Base Structure (not Ge)
 - thin emitter-base spacer + heavily doped extrinsic base + very thin base

John D. Cressler, 6/09

63 MeV protons @ 5x10¹³ p/cm² = 6.7 Mrad TID!

Single Event Effects

Observed SEU Sensitivity in SiGe HBT Shift Registers

- low LET threshold + high saturated cross-section (bad news!)

SEU: TCAD to Circuits

Georgia Institute of Technology

"TCAD Ion Strike"

Standard Master Slave Latch John D. Cressler, 6/09 SEU "Soft"

New RHBD SiGe Latch

SiGe RHBD Success!

- Reduce Tx-Tx Feedback Coupling Internal to the Latch
- Circuit Architecture Changes + Transistor Layout Changes

- Some Reminders on SiGe
- Scaling Trends and Performance Limits
- Emerging Application Opportunities for SiGe
- Extreme Environment Electronics
- Using SiGe in a Radiation Context
- Cryogenic Operation of SiGe HBTs
- Cryogenic Operation of CMOS
- Summary

SiGe HBTs for Cryo-T

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection (β^{\dagger})
- field from graded base bandgap decreases base transit time $(f_{T}\uparrow)$
- base bandgap grading produces higher Early voltage (V_A¹)

$$\frac{\beta_{SiGe}}{\beta_{Si}}\Big|_{V_{BE}} \equiv \Xi = \left\{ \frac{\tilde{\gamma}\,\tilde{\eta}\,\Delta E_{g,Ge}(grade)/\underline{kT}\,e^{\Delta E_{g,Ge}(0)/\underline{kT}}}{1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\tilde{\eta}}\,\frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left[1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}} \right] \right\}$$

$$\frac{V_{A,SiGe}}{V_{A,Si}}\Big|_{V_{BE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/\underline{kT}} \left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}}}{\Delta E_{g,Ge}(grade)/\underline{kT}} \right]$$
All kT Factors Are Arranged to Help at Cryo-T!

SiGe HBTs at Cryo-T

First Generation SiGe HBT

Cryo-T Radiation

First 77K Proton Irradiation Experiment in SiGe Technology

- 63 MeV protons at UC Davis
- Radiation Damage Smaller at 77K Than at 300K (great news!)

- 200 GHz SiGe Technology Works VERY Well at 77K
- At 85K, $f_T > 250 \text{ GHz} + NF_{min} = 0.30 \text{ dB} (G_{ass} = 17 \text{ dB})$ at 14 GHz!

Will Support Cryo-T mm-wave Circuits!

X-band LNA Operation at 15 K (Not Yet Optimized!)

- **T_{eff} < 20 K** (noise T)
- NF < 0.3 dB
- Gain > 20 dB
- *dc* power < 2 mW

This SiGe LNA is also Rad-Hard!

John D. Cressler, 6/09

SiGe at High-T? (200-300C) Georgia Institute of Technology

- Degradation, But Plenty of Performance Left!
- Device Reliability Looks Fine
- Just in: Robust Operation @ 300C for Selected Circuits

Outline

- Some Reminders on SiGe
- Scaling Trends and Performance Limits
- Emerging Application Opportunities for SiGe
- Extreme Environment Electronics
- Using SiGe in a Radiation Context
- Cryogenic Operation of SiGe HBTs
- Cryogenic Operation of CMOS
- Summary

Sub-Threshold Behavior

- First Generation SiGe BiCMOS (0.35 um L_{eff})
- V_T and Subthreshold Swing Increase with Cooling
- Output Drive Improves with Cooling

John D. Cressler, 6/09

Georgia Institute of Technology **Output Characteristics**

- Improved Current Drive With Cooling
- Modest Degradation in Output Conductance

Georgia Institute of Technology

- V_T Increases with Cooling / S Decreases with Cooling
- g_m Increases with Cooling / μ Increases with Cooling

Device Reliability

- I_{SUB} is a Good Monitoring Parameter for HCE
- After Stress, I_d and g_m Decrease While V_T and S Increase

Lifetime Extraction

Georgia Institute of Technology

- Both Post-Stress $\Delta {\bm g}_m$ and $\Delta {\bm I}_{\text{DS}}$ Are Linear With Stress Time
- Extracted Lifetime are the Same for Both ∆g_m and ∆I_{DS}
 Max I_{SUB} Remains the Worst Stress Condition for Cryo-T

- Lifetime Decreases with Cooling at Fixed L
- Lifetime Decreases With L at Fixed T (Mitigation Path)

- Calculated E_a Values Agree Well With Literature Data
- Same Degradation Mechanism Across all the T and all L

90 nm CMOS at Cryo-T

- 90 nm Bulk CMOS (IBM)
- Improvement in Peak g_m With Cooling
- Less Improvement for Minimum L_a
- Device-to-Device Mismatch Worsens With Cooling

BSIM4 Modeling (77K)

- Design Kit Models Are Only Rated From -55C to 125C
- Models AT T are MUCH Easier Than Models OVER T
- Significant Effort Needed To Develop Calibrated Models

65nm CMOS on SOI

- 65 nm CMOS on SOI (IBM) (Uses Strain Engineering)
- Improvement in Peak g_m Down to 20K
- NDR Effect Observed at Cryo-T Due to Floating-body Effects

65 nm Strained Si CMOS

Summary

The Global Landscape:

The Emerging Communications Infrastructure

- frequency bands pushing upward over time (stresses device design)
- integration of RF + digital + analog + passives increasingly important
- SiGe HBT BiCMOS is well-positioned to address this market

SiGe HBT BiCMOS Technology:

- The SiGe HBT is the First Practical Bandgap Engineered Device in Si
- Compared to Si BJTs, SiGe HBTs Offer Better:
 - β + V_A + β V_A + f_T + f_{max} + 1/f + NF_{min} + cryo-T performance...
- Compared to CMOS, SiGe HBTs Offer Better:
 - $f_T/f_{max}/NF$ at fixed scaling node + matching + $g_m/area$ + 1/f noise, + ...
- Still Room for Lots of Performance Improvement ($f_T / f_{max} = 500 \text{ GHz}$)
- Still Lots to Learn About the Physics of These Interesting Devices
- MANY Interesting Application Possibilities and New Opportunities!

SiGe Technology is Here to Stay!

