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A Level-Set on Miracles

1 Transistor – 1947               1 Transistor - 2009

200 atoms
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A few atomic layers
of SiGe Goes Here
… Very Carefully!

A Level-Set on Miracles
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A Level-Set on Miracles

1 IC – 1958                            1 IC - 2009

4 Transistors

1,000,000,000 
Transistors
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The Internet
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Outline

• Some Reminders on SiGe
• Scaling Trends and Performance Limits
• Emerging Application Opportunities for SiGe 
• Extreme Environment Electronics
• Using SiGe in a Radiation Context 
• Cryogenic Operation of SiGe HBTs
• Cryogenic Operation of CMOS
• Summary
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Strain Engineering in Si

Strained Si CMOS SiGe HBTs

SiGe MODFETs

All Are:
Strain-Enhanced

Si-based Transistors

Close Cousins!
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Practice Bandgap Engineering    
… but do it in Silicon! 

SiGe Strained Layer Epi

ΔEV

The Bright Idea!
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• Seamless Integration of SiGe into Si

When You Do It Right …

No Evidence
of Deposition!50 nm
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The SiGe HBT

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:
• smaller base bandgap increases electron injection   (β )
• field from graded base bandgap decreases base transit time   (fT     ) 
• base bandgap grading produces higher Early voltage   (VA      )
• decouples base profile from performance metrics
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The SiGe HBT

E     B        C

SiGe50 nmSiGe = III-V Speed + Si Manufacturing
Win-Win!

• Conventional Shallow and Deep Trench Isolation + CMOS BEOL
• Unconditionally Stable, SiGe Epitaxial Base Profile
• 100% Si Manufacturing Compatibility
• SiGe HBT + Si CMOS on wafer
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SiGe Success Story

1G

2G

3G

4G

• Rapid Generational Evolution (full SiGe BiCMOS)
• Significant In-roads in Communications / Analog ICs

Important Point: 200 GHz @ 130 nm! (2G better than CMOS)

(130 nm)

(180 nm)

(500 nm)
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• fT + fmax > 1 THz  in SiGe Is Clearly Possible (at very modest lith)
• Both fT and fmax above 500 GHz at Cryo-T (T = scaling knob) 
• Goal: Useful BV @ 500 GHz  (BVCEO > 1.5 V + BVCBO > 5.5 V)

SiGe Performance Limits

8HP

200-500 GHz @ 130 nm Node!
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SiGe Apps
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SiGe Analog/MS ICs 
Are a Major Driver!
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• SiGe for Radar Systems
- single chip T/R for phased arrays, space-based radar  (2-10 GHz & up) 
- automotive radar (24, 77 GHz)

• SiGe for Millimeter-wave Communications 
- Gb/s short range wireless links (60, 94 GHz)
- cognitive radio / frequency-agile WLAN / 100 Gb Ethernet

• SiGe for THz Sensing, Imaging, and Communications 
- imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)

• SiGe for Analog Applications
- the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)

• SiGe for Extreme Environment Electronics
- extreme temperatures (4K to 300C) + radiation (e.g., space systems)

• SiGe for Electronic Warfare 
- extreme wideband transceivers (20 MHz – 20 GHz)
- dynamic range enhanced receivers

Some New Opportunities
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Extreme Environments

• Aerospace (aircraft, satellites ...)
• Space Exploration (Moon, Mars ...)
• Automotive (on-engine electronics …)
• Drilling (oil, geothermal ...)
• Physics Experiments

Exploration

Drilling

Cars

Aerospace

Extreme Environment Electronics:
low-T, high-T, wide-T, radiation, shock, chemical …

Detectors for 
Particle Physics
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Moon                    Mars                 Outer 
Planets

Space Exploration

All Represent Extreme Environments!
(Very Wide Temperature Swings + Radiation)
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Planets
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Temperature Ranges:
+120C to -180C (300C swings!)
28 day cycles

Radiation:
100 krad over 10 years
single event upset (SEU)
solar events

Many Different Circuit Needs:
digital building blocks
analog building blocks
data conversion (ADC/DAC)
RF communications
power conditioning
actuation and control
switches
sensors / sensor interfaces

Requires Centralized “Warm Box”

Rovers / Robotics

The Moon:
A Classic Extreme Environment!

Highly Mixed-Signal Flavor!
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Remote Electronics Unit

• 5” x 3” x 6.75” = 101 in3

• 11 kg
• 17 Watts 
• -55oC to +125oC

• 1.5” x 1.5” x 0.5” = 1.1 in3 (100x)
• < 1 kg (10x)
• < 2 Watts (10x)
• -180oC to +125oC, rad tolerant

Conceptual integrated REU 
system-on-chip SiGe BiCMOS die

The X-33 
Remote Health 
Unit, circa 1998

The ETDP Remote 
Electronics Unit, circa 2009

Specifications Goals

Analog front 
end die

Digital 
control die

Supports Many Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

REU in 
connector 
housing!

Use This REU as a Remote Vehicle Health Monitoring Node

SiGe
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Major Advantages:
• Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
• Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
• Commonality (easily adapted from one system to the next)

SiGe REU Architecture
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MISSE-6 ISS Mission

Recent NASA photograph of MISSE-6 after deployment, 
taken by the Space Shuttle Crew

SiGe Circuits !
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• The Holy Grail of the Space Community
- IC technology space-qualified without additional hardening (major cost adder)
- high integration levels to support SoC / SiP (low cost)

SiGe For Space Systems

proton  +  electron belts

Major Question: 
Can SiGe Play a 
Major Role in 
Space?

• Total Ionizing Dose (TID) – ionizing radiation
- TID is measured in “rads” (1 rad = 100 ergs per gram of energy absorbed)
- 100-1000 krad(Si) over 10 years for typical orbit (300 rad(Si) is lethal to humans!)

• Single Event Upset (SEU) – high energy heavy ions
- measure data upset cross-section (σ) vs. Linear Energy Transfer (LET)
- σ = # errors / particle fluence (ions/cm2): LET = charge deposition (pC/μm)
- Goals: low cross-section + high LET threshold
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Ionization Damage 
charged particles + photons
oxide charging + interface traps
VT shifts, IB leakage, circuit bias

Displacement Damage
neutral + charged particles
vacancies + interstitials
dopant de-activation

Single-Event Effects
charged particles
collection of excess carriers
permanent: SEL, SEB, SEGR
transient: SET, SEU, MBU

Radiation Effects
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• SiGe Technology Generations (Devices + Circuits!):
- 1st Generation (50 GHz HBT + 0.35 um CMOS)
- 2rd Generation (100 GHz HBT + 180 nm CMOS)
- 3rd Generation (200 GHz HBT + 130 nm CMOS)
- 4th Generation (pre-production 300 GHz HBT)

- many different companies (npn + pnp; bulk + SOI)

• TID Radiation Sources:
- gamma ray (>100 Mrad + LDR)
- proton (1-24,000 MeV + 77K) 
- x-ray
- neutron
- prompt dose (krad / nsec)

• Single Event Effects:
- broad beam heavy ion  
- ion microbeam
- laser (top-side + TPA)

Radiation Experiments 
(1995-2009)

p
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Total-Dose Response
• Multi-Mrad Total Dose Hardness (with no intentional hardening!)

- ionization + displacement damage very minimal over T; no ELDRS!
• Radiation Hardness Due to Epitaxial Base Structure (not Ge)

- thin emitter-base spacer + heavily doped extrinsic base + very thin base

63 MeV protons @ 5x1013 p/cm2 = 6.7 Mrad TID!

200 GHz 
SiGe HBT

3rd

2nd

1st

4th
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• Observed SEU Sensitivity in SiGe HBT Shift Registers
- low LET threshold + high saturated cross-section (bad news!)

P. Marshall et al., IEEE TNS, 47, p. 2669, 2000

Goal…

Single Event Effects

heavy ion
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OUT

DATA

CLOCK

“TCAD Ion Strike”

Standard Master Slave Latch UPSETS

SEU: TCAD to Circuits

New RHBD SiGe Latch

SEU “Soft”
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• Reduce Tx-Tx Feedback Coupling Internal to the Latch
• Circuit Architecture Changes + Transistor Layout Changes 

SiGe RHBD Success!

(no errors!)

No SEU to LET’s of 70!
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The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:
• smaller base bandgap increases electron injection   (β )
• field from graded base bandgap decreases base transit time   (fT     )
• base bandgap grading produces higher Early voltage   (VA      )

All kT Factors Are Arranged to Help at Cryo-T!

SiGe HBTs for Cryo-T
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SiGe HBTs at Cryo-T

27C

-230C

dc                                                              ac

SiGe Exhibits Very High Speed 
at Very Low Power!

First Generation SiGe HBT
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Cryo-T Radiation

First 77K Proton Irradiation Experiment in SiGe Technology
- 63 MeV protons at UC Davis

• Radiation Damage Smaller at 77K Than at 300K (great news!)
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Impact of Scaling

• 200 GHz SiGe Technology Works VERY Well at 77K

• At 85K, fT > 250 GHz + NFmin = 0.30 dB (Gass = 17 dB)  at 14 GHz!

Will Support Cryo-T mm-wave Circuits!

Gain and Frequency                                              Noise
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X-band LNA Operation at 15 K (Not Yet Optimized!)

• Teff < 20 K (noise T)
• NF < 0.3 dB
• Gain > 20 dB
• dc power < 2 mW

Cryogenic SiGe LNAs

Collaboration with S. Weinreb, Cal Tech

NF = 0.3 dB!

This SiGe LNA is also Rad-Hard!
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SiGe at High-T? (200-300C)

• Degradation, But Plenty of Performance Left!
• Device Reliability Looks Fine 
• Just in: Robust Operation @ 300C for Selected Circuits

Gain                                                            Frequency
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Sub-Threshold Behavior

• First Generation SiGe BiCMOS (0.35 um Leff)
• VT and Subthreshold Swing Increase with Cooling
• Output Drive Improves with Cooling

nFET pFET
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Output Characteristics

• Improved Current Drive With Cooling
• Modest Degradation in Output Conductance

nFET pFET
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T Dependence

• VT Increases with Cooling /  S Decreases with Cooling
• gm Increases with Cooling / µ Increases with Cooling 

How About Reliability?
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Device Reliability

• ISUB is a Good Monitoring Parameter for HCE
• After Stress, Id and gm Decrease While VT and S Increase

300 K
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Lifetime Extraction

• Both Post-Stress Δgm and ΔIDS Are Linear With Stress Time
• Extracted Lifetime are the Same for Both Δgm and ΔIDS
• Max ISUB Remains the Worst Stress Condition for Cryo-T

300K 82K
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L,T Dependence

• Lifetime Decreases with Cooling at Fixed L

• Lifetime Decreases With L at Fixed T (Mitigation Path)
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Damage Mechanisms

• Calculated Ea Values Agree Well With Literature Data
• Same Degradation Mechanism Across all the T and all L

Ea = 4 eV
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90 nm CMOS at Cryo-T

• 90 nm Bulk CMOS (IBM)
• Improvement in Peak gm With Cooling
• Less Improvement for Minimum Lg
• Device-to-Device Mismatch Worsens With Cooling
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BSIM4 Modeling (77K)

• Design Kit Models Are Only Rated From -55C to 125C 
• Models AT T are MUCH Easier Than Models OVER T
• Significant Effort Needed To Develop Calibrated Models

nFET at 77K pFET at 77K
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65nm CMOS on SOI

65 nm Strained Si CMOS

• 65 nm CMOS on SOI (IBM) (Uses Strain Engineering)
• Improvement in Peak gm Down to 20K
• NDR Effect Observed at Cryo-T Due to Floating-body Effects

W/L = 3/0.065
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Summary

The Global Landscape:
• The Emerging Communications Infrastructure

- frequency bands pushing upward over time (stresses device design)
- integration of RF + digital + analog + passives increasingly important
- SiGe HBT BiCMOS is well-positioned to address this market

SiGe Technology is Here to Stay!

SiGe HBT BiCMOS Technology:
• The SiGe HBT is the First Practical Bandgap Engineered Device in Si
• Compared to Si BJTs, SiGe HBTs Offer Better:

- β + VA + βVA + fT + fmax + 1/f + NFmin + cryo-T performance…
• Compared to CMOS, SiGe HBTs Offer Better:

- fT/fmax/NF at fixed scaling node + matching + gm/area + 1/f noise, + …
• Still Room for Lots of Performance Improvement (fT / fmax =  500 GHz)
• Still Lots to Learn About the Physics of These Interesting Devices
• MANY Interesting Application Possibilities and New Opportunities!
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My Gang at Georgia Tech


