Posts Tagged ‘comets’

Rocks and Stars with Amy: This Asteroid Inspected by #32

Monday, November 15th, 2010

By Amy Mainzer

Rocks and Stars with Amy

Over the course of the nine months we’ve been operating WISE, we’ve observed over 150,000 asteroids and comets of all different types. We had to pick all of these moving objects out of the hundreds of millions of sources observed all over the sky — so you can imagine that sifting through all those stars and galaxies to find the asteroids is not easy!

We use a lot of techniques to figure out how to distinguish an asteroid from a star or galaxy. Even though just about everything in the universe moves, asteroids are a whole lot closer to us than your average star (and certainly your average galaxy), so they appear to move from place to place in the WISE images over a timescale of minutes, unlike the much more distant stars. It’s almost like watching a pack of cyclists go by in the Tour de France. Also, WISE takes infrared images, which means that cooler objects like asteroids look different than the hotter stars. If you look at the picture below, you can see that the stars appear bright blue, whereas the sole asteroid in the frame appears red. That’s because the asteroid is about room temperature and is therefore much colder than the stars, which are thousands of degrees. Cooler objects will give off more of their light at longer, infrared wavelengths that our WISE telescope sees. We can use both of these unique properties of asteroids — their motion and their bright infrared signatures — to tease them out of the bazillions of stars and galaxies in the WISE images.

Image of the first near-Earth asteroid discovered by WISE
The first near-Earth asteroid discovered by WISE (red dot) stands out from the stars (blue dots). The asteroid is much cooler than the stars, so it emits more of its light at the longer, infrared wavelengths WISE uses. This makes it appear redder than the stars. Image credit: NASA/JPL-Caltech/UCLA |   › Full image and caption

 
Thanks to the efforts of some smart scientists and software engineers, we have a very slick program that automatically searches the images for anything that moves at the longer, infrared wavelengths. With WISE, we take about a dozen or so images of each part of the sky over a couple of days. The system works by throwing out everything that appears again and again in each exposure. What’s left are just the so-called transient sources, the things that don’t stay the same between snapshots. Most of these are cosmic rays — charged particles zooming through space that are either spat out by our sun or burped up from other high-energy processes like supernovae or stars falling into black holes. These cosmic rays hit our detectors, leaving a blip that appears for just a single exposure. Also, really bright objects can leave an after-image on the detectors that can persist for many minutes, just like when you stare at a light bulb and then close your eyes. We have to weed the real asteroid detections out from the cosmic rays and after-images.

The data pipeline is smart enough to catch most of these artifacts and figure out what the real moving objects are. However, if it’s a new asteroid that no one has ever seen before, we have to have a human inspect the set of images and make sure that it’s not just a collection of artifacts that happened to show up at the right place and right time. About 20 percent of the asteroids that we observe appear to be new, and we examine those using a program that we call our quality assurance (QA) system, which lets us rapidly sift through hundreds of candidate asteroids to make sure they’re real. The QA system pops up a set of images of the candidate asteroid, along with a bunch of “before” and “after” images of the same part of the sky. This lets us eliminate any stars that might have been confused for the asteroids. Finally, since the WISE camera takes a picture every 11 seconds, we take a look at the exposures taken immediately before the ones with the candidate asteroid — if the source is really just an after-image persisting after we’ve looked at something bright, it will be there in the previous frame. We’ve had many students — three college students and two very talented high school students — work on asteroid QA. They’ve become real pros at inspecting asteroid candidates!

This is a screenshot from the WISE moving-object quality assurance system, which helps weed out false asteroid candidates.
This is a screenshot from the WISE moving-object quality assurance system, which helps weed out false asteroid candidates. The top two rows show an asteroid candidate detected in 16 different WISE snapshots, at two different infrared wavelengths. The lower rows show the same patch of sky at different times — they let the astronomers make sure that stars or galaxies haven’t been confused for the asteroid. Image credit: NASA/JPL-Caltech/UCLA

 
Meanwhile, the hunt continues — we’re still trekking along through the sky with the two shortest-wavelength infrared bands, now that we’ve run out of the super-cold hydrogen that was keeping two of the four detectors operating. Even though our sensitivity is lower, we’re still observing asteroids and looking for interesting things like nearby brown dwarfs (stars too cold to shine in visible light because they can’t sustain nuclear fusion). Our dedicated team of asteroid inspectors keeps plugging away, keeping the quality of the detections very high so that we leave the best possible legacy when our little telescope’s journey is finally done.


Comets and Life On Earth

Monday, August 17th, 2009
Donald Yeomans
Donald Yeomans

With the recent discovery of the amino acid glycine in the comet dust samples returned to Earth by the Stardust spacecraft, it is becoming a bit more clear how life may have originated on Earth. Water is a well-known ingredient in both comets and living organisms, and now it appears that amino acids are also common to comets and living organisms. Amino acids are used to make proteins, which are chains of amino acids, and proteins are vital in maintaining the cell structures of plants and animals.

Amino acids had previously been identified in meteorite samples, and these samples are thought to be the surviving fragments from asteroid collisions with the Earth. So now it appears that both comets and asteroids in the Earth’s neighborhood, the so-called near-Earth objects, delivered some of the building blocks of life to the early Earth.

Asteroid Eros - Mosaic of Northern Hemisphere
Asteroid Eros - Mosaic of Northern Hemisphere. Image Credit: NASA/JPL/JHUAPL
› Full image and caption

Impacts of comets and asteroids with the early Earth likely laid down the veneer of carbon-based molecules and water that allowed life to form. Once life did form, subsequent collisions of these near-Earth objects frustrated the evolution of all but the most adaptable species. The dinosaurs checked out some 65 million years ago because of an impact by a six mile-wide comet or asteroid off the coast of the Yucatan peninsula. Fortunately, the small, furry mammalian creatures at the time were far more adaptable and survived this impact event. Thus, present day mammals like us may owe our origin and current position atop Earth’s food chain to these near-Earth objects, one of which took out our dinosaur competitors some 65 million years ago.

Today, most of the attention directed toward near-Earth objects has to do with the potential future threat they can pose to life on Earth. However, the recent Stardust discovery of a cometary amino acid reminds us that, were it not for past impacts by these objects, the Earth may not have received the necessary building blocks of life, and humans may not have evolved to our current preeminent position on Earth. While giving thanks to these near-Earth objects, we still need to make sure we find the potentially hazardous comets and asteroids early enough so we don’t go the way of the dinosaurs.

For more information on near-Earth objects, see: http://www.jpl.nasa.gov/asteroidwatch/index.cfm