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CHAPTER 3 
Remedial Investigation/Feasibility Study (RI/FS) 

 
3.1.  Introduction.  If, based on the PA/SI, a site warrants listing on the National Priorities List 
(NPL), an RI/FS is performed at the site.   
 
 3.1.1.  The RI is the stage in the CERCLA process for collecting data to do the following. 
 
 3.1.1.1.  Characterize site conditions (e.g., thickness of unsaturated soil [vadose zone], 
depth to groundwater, vegetative cover, background conditions). 
 
 3.1.1.2.  Determine the types, conditions, and distribution of the waste contamination in af-
fected media. 
 
 3.1.1.3.  Assess risk to human health and the environment. 
 
 3.1.1.4.  Conduct treatability tests to evaluate the potential performance and cost of the 
treatment technologies that are under consideration. 
 
 3.1.2.  The FS is the stage for the development, screening, and detailed evaluation of reme-
dial actions.  
 
 3.1.3.  The RI and FS are intimately linked. Data from the RI influence the development of 
remedial alternatives in the FS, which in turn affect the data needs and scope of treatability stud-
ies and additional field investigations. This phased approach encourages the planning team to 
continually plan the site characterization effort, which minimizes the collection of unnecessary 
data and maximizes data quality. 
 
 3.1.4.  As in the SI phase, the initial statistical elements in the RI process involve the de-
velopment of DQOs. The statistical evaluations used for the RI typically include those performed 
for the SI. For example, as in the SI, site data are often statistically compared to some set of fixed 
decision limits and upper confidence limits are often established (as discussed in Chapter 2). In 
general, the statistical evaluations are more common for RIs than SIs, and the statistical analysis 
tends to be more comprehensive. In part, this is because typically data coverage is greater and the 
RI data quality objectives are more robust. For example, while the SI predominantly focuses on 
statistical evaluations to resolve the presence or absence of contamination, the RI reaches for a 
determination of the extent of contamination. Critical to the onset of an RI is the identification of 
Applicable or Relevant and Appropriate Requirements (ARARs), which, in turn, may influence 
the identification of areas requiring remediation. Both sampling strategy and extent of contami-
nation are influenced by the selection of ARARs. ARARs help identify the best analytical proce-
dures needed to reach decision limits. This aspect of DQOs is addressed in Appendix C. 
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Section I 
Site Characterization 
 
3.2.  Introduction.  The first two objectives of the RI (subparagraphs 3.1.1.1 to 3.1.1.4) are com-
bined for discussion in this Paragraph. The process of site characterization is linked to the proce-
dures described in Section II of Chapter 2, where sampling distribution design was discussed. In 
the RI stage, sample design is likely to be influenced by SI data. In turn, these SI results affect 
the statistical methods at the planner’s disposal for collection of site data. 
 
 3.2.1.  When scoping for the SI, project planners have expectations about the probable lo-
cation and nature of contamination. By the time a site reaches the RI, some usable information is 
usually available. In particular, if a contaminant was identified in the SI, planners may have an 
idea of the mean and standard deviation of contaminant concentrations. These initial estimates 
assist in devising a statistical sampling design at the RI stage. Two examples of using site data to 
support sampling design are presented in this Paragraph. These are “hot spot” sampling and geo-
statistical sampling, the fundamentals of which are presented in Appendices C, J, and Q. 
 
 3.2.2.  A “hot-spot” typically refers to a localized area of high concentration, but is often 
otherwise poorly defined (e.g., criteria for the size and concentration of hot spots are often arbi-
trary or not specified). Hot-spots are not uncommon at sites where waste was released in an iso-
lated region, perhaps during a spill. In addition, hot-spots may occur within broader regions with 
low, but detectable, levels of contamination. One example of this may be when an area was used 
to process waste disposal over some time and, at times when a shop or operation was cleaning 
house, a high concentration of waste would be deposited. However, sample concentrations that 
exceed a regulatory threshold or other decision limit should not be considered to be hot-spots if 
these concentrations appear to be randomly distributed and will not necessarily be of concern if 
they represent a small portion of study area and contain a small contaminant mass. 
 
 3.2.3.  Case study 1 presents an RI application of the hot-spot identification method dis-
cussed in Appendix C. 
 
 3.2.4.  In this instance, professional judgment led to the determination of the size and shape 
of the hot-spot. The reader is urged to vary S and L to identify the sensitivity of hot-spot sam-
pling grids to the assumptions. 
 
 3.2.5.  As stated previously, there is typically some knowledge of contaminant distribution 
at a site by the time an RI begins. Geostatistics allow an investigator to extrapolate (and interpo-
late) what is known in one location to other nearby related locations. Its application relies on the 
fact that, given a known concentration at one location, an adjacent location is likely to have a 
similar concentration. The greater the distance from the known concentration, the greater uncer-
tainty there is in predicting a concentration at an unsampled location. This situation can be de-
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scribed as a spatial correlation, because correlations are related to how close samples are to one 
another. Geostatistical methods are described in detail in Appendices J and Q. 
 
 3.2.6.  Case Study 2 illustrates the use of geostatistics for reducing uncertainty in a project. 
Although geostatistical techniques are more common for RIs than SIs, they may also be used for 
SIs if sufficient site data are available. 
 
 3.2.7.  One of the major RI objectives is identifying the distribution of contamination at a 
site. As useful as geostatistics are in helping with sampling design, they may also be used in in-
terpreting sample data. The geostatistical method known as kriging (Appendix J) is an effective 
method for interpolating site concentration data under conditions where spatial correlation exists. 
Kriging is a weighted-moving-average interpolation method. The USEPA developed a two-
dimensional kriging package, which is useful in providing a fundamental introduction to the 
technique (Geo-EAS; EPA/600/4-88/033). Kriging as a method of contouring is described in 
several readily available texts, and typically requires the use of commercially available computer 
software with kriging options for contouring (e.g., Surfer, EVS). 
 
3.3.  Case Study 1—Hot-Spot Identification.  The project team attempted to locate a hot-spot 
resulting from an uncontrolled water release within a larger storage area. The total storage area 
was approximately 150 by 200 feet. Because the suspected waste was spilled as a liquid, the hot-
spot was assumed to be approximately circular. A best estimate of the diameter was approxi-
mately 20 feet. The method proceeded in steps as follows: 
 
 3.3.1.  A circular hot-spot means S equals 1. 
 
 3.3.2.  The radius of the target spot is 10 feet. 
 
 3.3.3.  The team assigns a value of 0.1 to the acceptable risk of not finding the hot-spot.  
 
 3.3.4.  Using S and β, refer to Table D-1 (or nomographs presented in Gilbert, 1987) to de-
termine that L/G is 0.55 for a square grid and 0.50 for a triangular grid. 
 
 3.3.5.  Using the relationship L/G and the assumed radius of 10 feet, we see that square grid 
spacing is 18 feet and triangular grid spacing is 20 feet (values are rounded to the nearest foot to 
reflect the significant figures). 
 
 3.3.6.  One sample will be placed at each grid node in the storage area, so that a square grid 
requires 88 samples and a triangular grid requires 75 samples. 
 
3.4.  Case Study 2—Using Geostatistics in Project Planning to Reduce Uncertainty and 
Cost.  At a site in the Midwest, project planners were asked to assess a site potentially contami-
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nated with lead at levels exceeding risk-based limits. A SI was conducted using a grid system 
over areas that were suspected of being contaminated based on historical information.  
 
 3.4.1.  The project team identified lead concentrations in soil exceeding threshold values in 
various areas of the site (red circles in Figure 3-1). They were required to move on to an RI/FS to 
more fully characterize the nature and extent of contamination and develop preliminary estimates 
of cost for a removal action. Initially, the team intended to collect numerous additional samples 
on a grid (green circles in Figure 3-1) to more fully delineate the extent of contamination. How-
ever, the project geologist suggested the use of geostatistics as a means of reducing the number 
of samples without increasing uncertainty. 

 
  

 
 

Figure 3-1.  Initial sampling grid and proposed new samples. 
 
 3.4.2.  Geostatistics can predict both the concentration and the uncertainty for an unsam-
pled portion of the study area. In essence, spatial correlations for contaminant concentrations es-
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tablished from the existing data set are used to “extrapolate” sample concentrations and uncer-
tainty for other portions of the study area. Consequently, the team was able to use a geostatistical 
evaluation to assess the value of collecting additional samples at any given location in the grid. 
Simply put, the team recognized that in any sampling and analysis system there will be bias and 
variability, and that estimates of that bias and variability could be made using the existing data. 
Thus, at any location where the estimate of uncertainty from the geostatistical prediction was less 
than the uncertainty from sampling and analysis, the team reasoned that there was no value in 
collecting additional samples. 
 
 3.4.3.  The final sampling plan required the addition of only seven new sampling points 
(shown as black circles in Figure 3-2) with associated cost savings of over $12,000. 

 
  

 
Figure 3-2.  Samples required after geostatistical analysis. 
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Section II 
Background Comparisons 
 
3.5.  Introduction.  Not all chemicals detected at hazardous waste sites originate from site-
related activities; for example, metals in soil and groundwater are often present because of natu-
ral geological conditions. Similarly, anthropogenic activities unrelated to a site frequently con-
tribute certain organic chemicals (e.g., polycyclic aromatic hydrocarbons [PAHs] or pesticides 
derived from urban or agricultural sources; EPA SOW No. 788). If site sample concentrations for 
a specific compound are similar to or lower than background concentrations*, there may be no 
need to consider potential remedial actions with respect to that compound. This determination 
can be quantitatively defended by use of statistical comparison methods. 
 
 3.5.1.  The project team should determine the background sampling locations and parame-
ters during the planning stages of the RI. Separating and identifying background sample loca-
tions from portions of the study area that have been potentially affected by waste handling 
activities is an example of stratification. The critical factor distinguishing a background sample 
from the site lies in understanding where contaminated areas end and natural conditions begin. 
Such samples may be located upwind, upstream, or upgradient from the waste site. Background 
data should be drawn from media that physically represent the study area; they should be from 
the same soil type or geological deposit, same type of surface water system (for example, fresh-
water versus saltwater; wet season versus dry season), or from the same aquifer as the site data. 
It is also critical to collect the background samples in substantively the same manner that the site 
samples are collected (same analytical method, volume of sample, etc). The sampling design and 
analytical methodology for the background and the site study areas must be similar. For example, 
erroneous conclusions can result if judgmental sampling is done for the site study area but ran-
dom sampling is done for the background study area. 
 
 3.5.2.  Background locations should be in a nearby portion of the region unaffected by site 
activities. As a caveat, site planners should be skeptical if regulators prefer to limit background 
sampling to only pristine areas; doing so will potentially result in erroneously concluding that the 
study area has been adversely impacted by site-related waste handling activities. 
 
3.6.  Does Background Soil Differ From Site Soil?  The USEPA has developed guidance for 
addressing whether site soil characteristics differ from background (EPA/540-R-01-003 and 
EPA/540/S-96/500). The guidance EPA/540-R-01-003 emphasizes the formulation of DQOs in 
devising background sampling design and subsequent site to background testing. The focus of 
the cited guidance is only to determine whether site and background soil chemistry differ. It does 
not establish comparison standards, or levels of background that may replace unnaturally low 
risk-based clean-up goals. 

 
* Background does not mean pristine or unaffected by human activity, especially at sites in heavily industrialized ar-
eas. 
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 3.6.1.  Fundamentally, the USEPA guidance (EPA/540-R-01-003) identifies two forms of 
background testing: 
 
 3.6.1.1.  Background Test Form 1.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area is less than or equal to the mean con-
centration in background areas. 
 
 3.6.1.2.  Background Test Form 2.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area exceeds the mean concentration in 
background areas by more than a specified margin (e.g., by 50 ppm). 
 
 3.6.2.  Before continuing with this approach, investigators need to be certain that these tests 
are applied to random sample data sets collected from both the site and background locations. 
Typically, site sampling may have a component of judgmental sampling, meaning samples were 
biased to expected contaminated areas of a site. In such cases, the background testing cannot be 
applied. 
 
 3.6.3.  The project planning team should establish which form of background testing will 
be applied at the onset of the RI planning process. In addition, the planning team needs to estab-
lish the levels of acceptable levels of error in the decision-making. This will differ from site to 
site, and will depend on the desires of the project planning team members. 
 
 3.6.4.  The USEPA guidance also provides examples for the application of test methods 
that may be applied to the background test forms (EPA/540-R-01-003; Table 3-1). These are: 
 
 3.6.4.1.  Descriptive Summary Statistics.  These (e.g., mean, median, standard deviation, 
variance, percentiles—see Appendix D) may be used as a preliminary screening tool for com-
parison with site history and land use activities in the establishment of background. EPA consid-
ers these “simple and straightforward [but having low] statistical rigor.” 
 
 3.6.4.2.  Simple Comparisons.  These (i.e., greater than maximum) may be used with very 
small data sets. This approach is not recommended. 
 
 3.6.4.3.  Parametric Tests.  These (e.g., Student t-test–see Appendix F) may be used if a 
larger number of data points is available (n > 25). EPA states that parametric tests require ap-
proximate normality of the estimated means and recommends that, for smaller data sets, investi-
gators examine data for normality or lognormality in distribution. EPA considers this application 
statistically robust enough to be used frequently in parametric data analysis. 
 
 3.6.4.4.  Nonparametric Tests.  These (e.g., Wilcoxon Rank Sum Test—see Appendix M) 
may be used when data are not normally distributed, as rank-ordered tests make no assumption 
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on distribution. Again, EPA considers this approach statistically robust and to be used frequently 
in background estimation. 
 
 3.6.5.  The list of methods is not complete, but, by reviewing the appropriate Appendix, us-
ers of this Manual may identify the most appropriate statistical method for site application. 
USEPA guidance leans heavily toward parametric and nonparametric tests, which in turn rely on 
establishing whether data are normal or lognormal (see Appendix F). 
 
 3.6.6.  The U.S. Department of the Navy (DON) also developed statistical guidance for 
evaluating background in soils (UG-2049-ENV). Like the USEPA method, the guidance sug-
gests comparative methods for testing whether site data differ from background. However, DON 
guidance is unique, in part, because it also relies on geochemical relationships. UG-2049-ENV 
provides guidance for evaluating the geology of the site and the geochemical characteristics of 
site soils as they relate to background analyses. The procedures outlined in UG-2049-ENV can 
be quite useful for USACE projects and are recommended as a resource for additional reading. 
 
 3.6.7.  This “geochemical method” is often used when reference area data are not available. 
The method may be used to extract background concentration ranges by evaluating correlated 
background chemicals using on-site data only (i.e., no background area need be sampled). The 
key concept is that if the site has not been affected by a release, then only one population exists 
at a site; if a release has affected the site, then overlapping of different population characteristics 
would be evident in the data. 
 
3.7.  Simple Background Comparison.  Investigators are more likely to rely on regional back-
ground at the SI stage than the RI. As the text below states, site-specific background is more de-
sirable, but SI project budgets rarely allow for a full background study and such regional 
comparisons are still useful. Background concentrations are typically not known prior to RI ac-
tivities, and sampling for background should be scoped in the planning stages of the RI. In some 
instances, background criteria are available as regulatory limits, as Case Study 3 illustrates. (Al-
though the case study could also apply in an SI [Chapter 2], it is presented here to illustrate the 
concepts that arise for background comparisons all in one section of this document.) 
 
3.8.  Case Study 3—Comparison to Regional Background.  Site-specific background concen-
trations are typically not known prior to RI activities, and sampling for background should be 
scoped in the planning stages of the RI. In some instances, regional background values may be 
compared to site data.   
 
 3.8.1.  Texas has established soil background levels that can be used in the screening proc-
ess if site-specific background levels are not available. Soil data from one site proposed for rede-
velopment were compared to Texas background levels. Texas regulation states that if the 
maximum concentration of the chemical under investigation does not exceed the Texas soil 
background level, then that chemical is not of concern. The site analytical data were reviewed for 
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quality and applicability. Based on the review, the project team was satisfied that the site analyti-
cal data were of sufficient quality for use in evaluating the site. The soil analytical data (in 
mg/kg) for chromium were: 
 

6.17 4.31 4.38 6.07 5.68 
2.86 5.08 4.98 2.22 15.30 
4.75 3.56 4.48 3.46 2.63 

 
 3.8.2.  The maximum concentration for chromium at the site is 15.30 mg/kg. The Texas 
soil background level for soil is 30 mg/kg. Therefore, chromium would not be a chemical of con-
cern at the site. 
 
 3.8.3.  As indicated in the USEPA guidance, such a comparison lacks statistical rigor, but is 
useful for guiding the project planners in the next phase of investigation. 
 
 3.8.4.  At this stage, the comparison to regional background is merely sufficient to proceed 
to additional phases of site chromium evaluation.  
 
3.9.  Parametric and Nonparametric Tests.  In the preceding case study, the regulatory com-
munity established background concentrations. It is far more desirable for local background lev-
els to be assessed and applied. Differences related to sample medium, sampling method, or 
analytical method are less likely to arise in site-specific background data than regional back-
ground data. However, the project must be budgeted for a sufficient number of samples to char-
acterize site-specific background conditions; a large number of samples may be required to 
characterize heterogeneous background media. If the regional background data (e.g., the back-
ground data from a very limited site-specific background study) are shown to be statistically dif-
ferent from a waste site, it may also be attributable to differences in water quality or soil types 
between the site and the location where the regional background data were collected, and not 
necessarily related to a waste release. Therefore, a thorough evaluation of local background con-
ditions is preferred to the use of regional background levels. 
 
 3.9.1.  Instructions and guidance for selecting analytical procedures as part of DQOs should 
be applied to the background data set with the eventual uses of background data in mind. For sta-
tistical comparison, background measurements need to be random. In addition, the power of sta-
tistical comparison may be greater if the background results are normally or lognormally 
distributed. Although the distribution of background measurements cannot be guaranteed, either 
random or systematic sampling of background should be a component of the sampling plan. 
(Note that given spatial correlation, systematic samples spaced closer than the geostatistical 
range may not be independent. Sampling methods are addressed in Appendix C.) Once a set of 
background samples have been collected, comparison methods are applied using the statistical 
procedures addressed in Appendix M or N. 
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 3.9.2.  A random sampling* design is typically used to characterize the background study 
area. Two-sample statistical tests* are then typically used to compare the site data set to the 
background data set. Two-sample tests, described in Appendix M, are summarized in Table 3-1. 
 
 3.9.3.  An example of determining COPCs using background population tests is presented 
in case study 4. 
 
Table 3-1. 
Background Population Comparison 

Percent Detections in Site 
Data 

Percent Detections in Back-
ground Data 

 
Test 

0–100 0 No comparison 
> 0–100 < 10 Poisson UTL 
10–50 10- 50 Test proportions 
> 50 > 50 Mann-Whitney test, 

85–100 85–100 Student’s t test* or Mann-Whitney test 
*Student’s t test should be used if the distributions in the site and background data sets are the same; otherwise, 
the Mann-Whitney test should be used. 

 
3.10.  Case Study 4—Establishing and Comparing Background Concentrations to On-site 
Data.  At a military installation in Utah, samples were collected for metals in soil—seven on site 
and four at background locations. This case study focuses on chromium. The chromium results 
were as follows (mg/kg): 
 

SS01 SS02 SS03 SS04 SS05 SS06 SS07 BKG1 BKG2 BKG3 BKG4
 4.3  2.7  2.2  3.2  <1  3.6  2.4  1.6  1.8  2.6  1.6 

 
 3.10.1.  Because the site data had an 85% detection rate, one-half the reporting limit was 
substituted for each non-detect for the statistical calculations. 
 
 3.10.2.  Both background and site data were determined to be normally distributed at a 90% 
confidence level. An F-test was used to compare the variance of the background data set to the 
variance of the site data set. The result of the F-test indicated that the variances are equal. 
 
 3.10.3.  Thus, a two-sample t-test (with equal variances) was used to compare the back-
ground and on-site data sets. At the 95% confidence level, the calculated p = 0.172. Based on 
this evidence, a statistical difference between background and on-site data could not be demon-
strated at the 95% level of confidence; thus, no further action with respect to chromium was re-
quired. Note that, for this simple example, the conclusion of “no further action” is drawn because 
a statistical difference was not obtained. The power of the test is normally calculated when the 

                                                 
* Appendix C. 
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null hypothesis is not rejected. Additional investigation would be required if the power was not 
adequate. 
 
3.11.  Upper Tolerance Limits.  Upper tolerance limits* (UTLs) are sometimes used to deter-
mine whether site concentrations are elevated relative to background concentrations. The UTL 
defines a threshold value for the background data set. (More accurately, it is an upper confidence 
limit for some percentile of the background data.) Individual site contaminant concentrations are 
compared to this value. Study area detections that are greater than the background UTL are con-
sidered to be indicative of contamination from site-related waste handling activities. Tolerance 
limits are used in this manner in the USEPA guidance for the statistical treatment of groundwater 
monitoring data (EPA 530-SW-89-026, EPA 9285.7-09A). However, this approach must be used 
with caution. In particular, it is often erroneously concluded that site-related contamination exists 
if a single detection exceeds the UTL. For example, the “95% UTL” is typically used to evaluate 
site contamination relative to background. If the background and site concentrations are not dif-
ferent from one another, we will be 95% confident that at least 95% of all site measurements will 
fall below the 95% UTL with coverage of 95%. (For brevity, this is often referred to simply as 
the “95% UTL.”) Therefore, we would expect a small percentage of site measurements to exceed 
the UTL, even when overall site contamination is not elevated relative to background. When a 
large number of samples are taken, we should not definitively conclude that a small number of 
detections greater than the UTL necessarily indicate site-related contamination. 
 
 3.11.1.  Furthermore, regulators have criticized the use of UTLs to compare site to back-
ground contamination because UTLs do not minimize false negatives but, rather, minimize false 
positives. In other words, if many detected study area concentrations were greater than the back-
ground UTL, this would constitute strong evidence of site-related contamination. This scenario 
would be unlikely if the site and background concentrations were similar. Alternatively stated, 
the probability of a false positive—erroneously concluding that the site is contaminated relative 
to background—would be low. However, if detected site concentrations were less than the UTL, 
strictly speaking; no conclusion would be possible. This would not be sufficient to demonstrate 
the absence of site contamination relative to background. If we were to conclude the absence of 
site-related contamination using the UTL, false negatives could result (i.e., erroneously conclud-
ing that site concentrations are not elevated relative to background concentrations).  
 
 3.11.2.  Because of the problems with tolerance intervals discussed above, two-sample sta-
tistical tests are usually preferred (and are typically more appropriate) to compare site and back-
ground data sets. It is recommended that UTLs be used only when two-sample tests are not 
practical (or when the primarily objectives is to demonstrate that site contamination is elevated 
relative to background contamination). For example, a two-sample statistical test cannot be per-
formed when the site data set is extremely small (when only one or two samples are available for 
the study area). If a large data set was available for the background study area (e.g., because a 

 
* Appendices G and K. 
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“site wide” background study had been done for a prior investigation), then the study area results 
could be compared to the background UTL. 
 
 3.11.3.   The UTL background comparison methods are discussed Appendix K. These 
methods are summarized in Table 3-2 
 
 3.11.4.   There are parametric UTLs and non-parametric UTLs. The parametric UTL re-
quire the data to follow a specified distribution such as a normal or lognormal distribution. (Dis-
tribution tests are addressed in Appendices F and J.) As shown in the table above, the proportion 
of non-detects must be taken into account when selecting an appropriate UTL. (UTLs that rely 
upon the normality assumption cannot be calculated when a large portion of the data are reported 
as non-detect.) The nonparametric UTL represents a high-end value in the distribution. The fol-
lowing case study illustrates an example of calculating background UTLs for metals. 
 
Table 3-2. 
Background Comparison to Evaluate the Extent of Contamination 

Percent Detections in Background Data Type of UTL Calculated 
0 No UTL calculated 
< 10 Poisson UTL 
10–85  Nonparametric UTL 
≥ 85 (normal or lognormal distribution) Parametric UTL 

 
3.12.  Case Study 5—Calculating Background UTLs for Metals.  At a site in Utah, 56 soil 
samples were collected across a very large area to determine background concentrations for met-
als. 
 
 3.12.1.  Chromium was detected above the detection limit in every sample, so there was no 
need to substitute for censored values. Manganese was not detected in one sample, and the geo-
chemist elected to substitute one-half the detection limit for the censored value in that sample. 
 
 3.12.2.  The chromium data were normally distributed and the manganese data were log-
normally distributed.*  Refer to Appendices D, E, and I for a review of these concepts. 
 
 3.12.3.  For chromium, the 95% UTL was calculated from the sample results using the 
formula: 
 
 95% UTL x ks= +  . 
 
 3.12.4.  For 56 samples, k equals 2.032. Chromium results for background had a mean ( x ) 
of 12.7 mg/kg and standard deviation of 5.1 mg/kg, so the UTL was 23.0 mg/kg. For manganese, 
                                                 
* The Shapiro-Wilk test (Paragraph F-3) was used to test for normality at the 95% level of confidence. 
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the log of each sample result was taken prior to the calculation of the UTL. (The individual con-
centrations are not shown.) For the set of log-transformed results, the sample mean and standard 
deviation were 5.41 and 0.75, respectively. The log UTL for manganese was 6.93 (using the 
above equation). All comparisons for manganese should occur in “log space” (that is the loga-
rithm of the site manganese maximum would be compared to 6.93). (Alternatively, a minimum 
variance unbiased estimator of the manganese background concentration could be calculated us-
ing the methods described in Appendix E). 
 
3.13.  Extended Background Example.  This paragraph illustrates the concepts of distributional 
assumptions presented in Appendix J through a case study.  
 
 3.13.1.  Suppose surface soil samples (from 0 to 5 feet below ground surface) have been 
collected at Site A and a background location to evaluate chromium concentrations on site. Table 
3-3 presents the analytical results from samples collected at the site and background areas. All 
chromium concentrations were detected so no proxy concentrations are needed to evaluate the 
data. 
 
 3.13.2.  Further, suppose the objectives of this data evaluation are to identify whether 
chromium surface soil concentrations on site: 
 
 3.13.2.1.  Exceed regulatory threshold levels. 
 
 3.13.2.2.  Exceed background concentrations, on the average. 
 
 3.13.3.  Several statistical tests can be used to make such comparisons. A “one-sample” test 
can be used to compare the mean site chromium concentration to regulatory risk-based levels 
(Appendix L). A “two-sample” test can be used to compare the mean concentration of chromium 
at the site to the mean background concentration of chromium (Appendix M). A background 
value, such as a UTL, can be estimated for comparisons to individual site concentrations to iden-
tify if any one sample has a concentration higher than background. However, before any statisti-
cal tests can be done, distributional assumptions must be evaluated for each population (site and 
background) of data to determine which statistical test is most appropriate. The distributions are 
evaluated for normality (or log normality) using statistical tests and graphical plots. 
 
 3.13.4.  Graphical displays are the first approach taken to evaluate the distribution of the 
data (Appendix J). Histograms, box-and-whiskers plots, and probability plots are all useful in 
identifying how data are distributed and answering questions such as—are the data symmetrical, 
what is the range of concentrations, are there any outliers that may unduly influence future dis-
tributional tests, do the data seem to follow a normal distribution, and so on. Histograms, box-
and-whisker plots, and probability plots for the site and background data are provided in Figures 
3-3 and 3-4, respectively.  
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Table 3-3. 
Analytical Results for Chromium at Site A and Background Locations 

Site A Sam-
ple Location 

Top Depth 
of Sample 

Bottom 
Depth of 
Sample 

Chromium 
Concentration 

(mg/kg) 

Background 
Sample Loca-

tion 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium Con-
centration 

(mg/kg) 
SB01 1 2 4.76 BG01 1 2 4.99 
SB01 4 5 4.42 BG01 4 5 4.35 
SB02 1 2 4.68 BG02 1 2 4.61 
SB02 4 5 4.82 BG02 4 5 4.83 
SB03 1 2 4.36 BG03 1 2 3.92 
SB03 4 5 4.37 BG03 4 5 5.09 
SB04 1 2 4.09 BG04 1 2 5.19 
SB04 4 5 4.14 BG04 4 5 4.54 
SB05 1 2 4.78 BG05 1 2 5.49 
SB05 4 5 4.94 BG05 4 5 4.3 
SB06 1 2 3.35 BG06 1 2 5.67 
SB06 4 5 3.08 BG06 4 5 4.16 
SB07 1 2 10.1 BG07 0.5 1 5.41 
SB07 4 5 18.5 BG07 2 2.5 4.98 
SB08 1 2 10.6 BG08 1 2 5.64 
SB08 4 5 4.87 BG08 4 5 4.98 
SB09 1 2 10.3     
SB09 4 5 5.51     
SB10 1 2 6.4     
SB10 4 5 4.13     
SB11 1 2 4.96     
SB11 4 5 4.96     
SB12 1 2 4.91     
SB12 4 5 4.89     

 
 3.13.5.  These plots have been developed on the basis of the original data and the natural-
log transformed data, as it is common that environmental data follow either a normal or log-
normal distribution. Other less common transformations, such as the square root or inverse sine 
transformation, are not applicable in this case study because: 
 
 3.13.5.1.  Chromium concentrations are continuous (values can be any number within a 
range of concentrations). 
 
 3.13.5.2.  Detected chromium concentrations are not rare events to warrant review of the 
Poisson distribution. 
 
 3.13.5.3.  Chromium concentrations are not binomially distributed. 
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Figure 3-3.  Chromium in Site A. 
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Figure 3-4.  Chromium in background. 
 
 3.13.6.  Based on just the plots in Figure 3-3, chromium at Site A does not appear to have a 
normal or lognormal distribution. The histograms for the original data and log-transformed data 
are not symmetrical, but are skewed. This is confirmed in the box-and-whiskers plots because the 
mean (the dotted line) is larger than the median (the solid line within the box) and the mean is 
even larger than the 75th percentile (the top part of the box). (If the data were normal, the mean 
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would be equal to the median.) As the mean is greater than the 75th percentile, this suggests that 
the mean is influenced by several considerably large concentrations. Outliers (each of point rep-
resented by an “X”) predominantly occur only in the upper portion (the top) of the box plots. 
Lastly, as the normal probability plots for the original data and log-transformed data are not lin-
ear, this gives additional evidence that the data are not normal or lognormal.  
 
 3.13.7.  The chromium data distributions possess heavier right tails relative to a normal dis-
tribution. Note the extreme deviation from linearity (Appendix F) at the right-hand side of each 
normal probability plot (appearing as a series of points above the straight line). The superim-
posed line on the normal probability plots illustrates the line that concentrations follow when 
data are normally or lognormally distributed. This line is related to Filliben’s statistic in the sense 
that it provides a standard to compare the linearity of sample results. For these normal probabil-
ity plots associated with Site A, it is apparent that the data do not follow a normal or lognormal 
distribution. 
 
 3.13.8.  The plots in Figure 3-4 show evidence that chromium for the background data set 
appears to follow a normal or a lognormal distribution. The histogram for the original data seems 
to be symmetrical, though the histogram for the log-transformed data is not as symmetrical. 
However, histograms can be misleading if the boxes (i.e., concentration intervals) are too large 
or too small; therefore, another type of plot, preferably a normal probability plot, should be con-
structed to determine whether the data are normally (or lognormally) distributed.  
 
 3.13.9.  One of the most powerful statistical methods for testing normality is the Shapiro-
Wilk* test. Because the site data set has 24 sample results and the background data set has 16 
sample results, this test would be appropriate for evaluating normality and lognormality for both 
the site and background data sets. The result of the Shapiro-Wilk test is presented in Table 3-4 
for chromium at Site A and background based on the original data and log-transformed data. The 
Shapiro-Wilk test results in either a calculated value of the statistic W or the value p. There is ac-
ceptably strong evidence that the data set is not normal when either W or p is small relative to the 
corresponding acceptance limit for W or p. 
 
 3.13.10.  For Site A, results of the Shapiro-Wilk test show evidence that the data do not fol-
low a normal or lognormal distribution (i.e., since the calculated value of W is smaller than W0.01, 
or equivalently, p < 0.01, there is less than a 1% chance that the data set is normal, or equiva-
lently stated, there is at least a 99% confidence that the data are not normal). However, for back-
ground the results of the Shapiro-Wilk test suggest that the data seem to follow both a normal 
and lognormal distribution. It should be noted that there is more evidence that background data 
are normally distributed rather than lognormally distributed, because the value of W and the as-
sociated value of p are higher for the original data than for the log-transformed data. 
 

 
* Appendix F. 
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 3.13.11.  The coefficient of variation* (CV) was estimated for each data set, and is provided 
in Table 3-4. A CV greater than 1 suggests a departure from normality. However, the evaluation 
of the CV is not as reliable as quantitative statistical tests for normality, such as the Shapiro-Wilk 
test. The coefficient of variation is useful only for identifying obvious departures from normality 
when CV is much greater than 1. Because the sample CVs for the site and background data sets 
based on the original data and the log-transformed data all are less than 1 (as discussed in Ap-
pendix F), one cannot conclude the data can be modeled by a normal distribution. Therefore, for 
these data sets, the CV does not provide any useful additional information. 
 
 3.13.12.  Similarly, to illustrate the relative reliability of various distributional test methods, 
the Studentized range test* was also performed on the data sets. The results of this test (Table 3-
5) indicate that the Site A and background data sets follow normal and lognormal distributions. 
The range test failed to identify the lack of normality for Site A data. This happened because the 
data distribution for Site A is asymmetrical and this test does not perform well for asymmetrical 
distributions. However, according to the test, the background data follow a normal and log-
normal distribution. Therefore, the Studentized range test for the background data set is consis-
tent with the Shapiro-Wilk test, the coefficient of variation test, and the graphical plots (e.g., the 
normal probability and box plots). 
 
 3.13.13.  Similarly, to illustrate the relative reliability of various distributional test methods, 
the Studentized range test* was also performed on the data sets. The results of this test (Table 3-
5) indicate that the Site A and background data sets follow normal and lognormal distributions. 
The range test failed to identify the lack of normality for Site A data. This occurred because the 
data distribution for Site A is asymmetrical and this test does not perform well for asymmetric 
distributions. However, according to the test, the background data follow a normal and log-
normal distribution. Therefore, the Studentized range test for the background data set is consis-
tent with the Shapiro-Wilk test, the coefficient of variation test, and the graphical plots (e.g., the 
normal probability and box plots). 
 
 3.13.14.  To summarize, the background data appear to follow both a normal and log-
normal distribution, but Site A data do not appear to follow either a normal or lognormal distri-
bution. A dilemma exists regarding the distribution of the background data—is it normal or 
lognormal? As the log transformation did not appreciably improve the normality of the data set, 
it would be advisable not to perform the transformation. 
 
 

 

 
* Appendix F. 
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Table 3-4. 
Results of the Shapiro-Wilk Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Critical Values  
(from Table B-20 of Appendix B) 

Area 
Testing for Nor-
mality or Log-

normality? 

Number of 
Results CV 

Shapiro-Wilk 
Test Statistic, 

W 

Critical Value 
based on 0.05 
level of signifi-
cance,  05.0W

Critical Value 
based on 0.10 
level of signifi-
cance,  10.0W

Critical Value 
based on 0.50 
level of signifi-
cance,  50.0W

p value for 
Shapiro- 
Wilk Test 
(from sta-

tistical soft-
ware) 

Conclusion: Is 
there evidence 

that the data are 
Normally or 
Lognormally 
Distributed? 

Yes/No 
Site A Normality 24 0.5687 0.627 0.916 0.930 0.963 <0.0001  No 
Site A Lognormality 24 0.2426 0.791 0.916 0.930 0.963 0.0002 No 

Background Normality 16 0.1093 0.963 0.887 0.906 0.952 0.7177 Yes 
Background Lognormality 16 0.07041 0.958 0.887 0.906 0.952 0.6308 Yes 

 
 
Table 3-5. 
Results of the Studentized Range Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Test of Normality (based on original data) Test of Lognormality (based on log-transformed data) 

Area 
Number 
of Re-
sults 

Ratio of Range 
of Results and 

Standard Devia-
tion 

Critical Values from 
Table B-21 of Ap-

pendix B, assuming a 
0.05 level of signifi-

cance 

Conclusion: Is there 
evidence that the 

data are Normally 
Distributed? 

Yes/No 

Ratio of Range of 
Results and Stan-

dard Deviation 

Critical Values from 
Table B-21 of Appendix 
B, assuming a 0.05 level 

of significance 

Conclusion: Is there 
evidence that the 
data are Lognor-

mally Distributed? 
Yes/No 

Site A 24 4.586 (3.308, 4.666)* Yes 4.400 (3.308, 4.666)* Yes 
Background 16 3.278 (3.01, 4.24) Yes 3.317 (3.01, 4.24) Yes 
 

*Critical Values for n = 24 are based linear interpolation of critical values from n = 20 and n = 25. 
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 3.13.15.  If a background value, such as a UTL, and other summary statistics are desired to 
characterize the background data set, then the assumed distribution should fit the data as much as 
possible. With respect to this objective, it would be more appropriate to define background as 
following a normal distribution because the Shapiro-Wilk test shows more evidence of normality 
than lognormality. Comparing the Shapiro-Wilk test’s critical value or associated p value from 
the original data and from the log-transformed data is a reasonable approach for discerning 
which distribution is more appropriate and has more evidence of following a normal or log-
normal distribution. 
 
 3.13.16. The first objective for this case study is to determine whether chromium contamina-
tion at Site A, on the average, exceeds a regulatory threshold value. As it cannot be assumed that 
the Site A data set is either normal or lognormal, a nonparametric test (e.g., the Wilcoxon signed 
rank test for the median as discussed in Appendices H and M) must be used to compare the Site A 
data to the regulatory threshold. 
 
 3.13.17.  The second objective is to determine whether chromium exceeds background. 
Though the background data set could be reasonably assumed to be either normal or lognormal, 
this assumption could not be made for the Site A data set. As the Site A data set is neither normal 
nor lognormal, a parametric two-sample test* cannot be used to compare the Site A data set to 
the background data set (for example, to determine if the mean concentration at Site A exceeds 
the mean background concentration). Both data sets must follow the same distribution to use a 
parametric test. For example, both the background and site data sets must both be normally or 
lognormally distributed. As data from Site A does not follow a normal or lognormal distribution, 
only nonparametric tests such as the Wilcoxon rank-sum test* can be used to compare the Site A 
and background data sets. 
 
 3.13.18.  This case study illustrates the value of background data in project decision-
making. The application of background data in identifying contaminants for inclusion in the risk 
assessment is presented in the following section. The data in the preceding discussion may be 
used as sample data to apply some of the nonparametric tests in Appendix M. 
 
Section III 
Risk Assessment 
 
3.14.  Introduction.  Perhaps more than any other area in the CERCLA project life cycle, assess-
ing site risk relies on statistics. Many of the techniques described in several of the appendices 
apply in quantifying and assessing risk at a hazardous waste site. The components of a risk as-
sessment discussed in this report are: 

 
* Appendices M and N. 
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• Identifying contaminants of potential concern (COPCs). 
• Calculating exposure point concentrations (EPCs). 

 
Statistics enter into risk assessment in one additional major area—the calculation of exposure 
levels. Specifically, a baseline human health risk assessment requires estimation of a reasonable 
maximum exposure (RME), and a central tendency exposure (CTE). The former relies on 95% 
upper confidence level (UCL) values for exposure parameters, and the latter on the mean of the 
exposure parameters. In either case, the exposure parameters are generally provided by EPA 
guidance, such as the Exposure Factors Handbook (USEPA, 1997). For all practical purposes, 
the environmental scientist will not need to statistically evaluate these parameters and, conse-
quently, their derivation is not discussed here. However, understanding the concepts presented in 
Appendix E is very useful in deconstructing the data evaluations presented in the Exposure Fac-
tors Handbook (USEPA, 1997). 
 
 3.14.1.  Identification of Contaminants of Potential Concern for Risk Assessment. Not all 
chemicals detected at a site are typically included in the quantification of risk. Those chemicals 
retained in the risk assessment are the COPCs. Note that the COPCs are media-specific; COPCs 
are evaluated for air, surface soil, subsurface soil, groundwater, sediment, surface water, and any 
other medium sampled in the RI at each site. 
 
 3.14.1.1.  Chemicals are typically screened against background or other criteria (established 
by ARARs) and a subset is selected for inclusion in the risk calculations. Some of the screening 
criteria, other than background levels, include drinking water MCLs, or secondary MCLs, RBCs, 
and Toxic Substance Control Act (TSCA) values for PCBs (polychlorinated biphenyls) in soil. In 
addition, inorganics that are essential human nutrients (e.g., iron, potassium, magnesium, so-
dium, and calcium) may be excluded from the quantitative risk analysis in most cases. (ARARs 
are identified in the planning stage of the RI.) 
 
 3.14.1.2.  Both qualitative and quantitative statistical evaluations are frequently performed 
to identify COPCs. A qualitative evaluation is initially conducted to determine whether select po-
tential analytes of concern can be eliminated from future investigation; a statistical evaluation is 
subsequently done for a more in-depth look at of contaminants that were not eliminated during 
the qualitative assessment. 
 
 3.14.1.3.  For example, for the qualitative evaluation of the data, if a chemical is detected 
infrequently in the sample data set, and is not considered to be associated with historical waste 
handling at a site, it may be screened out as a COPC. However, it is essential to use site-specific 
information before discarding such a chemical, as infrequently detected compounds may also 
represent hot-spots, depending on the sampling strategy used at the site. For every chemical de-
tected at least once, the maximum detected concentration is compared to the chemical- and  
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medium-specific screening criterion. Chemicals with higher concentrations than their criteria are 
generally retained for quantitative evaluation in the risk assessment.  
 
 3.14.1.4.  Contaminants that lack ARARs (usually because toxicity information does not 
exist) are retained as COPCs in the risk assessment and discussed in the uncertainty section of 
the report. One-sample tests for contaminants where the maximum exceeds the risk-based 
screening limit may be used to determine whether the mean is statistically less than the screening 
limit, even though a single value exceeds the screening limit. Anthropogenically derived con-
taminants (such as PAHs) that occur at concentrations below background levels are still retained 
in the risk assessment if they exceed ARARs. If the risk assessment indicates that such contami-
nants are a primary contributor to total risk at a site, then a quantitative statistical comparison 
with background (e.g., using appropriate two-sample statistical tests) would be done and the re-
sults would subsequently be discussed in the risk characterization at the end of the assessment. 
 
 3.14.2.  Calculating Exposure Point Concentrations.  For risk assessment, means and stan-
dard deviations are typically calculated as the basis for EPCs and as the basis for deriving UTLs 
for the background comparisons. However, the mean and standard deviation will frequently be 
inappropriate measures of central tendency and dispersion when the data are not normally dis-
tributed or a large portion of the data consists of non-detects. Under these circumstances, means 
and standard deviations should not be used to perform statistical evaluations. Before statistically 
valid means and standard deviations can be calculated, tests for normality should be conducted 
and non-detects must be appropriately addressed. 
 
 3.14.2.1.  The EPC is used to calculate a COPC’s carcinogenic risk and non-carcinogenic 
hazard index. It represents the concentration a receptor is likely to encounter. The USEPA re-
quires the EPC to be a conservative estimator of central tendency—the 95% upper confidence 
limit (UCL) of the sample arithmetic mean concentration (OSWER 92-856-03, EPA 68-W0-
0025). The 95% UCL is the concentration that, when calculated repeatedly for randomly drawn 
samples, equals or exceeds the true mean 95% of the time. 
  
 3.14.2.2.  Calculating rigorous, statistically valid 95% UCLs requires that data be distribu-
tion tested and that non-detects be treated properly. Procedures for this are provided in Appendix 
H. Some of the older (pre-2000) RCRA and CERCLA guidance for calculating the UCL are out-
dated (and hence, are not recommended); modifications and updates are provided with the goal 
of improving scientific defensibility. Appendix G presents the most recent acceptable methods 
for estimating the 95% UCL at 95% confidence. 
 
 3.14.2.3.  Calculating EPCs at a CERCLA site brings together many of the statistical pro-
cedures described in the attached Appendices. The correct steps are, in general, as follows 
 
 3.14.2.3.1.  Identify the nature of the censoring limit and the proportion of censored values 
and substitute proxy values as directed in Appendix R. 
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 3.14.2.3.2.  Identify outliers as discussed in Appendices I and M. 
 
 3.14.2.3.3.  Perform distribution testing as detailed in Appendix F. 
 
 3.14.2.3.4.  Depending on the outcome of these steps, calculate the 95% UCL as directed in 
Appendix G. 
 
 3.14.2.4.  Unfortunately, there are many pitfalls along the way, and this process does not 
always lead to a simple result. In part, this is attributable to the use of or adherence to older 
USEPA guidance. In particular, USEPA guidance for substituting for censored data is addressed 
in many separate risk assessment documents. In earlier documents, substituting one-half the de-
tection limit is supported. Appendix E provides insight on the deficiency in this approach. In ad-
dition, even if the risk assessor has performed all of the statistical procedures, USEPA guidance 
for EPCs states that if a 95% UCL exceeds the maximum value of a compound detected at a site, 
the maximum should be substituted. This has the dissatisfying attribute of being completely ad 
hoc, giving rise to unquantifiable and unacceptable uncertainties for risk assessment decisions. 
 
 3.14.3.  Uncertainty Quantification.  A required element in a baseline human health risk as-
sessment is to evaluate uncertainty for decisions. Statistical techniques alone will be unable to 
account for all sources of uncertainty in a risk assessment and a qualitative approach is normally 
taken. For example, there will be uncertainty in the risk assessment for analytes for which toxic-
ity data do not exist, and the quantification of such uncertainty is not possible. 
 
 3.14.3.1.  In risk assessment, uncertainty stems primarily from the following three sources. 
 
 3.14.3.1.1.  Errors in the estimate of contaminant concentration. 
 
 3.14.3.1.2.  Errors in the estimate of toxicity. 
 
 3.14.3.1.3.  Errors introduced by large numbers of assumed values in the risk assessment 
formulations, which are by definition and intent very conservative. 
 
 3.14.3.2.  In practical terms, there is little that can be done about the uncertainty in esti-
mates of toxicity. The studies upon which toxicity data are based are taken “as is” simply be-
cause of the scarcity of available studies. Uncertainty in the assumptions employed in the risk 
assessment can sometimes be addressed, but only to a limited extent. An example for how the 
uncertainties listed in subparagraph 3.14.3.1.3 were taken into account is presented in Case 
Study 6. 
 
 3.14.3.3.  Most statistical evaluations implicitly assume the absence of bias. The uncer-
tainty predominantly depends on the distribution of field measurements. Even in the case of risk 
screening, as demonstrated in Chapter 2, we have seen that it is possible to qualitatively assess 
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the uncertainty of individual sample/analytical results before comparing those results to fixed 
threshold values using analytical QC information. For example, QC data can potentially be used 
to identify the direction of bias and to estimate the magnitude of the bias associated with a set of 
analytical results. This is illustrated in Case Study 6. It is also possible to make similar estimates 
of variability which may affect decision-making, as illustrated in Case Study 7. 
 
 3.14.3.4.  The error introduced into the risk assessment by the uncertainty associated with 
each of the various assumptions and reference values is more likely multiplicative rather than 
additive, such that the calculated risk is conservative to an extraordinary degree. Consider, for 
instance, some components of a soil dermal absorption scenario. The risk assessor calculates an 
EPC, which represents the 95% UCL of the mean. Then, the skin area exposed to the contami-
nant is based on an upper 95% confidence level of all the U.S. adult population from EPA 
OSWER 92-856-03. These are combined with, say, the default average exposure duration and 
frequency values which, again, are upper estimates from some population. Combining all of 
these upper estimates results in a risk evaluation that has a far higher confidence than 95%. The 
Risk Assessor and Project Manager are encouraged to identify every opportunity to use site-
specific values in place of assumptions in risk assessment to reduce uncertainty in the results 
and, thus, more appropriately apply the limited remediation resources available. 
 
 3.14.3.5.  One method for estimating the true mean and distribution of risk estimates is to 
use the recommended RME and CTE values of exposure parameters. This methodology is rec-
ommended in Risk Assessment Guidance for Superfund (RAGS). The result of looking at each 
input parameter using the CTE is to provide an estimate of risk near the mean of the estimated 
exposure scenario. The RME is considered to represent an upper estimate of site risk. An alterna-
tive method of quantifying the range in risk estimates is to use Monte Carlo simulations. 
 
3.15.  Case Study 6—Refining Risk Assessment Assumptions.   
 
 3.15.1.  A risk assessment was to be done as part of a RCRA Facility Investigation (RFI) at 
a steel mill in Pennsylvania. The project team approached the EPA Remedial Project Manager 
(RPM) regarding using site-specific assumptions for some of the exposure factors in the risk as-
sessment calculations. This was possible because the facility maintained excellent records of 
employee longevity, promotion, and work assignments. For this case study, the focus is on site-
specific estimates of exposure duration, which enters into quantification of risk. 
 
 3.15.2.  Under the assumptions given by the EPA for the worker exposure scenario in 
OSWER 92-856-03, the risk assessor is to assume that a given worker will be exposed for a pe-
riod of 25 years. However, by reference to detailed employee records for the facility, the project 
team was able to demonstrate concretely on a facility-specific, job-specific, and location-specific 
basis, the actual average lifetime exposure duration for the various site areas under study. Em-
ploying these actual values, which were approximately 3 to 5 years rather than 25 years, greatly 
reduced the exposure duration. More importantly, the site-specific value reduced the uncertainty 
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in the calculated lifetime risk. Using this lower value allowed the steel mill owner to limit the 
number of site areas proceeding to the Corrective Measures Study phase of the project. 
 
3.16.  Case Study 7—Direction and Magnitude of Bias.  As part of a property transfer in Bal-
timore, Maryland, the project team was asked to estimate reserves that the seller would have to 
put in escrow against the potential need for site clean-up, before the seller would accept transfer 
of the property. For this case study, petroleum hydrocarbon contamination will be discussed. 
 
 3.16.1.  The project team decided to divide the relatively small site into four quadrants and 
collect one composite sample from each to assess the potential need for remediation in each 
quadrant. The analytical results obtained from the laboratory were as follows: 
 

Quadrant 1 1200 mg/kg Quadrant 3 756 mg/kg 
Quadrant 2 101 mg/kg Quadrant 4 138 mg/kg 

 
 3.16.2.  With the state’s action level set at 100 mg/kg, it appeared that the seller would be 
required to reserve funds against a potential soil removal for the entire site. However, a review of 
the quality control data associated with the analytical results displayed significant potential bias. 
 
 3.16.3.  A normal calibration curve was developed for the gas chromatograph used in the 
analysis that met method criteria for linearity. The laboratory then analyzed an Initial Calibration 
Verification (ICV) using a standard from an alternative source from that employed in the calibra-
tion. The ICV was essentially a blank spike set at the midpoint of the calibration curve. The re-
sult of this analysis was a percent recovery (%R) of 168%, which was within the acceptance 
limits provided with the standard by the manufacturer. 
 
 3.16.4.  However, in its simplest form this QC result indicates that if the laboratory intro-
duced the equivalent of 100 mg/kg of total petroleum hydrocarbons (TPH) into the analytical 
system, they would get a reported result of 168 mg/kg. This observation, applied to the results 
reported for the site, removed two of the four quadrants from further consideration, reducing the 
required reserves by half.  
 
Section IV 
Probabilistic Risk Assessments Monte Carlo Simulations 
 
3.17.  Introduction.  The implementation of probabilistic risk assessment for environmental pro-
jects is beyond the scope of this document; however, a brief overview of the procedures is pre-
sented here. Monte Carlo simulation, the most common technique used for probabilistic 
assessments, is a statistical technique in which outcomes are produced using randomly selected 
values for input variables that possess a range of possible values. In some cases, a known prob-
ability distribution can be assigned to each input variable. By repeating the calculation many, 
many times, Monte Carlo simulations create a population of results representing (in theory) the 
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full range of possible outcomes and the likelihood of each. For example, when Monte Carlo 
simulation is used in risk assessment, risk is expressed as a distribution of possible values rather 
than a single point value.  
 
 3.17.1.  There are two major practical limitations to the application of Monte Carlo simula-
tions in general: i) it can be costly, and ii) few people are sufficiently qualified to do it. The EPA 
has also written a guidance document for probabilistic risk assessment titled RAGS Volume 3 
Part A: Process for Conducting Probabilistic Risk Assessment (EPA 540-R-02-002) available at 
http://www.epa.gov/oswer/riskassessment/rags3a/index.htm. An EPA Region 3 publication (EPA 
903-F-94-001) identified several technical limitations that preclude the Agency from relying on 
Monte Carlo simulations (http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm). 
 
 3.17.1.1.  Software is unable to distinguish between measurement variability and lack of 
knowledge. Some input parameters are for well-described differences among individuals—these 
differences are variability. Other factors, such as frequency and duration of trespassing, are sim-
ply unknown, and assuming a distribution for them is ad hoc. But the simulated distribution of 
unknowns is presented in computer output as variability. The accuracy of the distributional as-
sumptions limits the accuracy of the simulation. 
 
 3.17.1.2.  Software is unable to account for sample dependency (e.g., spatial and temporal 
correlations for sample locations). However, this limitation also applies to all classical statistical 
methods (e.g., the methods predominantly discussed in this document and in EPA environmental 
statistical documents such as the QA-G4 and GA-G9 guidance documents). In classical statistics, 
the assumption of independence highly influences the applicability of a technique—the same 
limitation applies here. 
 
 3.17.2.  In most statistical evaluations (excluding geostatistics), environmental scientists 
are resigned to the limitations of classical statistics for environmental data. The same is true for 
Monte Carlo simulations. Though Monte Carlo simulations require sample independence, the 
approach can be advantageous. The primary advantage is that it accounts for a range of input 
values and outputs a range of outcomes (such as risk values) with associated probabilities. Al-
though a Monte Carlo approach is currently not recommended or required by the EPA, the ap-
proach may be beneficial for some projects. There are applications of such simulations. 
Moreover, future scientists may learn how to overcome some of the limitations and eventually 
develop reasonable and inexpensive computer applications. 
 
 3.17.3.  Applications of Monte Carlo simulation are more prevalent in groundwater model-
ing than any other current environmental application. Case Study 8 shows how a Monte Carlo 
simulation of groundwater contamination was used to perfect a remedy. 
 

http://www.epa.gov/oswer/riskassessment/rags3a/index.htm
http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm
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3.18.  Case Study 8—Monte Carlo Simulation in Remedial Alternative Selection 
 
 3.18.1.  Monte Carlo analysis was coupled with decision tree analysis for a study site in 
Nebraska where the groundwater was contaminated with trinitrotoluene (TNT). The extent of 
TNT contamination was characterized during an RI. Three pump-and-treat alternative remedial 
actions were developed for the FS. The maximum concentration of TNT remaining in the satu-
rated zone at the end of each alternative project lifetime was determined stochastically using a 
Monte Carlo model. The Monte Carlo model randomly generated values for site information for 
initial mass concentration, hydraulic conductivity, and retardation coefficient. Then these ran-
domly generated fields were sampled and the output was combined into sets or ensembles. Prob-
ability functions were fitted to the output ensembles with the maximum simulated TNT 
concentrations. Because each of the treatment alternatives was associated with a different set of 
possible maximum concentrations, the Monte Carlo simulation made it possible to identify the 
optimal alternative quantitatively by analyzing the output ensembles for each alternative. 
 
 3.18.2.  Applying Monte Carlo simulations requires the technical support of a specialist in 
this area; detailed methodologies are beyond the scope of this Manual. The technique does rely 
on the power of randomly generated data sets and the optimization of conditions based on the 
simulation. 
 


