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CHAPTER 1 
Introduction 

 
1.1.  Purpose.  This document is intended to serve as a guide to project team members for the 
use of statistics in environmental decision-making. 
 
1.2.  Applicability.  The U.S. Army Corps of Engineers (USACE) developed this document 
within the broader scope of Technical Project Planning (TPP), recognizing that understanding 
statistical evaluations can improve project planning and implementation at hazardous, toxic, and 
radioactive waste (HTRW) sites. 
 
1.3.  Distribution Statement. Approved for public release; distribution unlimited. 
 
1.4.  References.  References are contained in Appendix A. 
 
1.5.  Introduction.  This Manual’s primary objective is to improve a decision-maker’s under-
standing of common environmental statistical evaluations. The applicability of statistical tests 
and considerations is presented in the context of a typical environmental project life cycle. This 
document should serve as a first step in explaining statistical concepts and their application at 
HTRW sites. It is not intended to replace more robust statistical texts or electronic statistical 
software. 
 
 1.5.1.  Statistics are applicable to environmental projects throughout their entire life cycle 
and yield defensible, cost-effective solutions to environmental questions. Statistics can be used to 
guide the selection of sampling locations, analyze large data sets, and verify that project objec-
tives have been met. Statistics are of particular importance for quantifying the power and limita-
tions of environmental data, specifically because these data are usually limited. It is not possible 
to collect and analyze every bit of an environmental medium (for example, soil, sediment, 
groundwater, or surface water) at a site; instead, a set of sample data is used to characterize the 
environmental medium as a whole. 
 
 1.5.2.  This Manual is organized into four major Chapters, each associated with a stage in a 
typical Superfund project life cycle. These Chapters are supported by Appendices that provide 
detailed statistical or technical explanations of concepts or techniques used within the main sec-
tions.  
 
 1.5.3.  The document is organized as follows: 
 

Chapter 1 Introduction  
Chapter 2 Preliminary Assessment (PA)/Site Investigation (SI) 
Chapter 3 Remedial Investigation/Feasibility Study (RI/FS) 
Chapter 4 Remedial Design (RD)/Remedial Action (RA) 
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Appendix A References 
Appendix B Statistical Tables 
Appendix C Sampling Strategies 
Appendix D Descriptive Statistics 
Appendix E Assumptions of Distribution 
Appendix F Testing for Normality 
Appendix G Detection Limits and Quantitation Limits 
Appendix H Censored Data 
Appendix I Identification and Handling of Outliers 
Appendix J Graphical Tools 
Appendix K Intervals and Limits 
Appendix L Hypothesis Testing—Simple Cases 
Appendix M Hypothesis Testing—Two-Population and General Cases 
Appendix N Hypothesis Testing—Tests of Dispersion 
Appendix O Measures of Correlation 
Appendix P Comparing Laboratory and Field Data 
Appendix Q Trend Analysis 
Appendix R Geostatistics 
Appendix S Geochemical Trend Analysis 
Glossary 

 
 1.5.4.  Statistical terms unfamiliar to some readers may be used in the four main chapters. 
When used for the first time, these terms will be printed in italics and footnoted. The footnote 
will direct the reader to the appropriate Appendix for a detailed explanation of the term. To dem-
onstrate the types of statistical concepts necessary for the planning stages of environmental pro-
jects, concepts are presented in the context of Comprehensive Emergency Response, 
Compensation, and Liability Act (CERCLA) projects. The material is applicable to Resource 
Conservation and Recovery Act (RCRA) projects as well. The steps involved in the two pro-
grams are similar except for the use of different terminology and the applicable regulations. Ta-
ble 1-1 presents a terminology crosswalk for the stages of CERCLA and RCRA investigations. 
 
 1.5.5.  In the following Chapters of this document, major stages that require data gathering 
and evaluation are presented, and to the extent that statistical processes are applicable, examples 
are provided from case studies illustrating the application of those statistical processes. Some 
statistical elements may apply in more than one phase of the project life cycle. The Appendices 
provide detailed instructions on implementing the statistical processes. 
 
 1.5.6.  The CERCLA project life cycle is not always linear. As information regarding a 
given site is gathered, additional questions may be raised about a previously unrecognized threat 
to human health or the environment. In that case, the process can repeat in whole or in part, cre-
ating a series of loops to previous portions of the cycle. In addition, at any point in the process, 
emergency activities (e.g., “time critical” remedial actions) may occur at earlier or later times in 
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the cycle. Finally, the process can terminate at the end of any given phase in a “no further action” 
determination. 
 
Table 1-1. 
Project Phase Crosswalk between CERCLA and RCRA 

CERCLA Project Phase RCRA Project Phase 
Discovery and Notification Permit Application 
Preliminary Assessment RCRA Facility Assessment 
Site Investigation Site Inspection 
Hazard Ranking  Administrative Order  
Remedial Investigation RCRA Facility Investigation 
Feasibility Study Corrective Measures Study 
Proposed Plan Statement of Basis 
Record of Decision RCRA Permit 
Remedial Design Remedy Design 
Remedial Action Corrective Measures Implementation 
Five Year Review Monitoring/Annual Report 
Closeout Closure 

 
 1.5.7.  The remedial action process under CERCLA is necessarily iterative and the same 
statistical tools can be employed repeatedly to address the original problem or newly identified 
issues at the site. For purposes of this text, however, we will assume a linear progression through 
an idealized project life cycle, consistent with the instructions contained in EM 200-1-2. 
 
 
 1.5.8.  In the Technical Project Planning Process, the user is encouraged to identify the 
appropriate project phase for a given segment of work, then reference matching portions of this 
Manual for statistical guidance and methods appropriate to that phase. 
 
1.6.  Technical Project Planning and the Project Life Cycle.  EPA QA/G-4 states, “EPA 
Order 5360.1 A2 [requires that] all EPA organizations (and organizations with extramural 
agreements with EPA) follow a systematic planning process to develop acceptance or perform-
ance criteria for the collection, evaluation, or use of environmental data.” Similarly, ER 5-1-11 
states, “Requirements for quality must be addressed during the planning phase of a project’s life 
cycle, rather than waiting until the review or inspection stage.” Thus, a systematic planning 
process of some sort is required for all HTRW projects involving the collection of data. 
 
 1.6.1.  The EPA approach to systematic planning is described in detail in EPA QA/G-4 and 
is called the Data Quality Objectives (DQO) process. It is a seven-step process, which has as its 
goal the design of legally and scientifically defensible sampling strategies. The DQO guidance 
generally assumes that decision-making requires a probabilistic approach. Fundamental to the 
DQO process is identifying some statistic describing an environmental site that is compared via a 
statistical process to either a fixed threshold or risk-based value, or a statistical comparison of 
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some descriptive measure of data for two or more variables. The DQO process also incorporates 
statistical tools for estimating such things as the number of samples required to measure a site 
characteristic, spacing of sampling locations, and frequency of sampling. This permits data users 
to make decisions with specific degrees of statistical confidence. 
 
 1.6.2.  The USACE TPP process is broader in scope, with the EPA’s DQO process as one 
step within it, to the extent that probabilistic decision-making is appropriate to the goals of the 
project. The intent of the TPP process is to “get to closure” and to provide documentation of 
project decisions and project performance. The TPP process is useful for all sites, regardless of 
whether probabilistic decision-making is involved. It is highly flexible and promotes an approach 
that balances the size and complexity of a given site or problem with the level of effort involved 
in the planning process. 
 
 1.6.3.  As described in EM 200-1-2, there are four phases to the TPP process, as follows. 
 
 1.6.3.1.  Identify the Current Project Phase.  The project manager establishes a project 
team to encompass all of the perspectives and skills required to take the project from beginning 
to end. The project manager briefs the team on client goals and existing site information and de-
velops a conceptual model for the site. A broad, overall approach to the work is agreed upon, in-
cluding an assessment of the most likely remedies or outcomes for the site. The work is broken 
down into clearly defined executable stages and the current stage of work is identified. 
 
 1.6.3.2.  Determine Data Needs.  Allowing all perspectives to be addressed, the team 
identifies the data required for each data user type (e.g., hydrogeologic, chemical, health and 
safety, risk assessment, engineering, etc.). The team reviews sources of existing information for 
availability, quality, and applicability to the current stage of work, and identifies data gaps that 
only new data can fill. 
 
 1.6.3.3.  Develop Data Collection Options.  With their respective needs defined, the team 
members decide on the best approach to obtain the required data. Usually, the team assesses a 
number of differing approaches and selects the approach that provides all of the requisite data 
with the best balance of available resources, measurement quality, and client risk tolerance. The 
TPP process clearly defines three data collection options: basic, optimum, and excessive. A basic 
sampling approach provides data applicable only to the current stage of work, whereas an opti-
mum approach addresses both current data needs and anticipated future needs as well. An ap-
proach not focused on the specific data required to “get to closure” is excessive and should be 
avoided. 
 
 1.6.3.4.  Finalize the Data Collection Program.  At this point, the team encourages clients, 
regulators, the public, and in some cases other parties, to take part in the decision-making 
process. Specific DQO statements are prepared for each data user and data type and, to the extent 
that probabilistic decision-making is appropriate, the EPA’s DQO guidance document (EPA 
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QA/G-4) is used and applied to these statements. From these DQO statements, scopes of work 
and other project controlling documents (PCDs) such as work plans, quality assurance 
(QA)/quality control (QC) plans, field sampling plans (FSPs), etc., are derived and cost estimates 
generated. 
 
 1.6.4.  Table 1-2 provides a crosswalk between the EPA DQO Process and the USACE 
TPP process. 
 
Table 1-2. 
Crosswalk Between the TPP and DQO Processes 

USACE TPP Process 
     

EPA's DQO Process    Phase I Phase II Phase III Phase IV 
Step 1 

State the Problem  Develop Data 
Collection Options 

Finalize Data Col-
lection Program 

Step 2 
Identify the Decision  

Identify the 
Current Project    

Step 3 
Identify Inputs to the Decision     

Step 4 
Define the Study Boundaries     

Step 5 
Develop a Decision Rule  Identify the 

Current Project   

Step 6 
Specify Limits on Decision Error   

Determine Data 
Needs 

  

Develop Data 
Collection Options 

Step 7 
Optimize the Design       

  
Finalize Data Col-
lection Program 

 
 1.6.5.  Failure to apply, or to apply properly, the TPP process can result in a variety of 
negative consequences. Failure to properly plan for data collection may require more time and 
money to implement the work. Lack of planning may extend the time it takes to validate work 
because both objectives and verification methods may be unclear. Poor planning may create the 
need for extensive rework or remobilization. Finally, lack of advance planning can cause in-
creases in legal risk to the client and to the USACE by increasing the potential for decision error. 
On the other hand, too great an emphasis on planning extends the planning cycle and the check-
ing cycle, depleting the available resources. 
 
1.7.  Data Quality Objectives, Data Quality Indicators, and Measurement Quality Objec-
tives.  This paragraph provides a conceptual understanding of DQOs in the context of project 
planning for environmental investigations and remediations. The terminology is less important 
than the underlying concepts that support the decision-making process, as long as all parties pos-
sess a common understanding of that process. Project planners derive DQOs from scientific ob-
jectives, as well as social and economic objectives and the regulatory objectives of the 
environmental program under which the project is implemented. DQOs are technical, goal-
oriented, qualitative, and quantitative statements derived from the planning process that clarify 
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study objectives, define the appropriate type of data, and specify tolerable levels of potential de-
cision error. The DQO process typically uses statistics and is the basis for establishing the quality 
and quantity of data needed to support decisions. The DQO process does not establish specifica-
tions for data quality—called measurement quality objectives (MQOs)—or the mechanisms for 
measuring conformance to those specifications—called data quality indicators (DQIs). MQOs 
and DQIs are discussed in additional detail below. 
 
 1.7.1.  Data Quality.  Data quality depends on the integrity of each element in a series of 
events. It is critical to collect samples that are representative of the features of the environmental 
population being investigated in the study area. Representativeness depends on factors such as 
sample frequency, location, time of collection, and the nature of the sampled medium. Pre-
testing factors include sample containerization, preservation, transportation, and storage. Sample 
analysis factors generally include sample homogenization, sub-sampling, sample preparation 
(such as extraction and cleanup), as well as the instrumental analysis of the sample. The final 
steps of the process include data generation, reduction, and review. 
 
 1.7.1.1.  Historically, attention has been focused primarily on the analytical component of 
data quality rather than on “total measurement system quality.” Environmental decision-makers 
and practitioners tend to assume that data quality is primarily determined by the analytical meth-
odology. For example, as fixed laboratory methods tend to be superior to field methods in terms 
of analytical uncertainty, data produced from field methods have been viewed to be too uncertain 
to support critical project decisions. However, defensible decisions are possible only when data 
quality encompasses total uncertainty rather than the uncertainty associated with only the ana-
lytical portion of the investigation. The value of data is limited less by the analytical procedures 
than by the quality of the sampling design* and the inherent variability of the environmental 
population of interest or condition being measured (the “field” component of variability). Be-
cause analytical uncertainty is typically small relative to field uncertainty, data quality usually 
depends more on sampling design than the quality of the individual test methods. 
 
 1.7.1.2.  Table 1-3 summarizes sources or components of variability for environmental 
studies and how they are measured and controlled.  
 
 1.7.1.3.  Regulators have also historically insisted on adhering to pre-approved analytical 
methods because of a perception that this ensures defensible data and that definitive data will be 
produced when EPA-approved analytical methods and QA/QC requirements are used. Though 
adequate data quality is often achieved using EPA-approved analytical methods, they are insuffi-
cient to ensure data of high quality. Efforts to improve data quality have primarily focused upon 
increasing laboratory oversight, rather than on developing mechanisms to manage the largest 
sources of uncertainty in data, which are issues related to sampling. Furthermore, prescriptive 
methods are scientifically feasible only when the sample matrices do not vary in any manner that 

 
* Appendix C. 
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will affect the reliability of the analyses. As all analytical methods are potentially subject to 
chemical and physical interferences, given the variability and complexity of environmental ma-
trices, it is unlikely that “one-size-fits-all” analytical methodologies are viable for all projects.  
 
Table 1-3. 
Variability in Environmental Studies 

Source of Variability Measurement Method Control Methods 
Analytical Variability 

Analytical instrumentation Replicate measurements of instru-
mental standards (most common for 
inorganic analysis) 

Regular preventive maintenance 

Analytical method Duplicate analytical spikes, lab-
blind field duplicate samples 

Use of standard methods docu-
mented as standard operating proce-
dures; control of standards and 
reagents; control of instrument con-
ditions 

Sample preparation method Duplicate control samples and 
matrix spike/matrix spike duplicates 

Use of standard methods docu-
mented as standard operating 
procedures; control of standards and 
reagents; regular, close supervision 

Analyst Analyst demonstration of capability, 
blank spikes/performance evaluation 
(PE) samples 

Inter-laboratory comparison studies; 
internal PE and auditing programs; 
analyst training; regular, close 
supervision 

Field Variability 
Sampling equipment Field blanks Routine inspection and preventive 

maintenance; decontamination; se-
lection of appropriate equipment for 
representative samples 

Sampling method Method-specific standard deviation 
of field duplicate results 

Selection of appropriate methods for 
representative samples 

Sampler Inter- and intra sampler standard 
deviation of field replicate results 

Independent auditing program; 
training; regular, close supervision 

Matrix heterogeneity Field duplicates or replicates, matrix 
specific standard deviation of field 
replicates, matrix spike duplicates 

Effective field mixing of sample 
components; compositing 

Sample selection Site-wide or stratum-specific stan-
dard deviation of field replicate 
results 

Representative sampling plan; suffi-
cient number of samples; statisti-
cally-based sampling design 

Note: Duplicates are separate aliquots of the same sample; replicates are a second sample from the same loca-
tion. 

 
 1.7.1.4.  The EPA has recently clarified its intended meaning of the term “data quality” in 
its broadest sense by defining it as “the totality of features and characteristics of data that bear on 
its ability to meet the stated or implied needs and expectations of the client.” One must know 
how a data set is to be used to establish a relevant benchmark for judging whether the data qual-
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ity is adequate. Linking data quality directly to their intended use provides a firm foundation for 
building a vocabulary that distinguishes the individual components of overall data quality. 
 
 1.7.2.  Data Quality Indicators.  DQIs are qualitative and quantitative descriptions of data 
quality attributes: the various properties of analytical data historically expressed as precision, ac-
curacy, representativeness, comparability, and completeness. Collectively, these factors are 
called the PARCC parameters. These are discussed in detail in EPA guidance documentation. 
Because it is evaluated at the same time, an additional parameter often combined with the 
PARCC parameters is sensitivity, which is the ability of an analytical method or technology to 
reliably identify a compound in the sample medium. 
 
 1.7.2.1.  Precision, accuracy, and sensitivity are quantitative properties of data directly 
measured through an appropriate analytical QC program. Representativeness is primarily a 
qualitative data quality indicator that is a function of the adequacy of the sampling design (for 
example, the number of samples and the manner in which samples were collected). Representa-
tiveness, in the context of an analytical measurement, can be inferred by examining factors such 
as duplicates/replicates, blanks, and sample collection procedures. Comparability is a qualitative 
measure that is critically important when hypothesis testing* involves comparing different 
populations, disparate in either space or time. 
 
 1.7.2.2.  Completeness has been assigned an arbitrary goal of 80 to 100% based on the 
premise that decisions are still possible if a limited portion of the data are discarded (for exam-
ple, because of quality control problems). However, the goal is based primarily on practical ex-
perience and is not mathematically based. Completeness should be evaluated in the context of 
project objectives.  
 
 1.7.2.3.  In addition to these, selectivity is also a data quality indicator. “Selectivity” is the 
ability of an analytical method to identify the analyte of concern, e.g., the existence of other 
analytes in a sample or other interferences may mask the presence of the target analyte. 
 
 1.7.2.4.  There may be more than one DQI for a single data quality attribute. For example, 
sensitivity is generally thought of in terms of detection, quantitation, or reporting limits, i.e., the 
lowest value that an analytical method can reliably detect or report. However, another important 
element of sensitivity is discrimination, the ability to distinguish between values to a given de-
gree of precision. In other words, can the method tell the difference between values of 1 and 2 
units, or only differences between 10 and 20 units? When developing DQIs, it is important to 
define them in terms of all the important attributes and assign specific numeric values to them as 
often as practicable. 
 

 
* Appendices O and P. 
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 1.7.3.  Measurement Quality Objectives.  MQOs are project-specific values assigned to 
DQIs derived from project-specific DQOs. MQOs are acceptance criteria for the DQIs and are 
derived by considering the level of measurement system performance needed to actually achieve 
project goals. MQOs are not intended to be technology- or method-specific. As with DQOs, 
MQOs specify what the level of data performance should be, but not how that level of data per-
formance is to be achieved. A large part of the variability in environmental data stems from sam-
pling considerations. MQOs should balance the relative contributions from analytical 
uncertainties and from sampling uncertainties. In many environmental media, matrix heteroge-
neity causes sampling variability to overwhelm analytical variability. Historically, the term 
MQO was restricted to the analytical side of the measurement process, but the broader concept of 
DQO (or decision confidence objectives) requires that sampling considerations be included. The 
importance of including both the sampling and analytical component of MQOs when assessing 
overall data quality cannot be overemphasized. 
 
 1.7.4.  Relationships Among Decision Goals, DQOs, MQOs, and QC Protocols.  During 
project planning, there should be a logical conceptual progression in the development of decision 
goals, DQOs, MQOs, and QC acceptance criteria. However, in practice, this will be a non-linear 
process.  
 
 1.7.4.1.  As project planning develops, the following should be clearly presented: 
 
 1.7.4.1.1.  General decision goals. 
 
 1.7.4.1.2.  Technically expressed project goals (DQOs), and decision rules that will guide 
project decision-making. 
 
 1.7.4.1.3.  Tolerable uncertainties for decisions. 
 
 1.7.4.1.4.  Uncertainties that create decision errors. 
 
 1.7.4.1.5.  Strategies for managing the uncertainties to achieve the desired tolerances for 
decision errors. 
 
 1.7.4.2.  In the beginning of the project, program managers often set broad, non-technical 
goals. The next step is to translate these broad, non-technical goals into more technically oriented 
goals that can address specific considerations such as the following. 
 
 1.7.4.2.1.  Regulations—what are the applicable environmental regulations? 
 
 1.7.4.2.2.  Confidence in the outcome—how certain do we need to be by the end of the 
project that we have achieved goals such as risk reduction or regulatory compliance? 
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 1.7.4.2.3.  What are the constraints that need to be accommodated? 
 
 1.7.4.3.  The next level of technical detail for data collection involves identifying DQIs and 
assigning to them project-specific MQOs that will be needed to achieve the project DQOs. At 
this point, the project team begins to consider in detail the options available for acquiring the 
needed measurements and selecting those that best meet the needs of the program. These deci-
sions are documented in sampling and QC plans that specify the controls that will be used to en-
sure that MQOs are met and that any deviations are appropriately addressed. 
 
 1.7.4.4.  Because sampling design and analytical strategy interact to influence the statistical 
confidence in final decisions, interaction among a statistician, a sampling expert, and an 
analytical chemist is critical for selecting a final strategy that can achieve project goals cost-
effectively. The statistician is concerned with managing the overall variability of data, and with 
interpreting data with respect to the decisions being made. A statistician is a person having ade-
quate familiarity with statistical concepts to correctly apply the required tests; this does not nec-
essarily require a degree in statistics. The field sampling expert is responsible for implementing 
the sampling design while managing contributions to the sampling variability as actual sample 
locations are selected and as specimens are collected. The chemist is responsible for managing 
components of variability that stem from the analytical effort. 
 
 1.7.4.5.  In summary, the conceptual progression starts with the project-specific decision 
goals, and then moves from broader, higher-level goals to narrow, more technically detailed ar-
ticulations of data quality needs. Project decisions are translated into project-specific DQOs; then 
into project-specific MQOs; then into technology/method selection and development of a 
method-specific QC protocol that blends QA/QC needs of the technology with the QA/QC needs 
of the project. Then the process reverses. The data must be assessed against the project MQOs to 
document that data quality meets the decision-making needs of the project. 
 
 1.7.4.6.  Figure 1-1 presents the life cycle in project planning. Figure 1-2 illustrates which 
guidance documents are useful in the planning phases of a project. 
 
1.8.  Statistics in Environmental Project Planning.  The number of individual samples 
collected during a given study is called sample size and is generally designated by the statistic n. 
In order for decisions based on that sample to be meaningful in any scientific sense, the sample 
size has to be sufficiently large to account for the inherent variability in the characteristics 
measured. Sample size should be dependent on the variability in the measured condition but, in 
practice, is often limited by available resources. 
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Figure 1-1.  Project planning life cycle. 
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TPP Phase Guidance Documents 

EM 1110-1-502 
EPA 230 R-92-14, R-94-004, R-95-005, R-95-06 
EPA 540 R-95-140, R-95-141, R-97-006, R-97-028 
OSWER 9360.4-16

Phase II:  Determine Data Needs 
 

• Develop Data Quality Objectives 

Phase III:  Develop Data Collection 
Options 
 

• Develop Sampling Plan 
 

• Establish Method Quality Objective 
 

• Document Sampling and Analysis Plan 

Phase IV:  Finalize Data Collection 
Program 

ANSI/ASQC E-4 
EPA QA/G-1 
EPA QA/G4, G4D, G4HW 
EM 200-1-2 

EPA QA/G10, G11 
EM-200-1-6

EPA QA/G5, G5S, G6 
EM 200-1-3

EPA QA/G7, G8 
EPA 540 R-01-007, R-01-008

EPA QA/G9, G9D 
EM 200-1-4• Data Verification and Validation 

 

 
 

Figure 1-2.  Guidance document life cycle.  
 
 1.8.1.  A hypothetical illustration may be helpful in understanding this relationship. Let us 
suppose that a researcher wants to know the average concentration of a particular chemical con-
stituent in the air of a sealed room. The constituent of interest is initially absent from the room 
and the researcher releases the chemical into the room from a port in the north wall of the room. 
Immediately after opening the port, a measurement taken along the south wall will not detect the 
presence of the chemical, while a sample taken adjacent to the port will display a high concen-
tration. As the chemical disperses throughout the room via various physical processes, a single 
sample taken at any location in the room will not provide a representative value for the average 
concentration in the room as a whole. Even if a single sample were collected some time well af-
ter the release of the gas (i.e., after an equilibrium state of dispersion has been achieved), de-
pending upon the physical characteristics of the chemical and the room, it may not be uniformly 
spread throughout the room. Thus, a sample taken at any single randomly selected location will 
not give a representative result for the room as a whole, or even necessarily a good approxima-
tion. 
 



EM 1110-1-4014 
31 Jan 08 

 

1-13 

 1.8.2.  Only when the chemical is uniformly dispersed throughout the three dimensions of 
the room, and is held static in that condition, can a representative result be arrived at from a sin-
gle sample. The analytical error or measurement uncertainty would also need to be negligible 
when analyzing the one sample. In all other cases, the true population mean (μ)* (the real aver-
age concentration for the room as a whole) must be approximated by averaging the results from a 
number of samples.  
 
 1.8.3.  The greater the variability in the chemical concentration throughout the room is, the 
more individual samples will be required to formulate an accurate approximation of the true 
average. Therefore, as decision confidence requirements increase (i.e., as confidence increases 
toward 1 or 0 decision error tolerance), the number of samples required to correctly estimate any 
statistical parameter will also increase.  
 
 1.8.4.  Variability is a measure of the degree of dispersion (or spread) for a set of values. 
The sample variance†, s2, and sample standard deviation, s, measure the spread of individual 
measurements or values about the sample mean‡, x . Some factors that may contribute to 
variability in environmental populations are the following. 
 
 1.8.4.1.  Distance, direction, and elevation relative to point, area, or mobile population 
sources. 
 
 1.8.4.2.  Non-uniform distribution of pollution in environmental media owing to topogra-
phy, hydrogeology, meteorology, actions of tides, and biological, chemical, and physical redis-
tribution mechanisms. 
 
 1.8.4.3.  Diversity in species composition, sex, mobility, and preferred habitats of biota. 
 
 1.8.4.4.  Variation in natural background levels over time and space. 
 
 1.8.4.5.  Variable source emissions, flow rates, and dispersion parameters over time. 
 
 1.8.4.6.  Accumulation or degradation of pollutants over time. 
 
 1.8.5.  For a particular sampling plan where n measurements are taken for some contami-
nant of concern in a study area, a (sample) mean concentration ( x ) and (sample) standard devia-
tion (s) for the contaminant are calculated. The standard deviation measures the variability of the 
individual measurements. However, it is often the case that it is the variability of x  itself that is 
of interest. The variability of the mean is often measured by the standard deviation of the sample 

                                                 
* Appendices C and D. 
† Appendices D, E, and H. 
‡ Appendices C, D, E, F, G, and H. 
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mean, xs  = ns / . Those two sample values, x  and xs , are used to estimate the interval (range) 
within which the true mean (μ) of the chemical concentration probably occurs, under the as-
sumption that the individual concentrations exhibit a normal (bell-shaped) distribution. 
 
 1.8.6.  The relationship among variability, available resources (expressed as sample num-
ber, n), and decision confidence or lack of uncertainty is fundamental to the project planning 
process. In general, cost increases as the desired level of confidence or lack of uncertainty in-
creases. Thus, balancing cost and confidence is a primary objective of the planning process. As 
illustrated in Figure 1-3, this can be depicted as a balance between cost and level of uncertainty: 
reducing uncertainty increases project costs. As the number of samples increases, the uncertainty 
decreases but the cost increases. As depicted in Figure 1-3, project planning is the fulcrum of a 
seesaw balancing cost and uncertainty.  
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Figure 1-3.  Balance between resources and certainty. 
 
 1.8.7.  When dealing with regulators and clients, it is often beneficial to illustrate, in 
mathematical terms, the relationship among the project objectives, the desired confidence for 
decisions, and the cost of the project.  
 
 1.8.8.  Figure 1-4 illustrates the relationship of factors that need to be considered in 
successful project planning. 
 
 1.8.9.  The purpose of the project planning triad approach is managing total decision 
uncertainty. Total uncertainty may be viewed as the sum of analytical and field uncertainty. 
Analytical uncertainty is the portion that arises from variability and bias in the instrumental or 
analytical test method (as indicated in Table 1-3). Field uncertainty depends on factors such as 
the temporal and spatial variability of the target environmental population (Table 1-3). Field 
variability typically exceeds the analytical variability and primarily depends on the sampling de-
sign (e.g., the total number of samples, the sample mass, and the nature of field sampling and 
laboratory sub-sampling methods). In general, data produced by screening analytical methods 
will contain more analytical variability and bias than data produced by definitive methods. How-
ever, field analyses are less costly than laboratory analyses, so a greater number of field samples 
can be analyzed than laboratory samples for the same fixed cost. Thus, even though field analy-
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ses typically contain higher analytical variability relative to laboratory analyses, a larger number 
of field samples can reduce the total variability more effectively than a smaller number of simi-
larly collected laboratory samples. Field analytical methods should be scrutinized, however, be-
cause the total uncertainty does not depend on measurement precision (variability) alone; it also 
depends on a number of data quality elements such as analytical bias, sensitivity, and specificity 
(i.e., the ability to detect or quantify the analyte or contaminant of concern in the presence of 
other analytes or interferences in the sample). 
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Figure 1-4.  Project planning triad. 
 
 1.8.10.  The triad approach also makes use of rapid turn-around times for field methods. 
Field methods have an advantage over laboratory methods in that they are capable of providing 
data to support decisions while mobilized in the field. For example, managers can modify sample 
locations on the basis of new information about the extent of contamination during a single mo-
bilization. In contrast, fixed laboratory data packages are produced several weeks after sampling 
is complete. Remobilization may be necessary to resolve questions arising from laboratory re-
sults. 
 
 1.8.11.  The triad approach is especially useful for statistical designs such as adaptive 
sampling,* ranked set sampling∗, and systematic sampling∗, as these designs often require larger 
numbers of samples. To successfully implement the approach, the capability of the field methods 
must be scrutinized with respect to project data quality and measurement objectives. For exam-
ple, many field methods are not as sensitive or selective as laboratory methods. If the primary 
objective is to characterize contamination with respect to some fixed risk-based limit or cleanup 
goal, and the detection limit is greater than the decision limit, then comparisons of the field data 
                                                 
* Appendices C and D. 
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to the decision limit will not be viable. Comparisons of field and laboratory data during a pilot 
test phase to verify or establish correlation between two sets of results is a useful approach for 
evaluating and selecting field methodologies. 
 
 1.8.12.  The triad approach relies on thorough, systematic planning to articulate clear pro-
ject goals and encourages negotiations among stakeholders to determine the desired decision 
confidence. A multidisciplinary technical team then determines what information is needed to 
meet those goals. A key feature of this planning is identifying what uncertainties could compro-
mise decision confidence and allowing team members with appropriate sampling and analysis 
expertise to explore cost-effective strategies to minimize them. Often, the most cost-effective 
work strategy involves the second leg of the triad, which is using a dynamic work plan to make 
real-time decisions in the field. The third leg of the triad uses field analytical methods to generate 
real-time on-site measurements that support the dynamic work plan. Projects managed using 
these concepts have demonstrated cost savings of up to 50% over traditional approaches.  
 
 1.8.13.  The contributions to the total variability (i.e., the total precision component of the 
uncertainty) can be expressed as a vector sum of an analytical component and sampling compo-
nent of the variability (e.g., or as a ratio of the sampling to analytical variability, say 9:1). Al-
though the analytical variability is minimized by conventional laboratory analyses, sampling 
variability is often not adequately addressed. Budget constraints invariably limit the number of 
laboratory analyses. A combination of high laboratory analysis costs and a poor sampling design 
often results in a low sampling density that is not very representative of the environmental 
population of interest. Field studies consistently find that the sampling design, rather than ana-
lytical considerations, predominately governs the total variability. 
 
 1.8.14.  When analytical costs are lower, more samples can be analyzed, yielding more 
confidence in the representativeness of the data set (Phase 1). This is most effective if field 
methods are used to generate data and a dynamic work plan rapidly resolves any uncertainty 
about location and volume of contamination (for example, locate and delineate hot-spots in a 
single field mobilization). If the analytical data quality used to manage sampling uncertainty is 
less than what is eventually needed to make final project decisions, such as whether the site can 
be declared clean, more expensive definitive analyses may be performed on samples selected to 
refine the feature of interest (Phase 2). However, if the initial method produces data of sufficient 
rigor to support defensible decision-making, then additional, expensive analyses would be re-
dundant and unnecessary.  
 
 1.8.15.  In Phase 1, analytical uncertainty (variability) increases so that unit sample costs 
decrease, allowing a higher sampling density than with the conventional approach. As a result, 
sampling uncertainty (variability) decreases, lowering the overall uncertainty in data interpreta-
tion. Sampling uncertainty is further decreased if hot-spot removal reduces the variability in 
contaminant concentration and if representative sampling locations for more rigorous analysis 
are identified based on Phase 1 information. The vector representation of uncertainty for this ap-
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proach indicates that the overall uncertainty in the data set for site decision-making will be much 
less than the overall uncertainty in the conventional method.  
 
 1.8.16.  Data quality should be judged on whether both the sampling and the analytical 
uncertainties in the data sets support decision-making at the desired degree of decision confi-
dence. However, relying solely on regulator-approved, definitive analytical methods, while ig-
noring sampling uncertainty, easily produces uncertain decisions.  
 
 1.8.17.  When field analytical methods are used, the process and resulting data are often 
referred to as “field screening.” The term is misleading when field methods are of adequate 
quality to satisfy project DQOs; field analyses are not necessarily “screening” or inferior to 
fixed-laboratory analyses in the context of the overall end use of the data. Here, alternate termi-
nology is proposed to reflect current EPA guidance that both sampling and analytical uncertain-
ties must be managed to assess data quality. We consider the two terms “effective data” and 
“decision-quality data,” to be equivalent when describing data of known quality that are effective 
for making defensible primary project decisions, because both sampling and analytical uncer-
tainties have been explicitly managed to the degree necessary to meet clearly defined project 
goals. 
 
 1.8.18.  Primary project decisions are those decisions that drive resolution of the project, 
such as whether or not a site is contaminated and what subsequent actions, if any, will be taken. 
Therefore, contaminant data are usually the data sets of interest. But data sets can interact in 
complex ways, and are referred to as collaborative data sets. For example, a contaminant data set 
considered alone might not be effective for making project decisions, yet the same data set might 
be more effective when combined with other data or information to manage the remaining un-
certainties. Ancillary data refers to data used to support many other project decisions that fall un-
der worker health and safety monitoring, data that help in the understanding of fate and 
disposition of contaminants, and data that aid in decisions about the representativeness of envi-
ronmental samples. 
 
 1.8.19.  This decision-making paradigm and terminology embodies the central theme of 
systematic project planning, the management of decision uncertainty.  


