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CHAPTER 1 
Introduction 

 
1.1.  Purpose.  This document is intended to serve as a guide to project team members for the 
use of statistics in environmental decision-making. 
 
1.2.  Applicability.  The U.S. Army Corps of Engineers (USACE) developed this document 
within the broader scope of Technical Project Planning (TPP), recognizing that understanding 
statistical evaluations can improve project planning and implementation at hazardous, toxic, and 
radioactive waste (HTRW) sites. 
 
1.3.  Distribution Statement. Approved for public release; distribution unlimited. 
 
1.4.  References.  References are contained in Appendix A. 
 
1.5.  Introduction.  This Manual’s primary objective is to improve a decision-maker’s under-
standing of common environmental statistical evaluations. The applicability of statistical tests 
and considerations is presented in the context of a typical environmental project life cycle. This 
document should serve as a first step in explaining statistical concepts and their application at 
HTRW sites. It is not intended to replace more robust statistical texts or electronic statistical 
software. 
 
 1.5.1.  Statistics are applicable to environmental projects throughout their entire life cycle 
and yield defensible, cost-effective solutions to environmental questions. Statistics can be used to 
guide the selection of sampling locations, analyze large data sets, and verify that project objec-
tives have been met. Statistics are of particular importance for quantifying the power and limita-
tions of environmental data, specifically because these data are usually limited. It is not possible 
to collect and analyze every bit of an environmental medium (for example, soil, sediment, 
groundwater, or surface water) at a site; instead, a set of sample data is used to characterize the 
environmental medium as a whole. 
 
 1.5.2.  This Manual is organized into four major Chapters, each associated with a stage in a 
typical Superfund project life cycle. These Chapters are supported by Appendices that provide 
detailed statistical or technical explanations of concepts or techniques used within the main sec-
tions.  
 
 1.5.3.  The document is organized as follows: 
 

Chapter 1 Introduction  
Chapter 2 Preliminary Assessment (PA)/Site Investigation (SI) 
Chapter 3 Remedial Investigation/Feasibility Study (RI/FS) 
Chapter 4 Remedial Design (RD)/Remedial Action (RA) 



EM 1110-1-4014 
31 Jan 08 
 

1-2 

Appendix A References 
Appendix B Statistical Tables 
Appendix C Sampling Strategies 
Appendix D Descriptive Statistics 
Appendix E Assumptions of Distribution 
Appendix F Testing for Normality 
Appendix G Detection Limits and Quantitation Limits 
Appendix H Censored Data 
Appendix I Identification and Handling of Outliers 
Appendix J Graphical Tools 
Appendix K Intervals and Limits 
Appendix L Hypothesis Testing—Simple Cases 
Appendix M Hypothesis Testing—Two-Population and General Cases 
Appendix N Hypothesis Testing—Tests of Dispersion 
Appendix O Measures of Correlation 
Appendix P Comparing Laboratory and Field Data 
Appendix Q Trend Analysis 
Appendix R Geostatistics 
Appendix S Geochemical Trend Analysis 
Glossary 

 
 1.5.4.  Statistical terms unfamiliar to some readers may be used in the four main chapters. 
When used for the first time, these terms will be printed in italics and footnoted. The footnote 
will direct the reader to the appropriate Appendix for a detailed explanation of the term. To dem-
onstrate the types of statistical concepts necessary for the planning stages of environmental pro-
jects, concepts are presented in the context of Comprehensive Emergency Response, 
Compensation, and Liability Act (CERCLA) projects. The material is applicable to Resource 
Conservation and Recovery Act (RCRA) projects as well. The steps involved in the two pro-
grams are similar except for the use of different terminology and the applicable regulations. Ta-
ble 1-1 presents a terminology crosswalk for the stages of CERCLA and RCRA investigations. 
 
 1.5.5.  In the following Chapters of this document, major stages that require data gathering 
and evaluation are presented, and to the extent that statistical processes are applicable, examples 
are provided from case studies illustrating the application of those statistical processes. Some 
statistical elements may apply in more than one phase of the project life cycle. The Appendices 
provide detailed instructions on implementing the statistical processes. 
 
 1.5.6.  The CERCLA project life cycle is not always linear. As information regarding a 
given site is gathered, additional questions may be raised about a previously unrecognized threat 
to human health or the environment. In that case, the process can repeat in whole or in part, cre-
ating a series of loops to previous portions of the cycle. In addition, at any point in the process, 
emergency activities (e.g., “time critical” remedial actions) may occur at earlier or later times in 
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the cycle. Finally, the process can terminate at the end of any given phase in a “no further action” 
determination. 
 
Table 1-1. 
Project Phase Crosswalk between CERCLA and RCRA 

CERCLA Project Phase RCRA Project Phase 
Discovery and Notification Permit Application 
Preliminary Assessment RCRA Facility Assessment 
Site Investigation Site Inspection 
Hazard Ranking  Administrative Order  
Remedial Investigation RCRA Facility Investigation 
Feasibility Study Corrective Measures Study 
Proposed Plan Statement of Basis 
Record of Decision RCRA Permit 
Remedial Design Remedy Design 
Remedial Action Corrective Measures Implementation 
Five Year Review Monitoring/Annual Report 
Closeout Closure 

 
 1.5.7.  The remedial action process under CERCLA is necessarily iterative and the same 
statistical tools can be employed repeatedly to address the original problem or newly identified 
issues at the site. For purposes of this text, however, we will assume a linear progression through 
an idealized project life cycle, consistent with the instructions contained in EM 200-1-2. 
 
 
 1.5.8.  In the Technical Project Planning Process, the user is encouraged to identify the 
appropriate project phase for a given segment of work, then reference matching portions of this 
Manual for statistical guidance and methods appropriate to that phase. 
 
1.6.  Technical Project Planning and the Project Life Cycle.  EPA QA/G-4 states, “EPA 
Order 5360.1 A2 [requires that] all EPA organizations (and organizations with extramural 
agreements with EPA) follow a systematic planning process to develop acceptance or perform-
ance criteria for the collection, evaluation, or use of environmental data.” Similarly, ER 5-1-11 
states, “Requirements for quality must be addressed during the planning phase of a project’s life 
cycle, rather than waiting until the review or inspection stage.” Thus, a systematic planning 
process of some sort is required for all HTRW projects involving the collection of data. 
 
 1.6.1.  The EPA approach to systematic planning is described in detail in EPA QA/G-4 and 
is called the Data Quality Objectives (DQO) process. It is a seven-step process, which has as its 
goal the design of legally and scientifically defensible sampling strategies. The DQO guidance 
generally assumes that decision-making requires a probabilistic approach. Fundamental to the 
DQO process is identifying some statistic describing an environmental site that is compared via a 
statistical process to either a fixed threshold or risk-based value, or a statistical comparison of 
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some descriptive measure of data for two or more variables. The DQO process also incorporates 
statistical tools for estimating such things as the number of samples required to measure a site 
characteristic, spacing of sampling locations, and frequency of sampling. This permits data users 
to make decisions with specific degrees of statistical confidence. 
 
 1.6.2.  The USACE TPP process is broader in scope, with the EPA’s DQO process as one 
step within it, to the extent that probabilistic decision-making is appropriate to the goals of the 
project. The intent of the TPP process is to “get to closure” and to provide documentation of 
project decisions and project performance. The TPP process is useful for all sites, regardless of 
whether probabilistic decision-making is involved. It is highly flexible and promotes an approach 
that balances the size and complexity of a given site or problem with the level of effort involved 
in the planning process. 
 
 1.6.3.  As described in EM 200-1-2, there are four phases to the TPP process, as follows. 
 
 1.6.3.1.  Identify the Current Project Phase.  The project manager establishes a project 
team to encompass all of the perspectives and skills required to take the project from beginning 
to end. The project manager briefs the team on client goals and existing site information and de-
velops a conceptual model for the site. A broad, overall approach to the work is agreed upon, in-
cluding an assessment of the most likely remedies or outcomes for the site. The work is broken 
down into clearly defined executable stages and the current stage of work is identified. 
 
 1.6.3.2.  Determine Data Needs.  Allowing all perspectives to be addressed, the team 
identifies the data required for each data user type (e.g., hydrogeologic, chemical, health and 
safety, risk assessment, engineering, etc.). The team reviews sources of existing information for 
availability, quality, and applicability to the current stage of work, and identifies data gaps that 
only new data can fill. 
 
 1.6.3.3.  Develop Data Collection Options.  With their respective needs defined, the team 
members decide on the best approach to obtain the required data. Usually, the team assesses a 
number of differing approaches and selects the approach that provides all of the requisite data 
with the best balance of available resources, measurement quality, and client risk tolerance. The 
TPP process clearly defines three data collection options: basic, optimum, and excessive. A basic 
sampling approach provides data applicable only to the current stage of work, whereas an opti-
mum approach addresses both current data needs and anticipated future needs as well. An ap-
proach not focused on the specific data required to “get to closure” is excessive and should be 
avoided. 
 
 1.6.3.4.  Finalize the Data Collection Program.  At this point, the team encourages clients, 
regulators, the public, and in some cases other parties, to take part in the decision-making 
process. Specific DQO statements are prepared for each data user and data type and, to the extent 
that probabilistic decision-making is appropriate, the EPA’s DQO guidance document (EPA 
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QA/G-4) is used and applied to these statements. From these DQO statements, scopes of work 
and other project controlling documents (PCDs) such as work plans, quality assurance 
(QA)/quality control (QC) plans, field sampling plans (FSPs), etc., are derived and cost estimates 
generated. 
 
 1.6.4.  Table 1-2 provides a crosswalk between the EPA DQO Process and the USACE 
TPP process. 
 
Table 1-2. 
Crosswalk Between the TPP and DQO Processes 

USACE TPP Process 
     

EPA's DQO Process    Phase I Phase II Phase III Phase IV 
Step 1 

State the Problem  Develop Data 
Collection Options 

Finalize Data Col-
lection Program 

Step 2 
Identify the Decision  

Identify the 
Current Project    

Step 3 
Identify Inputs to the Decision     

Step 4 
Define the Study Boundaries     

Step 5 
Develop a Decision Rule  Identify the 

Current Project   

Step 6 
Specify Limits on Decision Error   

Determine Data 
Needs 

  

Develop Data 
Collection Options 

Step 7 
Optimize the Design       

  
Finalize Data Col-
lection Program 

 
 1.6.5.  Failure to apply, or to apply properly, the TPP process can result in a variety of 
negative consequences. Failure to properly plan for data collection may require more time and 
money to implement the work. Lack of planning may extend the time it takes to validate work 
because both objectives and verification methods may be unclear. Poor planning may create the 
need for extensive rework or remobilization. Finally, lack of advance planning can cause in-
creases in legal risk to the client and to the USACE by increasing the potential for decision error. 
On the other hand, too great an emphasis on planning extends the planning cycle and the check-
ing cycle, depleting the available resources. 
 
1.7.  Data Quality Objectives, Data Quality Indicators, and Measurement Quality Objec-
tives.  This paragraph provides a conceptual understanding of DQOs in the context of project 
planning for environmental investigations and remediations. The terminology is less important 
than the underlying concepts that support the decision-making process, as long as all parties pos-
sess a common understanding of that process. Project planners derive DQOs from scientific ob-
jectives, as well as social and economic objectives and the regulatory objectives of the 
environmental program under which the project is implemented. DQOs are technical, goal-
oriented, qualitative, and quantitative statements derived from the planning process that clarify 
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study objectives, define the appropriate type of data, and specify tolerable levels of potential de-
cision error. The DQO process typically uses statistics and is the basis for establishing the quality 
and quantity of data needed to support decisions. The DQO process does not establish specifica-
tions for data quality—called measurement quality objectives (MQOs)—or the mechanisms for 
measuring conformance to those specifications—called data quality indicators (DQIs). MQOs 
and DQIs are discussed in additional detail below. 
 
 1.7.1.  Data Quality.  Data quality depends on the integrity of each element in a series of 
events. It is critical to collect samples that are representative of the features of the environmental 
population being investigated in the study area. Representativeness depends on factors such as 
sample frequency, location, time of collection, and the nature of the sampled medium. Pre-
testing factors include sample containerization, preservation, transportation, and storage. Sample 
analysis factors generally include sample homogenization, sub-sampling, sample preparation 
(such as extraction and cleanup), as well as the instrumental analysis of the sample. The final 
steps of the process include data generation, reduction, and review. 
 
 1.7.1.1.  Historically, attention has been focused primarily on the analytical component of 
data quality rather than on “total measurement system quality.” Environmental decision-makers 
and practitioners tend to assume that data quality is primarily determined by the analytical meth-
odology. For example, as fixed laboratory methods tend to be superior to field methods in terms 
of analytical uncertainty, data produced from field methods have been viewed to be too uncertain 
to support critical project decisions. However, defensible decisions are possible only when data 
quality encompasses total uncertainty rather than the uncertainty associated with only the ana-
lytical portion of the investigation. The value of data is limited less by the analytical procedures 
than by the quality of the sampling design* and the inherent variability of the environmental 
population of interest or condition being measured (the “field” component of variability). Be-
cause analytical uncertainty is typically small relative to field uncertainty, data quality usually 
depends more on sampling design than the quality of the individual test methods. 
 
 1.7.1.2.  Table 1-3 summarizes sources or components of variability for environmental 
studies and how they are measured and controlled.  
 
 1.7.1.3.  Regulators have also historically insisted on adhering to pre-approved analytical 
methods because of a perception that this ensures defensible data and that definitive data will be 
produced when EPA-approved analytical methods and QA/QC requirements are used. Though 
adequate data quality is often achieved using EPA-approved analytical methods, they are insuffi-
cient to ensure data of high quality. Efforts to improve data quality have primarily focused upon 
increasing laboratory oversight, rather than on developing mechanisms to manage the largest 
sources of uncertainty in data, which are issues related to sampling. Furthermore, prescriptive 
methods are scientifically feasible only when the sample matrices do not vary in any manner that 

 
* Appendix C. 
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will affect the reliability of the analyses. As all analytical methods are potentially subject to 
chemical and physical interferences, given the variability and complexity of environmental ma-
trices, it is unlikely that “one-size-fits-all” analytical methodologies are viable for all projects.  
 
Table 1-3. 
Variability in Environmental Studies 

Source of Variability Measurement Method Control Methods 
Analytical Variability 

Analytical instrumentation Replicate measurements of instru-
mental standards (most common for 
inorganic analysis) 

Regular preventive maintenance 

Analytical method Duplicate analytical spikes, lab-
blind field duplicate samples 

Use of standard methods docu-
mented as standard operating proce-
dures; control of standards and 
reagents; control of instrument con-
ditions 

Sample preparation method Duplicate control samples and 
matrix spike/matrix spike duplicates 

Use of standard methods docu-
mented as standard operating 
procedures; control of standards and 
reagents; regular, close supervision 

Analyst Analyst demonstration of capability, 
blank spikes/performance evaluation 
(PE) samples 

Inter-laboratory comparison studies; 
internal PE and auditing programs; 
analyst training; regular, close 
supervision 

Field Variability 
Sampling equipment Field blanks Routine inspection and preventive 

maintenance; decontamination; se-
lection of appropriate equipment for 
representative samples 

Sampling method Method-specific standard deviation 
of field duplicate results 

Selection of appropriate methods for 
representative samples 

Sampler Inter- and intra sampler standard 
deviation of field replicate results 

Independent auditing program; 
training; regular, close supervision 

Matrix heterogeneity Field duplicates or replicates, matrix 
specific standard deviation of field 
replicates, matrix spike duplicates 

Effective field mixing of sample 
components; compositing 

Sample selection Site-wide or stratum-specific stan-
dard deviation of field replicate 
results 

Representative sampling plan; suffi-
cient number of samples; statisti-
cally-based sampling design 

Note: Duplicates are separate aliquots of the same sample; replicates are a second sample from the same loca-
tion. 

 
 1.7.1.4.  The EPA has recently clarified its intended meaning of the term “data quality” in 
its broadest sense by defining it as “the totality of features and characteristics of data that bear on 
its ability to meet the stated or implied needs and expectations of the client.” One must know 
how a data set is to be used to establish a relevant benchmark for judging whether the data qual-
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ity is adequate. Linking data quality directly to their intended use provides a firm foundation for 
building a vocabulary that distinguishes the individual components of overall data quality. 
 
 1.7.2.  Data Quality Indicators.  DQIs are qualitative and quantitative descriptions of data 
quality attributes: the various properties of analytical data historically expressed as precision, ac-
curacy, representativeness, comparability, and completeness. Collectively, these factors are 
called the PARCC parameters. These are discussed in detail in EPA guidance documentation. 
Because it is evaluated at the same time, an additional parameter often combined with the 
PARCC parameters is sensitivity, which is the ability of an analytical method or technology to 
reliably identify a compound in the sample medium. 
 
 1.7.2.1.  Precision, accuracy, and sensitivity are quantitative properties of data directly 
measured through an appropriate analytical QC program. Representativeness is primarily a 
qualitative data quality indicator that is a function of the adequacy of the sampling design (for 
example, the number of samples and the manner in which samples were collected). Representa-
tiveness, in the context of an analytical measurement, can be inferred by examining factors such 
as duplicates/replicates, blanks, and sample collection procedures. Comparability is a qualitative 
measure that is critically important when hypothesis testing* involves comparing different 
populations, disparate in either space or time. 
 
 1.7.2.2.  Completeness has been assigned an arbitrary goal of 80 to 100% based on the 
premise that decisions are still possible if a limited portion of the data are discarded (for exam-
ple, because of quality control problems). However, the goal is based primarily on practical ex-
perience and is not mathematically based. Completeness should be evaluated in the context of 
project objectives.  
 
 1.7.2.3.  In addition to these, selectivity is also a data quality indicator. “Selectivity” is the 
ability of an analytical method to identify the analyte of concern, e.g., the existence of other 
analytes in a sample or other interferences may mask the presence of the target analyte. 
 
 1.7.2.4.  There may be more than one DQI for a single data quality attribute. For example, 
sensitivity is generally thought of in terms of detection, quantitation, or reporting limits, i.e., the 
lowest value that an analytical method can reliably detect or report. However, another important 
element of sensitivity is discrimination, the ability to distinguish between values to a given de-
gree of precision. In other words, can the method tell the difference between values of 1 and 2 
units, or only differences between 10 and 20 units? When developing DQIs, it is important to 
define them in terms of all the important attributes and assign specific numeric values to them as 
often as practicable. 
 

 
* Appendices O and P. 
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 1.7.3.  Measurement Quality Objectives.  MQOs are project-specific values assigned to 
DQIs derived from project-specific DQOs. MQOs are acceptance criteria for the DQIs and are 
derived by considering the level of measurement system performance needed to actually achieve 
project goals. MQOs are not intended to be technology- or method-specific. As with DQOs, 
MQOs specify what the level of data performance should be, but not how that level of data per-
formance is to be achieved. A large part of the variability in environmental data stems from sam-
pling considerations. MQOs should balance the relative contributions from analytical 
uncertainties and from sampling uncertainties. In many environmental media, matrix heteroge-
neity causes sampling variability to overwhelm analytical variability. Historically, the term 
MQO was restricted to the analytical side of the measurement process, but the broader concept of 
DQO (or decision confidence objectives) requires that sampling considerations be included. The 
importance of including both the sampling and analytical component of MQOs when assessing 
overall data quality cannot be overemphasized. 
 
 1.7.4.  Relationships Among Decision Goals, DQOs, MQOs, and QC Protocols.  During 
project planning, there should be a logical conceptual progression in the development of decision 
goals, DQOs, MQOs, and QC acceptance criteria. However, in practice, this will be a non-linear 
process.  
 
 1.7.4.1.  As project planning develops, the following should be clearly presented: 
 
 1.7.4.1.1.  General decision goals. 
 
 1.7.4.1.2.  Technically expressed project goals (DQOs), and decision rules that will guide 
project decision-making. 
 
 1.7.4.1.3.  Tolerable uncertainties for decisions. 
 
 1.7.4.1.4.  Uncertainties that create decision errors. 
 
 1.7.4.1.5.  Strategies for managing the uncertainties to achieve the desired tolerances for 
decision errors. 
 
 1.7.4.2.  In the beginning of the project, program managers often set broad, non-technical 
goals. The next step is to translate these broad, non-technical goals into more technically oriented 
goals that can address specific considerations such as the following. 
 
 1.7.4.2.1.  Regulations—what are the applicable environmental regulations? 
 
 1.7.4.2.2.  Confidence in the outcome—how certain do we need to be by the end of the 
project that we have achieved goals such as risk reduction or regulatory compliance? 
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 1.7.4.2.3.  What are the constraints that need to be accommodated? 
 
 1.7.4.3.  The next level of technical detail for data collection involves identifying DQIs and 
assigning to them project-specific MQOs that will be needed to achieve the project DQOs. At 
this point, the project team begins to consider in detail the options available for acquiring the 
needed measurements and selecting those that best meet the needs of the program. These deci-
sions are documented in sampling and QC plans that specify the controls that will be used to en-
sure that MQOs are met and that any deviations are appropriately addressed. 
 
 1.7.4.4.  Because sampling design and analytical strategy interact to influence the statistical 
confidence in final decisions, interaction among a statistician, a sampling expert, and an 
analytical chemist is critical for selecting a final strategy that can achieve project goals cost-
effectively. The statistician is concerned with managing the overall variability of data, and with 
interpreting data with respect to the decisions being made. A statistician is a person having ade-
quate familiarity with statistical concepts to correctly apply the required tests; this does not nec-
essarily require a degree in statistics. The field sampling expert is responsible for implementing 
the sampling design while managing contributions to the sampling variability as actual sample 
locations are selected and as specimens are collected. The chemist is responsible for managing 
components of variability that stem from the analytical effort. 
 
 1.7.4.5.  In summary, the conceptual progression starts with the project-specific decision 
goals, and then moves from broader, higher-level goals to narrow, more technically detailed ar-
ticulations of data quality needs. Project decisions are translated into project-specific DQOs; then 
into project-specific MQOs; then into technology/method selection and development of a 
method-specific QC protocol that blends QA/QC needs of the technology with the QA/QC needs 
of the project. Then the process reverses. The data must be assessed against the project MQOs to 
document that data quality meets the decision-making needs of the project. 
 
 1.7.4.6.  Figure 1-1 presents the life cycle in project planning. Figure 1-2 illustrates which 
guidance documents are useful in the planning phases of a project. 
 
1.8.  Statistics in Environmental Project Planning.  The number of individual samples 
collected during a given study is called sample size and is generally designated by the statistic n. 
In order for decisions based on that sample to be meaningful in any scientific sense, the sample 
size has to be sufficiently large to account for the inherent variability in the characteristics 
measured. Sample size should be dependent on the variability in the measured condition but, in 
practice, is often limited by available resources. 
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Figure 1-1.  Project planning life cycle. 
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TPP Phase Guidance Documents 
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OSWER 9360.4-16
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• Document Sampling and Analysis Plan 

Phase IV:  Finalize Data Collection 
Program 

ANSI/ASQC E-4 
EPA QA/G-1 
EPA QA/G4, G4D, G4HW 
EM 200-1-2 

EPA QA/G10, G11 
EM-200-1-6

EPA QA/G5, G5S, G6 
EM 200-1-3
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EPA 540 R-01-007, R-01-008

EPA QA/G9, G9D 
EM 200-1-4• Data Verification and Validation 

 

 
 

Figure 1-2.  Guidance document life cycle.  
 
 1.8.1.  A hypothetical illustration may be helpful in understanding this relationship. Let us 
suppose that a researcher wants to know the average concentration of a particular chemical con-
stituent in the air of a sealed room. The constituent of interest is initially absent from the room 
and the researcher releases the chemical into the room from a port in the north wall of the room. 
Immediately after opening the port, a measurement taken along the south wall will not detect the 
presence of the chemical, while a sample taken adjacent to the port will display a high concen-
tration. As the chemical disperses throughout the room via various physical processes, a single 
sample taken at any location in the room will not provide a representative value for the average 
concentration in the room as a whole. Even if a single sample were collected some time well af-
ter the release of the gas (i.e., after an equilibrium state of dispersion has been achieved), de-
pending upon the physical characteristics of the chemical and the room, it may not be uniformly 
spread throughout the room. Thus, a sample taken at any single randomly selected location will 
not give a representative result for the room as a whole, or even necessarily a good approxima-
tion. 
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 1.8.2.  Only when the chemical is uniformly dispersed throughout the three dimensions of 
the room, and is held static in that condition, can a representative result be arrived at from a sin-
gle sample. The analytical error or measurement uncertainty would also need to be negligible 
when analyzing the one sample. In all other cases, the true population mean (μ)* (the real aver-
age concentration for the room as a whole) must be approximated by averaging the results from a 
number of samples.  
 
 1.8.3.  The greater the variability in the chemical concentration throughout the room is, the 
more individual samples will be required to formulate an accurate approximation of the true 
average. Therefore, as decision confidence requirements increase (i.e., as confidence increases 
toward 1 or 0 decision error tolerance), the number of samples required to correctly estimate any 
statistical parameter will also increase.  
 
 1.8.4.  Variability is a measure of the degree of dispersion (or spread) for a set of values. 
The sample variance†, s2, and sample standard deviation, s, measure the spread of individual 
measurements or values about the sample mean‡, x . Some factors that may contribute to 
variability in environmental populations are the following. 
 
 1.8.4.1.  Distance, direction, and elevation relative to point, area, or mobile population 
sources. 
 
 1.8.4.2.  Non-uniform distribution of pollution in environmental media owing to topogra-
phy, hydrogeology, meteorology, actions of tides, and biological, chemical, and physical redis-
tribution mechanisms. 
 
 1.8.4.3.  Diversity in species composition, sex, mobility, and preferred habitats of biota. 
 
 1.8.4.4.  Variation in natural background levels over time and space. 
 
 1.8.4.5.  Variable source emissions, flow rates, and dispersion parameters over time. 
 
 1.8.4.6.  Accumulation or degradation of pollutants over time. 
 
 1.8.5.  For a particular sampling plan where n measurements are taken for some contami-
nant of concern in a study area, a (sample) mean concentration ( x ) and (sample) standard devia-
tion (s) for the contaminant are calculated. The standard deviation measures the variability of the 
individual measurements. However, it is often the case that it is the variability of x  itself that is 
of interest. The variability of the mean is often measured by the standard deviation of the sample 

                                                 
* Appendices C and D. 
† Appendices D, E, and H. 
‡ Appendices C, D, E, F, G, and H. 
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mean, xs  = ns / . Those two sample values, x  and xs , are used to estimate the interval (range) 
within which the true mean (μ) of the chemical concentration probably occurs, under the as-
sumption that the individual concentrations exhibit a normal (bell-shaped) distribution. 
 
 1.8.6.  The relationship among variability, available resources (expressed as sample num-
ber, n), and decision confidence or lack of uncertainty is fundamental to the project planning 
process. In general, cost increases as the desired level of confidence or lack of uncertainty in-
creases. Thus, balancing cost and confidence is a primary objective of the planning process. As 
illustrated in Figure 1-3, this can be depicted as a balance between cost and level of uncertainty: 
reducing uncertainty increases project costs. As the number of samples increases, the uncertainty 
decreases but the cost increases. As depicted in Figure 1-3, project planning is the fulcrum of a 
seesaw balancing cost and uncertainty.  
 

Project Planning

Too High

Low

OptimumCost Uncertainty

Too High

Low

Optimum

Project Planning

Too High

Low

OptimumCost Uncertainty

Too High

Low

Optimum

 
 

Figure 1-3.  Balance between resources and certainty. 
 
 1.8.7.  When dealing with regulators and clients, it is often beneficial to illustrate, in 
mathematical terms, the relationship among the project objectives, the desired confidence for 
decisions, and the cost of the project.  
 
 1.8.8.  Figure 1-4 illustrates the relationship of factors that need to be considered in 
successful project planning. 
 
 1.8.9.  The purpose of the project planning triad approach is managing total decision 
uncertainty. Total uncertainty may be viewed as the sum of analytical and field uncertainty. 
Analytical uncertainty is the portion that arises from variability and bias in the instrumental or 
analytical test method (as indicated in Table 1-3). Field uncertainty depends on factors such as 
the temporal and spatial variability of the target environmental population (Table 1-3). Field 
variability typically exceeds the analytical variability and primarily depends on the sampling de-
sign (e.g., the total number of samples, the sample mass, and the nature of field sampling and 
laboratory sub-sampling methods). In general, data produced by screening analytical methods 
will contain more analytical variability and bias than data produced by definitive methods. How-
ever, field analyses are less costly than laboratory analyses, so a greater number of field samples 
can be analyzed than laboratory samples for the same fixed cost. Thus, even though field analy-
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ses typically contain higher analytical variability relative to laboratory analyses, a larger number 
of field samples can reduce the total variability more effectively than a smaller number of simi-
larly collected laboratory samples. Field analytical methods should be scrutinized, however, be-
cause the total uncertainty does not depend on measurement precision (variability) alone; it also 
depends on a number of data quality elements such as analytical bias, sensitivity, and specificity 
(i.e., the ability to detect or quantify the analyte or contaminant of concern in the presence of 
other analytes or interferences in the sample). 
 

Available
Resources

Total 
Variability

Decision 
Confidence

Project
Planning

=
Balancing

These Three

Available
Resources

Total 
Variability

Decision 
Confidence

Project
Planning

=
Balancing

These Three

 
 

Figure 1-4.  Project planning triad. 
 
 1.8.10.  The triad approach also makes use of rapid turn-around times for field methods. 
Field methods have an advantage over laboratory methods in that they are capable of providing 
data to support decisions while mobilized in the field. For example, managers can modify sample 
locations on the basis of new information about the extent of contamination during a single mo-
bilization. In contrast, fixed laboratory data packages are produced several weeks after sampling 
is complete. Remobilization may be necessary to resolve questions arising from laboratory re-
sults. 
 
 1.8.11.  The triad approach is especially useful for statistical designs such as adaptive 
sampling,* ranked set sampling∗, and systematic sampling∗, as these designs often require larger 
numbers of samples. To successfully implement the approach, the capability of the field methods 
must be scrutinized with respect to project data quality and measurement objectives. For exam-
ple, many field methods are not as sensitive or selective as laboratory methods. If the primary 
objective is to characterize contamination with respect to some fixed risk-based limit or cleanup 
goal, and the detection limit is greater than the decision limit, then comparisons of the field data 
                                                 
* Appendices C and D. 
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to the decision limit will not be viable. Comparisons of field and laboratory data during a pilot 
test phase to verify or establish correlation between two sets of results is a useful approach for 
evaluating and selecting field methodologies. 
 
 1.8.12.  The triad approach relies on thorough, systematic planning to articulate clear pro-
ject goals and encourages negotiations among stakeholders to determine the desired decision 
confidence. A multidisciplinary technical team then determines what information is needed to 
meet those goals. A key feature of this planning is identifying what uncertainties could compro-
mise decision confidence and allowing team members with appropriate sampling and analysis 
expertise to explore cost-effective strategies to minimize them. Often, the most cost-effective 
work strategy involves the second leg of the triad, which is using a dynamic work plan to make 
real-time decisions in the field. The third leg of the triad uses field analytical methods to generate 
real-time on-site measurements that support the dynamic work plan. Projects managed using 
these concepts have demonstrated cost savings of up to 50% over traditional approaches.  
 
 1.8.13.  The contributions to the total variability (i.e., the total precision component of the 
uncertainty) can be expressed as a vector sum of an analytical component and sampling compo-
nent of the variability (e.g., or as a ratio of the sampling to analytical variability, say 9:1). Al-
though the analytical variability is minimized by conventional laboratory analyses, sampling 
variability is often not adequately addressed. Budget constraints invariably limit the number of 
laboratory analyses. A combination of high laboratory analysis costs and a poor sampling design 
often results in a low sampling density that is not very representative of the environmental 
population of interest. Field studies consistently find that the sampling design, rather than ana-
lytical considerations, predominately governs the total variability. 
 
 1.8.14.  When analytical costs are lower, more samples can be analyzed, yielding more 
confidence in the representativeness of the data set (Phase 1). This is most effective if field 
methods are used to generate data and a dynamic work plan rapidly resolves any uncertainty 
about location and volume of contamination (for example, locate and delineate hot-spots in a 
single field mobilization). If the analytical data quality used to manage sampling uncertainty is 
less than what is eventually needed to make final project decisions, such as whether the site can 
be declared clean, more expensive definitive analyses may be performed on samples selected to 
refine the feature of interest (Phase 2). However, if the initial method produces data of sufficient 
rigor to support defensible decision-making, then additional, expensive analyses would be re-
dundant and unnecessary.  
 
 1.8.15.  In Phase 1, analytical uncertainty (variability) increases so that unit sample costs 
decrease, allowing a higher sampling density than with the conventional approach. As a result, 
sampling uncertainty (variability) decreases, lowering the overall uncertainty in data interpreta-
tion. Sampling uncertainty is further decreased if hot-spot removal reduces the variability in 
contaminant concentration and if representative sampling locations for more rigorous analysis 
are identified based on Phase 1 information. The vector representation of uncertainty for this ap-
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proach indicates that the overall uncertainty in the data set for site decision-making will be much 
less than the overall uncertainty in the conventional method.  
 
 1.8.16.  Data quality should be judged on whether both the sampling and the analytical 
uncertainties in the data sets support decision-making at the desired degree of decision confi-
dence. However, relying solely on regulator-approved, definitive analytical methods, while ig-
noring sampling uncertainty, easily produces uncertain decisions.  
 
 1.8.17.  When field analytical methods are used, the process and resulting data are often 
referred to as “field screening.” The term is misleading when field methods are of adequate 
quality to satisfy project DQOs; field analyses are not necessarily “screening” or inferior to 
fixed-laboratory analyses in the context of the overall end use of the data. Here, alternate termi-
nology is proposed to reflect current EPA guidance that both sampling and analytical uncertain-
ties must be managed to assess data quality. We consider the two terms “effective data” and 
“decision-quality data,” to be equivalent when describing data of known quality that are effective 
for making defensible primary project decisions, because both sampling and analytical uncer-
tainties have been explicitly managed to the degree necessary to meet clearly defined project 
goals. 
 
 1.8.18.  Primary project decisions are those decisions that drive resolution of the project, 
such as whether or not a site is contaminated and what subsequent actions, if any, will be taken. 
Therefore, contaminant data are usually the data sets of interest. But data sets can interact in 
complex ways, and are referred to as collaborative data sets. For example, a contaminant data set 
considered alone might not be effective for making project decisions, yet the same data set might 
be more effective when combined with other data or information to manage the remaining un-
certainties. Ancillary data refers to data used to support many other project decisions that fall un-
der worker health and safety monitoring, data that help in the understanding of fate and 
disposition of contaminants, and data that aid in decisions about the representativeness of envi-
ronmental samples. 
 
 1.8.19.  This decision-making paradigm and terminology embodies the central theme of 
systematic project planning, the management of decision uncertainty.  
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CHAPTER 2 
Preliminary Assessment and Site Investigation (PA/SI) 

 
Section I 
Preliminary Assessment 
 
2.1.  Introduction.  A Preliminary Assessment (PA) is initiated after a CERCLA site (or sus-
pected site) is identified. Statistical evaluations are not typically conducted for a PA. The pur-
pose of the PA is to determine if a site poses a potential threat to human health or the 
environment. EPA maintains a list of actual and potential hazardous substance releases requiring 
CERCLA response. The property owner or agent is obliged to perform a PA; for Federal facili-
ties, a PA is required within 18 months of listing (57 FR 31758; 17 July 1992).  
 
 2.1.1.  The PA process collects information from existing resources. Generally, PA data are 
qualitative rather than quantitative, and do not require statistical evaluation. In some instances, 
historical chemical data may be available, but the PA does not require that such data be statisti-
cally manipulated. The EPA evaluates the site information according to the Hazard Ranking Sys-
tem (HRS) as detailed in 55 FR 51531 (14 December 1990). HRS calculations do not have 
statistical components. Some examples of PA information necessary to the HRS are as follows. 
 
 2.1.1.1.  Identification of wastes or waste sources. 
 
 2.1.1.2.  Physical site conditions, such as precipitation rates, depth to groundwater, or dis-
tance to surface water bodies. 
 
 2.1.1.3.  Workers or residents at a site. 
 
 2.1.1.4.  Local population within a set radius of a site. 
 
 2.1.2.  Based on the results of the HRS, a site may warrant further investigation or no fur-
ther action. Though quantitative statistical evaluations are not required during a PA, the follow-
ing case study illustrates the value of a thorough qualitative evaluation of PA information.  
 
2.2.  Case Study 1—Examining Historical Data Sets.  In the preliminary assessment of a land-
fill located on a manufacturing facility in Pennsylvania, some historical analytical data were 
available to the project team. The question raised, however, was whether or not those data would 
be usable in the PA. If the data were found to be usable and applicable, the landfill might be re-
moved from further consideration in the CERCLA process. However, if the data were not found 
to be usable, then a Site Inspection (see Section II) would be needed.  Moreover, if the data were 
used, prior to further validity testing (thus, explicitly assuming the data were reliable), and found 
later in the assessment to be erroneous, inaccurate and misleading conclusions would have been 
drawn. 
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 2.2.1.  Several different assessments of the data were required: i) Were the precision, accu-
racy, and representativeness of the data sufficient for the purpose? ii) Was the sampling design 
for the historical data sufficient for the purpose? and iii) Were the data comparable from histori-
cal event to historical event and could they be combined with new data, if necessary, to draw 
conclusions about the site? 
 
 2.2.2.  The existing data were included in monitoring reports to the state. The reports con-
sisted of little more than sample identification, date, and analytical results. Only positive detec-
tions were reported. Based on that information alone, the project team could not assess the 
quality of the data and concluded that unless additional information was obtained, the data could 
not be used as part of the PA. The site owners began to investigate the origins of the data. 
 
 2.2.3.  In the interim, the project team assigned a geologist to examine the sampling design 
for the work. The facility had identified a single monitoring well, MW-02, as an upgradient loca-
tion for comparison to a set of three downgradient wells, MW-03, MW-06, and MW-08. 
Through a review of well construction diagrams, as well as available topographic and hydro-
geologic information, the geologist found that the well identified as upgradient was located 
within 3 feet of the landfill footprint, in a swale that received run-off from the landfill. 
 
 2.2.4.  Thus, it was likely that the upgradient well was directly impacted by landfill opera-
tions and would not constitute an acceptable upgradient location. Further, MW-06 and MW-08 
were found to be generally cross-gradient to MW-02 rather than directly downgradient, and that 
MW-03 had been screened in a perched aquifer, hydrologically isolated from the aquifer moni-
tored by the other three wells. 
 
 2.2.5.  Upon receipt of laboratory data packages for the historical data, the project team ob-
served that a variety of different analytical methods and laboratories had been employed in the 
course of the work, resulting in mixed reporting limits and inconsistent detection of analytes. As 
a result of these assessments, the historical data were judged not to be usable for the PA. 
 
 2.2.6.  In summary, prior monitoring appeared to indicate the presence of contamination 
(e.g., which would have triggered an RI), but additional evaluation data indicated that the data 
were not usable; therefore, an SI was initiated. 
 
Section II 
Site Inspection 
 
2.3.  Introduction.  The Site Inspection (SI) is the next step in the CERCLA process. Statistical 
evaluations are often appropriate for an SI. Typically, the major objective of these evaluations is 
to establish the presence or absence of site contamination with respect to predefined decision 
limits. An SI is performed if the PA indicates the potential for hazardous materials to be present, 
if human or ecological receptors, or both, exist, and if there are potential complete exposure 
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pathways for the receptors. The SI generally focuses on establishing, through sampling and 
analysis, whether hazardous materials are present at concentrations that exceed some “screening 
criteria.” The project planning team must establish decision limits or screening criteria prior to 
sampling and analyses. Generally, decision limits fall into the following categories: 
 
 2.3.1.  Naturally occurring or known background levels (site-specific background informa-
tion is typically unavailable at the SI stage). 
 
 2.3.2.  Ecological benchmarks, which are dependent on analytes and media (typically de-
veloped with regulatory input). 
 
 2.3.3.  Risk-based screening criteria for human health such as EPA Region IX Preliminary 
Remediation Goals (PRGs) or EPA Region III Risk-based Concentrations (RBCs) are available 
at the following Web sites. 
 
 http://www.epa.gov/region09/waste/sfund/prg/index.html  
 
 http://www.epa.gov/reg3hwmd/risk/index.htm 
 
 2.3.4.  Applicable or relevant and appropriate requirements (ARARs).  For example, Maxi-
mum Contaminant Levels (MCLs) for drinking water may be ARARs for some CERCLA sites. 
 
 2.3.5.  During the DQO process, stakeholders identify the study questions, such as the pres-
ence or absence of contamination with respect to a set of decision limits, the nature and quantity 
of the data required to support the decision-making process, and the acceptable tolerances for de-
cision errors. Selecting the screening criteria is critical for establishing both data quality objec-
tives (DQO) and measurement quality objectives (MQOs). MQOs are established after DQO 
development. MQOs for analytical sensitivity must be adequate to report quantitative contami-
nant concentrations at levels less than the project decision limits. (Refer to Appendix G for a dis-
cussion of detection limits and quantitation limits.) 
 
 2.3.6.  Team members must establish the DQOs for the project at the outset of the SI. In an 
SI, stakeholders must identify the problem at the site and how it will be evaluated, identify the 
decisions to be made using the data, and specify limits on that decision error. These will lead the 
project team to an optimal sampling design at a site. Appendix G discusses detection limits, 
quantitation limits, and censored data. Understanding the concepts in the context of ARARs 
guides part of the project planning. 
 
2.4.  Sampling Design.  In general, statistical sampling designs are required to support statistical 
evaluations. Professional judgment, site-specific information, and DQOs must be used to select 

http://www.epa.gov/region09/waste/sfund/prg/index.html
http://www.epa.gov/reg3hwmd/risk/index.htm
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the type of the statistical sampling design (e.g., random* as opposed to systematic sampling) and 
the required number of samples. The sampling design depends on factors such as the nature and 
distribution of the contamination in the study area, sampling cost, tolerances for decision error, 
and perceived level of decision uncertainty. For example, a small number of samples during the 
SI stage may be beneficial for short term cost considerations, but may not be adequate to achieve 
the desired tolerances for decision uncertainty and error and may, therefore, not be a cost-
effective strategy by project closeout (as multiple sampling events rather than a single sampling 
event would typically be required to support decision-making).  
 
 2.4.1.  Decision uncertainty refers to statistical variability, subjective judgment, random-
ness in the process, disagreement, and even imprecise wording inherent in the decision-making 
process (Moser 2000). Decision uncertainty is a function of the variability of the contaminant of 
concern in a study area and depends on the number of samples collected. For example, if the 
sample mean, x , is an appropriate measure of site-wide contamination and the standard devia-
tion of the sample mean, xs , measures the variability around x , then the variability (and uncer-
tainty) decreases as the number of samples n increases, because xs  = ns / . (Increasing the 
physical size of each sample would also decrease the variability.) It should also be noted that, in 
addition to decreasing the variability, x becomes a more accurate estimate of the population 
mean, μ, as n increases. 
 
 2.4.2.  Site-specific information must be taken into account when selecting the sampling 
design. In particular, the team members need to identify potential source areas and any stratifica-
tion they may represent. For example, suppose there are two sources of lead at a bomb recondi-
tioning facility—stack emissions affecting surface soil and old buried waste piles affecting 
subsurface soil. This information can be used to design a sampling scheme for the “surface soil 
stratum” and a separate scheme for the “subsurface soil stratum.” Likewise, there may be differ-
ent study objectives for each stratum.  Surface lead may be of concern for exposure of site work-
ers and subsurface lead may be of concern for protection of groundwater. Stakeholders would 
need to identify these issues during project planning to develop an optimal site-wide sampling 
design. 

                                                 
* Appendices C and D. 
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 2.4.3.  Several different types of sampling designs are listed below. Appendix C presents a 
detailed explanation of these designs.  
 

• Judgmental sampling. 
• Random sampling. 
 - Simple random sampling. 
 - Stratified random sampling. 
 - Systematic and grid sampling. 
• Ranked set sampling. 
• Adaptive cluster sampling. 
• Composite sampling. 

 
 2.4.4.  The TPP and DQO processes are used to develop an appropriate sampling design for 
the SI phase. Two case studies are presented below to illustrate sampling designs commonly 
used for SI. 
 
2.5.  Case Study 2—Judgmental Sampling, Oil/Water Separator.  Project planners found an 
oil/water separator buried underground at a pipe mill. There was evidence of leakage to the sur-
face soils around the tank and a release to groundwater was suspected. The objective was to de-
termine if there was a measurable presence of oil floating on the water table. 
 
 2.5.1.  Historical information and local knowledge allowed a hydrogeologist to determine 
the direction of groundwater flow. The hydrogeologist also knew of two monitoring wells in the 
area. One well was located upgradient to the separator; the second was cross-gradient. 
 
 2.5.2.  The project planners decided to place a new monitoring well downgradient of the 
separator. Because they were looking for an oil product, the soil boring for the monitoring well 
was logged by a geologist who could then identify the water table depth. The well was installed 
so that the screen intersected the water table, where floating oil would most likely be visually de-
tected. 
 
 2.5.3.  Judgmental sampling was predominantly used in this example because the planners 
possessed significant existing site information. They knew the physical properties of the oil, they 
knew the hydrogeology of the site, and they were answering a nonquantitative question.  
 
 2.5.1.  Case Study 4 predominantly illustrates the application of composite sampling* and 
stratification† for a SI, and the iterative nature of the DQO process when optimizing a sampling 
design.  
 

 
* Appendices C and D. 
† Appendix D. 
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2.6.  Case Study 3—Arsenic Contamination in Soil.  At an active manufacturing site, arsenic 
contamination was widespread in surface soils. Preliminary screening analyses and risk as-
sessments identified worker exposure as the most likely concern. The site was initially divided 
(stratified) into 90 subunits related to work areas for a more in-depth evaluation of risk. Based on 
financial constraints, the project team was allocated a budget of $50,000 for SI sampling and 
analytical testing. 
 
 2.6.1.  The aggregate initial cost of a field grab sample was $175, with $100 attributed to 
field collection and $75 attributed to laboratory analysis. The expected percent relative standard 
deviation (%RSD) for the analytical (laboratory) measurements was 5%. The estimated standard 
deviation, s, for the analytical method, at the decision limit of 600 ppm, was computed as 5% of 
600 ppm or 30 ppm. 
 
 2.6.2.  The planning team estimated the field component of the variability to be 10 times 
greater than the laboratory component of the variability. Thus, the %RSD for the field compo-
nent of the variability was calculated by multiplying the %RSD for the analytical measurements 
by 10 (yielding a field component %RSD of 50%). This estimate was then multiplied by 600 
ppm to yield a value of s equal to 300 ppm for the field component of variability (i.e., 50% of 
600 ppm). The estimates for field and analytical variability (i.e., variance or s2) were then com-
bined and the standard deviation was calculated (s = 330 ppm). The maximum observed arsenic 
concentration was 720 ppm. The analytical method was deemed appropriate by the planning 
team. If historical sampling data were available, the data would be used to estimate the field 
variance and to test for normality. 
 
 2.6.3.  The planning team principally considered two sampling design alternatives—simple 
random sampling and composite sampling (see Appendix C for a review of each sampling 
method). A t-test was used to calculate the sample size for simple random sampling (Appendix 
F). Given a decision error limit of α = 0.01, more than 200 samples per work area would have 
been required (refer to Appendix L for a review of methods involved in setting and testing hy-
potheses). The total cost of this sampling effort would have exceeded $3 million.  
 
 2.6.4.  Using similar methods, the team explored composite sampling, which would have 
required 30 samples to be collected per work area for a cost of over $1 million. Given the con-
siderable cost burdens for both proposed sampling designs, the team decided to return to Step 6 
of the DQO process and modify the decision error limits. The team found that by increasing α to 
0.05, the composite sampling design would require the collection of 13 samples for each of the 
90 work areas. This revised design had a total cost of $204,750, approximately one-fifth of the 
original estimate.  
 
 2.6.5.  The team realized that they would have to find other means of generating an appro-
priate design while remaining within budget. To do this, the project team redefined the bounda-
ries of the study (by revisiting Step 4 of the DQO process). The team recognized that one of the 
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drivers of the cost was the large number of separate study units (previously, the calculated sam-
ple size was applied to each of the study units). The planning team used exposure information for 
the contaminant to map out the potential or expected pathways in the surface soils through which 
the contaminant could spread.  The potential pathways were categorized into four distinct spatial 
units. 
 
 2.6.6.  Rather than collect data and make decisions for each of the 90 individual work ar-
eas, the team decided to sample and make decisions for each of the four risk areas. Recognizing 
that these larger areas carried greater decision error consequences, the team revisited Step 6 of 
the DQO process and established new limits for decision errors applicable to the four risk areas. 
The team established different decision confidence limits for each and recalculated the number 
of samples required. The cost of implementing this design was $38,850, which fell within the 
$50,000 budget for the sampling and analysis. 
 
2.7.  General Review of Sample Size Determination*.  For typical statistical sampling designs, 
there are well-defined relationships between the number of required samples (i.e., sample size), 
tolerance for decision errors, and inherent variability of the analytical measurements and the tar-
get environmental population. One such relationship states that the sample size increases as the 
tolerance for decision error decreases or the variability increases. The sample size must be equal 
to or greater than the sample size required to achieve predetermined tolerances for decision er-
rors. When confidence limits for the mean are of interest, an appropriate sample size is required 
to generate a sufficiently precise estimate of the true mean concentration of a chemical contami-
nant (refer to Paragraph 3.11 and Appendix K for additional discussion of confidence limits). For 
the example presented above, the sample size must be adequate to demonstrate that the upper 
limit of the CI for μ is less than the applicable regulatory threshold, RT. The required sample 
size must increase as s2 increases and as the difference Δ (RT – x ) decreases. In a well-
conceived sampling plan for a solid waste, every effort should be made to estimate the values of 
x  and s2 before sampling starts. Case Study 3 illustrated that decision confidence affects sample 
size. Case Study 4 illustrates this concept in a different setting. 
 
2.8.  Case Study 4—Effect of Decision Confidence on Sample Number.  Upon promulgation 
of the Toxicity Characteristic Leaching Procedure (TCLP) rule, a steel mill in Maryland con-
tracted with a consultant to collect samples from various waste streams within the facility for 
TCLP analysis of metals (this case study considers only the cadmium data). One such waste 
stream was from a wastewater treatment system and consisted of collected sludges. Although no 
previous analysis of sludges had been done, cadmium had been monitored in the wastewater 
stream before treatment. The project manager believed that the wastewater data would be suffi-
cient for establishing routine variability of cadmium in the sludge, assuming there were no great 
differences in the treatment process over time and a 10 times concentration factor from waste-
water to sludge. 
                                                 
* Appendix C. 
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 2.8.1.  The project manager decided to use the past year’s wastewater data to make pre-
liminary estimates of the number of samples required to meet the statistical confidence re-
quirements of the TCLP rule (i.e., α = 0.2). Four results (in milligrams per liter [mg/L]) were 
available from the previous year as follows: 14.2, 9.6, 21.7, and 19.3. 
 
 2.8.2.  The mean and variance of the results (as adjusted for concentration to sludge) were 
the following: x = 1.6 mg/L and s2 = 2.2 mg/L, respectively. The proposed water regulatory 
threshold value (RT) was 1 mg/L. Using the formula for simple random sampling, the project 
manager calculated the number of samples required as follows: 
 
 2 2( ) (RTn t s x= × ÷ − 2)   
 
where: n = number of samples required 
 t = Student’s value for n–1 degrees of freedom and 0.8 confidence 
 s2 = sample variance 
 x  = sample mean 
 RT = regulatory threshold. 
 
 2.8.3.  Thus, n = [(0.9785)2×2.2]/(1 – 1.6)2 = 6 samples. Samples are an integer value, and 
should be reported without decimal fractions. (The value of t may be obtained from Table B-23, 
where df = 3 and p = 0.8.) Assuming a sampling cost of $50 per sample and an analytical cost of 
$25 per sample, this testing would cost $450. 
 
 2.8.4.  The client’s attorneys asked what the effect would be should they wish to establish a 
safety margin by increasing the decision confidence to α = 0.05. The revised plan would require 
 
 n = [(2.353)2×2.2]/(1 – 1.6)2 = 34 samples, or a sampling and analysis cost of $2,550. 
 
2.9.  Summary of Case Studies.  Case studies 2 through 4 illustrate the multitude of related fac-
tors that must be considered when evaluating which sampling design to apply in a particular SI. 
When evaluating alternative sampling plans, planners may anticipate the concentration patterns 
likely to be present in the target population. Advanced information about these patterns can be 
used to design a plan that will estimate population parameters with greater accuracy and less cost 
than can otherwise be achieved. 
 
2.10.  Comparing On-site Data to Fixed Screening Criteria.  In the data analysis phase of the 
SI, environmental scientists compare site data to screening values using either qualitative or 
quantitative statistical evaluations. The following provides a discussion of qualitative and quan-
titative evaluations. 
 
 2.10.1.  Qualitative Statistical Evaluations.  The EPA has developed risk-based screening 
criteria in the form of PRGs and RBCs. These criteria are frequently applied at the SI stage to 
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identify whether the site as a whole may need further attention in an RI/FS. Many screening cri-
teria exist at both the Federal and state government level. Thus, comparisons are frequently made 
against the lowest of several screening criteria that can be applied to a given data set from a 
given location. The technical team must ensure that the criteria are being applied properly (i.e., 
not all screening criteria are applicable to every site), and that the implications are clear in the 
conclusions of the SI. For example, if site data exceed a standard developed to protect ground-
water from soil leaching of contamination, but do not exceed an applicable human health stan-
dard, the team should report the results with the implications of these differences noted in the 
conclusions. 
 
 2.10.2.  One typical qualitative method of comparing data decision limits entails the use of 
a spreadsheet or database. The decision limits and individual sample results are presented in a 
tabular format and each detected analyte concentration is compared to the corresponding screen-
ing values for that analyte. (It may be necessary to compare a single contaminant of concern to 
only the lowest decision limit or several different decision limits.) Table 2-1 is an example of 
such a spreadsheet.  
 
 2.10.3.  The primary pitfall of this qualitative strategy is that the uncertainty associated 
with the reported results is not considered when the results are compared to the decision limits. 
Thus, the reported results may actually be equal to or exceed decision limits when uncertainty is 
taken into consideration. If this is the case, especially in the event the decision limit is exceeded, 
the wrong conclusion would be drawn. The ramification of an erroneous conclusion will vary, 
depending on the nature of the problem under investigation; nevertheless, this is an outcome that 
should be avoided or at least minimized. 
 
 2.10.4.  Historically, environmental researchers have tended to screen analytical results into 
two categories—greater than the standard or less than the standard. Through advances in re-
search and technology, three categories now exist against which analytical results can be com-
pared: i) the reported value clearly exceeds the standard (when bias and variability are taken into 
account); ii) the reported value clearly does not exceed the standard; and iii) the result is incon-
clusive. This last conclusion is reached when the uncertainty is too large for reliable decision-
making. 
 
 2.10.5.  Table 2-1 illustrates how qualitative information may be used to support the deci-
sion making process when SI data are qualitatively, rather than statistically, compared to deci-
sion limits. In particular, information regarding the quality of the data, obtained in the data 
validation process, is used to determine whether contamination is present at concentrations 
greater or less than project decision limits. All applicable screening criteria are displayed in Ta-
ble 2-1. For example, the “S” column reports the results of comparing each analyte concentration 
and the lowest screening limit. One of three codes is entered in this column for the three possible 
conditions identified in the preceding paragraph. An “X” is recorded if the reported values ap-
pear to be well above the decision limit, an “I” if the result is inconclusive, and a blank space if 
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the result appears to be well below the limit. Select results from Table 2-1 are discussed below to 
illustrate the nature of the screening evaluation. 
 
 2.10.5.1.  Tetrachloroethene results in IRP-49 (1.2 ppb) and IRP-51 (17.08 ppb) both ex-
ceed the PRG (1.1 ppb). Although the value in IRP-49 is barely above the PRG, it reports the re-
sults as two significant figures, so we must accept its value as exceeding the PRG. However, 
accounting for analytical error, typically between 20 and 30% (as a conservative estimate), this 
result would be inconclusive. The researcher then must choose whether to conduct additional 
testing or accept the value of IRP-49 as an exceedance. The latter would be selected only if a 
conservative estimate was desired. 
 
 2.10.5.2.  In IRP-49 (0.2 ppb) and IRP-51 (0.2 ppb), the reported concentration is not dis-
tinguishable from the PRG when compared on the basis of just one significant figure. Therefore, 
these results are inconclusive. 
 
 2.10.5.3.  Several chloromethane results are marked inconclusive because of blank con-
tamination. The only sample without blank contamination, IRP-39, was below the PRG (PRG = 
1.5 ppb; IRP-39 = 0.2 ppb). The reported concentration was qualified with a J flag because it is 
less than the quantitation limit of 1 ppb. (The quantitation limits are not listed in Table 2-1, but 
were obtained from the laboratory’s data package.)  
 
 2.10.5.4.  For bromodichloromethane in sample IRP-48 (0.2 ppb), the reported concentra-
tion is biased low and is less than the quantitation limit of 1 ppb, so this exceedance of a PRG 
(0.18 ppb) is conclusive. In sample IRP-51 (0.1 ppb), the result is also biased low and is just be-
low the PRG, so this result is also not conclusive. 
 

2.10.5.5.  For chloroform in sample IRP-39 (0.4 ppb), the reported concentration is quali-
fied with a J flag because it is less than the quantitation limit of 1 ppb. As the reported result is 
quantitatively estimated, it does not reliably demonstrate that chloroform is present above the 
PRG. 

 
 2.10.5.6.  Benzo(a)pyrene was reported in sample IRP-49 (0.278 ppb) above the PRG limit 
(0.0092 ppb). However, the detection limit (0.014 ppb) is above the PRG for the remaining sam-
ples. Only by achieving a lower detection limit is it possible to determine whether the non-
detects are a problem. The results for benzo(a)pyrene are marked inconclusive. All of the arsenic 
non-detects are inconclusive based on a similar rationale. 
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Table 2-1. 
Site Screening Data Table 

   
EPA 
MCL 

Region IX 
PRG 

(1999) IRP-39 IRP-48 IRP-49 IRP-51 
Analyte Units Tap Water  L V S  L V S  L V S  L V S 
Organi  cs                    

Bromodichloromethane μg/L — 0.18 0.1 U   0.2 J L, s I 0.1 U   0.1 L, s  I 
Carbon Tetrachloride μg/L 5 0.17 0.1 U   0.1 U   0.1    0.4 J J I 

Chloroform μg/L — 0.16 0.4 J J I 0.1 U   0.1 U   0.1 U U  
Chloromethane μg/L — 1.5 0.2 J J  6.1  B I 1.6  B I 3.7  B I 

Methylene Chloride μg/L 5 4.3 0.1 U   0.1 U   0.1 U   0.1 U   
Trichloroethene μg/L 5 1.6 0.4 J J  0.1 U   18.7   X 18.1   X 

Tetrachloroethene μg/L 5 1.1 0.1 U   0.1 U   1.2   X 17.1   X 
Benzo(a)pyrene μg/L 0.2 0.0092 0.014 U  I 0.014 U  I 0.278   X 0.014 U  I 

Inorganics                    
Arsenic mg/L 50 0.045 0.7 U  I 0.7 U  I 0.7 U   0.7 U  I 

Chloride mg/L 250 — 311   X 15.8    265   I 134.7    
Lead mg/L 15 — 0.3 U K  0.3 U K  8    10    

Nickel mg/L — 730 590    29.0    214    198.0    
Sulfate mg/L 250 — 44.0    5.98    41.6    21.45    

Thallium mg/L 2 2.9 1.4    0.8 U   0.8 U   0.8 U   
Vanadium mg/L — 260 1.4    1.0 U   3.0    5.0    

Notes: L column contains the laboratory flags. V column contains the validation flags.  S column contains screening results. 

Flags: U – Not detected above reported detection limit.      Screening Codes: 

 B – Not detected substantially above a laboratory or field blank.       X – sample concentration unequivocally exceeds the lowest screening standard. 

 L – Biased low.       I –  sample concentration comparison to screening standard is inconclusive. 

 K– Biased high.         –  A blank cell indicates that the sample concentration unequivocally does not exceed the 

 s – Surrogate failure.                      lowest screening standard. 
  J – Quantitatively estimated  
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 2.10.5.7.  Though the reported concentration of chloride in sample IRP-49 (265 mg/L) is 
not qualified as estimated and exceeds the decision limit (250 mg/L), the result is marked incon-
clusive because the difference between the detected concentration and the decision limit is less 
than 5%, which is smaller than the analytical error for the test method (e.g., the error tolerance 
for the test method is typically 5 to 20%). 
 
 2.10.6.  These results illustrate the critical importance of estimating and incorporating into 
decision-making knowledge of both the field and laboratory components of variance. One fun-
damental error is treating the reported results as conclusive when in fact they are not. The values 
represented in this table are measurements, and measurements contain bias and variability that 
must be accounted for in decision-making. (See EM 200-1-10 for additional guidance on the data 
review strategies that were primarily used to qualify the results in Table 2-1.)  
 
2.11.  Quantitative Statistical Evaluations.  When the results of the qualitative statistical 
evaluations are inconclusive, further investigation is required. DQOs must be revised so that the 
parameter of interest is no longer a single datum per location. Instead, multiple samples are col-
lected for those uncertain locations and the resulting distribution of values is compared to the de-
cision limit using quantitative statistical tests. The results would typically be statistically 
compared to decision limits using one-sample tests* for central tendency, as discussed below. 
 
 2.11.1.  All statistical tests require the user to make certain assumptions about the data to 
perform the statistical test. The user must demonstrate that the underlying assumptions for a par-
ticular statistical test are reasonable before doing the test. With respect to these underlying as-
sumptions, statistical tests can be roughly categorized as either parametric† or non-parametric.   
When non-parametric tests are conducted, data sets are required to satisfy fewer assumptions 
than for the corresponding parametric tests.  In particular, a parametric statistical test assumes a 
specific distribution  for the data (i.e., the entire population is described by some specific 
mathematical function), such as the bell-shaped curve for the normal distribution‡. Statistical 
plots of actual measured sample concentrations must be substantively consistent with the corre-
sponding plots generated using the theoretical functional relationship. Tests that require normal 
or log normal distributions are most commonly used. (A data set is log normal if, when the log of 
each datum is calculated, the resulting set of values is normally distributed.) Common graphical 
methods (i.e., plots) are presented in Appendix J. In addition, an overview of the evaluation of 
distribution assumptions is presented in Section III of Chapter 3. 
 
 2.11.2.  It should also be noted that parametric tests become problematic, and may not be 
possible to perform, when the data sets contain a significant number of censored§ values (i.e., 
analyte concentrations reported as non-detects). However, as described in Appendix H, it may be 

 
* Appendix L. 
† Appendices H and I. 
‡ Appendices E, F, and J. 
§ Appendix H. 
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possible to use the Poisson distribution* for highly censored data. Parametric tests are also prob-
lematic when there are outliers. The possibility of outliers† should be considered in every analy-
sis.  
 
 2.11.3.  Non-parametric tests do not assume a specific functional relationship for the data 
distribution. These tests tend to be less sensitive to outliers and non-detects than parametric tests. 
Although non-parametric tests are more applicable relative to parametric tests, non-parametric 
tests tend to be less statistically powerful‡ than parametric tests. In essence, this means that more 
samples must be collected for a non-parametric test relative to the corresponding parametric test 
to make decisions at the same level of confidence. 
 
 2.11.4.  Background concentrations of naturally occurring and anthropogenically derived 
compounds are also possible screening criteria. However, there are few instances in which such 
background levels are available at the SI stage. Sometimes a “site-wide” statistical background 
study has been done. If such a study is available, two-sample statistical tests§ would be used to 
compare the study area data set with the “site-wide” background data set. (As the name implies, 
a two-sample statistical test is predominantly a statistical evaluation to compare two separate sets 
of data.) Because an RI often includes specific sampling for background, the determination of 
background levels and their usefulness is described in Chapter 3. If the SI is the first sampling 
event for a site, there is a low probability that site-specific background sample data exist. 

 
* Appendices E, G, and H. 
† Appendix I. 
‡ Appendix O. 
§ Appendix M. 
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CHAPTER 3 
Remedial Investigation/Feasibility Study (RI/FS) 

 
3.1.  Introduction.  If, based on the PA/SI, a site warrants listing on the National Priorities List 
(NPL), an RI/FS is performed at the site.   
 
 3.1.1.  The RI is the stage in the CERCLA process for collecting data to do the following. 
 
 3.1.1.1.  Characterize site conditions (e.g., thickness of unsaturated soil [vadose zone], 
depth to groundwater, vegetative cover, background conditions). 
 
 3.1.1.2.  Determine the types, conditions, and distribution of the waste contamination in af-
fected media. 
 
 3.1.1.3.  Assess risk to human health and the environment. 
 
 3.1.1.4.  Conduct treatability tests to evaluate the potential performance and cost of the 
treatment technologies that are under consideration. 
 
 3.1.2.  The FS is the stage for the development, screening, and detailed evaluation of reme-
dial actions.  
 
 3.1.3.  The RI and FS are intimately linked. Data from the RI influence the development of 
remedial alternatives in the FS, which in turn affect the data needs and scope of treatability stud-
ies and additional field investigations. This phased approach encourages the planning team to 
continually plan the site characterization effort, which minimizes the collection of unnecessary 
data and maximizes data quality. 
 
 3.1.4.  As in the SI phase, the initial statistical elements in the RI process involve the de-
velopment of DQOs. The statistical evaluations used for the RI typically include those performed 
for the SI. For example, as in the SI, site data are often statistically compared to some set of fixed 
decision limits and upper confidence limits are often established (as discussed in Chapter 2). In 
general, the statistical evaluations are more common for RIs than SIs, and the statistical analysis 
tends to be more comprehensive. In part, this is because typically data coverage is greater and the 
RI data quality objectives are more robust. For example, while the SI predominantly focuses on 
statistical evaluations to resolve the presence or absence of contamination, the RI reaches for a 
determination of the extent of contamination. Critical to the onset of an RI is the identification of 
Applicable or Relevant and Appropriate Requirements (ARARs), which, in turn, may influence 
the identification of areas requiring remediation. Both sampling strategy and extent of contami-
nation are influenced by the selection of ARARs. ARARs help identify the best analytical proce-
dures needed to reach decision limits. This aspect of DQOs is addressed in Appendix C. 
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Section I 
Site Characterization 
 
3.2.  Introduction.  The first two objectives of the RI (subparagraphs 3.1.1.1 to 3.1.1.4) are com-
bined for discussion in this Paragraph. The process of site characterization is linked to the proce-
dures described in Section II of Chapter 2, where sampling distribution design was discussed. In 
the RI stage, sample design is likely to be influenced by SI data. In turn, these SI results affect 
the statistical methods at the planner’s disposal for collection of site data. 
 
 3.2.1.  When scoping for the SI, project planners have expectations about the probable lo-
cation and nature of contamination. By the time a site reaches the RI, some usable information is 
usually available. In particular, if a contaminant was identified in the SI, planners may have an 
idea of the mean and standard deviation of contaminant concentrations. These initial estimates 
assist in devising a statistical sampling design at the RI stage. Two examples of using site data to 
support sampling design are presented in this Paragraph. These are “hot spot” sampling and geo-
statistical sampling, the fundamentals of which are presented in Appendices C, J, and Q. 
 
 3.2.2.  A “hot-spot” typically refers to a localized area of high concentration, but is often 
otherwise poorly defined (e.g., criteria for the size and concentration of hot spots are often arbi-
trary or not specified). Hot-spots are not uncommon at sites where waste was released in an iso-
lated region, perhaps during a spill. In addition, hot-spots may occur within broader regions with 
low, but detectable, levels of contamination. One example of this may be when an area was used 
to process waste disposal over some time and, at times when a shop or operation was cleaning 
house, a high concentration of waste would be deposited. However, sample concentrations that 
exceed a regulatory threshold or other decision limit should not be considered to be hot-spots if 
these concentrations appear to be randomly distributed and will not necessarily be of concern if 
they represent a small portion of study area and contain a small contaminant mass. 
 
 3.2.3.  Case study 1 presents an RI application of the hot-spot identification method dis-
cussed in Appendix C. 
 
 3.2.4.  In this instance, professional judgment led to the determination of the size and shape 
of the hot-spot. The reader is urged to vary S and L to identify the sensitivity of hot-spot sam-
pling grids to the assumptions. 
 
 3.2.5.  As stated previously, there is typically some knowledge of contaminant distribution 
at a site by the time an RI begins. Geostatistics allow an investigator to extrapolate (and interpo-
late) what is known in one location to other nearby related locations. Its application relies on the 
fact that, given a known concentration at one location, an adjacent location is likely to have a 
similar concentration. The greater the distance from the known concentration, the greater uncer-
tainty there is in predicting a concentration at an unsampled location. This situation can be de-
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scribed as a spatial correlation, because correlations are related to how close samples are to one 
another. Geostatistical methods are described in detail in Appendices J and Q. 
 
 3.2.6.  Case Study 2 illustrates the use of geostatistics for reducing uncertainty in a project. 
Although geostatistical techniques are more common for RIs than SIs, they may also be used for 
SIs if sufficient site data are available. 
 
 3.2.7.  One of the major RI objectives is identifying the distribution of contamination at a 
site. As useful as geostatistics are in helping with sampling design, they may also be used in in-
terpreting sample data. The geostatistical method known as kriging (Appendix J) is an effective 
method for interpolating site concentration data under conditions where spatial correlation exists. 
Kriging is a weighted-moving-average interpolation method. The USEPA developed a two-
dimensional kriging package, which is useful in providing a fundamental introduction to the 
technique (Geo-EAS; EPA/600/4-88/033). Kriging as a method of contouring is described in 
several readily available texts, and typically requires the use of commercially available computer 
software with kriging options for contouring (e.g., Surfer, EVS). 
 
3.3.  Case Study 1—Hot-Spot Identification.  The project team attempted to locate a hot-spot 
resulting from an uncontrolled water release within a larger storage area. The total storage area 
was approximately 150 by 200 feet. Because the suspected waste was spilled as a liquid, the hot-
spot was assumed to be approximately circular. A best estimate of the diameter was approxi-
mately 20 feet. The method proceeded in steps as follows: 
 
 3.3.1.  A circular hot-spot means S equals 1. 
 
 3.3.2.  The radius of the target spot is 10 feet. 
 
 3.3.3.  The team assigns a value of 0.1 to the acceptable risk of not finding the hot-spot.  
 
 3.3.4.  Using S and β, refer to Table D-1 (or nomographs presented in Gilbert, 1987) to de-
termine that L/G is 0.55 for a square grid and 0.50 for a triangular grid. 
 
 3.3.5.  Using the relationship L/G and the assumed radius of 10 feet, we see that square grid 
spacing is 18 feet and triangular grid spacing is 20 feet (values are rounded to the nearest foot to 
reflect the significant figures). 
 
 3.3.6.  One sample will be placed at each grid node in the storage area, so that a square grid 
requires 88 samples and a triangular grid requires 75 samples. 
 
3.4.  Case Study 2—Using Geostatistics in Project Planning to Reduce Uncertainty and 
Cost.  At a site in the Midwest, project planners were asked to assess a site potentially contami-
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nated with lead at levels exceeding risk-based limits. A SI was conducted using a grid system 
over areas that were suspected of being contaminated based on historical information.  
 
 3.4.1.  The project team identified lead concentrations in soil exceeding threshold values in 
various areas of the site (red circles in Figure 3-1). They were required to move on to an RI/FS to 
more fully characterize the nature and extent of contamination and develop preliminary estimates 
of cost for a removal action. Initially, the team intended to collect numerous additional samples 
on a grid (green circles in Figure 3-1) to more fully delineate the extent of contamination. How-
ever, the project geologist suggested the use of geostatistics as a means of reducing the number 
of samples without increasing uncertainty. 

 
  

 
 

Figure 3-1.  Initial sampling grid and proposed new samples. 
 
 3.4.2.  Geostatistics can predict both the concentration and the uncertainty for an unsam-
pled portion of the study area. In essence, spatial correlations for contaminant concentrations es-
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tablished from the existing data set are used to “extrapolate” sample concentrations and uncer-
tainty for other portions of the study area. Consequently, the team was able to use a geostatistical 
evaluation to assess the value of collecting additional samples at any given location in the grid. 
Simply put, the team recognized that in any sampling and analysis system there will be bias and 
variability, and that estimates of that bias and variability could be made using the existing data. 
Thus, at any location where the estimate of uncertainty from the geostatistical prediction was less 
than the uncertainty from sampling and analysis, the team reasoned that there was no value in 
collecting additional samples. 
 
 3.4.3.  The final sampling plan required the addition of only seven new sampling points 
(shown as black circles in Figure 3-2) with associated cost savings of over $12,000. 

 
  

 
Figure 3-2.  Samples required after geostatistical analysis. 
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Section II 
Background Comparisons 
 
3.5.  Introduction.  Not all chemicals detected at hazardous waste sites originate from site-
related activities; for example, metals in soil and groundwater are often present because of natu-
ral geological conditions. Similarly, anthropogenic activities unrelated to a site frequently con-
tribute certain organic chemicals (e.g., polycyclic aromatic hydrocarbons [PAHs] or pesticides 
derived from urban or agricultural sources; EPA SOW No. 788). If site sample concentrations for 
a specific compound are similar to or lower than background concentrations*, there may be no 
need to consider potential remedial actions with respect to that compound. This determination 
can be quantitatively defended by use of statistical comparison methods. 
 
 3.5.1.  The project team should determine the background sampling locations and parame-
ters during the planning stages of the RI. Separating and identifying background sample loca-
tions from portions of the study area that have been potentially affected by waste handling 
activities is an example of stratification. The critical factor distinguishing a background sample 
from the site lies in understanding where contaminated areas end and natural conditions begin. 
Such samples may be located upwind, upstream, or upgradient from the waste site. Background 
data should be drawn from media that physically represent the study area; they should be from 
the same soil type or geological deposit, same type of surface water system (for example, fresh-
water versus saltwater; wet season versus dry season), or from the same aquifer as the site data. 
It is also critical to collect the background samples in substantively the same manner that the site 
samples are collected (same analytical method, volume of sample, etc). The sampling design and 
analytical methodology for the background and the site study areas must be similar. For example, 
erroneous conclusions can result if judgmental sampling is done for the site study area but ran-
dom sampling is done for the background study area. 
 
 3.5.2.  Background locations should be in a nearby portion of the region unaffected by site 
activities. As a caveat, site planners should be skeptical if regulators prefer to limit background 
sampling to only pristine areas; doing so will potentially result in erroneously concluding that the 
study area has been adversely impacted by site-related waste handling activities. 
 
3.6.  Does Background Soil Differ From Site Soil?  The USEPA has developed guidance for 
addressing whether site soil characteristics differ from background (EPA/540-R-01-003 and 
EPA/540/S-96/500). The guidance EPA/540-R-01-003 emphasizes the formulation of DQOs in 
devising background sampling design and subsequent site to background testing. The focus of 
the cited guidance is only to determine whether site and background soil chemistry differ. It does 
not establish comparison standards, or levels of background that may replace unnaturally low 
risk-based clean-up goals. 

 
* Background does not mean pristine or unaffected by human activity, especially at sites in heavily industrialized ar-
eas. 
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 3.6.1.  Fundamentally, the USEPA guidance (EPA/540-R-01-003) identifies two forms of 
background testing: 
 
 3.6.1.1.  Background Test Form 1.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area is less than or equal to the mean con-
centration in background areas. 
 
 3.6.1.2.  Background Test Form 2.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area exceeds the mean concentration in 
background areas by more than a specified margin (e.g., by 50 ppm). 
 
 3.6.2.  Before continuing with this approach, investigators need to be certain that these tests 
are applied to random sample data sets collected from both the site and background locations. 
Typically, site sampling may have a component of judgmental sampling, meaning samples were 
biased to expected contaminated areas of a site. In such cases, the background testing cannot be 
applied. 
 
 3.6.3.  The project planning team should establish which form of background testing will 
be applied at the onset of the RI planning process. In addition, the planning team needs to estab-
lish the levels of acceptable levels of error in the decision-making. This will differ from site to 
site, and will depend on the desires of the project planning team members. 
 
 3.6.4.  The USEPA guidance also provides examples for the application of test methods 
that may be applied to the background test forms (EPA/540-R-01-003; Table 3-1). These are: 
 
 3.6.4.1.  Descriptive Summary Statistics.  These (e.g., mean, median, standard deviation, 
variance, percentiles—see Appendix D) may be used as a preliminary screening tool for com-
parison with site history and land use activities in the establishment of background. EPA consid-
ers these “simple and straightforward [but having low] statistical rigor.” 
 
 3.6.4.2.  Simple Comparisons.  These (i.e., greater than maximum) may be used with very 
small data sets. This approach is not recommended. 
 
 3.6.4.3.  Parametric Tests.  These (e.g., Student t-test–see Appendix F) may be used if a 
larger number of data points is available (n > 25). EPA states that parametric tests require ap-
proximate normality of the estimated means and recommends that, for smaller data sets, investi-
gators examine data for normality or lognormality in distribution. EPA considers this application 
statistically robust enough to be used frequently in parametric data analysis. 
 
 3.6.4.4.  Nonparametric Tests.  These (e.g., Wilcoxon Rank Sum Test—see Appendix M) 
may be used when data are not normally distributed, as rank-ordered tests make no assumption 
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on distribution. Again, EPA considers this approach statistically robust and to be used frequently 
in background estimation. 
 
 3.6.5.  The list of methods is not complete, but, by reviewing the appropriate Appendix, us-
ers of this Manual may identify the most appropriate statistical method for site application. 
USEPA guidance leans heavily toward parametric and nonparametric tests, which in turn rely on 
establishing whether data are normal or lognormal (see Appendix F). 
 
 3.6.6.  The U.S. Department of the Navy (DON) also developed statistical guidance for 
evaluating background in soils (UG-2049-ENV). Like the USEPA method, the guidance sug-
gests comparative methods for testing whether site data differ from background. However, DON 
guidance is unique, in part, because it also relies on geochemical relationships. UG-2049-ENV 
provides guidance for evaluating the geology of the site and the geochemical characteristics of 
site soils as they relate to background analyses. The procedures outlined in UG-2049-ENV can 
be quite useful for USACE projects and are recommended as a resource for additional reading. 
 
 3.6.7.  This “geochemical method” is often used when reference area data are not available. 
The method may be used to extract background concentration ranges by evaluating correlated 
background chemicals using on-site data only (i.e., no background area need be sampled). The 
key concept is that if the site has not been affected by a release, then only one population exists 
at a site; if a release has affected the site, then overlapping of different population characteristics 
would be evident in the data. 
 
3.7.  Simple Background Comparison.  Investigators are more likely to rely on regional back-
ground at the SI stage than the RI. As the text below states, site-specific background is more de-
sirable, but SI project budgets rarely allow for a full background study and such regional 
comparisons are still useful. Background concentrations are typically not known prior to RI ac-
tivities, and sampling for background should be scoped in the planning stages of the RI. In some 
instances, background criteria are available as regulatory limits, as Case Study 3 illustrates. (Al-
though the case study could also apply in an SI [Chapter 2], it is presented here to illustrate the 
concepts that arise for background comparisons all in one section of this document.) 
 
3.8.  Case Study 3—Comparison to Regional Background.  Site-specific background concen-
trations are typically not known prior to RI activities, and sampling for background should be 
scoped in the planning stages of the RI. In some instances, regional background values may be 
compared to site data.   
 
 3.8.1.  Texas has established soil background levels that can be used in the screening proc-
ess if site-specific background levels are not available. Soil data from one site proposed for rede-
velopment were compared to Texas background levels. Texas regulation states that if the 
maximum concentration of the chemical under investigation does not exceed the Texas soil 
background level, then that chemical is not of concern. The site analytical data were reviewed for 
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quality and applicability. Based on the review, the project team was satisfied that the site analyti-
cal data were of sufficient quality for use in evaluating the site. The soil analytical data (in 
mg/kg) for chromium were: 
 

6.17 4.31 4.38 6.07 5.68 
2.86 5.08 4.98 2.22 15.30 
4.75 3.56 4.48 3.46 2.63 

 
 3.8.2.  The maximum concentration for chromium at the site is 15.30 mg/kg. The Texas 
soil background level for soil is 30 mg/kg. Therefore, chromium would not be a chemical of con-
cern at the site. 
 
 3.8.3.  As indicated in the USEPA guidance, such a comparison lacks statistical rigor, but is 
useful for guiding the project planners in the next phase of investigation. 
 
 3.8.4.  At this stage, the comparison to regional background is merely sufficient to proceed 
to additional phases of site chromium evaluation.  
 
3.9.  Parametric and Nonparametric Tests.  In the preceding case study, the regulatory com-
munity established background concentrations. It is far more desirable for local background lev-
els to be assessed and applied. Differences related to sample medium, sampling method, or 
analytical method are less likely to arise in site-specific background data than regional back-
ground data. However, the project must be budgeted for a sufficient number of samples to char-
acterize site-specific background conditions; a large number of samples may be required to 
characterize heterogeneous background media. If the regional background data (e.g., the back-
ground data from a very limited site-specific background study) are shown to be statistically dif-
ferent from a waste site, it may also be attributable to differences in water quality or soil types 
between the site and the location where the regional background data were collected, and not 
necessarily related to a waste release. Therefore, a thorough evaluation of local background con-
ditions is preferred to the use of regional background levels. 
 
 3.9.1.  Instructions and guidance for selecting analytical procedures as part of DQOs should 
be applied to the background data set with the eventual uses of background data in mind. For sta-
tistical comparison, background measurements need to be random. In addition, the power of sta-
tistical comparison may be greater if the background results are normally or lognormally 
distributed. Although the distribution of background measurements cannot be guaranteed, either 
random or systematic sampling of background should be a component of the sampling plan. 
(Note that given spatial correlation, systematic samples spaced closer than the geostatistical 
range may not be independent. Sampling methods are addressed in Appendix C.) Once a set of 
background samples have been collected, comparison methods are applied using the statistical 
procedures addressed in Appendix M or N. 
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 3.9.2.  A random sampling* design is typically used to characterize the background study 
area. Two-sample statistical tests* are then typically used to compare the site data set to the 
background data set. Two-sample tests, described in Appendix M, are summarized in Table 3-1. 
 
 3.9.3.  An example of determining COPCs using background population tests is presented 
in case study 4. 
 
Table 3-1. 
Background Population Comparison 

Percent Detections in Site 
Data 

Percent Detections in Back-
ground Data 

 
Test 

0–100 0 No comparison 
> 0–100 < 10 Poisson UTL 
10–50 10- 50 Test proportions 
> 50 > 50 Mann-Whitney test, 

85–100 85–100 Student’s t test* or Mann-Whitney test 
*Student’s t test should be used if the distributions in the site and background data sets are the same; otherwise, 
the Mann-Whitney test should be used. 

 
3.10.  Case Study 4—Establishing and Comparing Background Concentrations to On-site 
Data.  At a military installation in Utah, samples were collected for metals in soil—seven on site 
and four at background locations. This case study focuses on chromium. The chromium results 
were as follows (mg/kg): 
 

SS01 SS02 SS03 SS04 SS05 SS06 SS07 BKG1 BKG2 BKG3 BKG4
 4.3  2.7  2.2  3.2  <1  3.6  2.4  1.6  1.8  2.6  1.6 

 
 3.10.1.  Because the site data had an 85% detection rate, one-half the reporting limit was 
substituted for each non-detect for the statistical calculations. 
 
 3.10.2.  Both background and site data were determined to be normally distributed at a 90% 
confidence level. An F-test was used to compare the variance of the background data set to the 
variance of the site data set. The result of the F-test indicated that the variances are equal. 
 
 3.10.3.  Thus, a two-sample t-test (with equal variances) was used to compare the back-
ground and on-site data sets. At the 95% confidence level, the calculated p = 0.172. Based on 
this evidence, a statistical difference between background and on-site data could not be demon-
strated at the 95% level of confidence; thus, no further action with respect to chromium was re-
quired. Note that, for this simple example, the conclusion of “no further action” is drawn because 
a statistical difference was not obtained. The power of the test is normally calculated when the 

                                                 
* Appendix C. 
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null hypothesis is not rejected. Additional investigation would be required if the power was not 
adequate. 
 
3.11.  Upper Tolerance Limits.  Upper tolerance limits* (UTLs) are sometimes used to deter-
mine whether site concentrations are elevated relative to background concentrations. The UTL 
defines a threshold value for the background data set. (More accurately, it is an upper confidence 
limit for some percentile of the background data.) Individual site contaminant concentrations are 
compared to this value. Study area detections that are greater than the background UTL are con-
sidered to be indicative of contamination from site-related waste handling activities. Tolerance 
limits are used in this manner in the USEPA guidance for the statistical treatment of groundwater 
monitoring data (EPA 530-SW-89-026, EPA 9285.7-09A). However, this approach must be used 
with caution. In particular, it is often erroneously concluded that site-related contamination exists 
if a single detection exceeds the UTL. For example, the “95% UTL” is typically used to evaluate 
site contamination relative to background. If the background and site concentrations are not dif-
ferent from one another, we will be 95% confident that at least 95% of all site measurements will 
fall below the 95% UTL with coverage of 95%. (For brevity, this is often referred to simply as 
the “95% UTL.”) Therefore, we would expect a small percentage of site measurements to exceed 
the UTL, even when overall site contamination is not elevated relative to background. When a 
large number of samples are taken, we should not definitively conclude that a small number of 
detections greater than the UTL necessarily indicate site-related contamination. 
 
 3.11.1.  Furthermore, regulators have criticized the use of UTLs to compare site to back-
ground contamination because UTLs do not minimize false negatives but, rather, minimize false 
positives. In other words, if many detected study area concentrations were greater than the back-
ground UTL, this would constitute strong evidence of site-related contamination. This scenario 
would be unlikely if the site and background concentrations were similar. Alternatively stated, 
the probability of a false positive—erroneously concluding that the site is contaminated relative 
to background—would be low. However, if detected site concentrations were less than the UTL, 
strictly speaking; no conclusion would be possible. This would not be sufficient to demonstrate 
the absence of site contamination relative to background. If we were to conclude the absence of 
site-related contamination using the UTL, false negatives could result (i.e., erroneously conclud-
ing that site concentrations are not elevated relative to background concentrations).  
 
 3.11.2.  Because of the problems with tolerance intervals discussed above, two-sample sta-
tistical tests are usually preferred (and are typically more appropriate) to compare site and back-
ground data sets. It is recommended that UTLs be used only when two-sample tests are not 
practical (or when the primarily objectives is to demonstrate that site contamination is elevated 
relative to background contamination). For example, a two-sample statistical test cannot be per-
formed when the site data set is extremely small (when only one or two samples are available for 
the study area). If a large data set was available for the background study area (e.g., because a 

 
* Appendices G and K. 
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“site wide” background study had been done for a prior investigation), then the study area results 
could be compared to the background UTL. 
 
 3.11.3.   The UTL background comparison methods are discussed Appendix K. These 
methods are summarized in Table 3-2 
 
 3.11.4.   There are parametric UTLs and non-parametric UTLs. The parametric UTL re-
quire the data to follow a specified distribution such as a normal or lognormal distribution. (Dis-
tribution tests are addressed in Appendices F and J.) As shown in the table above, the proportion 
of non-detects must be taken into account when selecting an appropriate UTL. (UTLs that rely 
upon the normality assumption cannot be calculated when a large portion of the data are reported 
as non-detect.) The nonparametric UTL represents a high-end value in the distribution. The fol-
lowing case study illustrates an example of calculating background UTLs for metals. 
 
Table 3-2. 
Background Comparison to Evaluate the Extent of Contamination 

Percent Detections in Background Data Type of UTL Calculated 
0 No UTL calculated 
< 10 Poisson UTL 
10–85  Nonparametric UTL 
≥ 85 (normal or lognormal distribution) Parametric UTL 

 
3.12.  Case Study 5—Calculating Background UTLs for Metals.  At a site in Utah, 56 soil 
samples were collected across a very large area to determine background concentrations for met-
als. 
 
 3.12.1.  Chromium was detected above the detection limit in every sample, so there was no 
need to substitute for censored values. Manganese was not detected in one sample, and the geo-
chemist elected to substitute one-half the detection limit for the censored value in that sample. 
 
 3.12.2.  The chromium data were normally distributed and the manganese data were log-
normally distributed.*  Refer to Appendices D, E, and I for a review of these concepts. 
 
 3.12.3.  For chromium, the 95% UTL was calculated from the sample results using the 
formula: 
 
 95% UTL x ks= +  . 
 
 3.12.4.  For 56 samples, k equals 2.032. Chromium results for background had a mean ( x ) 
of 12.7 mg/kg and standard deviation of 5.1 mg/kg, so the UTL was 23.0 mg/kg. For manganese, 
                                                 
* The Shapiro-Wilk test (Paragraph F-3) was used to test for normality at the 95% level of confidence. 
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the log of each sample result was taken prior to the calculation of the UTL. (The individual con-
centrations are not shown.) For the set of log-transformed results, the sample mean and standard 
deviation were 5.41 and 0.75, respectively. The log UTL for manganese was 6.93 (using the 
above equation). All comparisons for manganese should occur in “log space” (that is the loga-
rithm of the site manganese maximum would be compared to 6.93). (Alternatively, a minimum 
variance unbiased estimator of the manganese background concentration could be calculated us-
ing the methods described in Appendix E). 
 
3.13.  Extended Background Example.  This paragraph illustrates the concepts of distributional 
assumptions presented in Appendix J through a case study.  
 
 3.13.1.  Suppose surface soil samples (from 0 to 5 feet below ground surface) have been 
collected at Site A and a background location to evaluate chromium concentrations on site. Table 
3-3 presents the analytical results from samples collected at the site and background areas. All 
chromium concentrations were detected so no proxy concentrations are needed to evaluate the 
data. 
 
 3.13.2.  Further, suppose the objectives of this data evaluation are to identify whether 
chromium surface soil concentrations on site: 
 
 3.13.2.1.  Exceed regulatory threshold levels. 
 
 3.13.2.2.  Exceed background concentrations, on the average. 
 
 3.13.3.  Several statistical tests can be used to make such comparisons. A “one-sample” test 
can be used to compare the mean site chromium concentration to regulatory risk-based levels 
(Appendix L). A “two-sample” test can be used to compare the mean concentration of chromium 
at the site to the mean background concentration of chromium (Appendix M). A background 
value, such as a UTL, can be estimated for comparisons to individual site concentrations to iden-
tify if any one sample has a concentration higher than background. However, before any statisti-
cal tests can be done, distributional assumptions must be evaluated for each population (site and 
background) of data to determine which statistical test is most appropriate. The distributions are 
evaluated for normality (or log normality) using statistical tests and graphical plots. 
 
 3.13.4.  Graphical displays are the first approach taken to evaluate the distribution of the 
data (Appendix J). Histograms, box-and-whiskers plots, and probability plots are all useful in 
identifying how data are distributed and answering questions such as—are the data symmetrical, 
what is the range of concentrations, are there any outliers that may unduly influence future dis-
tributional tests, do the data seem to follow a normal distribution, and so on. Histograms, box-
and-whisker plots, and probability plots for the site and background data are provided in Figures 
3-3 and 3-4, respectively.  
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Table 3-3. 
Analytical Results for Chromium at Site A and Background Locations 

Site A Sam-
ple Location 

Top Depth 
of Sample 

Bottom 
Depth of 
Sample 

Chromium 
Concentration 

(mg/kg) 

Background 
Sample Loca-

tion 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium Con-
centration 

(mg/kg) 
SB01 1 2 4.76 BG01 1 2 4.99 
SB01 4 5 4.42 BG01 4 5 4.35 
SB02 1 2 4.68 BG02 1 2 4.61 
SB02 4 5 4.82 BG02 4 5 4.83 
SB03 1 2 4.36 BG03 1 2 3.92 
SB03 4 5 4.37 BG03 4 5 5.09 
SB04 1 2 4.09 BG04 1 2 5.19 
SB04 4 5 4.14 BG04 4 5 4.54 
SB05 1 2 4.78 BG05 1 2 5.49 
SB05 4 5 4.94 BG05 4 5 4.3 
SB06 1 2 3.35 BG06 1 2 5.67 
SB06 4 5 3.08 BG06 4 5 4.16 
SB07 1 2 10.1 BG07 0.5 1 5.41 
SB07 4 5 18.5 BG07 2 2.5 4.98 
SB08 1 2 10.6 BG08 1 2 5.64 
SB08 4 5 4.87 BG08 4 5 4.98 
SB09 1 2 10.3     
SB09 4 5 5.51     
SB10 1 2 6.4     
SB10 4 5 4.13     
SB11 1 2 4.96     
SB11 4 5 4.96     
SB12 1 2 4.91     
SB12 4 5 4.89     

 
 3.13.5.  These plots have been developed on the basis of the original data and the natural-
log transformed data, as it is common that environmental data follow either a normal or log-
normal distribution. Other less common transformations, such as the square root or inverse sine 
transformation, are not applicable in this case study because: 
 
 3.13.5.1.  Chromium concentrations are continuous (values can be any number within a 
range of concentrations). 
 
 3.13.5.2.  Detected chromium concentrations are not rare events to warrant review of the 
Poisson distribution. 
 
 3.13.5.3.  Chromium concentrations are not binomially distributed. 
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Figure 3-3.  Chromium in Site A. 
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Figure 3-4.  Chromium in background. 
 
 3.13.6.  Based on just the plots in Figure 3-3, chromium at Site A does not appear to have a 
normal or lognormal distribution. The histograms for the original data and log-transformed data 
are not symmetrical, but are skewed. This is confirmed in the box-and-whiskers plots because the 
mean (the dotted line) is larger than the median (the solid line within the box) and the mean is 
even larger than the 75th percentile (the top part of the box). (If the data were normal, the mean 
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would be equal to the median.) As the mean is greater than the 75th percentile, this suggests that 
the mean is influenced by several considerably large concentrations. Outliers (each of point rep-
resented by an “X”) predominantly occur only in the upper portion (the top) of the box plots. 
Lastly, as the normal probability plots for the original data and log-transformed data are not lin-
ear, this gives additional evidence that the data are not normal or lognormal.  
 
 3.13.7.  The chromium data distributions possess heavier right tails relative to a normal dis-
tribution. Note the extreme deviation from linearity (Appendix F) at the right-hand side of each 
normal probability plot (appearing as a series of points above the straight line). The superim-
posed line on the normal probability plots illustrates the line that concentrations follow when 
data are normally or lognormally distributed. This line is related to Filliben’s statistic in the sense 
that it provides a standard to compare the linearity of sample results. For these normal probabil-
ity plots associated with Site A, it is apparent that the data do not follow a normal or lognormal 
distribution. 
 
 3.13.8.  The plots in Figure 3-4 show evidence that chromium for the background data set 
appears to follow a normal or a lognormal distribution. The histogram for the original data seems 
to be symmetrical, though the histogram for the log-transformed data is not as symmetrical. 
However, histograms can be misleading if the boxes (i.e., concentration intervals) are too large 
or too small; therefore, another type of plot, preferably a normal probability plot, should be con-
structed to determine whether the data are normally (or lognormally) distributed.  
 
 3.13.9.  One of the most powerful statistical methods for testing normality is the Shapiro-
Wilk* test. Because the site data set has 24 sample results and the background data set has 16 
sample results, this test would be appropriate for evaluating normality and lognormality for both 
the site and background data sets. The result of the Shapiro-Wilk test is presented in Table 3-4 
for chromium at Site A and background based on the original data and log-transformed data. The 
Shapiro-Wilk test results in either a calculated value of the statistic W or the value p. There is ac-
ceptably strong evidence that the data set is not normal when either W or p is small relative to the 
corresponding acceptance limit for W or p. 
 
 3.13.10.  For Site A, results of the Shapiro-Wilk test show evidence that the data do not fol-
low a normal or lognormal distribution (i.e., since the calculated value of W is smaller than W0.01, 
or equivalently, p < 0.01, there is less than a 1% chance that the data set is normal, or equiva-
lently stated, there is at least a 99% confidence that the data are not normal). However, for back-
ground the results of the Shapiro-Wilk test suggest that the data seem to follow both a normal 
and lognormal distribution. It should be noted that there is more evidence that background data 
are normally distributed rather than lognormally distributed, because the value of W and the as-
sociated value of p are higher for the original data than for the log-transformed data. 
 

 
* Appendix F. 
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 3.13.11.  The coefficient of variation* (CV) was estimated for each data set, and is provided 
in Table 3-4. A CV greater than 1 suggests a departure from normality. However, the evaluation 
of the CV is not as reliable as quantitative statistical tests for normality, such as the Shapiro-Wilk 
test. The coefficient of variation is useful only for identifying obvious departures from normality 
when CV is much greater than 1. Because the sample CVs for the site and background data sets 
based on the original data and the log-transformed data all are less than 1 (as discussed in Ap-
pendix F), one cannot conclude the data can be modeled by a normal distribution. Therefore, for 
these data sets, the CV does not provide any useful additional information. 
 
 3.13.12.  Similarly, to illustrate the relative reliability of various distributional test methods, 
the Studentized range test* was also performed on the data sets. The results of this test (Table 3-
5) indicate that the Site A and background data sets follow normal and lognormal distributions. 
The range test failed to identify the lack of normality for Site A data. This happened because the 
data distribution for Site A is asymmetrical and this test does not perform well for asymmetrical 
distributions. However, according to the test, the background data follow a normal and log-
normal distribution. Therefore, the Studentized range test for the background data set is consis-
tent with the Shapiro-Wilk test, the coefficient of variation test, and the graphical plots (e.g., the 
normal probability and box plots). 
 
 3.13.13.  Similarly, to illustrate the relative reliability of various distributional test methods, 
the Studentized range test* was also performed on the data sets. The results of this test (Table 3-
5) indicate that the Site A and background data sets follow normal and lognormal distributions. 
The range test failed to identify the lack of normality for Site A data. This occurred because the 
data distribution for Site A is asymmetrical and this test does not perform well for asymmetric 
distributions. However, according to the test, the background data follow a normal and log-
normal distribution. Therefore, the Studentized range test for the background data set is consis-
tent with the Shapiro-Wilk test, the coefficient of variation test, and the graphical plots (e.g., the 
normal probability and box plots). 
 
 3.13.14.  To summarize, the background data appear to follow both a normal and log-
normal distribution, but Site A data do not appear to follow either a normal or lognormal distri-
bution. A dilemma exists regarding the distribution of the background data—is it normal or 
lognormal? As the log transformation did not appreciably improve the normality of the data set, 
it would be advisable not to perform the transformation. 
 
 

 

 
* Appendix F. 
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Table 3-4. 
Results of the Shapiro-Wilk Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Critical Values  
(from Table B-20 of Appendix B) 

Area 
Testing for Nor-
mality or Log-

normality? 

Number of 
Results CV 

Shapiro-Wilk 
Test Statistic, 

W 

Critical Value 
based on 0.05 
level of signifi-
cance,  05.0W

Critical Value 
based on 0.10 
level of signifi-
cance,  10.0W

Critical Value 
based on 0.50 
level of signifi-
cance,  50.0W

p value for 
Shapiro- 
Wilk Test 
(from sta-

tistical soft-
ware) 

Conclusion: Is 
there evidence 

that the data are 
Normally or 
Lognormally 
Distributed? 

Yes/No 
Site A Normality 24 0.5687 0.627 0.916 0.930 0.963 <0.0001  No 
Site A Lognormality 24 0.2426 0.791 0.916 0.930 0.963 0.0002 No 

Background Normality 16 0.1093 0.963 0.887 0.906 0.952 0.7177 Yes 
Background Lognormality 16 0.07041 0.958 0.887 0.906 0.952 0.6308 Yes 

 
 
Table 3-5. 
Results of the Studentized Range Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Test of Normality (based on original data) Test of Lognormality (based on log-transformed data) 

Area 
Number 
of Re-
sults 

Ratio of Range 
of Results and 

Standard Devia-
tion 

Critical Values from 
Table B-21 of Ap-

pendix B, assuming a 
0.05 level of signifi-

cance 

Conclusion: Is there 
evidence that the 

data are Normally 
Distributed? 

Yes/No 

Ratio of Range of 
Results and Stan-

dard Deviation 

Critical Values from 
Table B-21 of Appendix 
B, assuming a 0.05 level 

of significance 

Conclusion: Is there 
evidence that the 
data are Lognor-

mally Distributed? 
Yes/No 

Site A 24 4.586 (3.308, 4.666)* Yes 4.400 (3.308, 4.666)* Yes 
Background 16 3.278 (3.01, 4.24) Yes 3.317 (3.01, 4.24) Yes 
 

*Critical Values for n = 24 are based linear interpolation of critical values from n = 20 and n = 25. 
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 3.13.15.  If a background value, such as a UTL, and other summary statistics are desired to 
characterize the background data set, then the assumed distribution should fit the data as much as 
possible. With respect to this objective, it would be more appropriate to define background as 
following a normal distribution because the Shapiro-Wilk test shows more evidence of normality 
than lognormality. Comparing the Shapiro-Wilk test’s critical value or associated p value from 
the original data and from the log-transformed data is a reasonable approach for discerning 
which distribution is more appropriate and has more evidence of following a normal or log-
normal distribution. 
 
 3.13.16. The first objective for this case study is to determine whether chromium contamina-
tion at Site A, on the average, exceeds a regulatory threshold value. As it cannot be assumed that 
the Site A data set is either normal or lognormal, a nonparametric test (e.g., the Wilcoxon signed 
rank test for the median as discussed in Appendices H and M) must be used to compare the Site A 
data to the regulatory threshold. 
 
 3.13.17.  The second objective is to determine whether chromium exceeds background. 
Though the background data set could be reasonably assumed to be either normal or lognormal, 
this assumption could not be made for the Site A data set. As the Site A data set is neither normal 
nor lognormal, a parametric two-sample test* cannot be used to compare the Site A data set to 
the background data set (for example, to determine if the mean concentration at Site A exceeds 
the mean background concentration). Both data sets must follow the same distribution to use a 
parametric test. For example, both the background and site data sets must both be normally or 
lognormally distributed. As data from Site A does not follow a normal or lognormal distribution, 
only nonparametric tests such as the Wilcoxon rank-sum test* can be used to compare the Site A 
and background data sets. 
 
 3.13.18.  This case study illustrates the value of background data in project decision-
making. The application of background data in identifying contaminants for inclusion in the risk 
assessment is presented in the following section. The data in the preceding discussion may be 
used as sample data to apply some of the nonparametric tests in Appendix M. 
 
Section III 
Risk Assessment 
 
3.14.  Introduction.  Perhaps more than any other area in the CERCLA project life cycle, assess-
ing site risk relies on statistics. Many of the techniques described in several of the appendices 
apply in quantifying and assessing risk at a hazardous waste site. The components of a risk as-
sessment discussed in this report are: 

 
* Appendices M and N. 
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• Identifying contaminants of potential concern (COPCs). 
• Calculating exposure point concentrations (EPCs). 

 
Statistics enter into risk assessment in one additional major area—the calculation of exposure 
levels. Specifically, a baseline human health risk assessment requires estimation of a reasonable 
maximum exposure (RME), and a central tendency exposure (CTE). The former relies on 95% 
upper confidence level (UCL) values for exposure parameters, and the latter on the mean of the 
exposure parameters. In either case, the exposure parameters are generally provided by EPA 
guidance, such as the Exposure Factors Handbook (USEPA, 1997). For all practical purposes, 
the environmental scientist will not need to statistically evaluate these parameters and, conse-
quently, their derivation is not discussed here. However, understanding the concepts presented in 
Appendix E is very useful in deconstructing the data evaluations presented in the Exposure Fac-
tors Handbook (USEPA, 1997). 
 
 3.14.1.  Identification of Contaminants of Potential Concern for Risk Assessment. Not all 
chemicals detected at a site are typically included in the quantification of risk. Those chemicals 
retained in the risk assessment are the COPCs. Note that the COPCs are media-specific; COPCs 
are evaluated for air, surface soil, subsurface soil, groundwater, sediment, surface water, and any 
other medium sampled in the RI at each site. 
 
 3.14.1.1.  Chemicals are typically screened against background or other criteria (established 
by ARARs) and a subset is selected for inclusion in the risk calculations. Some of the screening 
criteria, other than background levels, include drinking water MCLs, or secondary MCLs, RBCs, 
and Toxic Substance Control Act (TSCA) values for PCBs (polychlorinated biphenyls) in soil. In 
addition, inorganics that are essential human nutrients (e.g., iron, potassium, magnesium, so-
dium, and calcium) may be excluded from the quantitative risk analysis in most cases. (ARARs 
are identified in the planning stage of the RI.) 
 
 3.14.1.2.  Both qualitative and quantitative statistical evaluations are frequently performed 
to identify COPCs. A qualitative evaluation is initially conducted to determine whether select po-
tential analytes of concern can be eliminated from future investigation; a statistical evaluation is 
subsequently done for a more in-depth look at of contaminants that were not eliminated during 
the qualitative assessment. 
 
 3.14.1.3.  For example, for the qualitative evaluation of the data, if a chemical is detected 
infrequently in the sample data set, and is not considered to be associated with historical waste 
handling at a site, it may be screened out as a COPC. However, it is essential to use site-specific 
information before discarding such a chemical, as infrequently detected compounds may also 
represent hot-spots, depending on the sampling strategy used at the site. For every chemical de-
tected at least once, the maximum detected concentration is compared to the chemical- and  
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medium-specific screening criterion. Chemicals with higher concentrations than their criteria are 
generally retained for quantitative evaluation in the risk assessment.  
 
 3.14.1.4.  Contaminants that lack ARARs (usually because toxicity information does not 
exist) are retained as COPCs in the risk assessment and discussed in the uncertainty section of 
the report. One-sample tests for contaminants where the maximum exceeds the risk-based 
screening limit may be used to determine whether the mean is statistically less than the screening 
limit, even though a single value exceeds the screening limit. Anthropogenically derived con-
taminants (such as PAHs) that occur at concentrations below background levels are still retained 
in the risk assessment if they exceed ARARs. If the risk assessment indicates that such contami-
nants are a primary contributor to total risk at a site, then a quantitative statistical comparison 
with background (e.g., using appropriate two-sample statistical tests) would be done and the re-
sults would subsequently be discussed in the risk characterization at the end of the assessment. 
 
 3.14.2.  Calculating Exposure Point Concentrations.  For risk assessment, means and stan-
dard deviations are typically calculated as the basis for EPCs and as the basis for deriving UTLs 
for the background comparisons. However, the mean and standard deviation will frequently be 
inappropriate measures of central tendency and dispersion when the data are not normally dis-
tributed or a large portion of the data consists of non-detects. Under these circumstances, means 
and standard deviations should not be used to perform statistical evaluations. Before statistically 
valid means and standard deviations can be calculated, tests for normality should be conducted 
and non-detects must be appropriately addressed. 
 
 3.14.2.1.  The EPC is used to calculate a COPC’s carcinogenic risk and non-carcinogenic 
hazard index. It represents the concentration a receptor is likely to encounter. The USEPA re-
quires the EPC to be a conservative estimator of central tendency—the 95% upper confidence 
limit (UCL) of the sample arithmetic mean concentration (OSWER 92-856-03, EPA 68-W0-
0025). The 95% UCL is the concentration that, when calculated repeatedly for randomly drawn 
samples, equals or exceeds the true mean 95% of the time. 
  
 3.14.2.2.  Calculating rigorous, statistically valid 95% UCLs requires that data be distribu-
tion tested and that non-detects be treated properly. Procedures for this are provided in Appendix 
H. Some of the older (pre-2000) RCRA and CERCLA guidance for calculating the UCL are out-
dated (and hence, are not recommended); modifications and updates are provided with the goal 
of improving scientific defensibility. Appendix G presents the most recent acceptable methods 
for estimating the 95% UCL at 95% confidence. 
 
 3.14.2.3.  Calculating EPCs at a CERCLA site brings together many of the statistical pro-
cedures described in the attached Appendices. The correct steps are, in general, as follows 
 
 3.14.2.3.1.  Identify the nature of the censoring limit and the proportion of censored values 
and substitute proxy values as directed in Appendix R. 
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 3.14.2.3.2.  Identify outliers as discussed in Appendices I and M. 
 
 3.14.2.3.3.  Perform distribution testing as detailed in Appendix F. 
 
 3.14.2.3.4.  Depending on the outcome of these steps, calculate the 95% UCL as directed in 
Appendix G. 
 
 3.14.2.4.  Unfortunately, there are many pitfalls along the way, and this process does not 
always lead to a simple result. In part, this is attributable to the use of or adherence to older 
USEPA guidance. In particular, USEPA guidance for substituting for censored data is addressed 
in many separate risk assessment documents. In earlier documents, substituting one-half the de-
tection limit is supported. Appendix E provides insight on the deficiency in this approach. In ad-
dition, even if the risk assessor has performed all of the statistical procedures, USEPA guidance 
for EPCs states that if a 95% UCL exceeds the maximum value of a compound detected at a site, 
the maximum should be substituted. This has the dissatisfying attribute of being completely ad 
hoc, giving rise to unquantifiable and unacceptable uncertainties for risk assessment decisions. 
 
 3.14.3.  Uncertainty Quantification.  A required element in a baseline human health risk as-
sessment is to evaluate uncertainty for decisions. Statistical techniques alone will be unable to 
account for all sources of uncertainty in a risk assessment and a qualitative approach is normally 
taken. For example, there will be uncertainty in the risk assessment for analytes for which toxic-
ity data do not exist, and the quantification of such uncertainty is not possible. 
 
 3.14.3.1.  In risk assessment, uncertainty stems primarily from the following three sources. 
 
 3.14.3.1.1.  Errors in the estimate of contaminant concentration. 
 
 3.14.3.1.2.  Errors in the estimate of toxicity. 
 
 3.14.3.1.3.  Errors introduced by large numbers of assumed values in the risk assessment 
formulations, which are by definition and intent very conservative. 
 
 3.14.3.2.  In practical terms, there is little that can be done about the uncertainty in esti-
mates of toxicity. The studies upon which toxicity data are based are taken “as is” simply be-
cause of the scarcity of available studies. Uncertainty in the assumptions employed in the risk 
assessment can sometimes be addressed, but only to a limited extent. An example for how the 
uncertainties listed in subparagraph 3.14.3.1.3 were taken into account is presented in Case 
Study 6. 
 
 3.14.3.3.  Most statistical evaluations implicitly assume the absence of bias. The uncer-
tainty predominantly depends on the distribution of field measurements. Even in the case of risk 
screening, as demonstrated in Chapter 2, we have seen that it is possible to qualitatively assess 
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the uncertainty of individual sample/analytical results before comparing those results to fixed 
threshold values using analytical QC information. For example, QC data can potentially be used 
to identify the direction of bias and to estimate the magnitude of the bias associated with a set of 
analytical results. This is illustrated in Case Study 6. It is also possible to make similar estimates 
of variability which may affect decision-making, as illustrated in Case Study 7. 
 
 3.14.3.4.  The error introduced into the risk assessment by the uncertainty associated with 
each of the various assumptions and reference values is more likely multiplicative rather than 
additive, such that the calculated risk is conservative to an extraordinary degree. Consider, for 
instance, some components of a soil dermal absorption scenario. The risk assessor calculates an 
EPC, which represents the 95% UCL of the mean. Then, the skin area exposed to the contami-
nant is based on an upper 95% confidence level of all the U.S. adult population from EPA 
OSWER 92-856-03. These are combined with, say, the default average exposure duration and 
frequency values which, again, are upper estimates from some population. Combining all of 
these upper estimates results in a risk evaluation that has a far higher confidence than 95%. The 
Risk Assessor and Project Manager are encouraged to identify every opportunity to use site-
specific values in place of assumptions in risk assessment to reduce uncertainty in the results 
and, thus, more appropriately apply the limited remediation resources available. 
 
 3.14.3.5.  One method for estimating the true mean and distribution of risk estimates is to 
use the recommended RME and CTE values of exposure parameters. This methodology is rec-
ommended in Risk Assessment Guidance for Superfund (RAGS). The result of looking at each 
input parameter using the CTE is to provide an estimate of risk near the mean of the estimated 
exposure scenario. The RME is considered to represent an upper estimate of site risk. An alterna-
tive method of quantifying the range in risk estimates is to use Monte Carlo simulations. 
 
3.15.  Case Study 6—Refining Risk Assessment Assumptions.   
 
 3.15.1.  A risk assessment was to be done as part of a RCRA Facility Investigation (RFI) at 
a steel mill in Pennsylvania. The project team approached the EPA Remedial Project Manager 
(RPM) regarding using site-specific assumptions for some of the exposure factors in the risk as-
sessment calculations. This was possible because the facility maintained excellent records of 
employee longevity, promotion, and work assignments. For this case study, the focus is on site-
specific estimates of exposure duration, which enters into quantification of risk. 
 
 3.15.2.  Under the assumptions given by the EPA for the worker exposure scenario in 
OSWER 92-856-03, the risk assessor is to assume that a given worker will be exposed for a pe-
riod of 25 years. However, by reference to detailed employee records for the facility, the project 
team was able to demonstrate concretely on a facility-specific, job-specific, and location-specific 
basis, the actual average lifetime exposure duration for the various site areas under study. Em-
ploying these actual values, which were approximately 3 to 5 years rather than 25 years, greatly 
reduced the exposure duration. More importantly, the site-specific value reduced the uncertainty 
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in the calculated lifetime risk. Using this lower value allowed the steel mill owner to limit the 
number of site areas proceeding to the Corrective Measures Study phase of the project. 
 
3.16.  Case Study 7—Direction and Magnitude of Bias.  As part of a property transfer in Bal-
timore, Maryland, the project team was asked to estimate reserves that the seller would have to 
put in escrow against the potential need for site clean-up, before the seller would accept transfer 
of the property. For this case study, petroleum hydrocarbon contamination will be discussed. 
 
 3.16.1.  The project team decided to divide the relatively small site into four quadrants and 
collect one composite sample from each to assess the potential need for remediation in each 
quadrant. The analytical results obtained from the laboratory were as follows: 
 

Quadrant 1 1200 mg/kg Quadrant 3 756 mg/kg 
Quadrant 2 101 mg/kg Quadrant 4 138 mg/kg 

 
 3.16.2.  With the state’s action level set at 100 mg/kg, it appeared that the seller would be 
required to reserve funds against a potential soil removal for the entire site. However, a review of 
the quality control data associated with the analytical results displayed significant potential bias. 
 
 3.16.3.  A normal calibration curve was developed for the gas chromatograph used in the 
analysis that met method criteria for linearity. The laboratory then analyzed an Initial Calibration 
Verification (ICV) using a standard from an alternative source from that employed in the calibra-
tion. The ICV was essentially a blank spike set at the midpoint of the calibration curve. The re-
sult of this analysis was a percent recovery (%R) of 168%, which was within the acceptance 
limits provided with the standard by the manufacturer. 
 
 3.16.4.  However, in its simplest form this QC result indicates that if the laboratory intro-
duced the equivalent of 100 mg/kg of total petroleum hydrocarbons (TPH) into the analytical 
system, they would get a reported result of 168 mg/kg. This observation, applied to the results 
reported for the site, removed two of the four quadrants from further consideration, reducing the 
required reserves by half.  
 
Section IV 
Probabilistic Risk Assessments Monte Carlo Simulations 
 
3.17.  Introduction.  The implementation of probabilistic risk assessment for environmental pro-
jects is beyond the scope of this document; however, a brief overview of the procedures is pre-
sented here. Monte Carlo simulation, the most common technique used for probabilistic 
assessments, is a statistical technique in which outcomes are produced using randomly selected 
values for input variables that possess a range of possible values. In some cases, a known prob-
ability distribution can be assigned to each input variable. By repeating the calculation many, 
many times, Monte Carlo simulations create a population of results representing (in theory) the 
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full range of possible outcomes and the likelihood of each. For example, when Monte Carlo 
simulation is used in risk assessment, risk is expressed as a distribution of possible values rather 
than a single point value.  
 
 3.17.1.  There are two major practical limitations to the application of Monte Carlo simula-
tions in general: i) it can be costly, and ii) few people are sufficiently qualified to do it. The EPA 
has also written a guidance document for probabilistic risk assessment titled RAGS Volume 3 
Part A: Process for Conducting Probabilistic Risk Assessment (EPA 540-R-02-002) available at 
http://www.epa.gov/oswer/riskassessment/rags3a/index.htm. An EPA Region 3 publication (EPA 
903-F-94-001) identified several technical limitations that preclude the Agency from relying on 
Monte Carlo simulations (http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm). 
 
 3.17.1.1.  Software is unable to distinguish between measurement variability and lack of 
knowledge. Some input parameters are for well-described differences among individuals—these 
differences are variability. Other factors, such as frequency and duration of trespassing, are sim-
ply unknown, and assuming a distribution for them is ad hoc. But the simulated distribution of 
unknowns is presented in computer output as variability. The accuracy of the distributional as-
sumptions limits the accuracy of the simulation. 
 
 3.17.1.2.  Software is unable to account for sample dependency (e.g., spatial and temporal 
correlations for sample locations). However, this limitation also applies to all classical statistical 
methods (e.g., the methods predominantly discussed in this document and in EPA environmental 
statistical documents such as the QA-G4 and GA-G9 guidance documents). In classical statistics, 
the assumption of independence highly influences the applicability of a technique—the same 
limitation applies here. 
 
 3.17.2.  In most statistical evaluations (excluding geostatistics), environmental scientists 
are resigned to the limitations of classical statistics for environmental data. The same is true for 
Monte Carlo simulations. Though Monte Carlo simulations require sample independence, the 
approach can be advantageous. The primary advantage is that it accounts for a range of input 
values and outputs a range of outcomes (such as risk values) with associated probabilities. Al-
though a Monte Carlo approach is currently not recommended or required by the EPA, the ap-
proach may be beneficial for some projects. There are applications of such simulations. 
Moreover, future scientists may learn how to overcome some of the limitations and eventually 
develop reasonable and inexpensive computer applications. 
 
 3.17.3.  Applications of Monte Carlo simulation are more prevalent in groundwater model-
ing than any other current environmental application. Case Study 8 shows how a Monte Carlo 
simulation of groundwater contamination was used to perfect a remedy. 
 

http://www.epa.gov/oswer/riskassessment/rags3a/index.htm
http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm
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3.18.  Case Study 8—Monte Carlo Simulation in Remedial Alternative Selection 
 
 3.18.1.  Monte Carlo analysis was coupled with decision tree analysis for a study site in 
Nebraska where the groundwater was contaminated with trinitrotoluene (TNT). The extent of 
TNT contamination was characterized during an RI. Three pump-and-treat alternative remedial 
actions were developed for the FS. The maximum concentration of TNT remaining in the satu-
rated zone at the end of each alternative project lifetime was determined stochastically using a 
Monte Carlo model. The Monte Carlo model randomly generated values for site information for 
initial mass concentration, hydraulic conductivity, and retardation coefficient. Then these ran-
domly generated fields were sampled and the output was combined into sets or ensembles. Prob-
ability functions were fitted to the output ensembles with the maximum simulated TNT 
concentrations. Because each of the treatment alternatives was associated with a different set of 
possible maximum concentrations, the Monte Carlo simulation made it possible to identify the 
optimal alternative quantitatively by analyzing the output ensembles for each alternative. 
 
 3.18.2.  Applying Monte Carlo simulations requires the technical support of a specialist in 
this area; detailed methodologies are beyond the scope of this Manual. The technique does rely 
on the power of randomly generated data sets and the optimization of conditions based on the 
simulation. 
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CHAPTER 4 
Remedial Design and Remedial Action 

 
4.1.  Introduction.  During the RD/RA phase, engineers develop detailed designs for remedial 
actions, construct remediation systems, and operate and monitor sites with long-term remedies in 
place. The term remedial system is defined here in a broad sense; it includes removal actions and 
capping as well as more active treatment systems. 
 
 4.1.1.  A number of statistical approaches that are applicable for prior stages of a project’s 
life cycle are also applicable for the RD/RA. This Chapter will address environmental statistical 
applications for the RD/RA that have not been highlighted for the PA, SI, or RI/FS. In this 
Chapter, we consider adaptive sampling plans for removal actions and groundwater monitoring 
and trend analysis.  
 
 4.1.2.  Although groundwater is most commonly subject to long-term monitoring, the same 
tools can be used to monitor and optimize remedial systems for other environmental media or 
demonstrate achievement of site closure criteria. 
 
4.2.  Comparisons to ACLs and MCLs.  Confirmation sampling is often performed for the 
RD/RA and would typically entail one-sample statistical tests. These would be the same types of 
tests that would be conducted during the SI and RI, only the nature of the decision limits would 
differ (e.g., the decision limits for the RD/RA would be “cleanup goals” rather than the risk-
based screening concentrations as in the SI). 
 
 4.2.1.  As an example, consider data collected at a landfill. If a statistically significant 
difference is observed between upgradient and downgradient concentrations, a compliance 
monitoring program must be put into place. According to RCRA regulations, analysis of Appen-
dix IX list constituents is required. Assuming that a release is confirmed, the facility must dem-
onstrate that the release does not present a health or environmental risk. Generally, this entails 
comparing analytical results to fixed threshold values, called Alternate Concentration Limits 
(ACLs), which are often established in a jurisdiction-specific fashion. An alternative approach is 
to compare site data to MCLs. In the first case, tolerance or confidence intervals are recom-
mended. In the second case, the tolerance limit is the preferred method.  
 
 4.2.2.  An appropriate one-sample statistical test is to determine whether contamination 
exceeds the decision limit (e.g., an MCL). For example, if a set of measured contaminant con-
centrations is normal, a one-sample t-test could be used to compare the mean concentration to the 
decision limit. However, a reliable comparison using a one-sample test will not be possible if the 
data set is small (e.g., consists of only three points). If normality of the data set can be assumed, 
a conservative approach would consist of calculating an UTL and comparing it to the decision 
limit. If the UTL were less than the decision limit, there would be strong evidence that site con-
tamination does not exceed the decision limit. However, do not conclude that there is a contami-
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nation problem when the UTL exceeds the decision limit. To avoid false positives, when the UTL 
exceeds the decision limit, additional data should be collected to do an appropriate one-sample 
statistical test. 
 
 4.2.3.  The confidence limit approach is used for comparisons to ACLs based on back-
ground data, whereas the tolerance limit approach is used when the comparison criteria are 
health-based and the comparisons are in relation to MCLs or health-based ACLs. The tolerance 
limit approach is more conservative than the confidence limit approach in that the UTL must be 
less than the MCL. However, Gibbons (1994) has pointed out the following.  
 
 4.2.4.  Because at most four independent samples will be available during semiannual 
monitoring, the 95% confidence, 95% coverage tolerance limit is approximately five standard 
deviation units above the mean concentration. In light of this, even if all four semiannual meas-
urements for a given compliance are well below the MCL, the tolerance limit will invariably ex-
ceed the MCL or health-based ACL and never-ending corrective action will be required.  
 
 4.2.5.  Thus, special care must be taken in the design of compliance monitoring programs 
to ensure that the facility is not caught in the kind of regulatory trap described above.  
 
 4.2.6.  In addition to one-sample statistical tests, multi-sample statistical tests can be 
appropriate for the RD/RA to perform comparisons with background values. Since long-term 
monitoring is commonly performed for groundwater during the RD/RA, Figures 4-1 through 4-5 
summarize the types of one-sample and two-sample statistical tests that would be used for 
groundwater monitoring. 
 
Section I 
Groundwater Monitoring and Optimization Trend Analysis 
 
4.3.  Introduction.  Monitoring remedial systems have significant, long-term costs. It is not 
difficult to anticipate that, over the course of 10 to 20 years, substantial economic resources 
available for environmental programs at military installations will be in long-term monitoring of 
sites actively under remediation or sites that require long-term monitoring. Project planners 
should ensure that these monitoring systems are optimized, and that they provide the necessary 
information at the least possible cost. Likewise, where active remediation is ongoing, optimiza-
tion is important to minimize economic impacts to the facility. While optimization is desirable, 
compliance is mandatory, and at most installations, groundwater monitoring is required under 
various permits or consent agreements. This section reviews various methods of assessing 
groundwater systems over time with a view to both detection and compliance, and optimization. 
 
4.4.  Detection and Compliance Monitoring.  Detection monitoring is a means of identifying 
whether a regulated hazardous waste site is releasing hazardous materials into the environment. 
Compliance monitoring entails the repetitive, periodic sampling and analysis of a select set of 
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monitoring locations for compliance with a fixed set of standards or requirements. The standards 
to which analytical results are compared are generally specified in regulations, permits, or con-
sent agreements.  
 
 4.4.1.  In detection monitoring, the results of sampling and analysis from a location that has 
recorded a release are compared to measurements from an unaffected or background location. In 
the case of groundwater monitoring, this generally entails selecting one or more monitoring wells 
upgradient of the site and selecting a representative set of downgradient monitoring wells. If the 
difference between the two sets of results is statistically significant, the owner is usually required 
to begin compliance monitoring to investigate how the release is occurring and to remedy the 
situation. These statistics fall into the category of hypothesis tests, specifically two- or multiple-
population tests, and are addressed in Appendices M and N. 
 
 4.4.2.  The selection of the statistical approach is generally open to discussion with regula-
tors and the final determination will depend upon many factors. In general terms, the simplest 
approach (consistent with the requirements of local jurisdictions) is the best approach. For exam-
ple, for detection monitoring, a two-sample t-test could potentially be used to compare upgradi-
ent (background) to downgradient (site) contaminant concentrations. Under the best of 
circumstances, a straightforward, parametric t-test would suffice; however, in practical terms, it 
is rare that environmental data meet all of the conditions that would make such a straightforward 
approach viable. And, in fact, by the time Figure 4-2 was published in EPA 530-SW-89-026, the 
use of the t-test had been largely discredited for this application because it failed to adequately 
control false positives when multiple site and background comparisons are required. Clearly, as 
of the time of its publication, the 1989 guidance recommended the use of ANOVA techniques 
(essentially a generalization of the two-sample t-test), and, to a lesser extent, alternatives such as 
tolerance intervals, prediction intervals, and control charting. By 1992, with the publication of 
Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities—Addendum to In-
terim Final Guidance (EPA 68-W0-0025), a somewhat different statistical approach was high-
lighted. Preferences had shifted further with the use of intervals and resampling strategies 
receiving much greater attention. By 1994, when Gibbons published Statistical Methods for 
Groundwater Monitoring, ANOVA techniques had largely fallen out of use, replaced by 
prediction intervals with resampling strategies that have become, in some cases, very complex. 
This statistical approach currently represents what might be called the state-of-the-art for 
groundwater. 
 
 4.4.3.  The alternative approach of using control charts has not gone altogether out of favor, 
however. A control chart is a type of plot (using data from a particular monitoring well) of some 
function of concentration (e.g., the mean concentration) versus time. The various statistical tests 
previously discussed are based on one of two possible approaches for detection monitoring. With 
the exception of the control chart approach, each new downgradient result is compared to the 
history (or historical data set) of upgradient results. These types of comparisons are called 
interwell (literally, “between well”) comparisons. A potential flaw in this approach is that it as-
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sumes the only variable that can make a difference between the upgradient and downgradient re-
sults is the intervening waste management unit. In reality, there are a number of other possible 
influences and, for this reason, intrawell (literally, “within well”) comparisons are still consid-
ered quite useful in groundwater monitoring applications. The classic method of performing 
these intrawell comparisons is with control charting. The two types of control charts normally 
employed for these purposes are the Shewart and cumulative summation (CUSUM) control 
charts, which are often combined in normal use.  
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Figure 4-1.  1989 EPA decision tree for groundwater monitoring. 
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Figure 4-2.  Statistical decision tree with options for groundwater monitoring—Part 1. 
 



EM 1110-1-4014 
31 Jan 08 
 

4-6 

 4.4.4.  Figures 4-1 through 4-5 present flow charts showing the options available and 
guidance on option selection. However, the decision regarding the type of statistical analysis 
program to employ should be made as part of the DQO development process for the monitoring 
effort. It is strongly recommended that the Project Manager involve a statistician in this process. 
 
 4.4.5.  Case study 1 provides an example in which multiple techniques are used to assess 
groundwater monitoring data. Case study 2 provides an example of using a combined 
Shewart/CUSUM method to identify a release at a site. 
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Figure 4-3.  Statistical decision tree with options for groundwater monitoring—Part 2. 
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Figure 4-4.  Statistical decision tree with options for groundwater monitoring—Part 3. 
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Figure 4-5.  Statistical decision tree with options for groundwater monitoring—Part 4. 
 
4.5.  Case Study 1—Groundwater Monitoring.  At a manufacturing facility in Virginia, a 
long-standing tetrachloroethene (PCE) plume is being hydrologically contained and treated with 
a combination of vapor extraction and groundwater pump-and-treat. The facility has been en-
gaged in long-term monitoring for over 20 years and uses a variety of techniques to assess permit 
compliance. Sample statistics allow the facility to determine whether remediation at the site is 
causing reductions in PCE concentrations. Table 4-1 presents an example of summary statistics 
and testing results in a fashion that is easily understood for both compliance and detection 
monitoring.  
 
 4.5.1.  For compliance monitoring at wells with known past contamination (MW1 to 
MW4), increasing or decreasing statistical trends were determined at the 90 and 95% level of 
confidence, respectively, as negotiated with state regulators at the site. 
 
 4.5.2.  Trend analyses, control charts, and tolerance limits are being used for the four wells 
under the category “Comp” and for the three wells under the category “Trend.” Typically, 
differing DQOs would be set for compliance and detection wells and only one set of statistical 
tests would be performed. However, the regulatory negotiations at this site mandated identical 
tests for both types of wells. (This example demonstrates an opportunity for improving past ne-
gotiated monitoring with regulators.) 
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 4.5.3.  Additionally, the number of detections greater than the “tolerance limit” is specified 
for each well. The 95% UTL is constructed from a set of background wells, also as determined in 
the site permit at time of negotiation with regulators. Because there is background contamination 
the following case study provides an example of using a combined Shewart/CUSUM method to 
identify a release at a site. 
 
Table 4-1. 
Groundwater Monitoring Data for Case Study 1 

Identification Descriptive Statistics Excursions? Trend 
Significance 

Class Well n Avg Med s W MK 
95% 90% 

Control 
Chart 

Tolerance 
Limit 

MW1 46 5595.0 5610.0 982.0 Yes No Up Up None 3 
MW2 44 62.3 67.2 21.5 Yes No Down Down None None 
MW3 40 1295.0 1198.0 367.8 No No Down Down None None Comp. 

MW4 47 133.8 133.7 22.3 Yes No Down Down None None 
MW5 16 0.0 0.0 0.0 N/A N/A None None None None 
MW6 16 0.0 0.0 0.0 N/A N/A None None None None 
MW7 16 0.0 0.0 0.0 N/A N/A None None None None 
MW8 16 0.0 0.0 0.0 N/A N/A None None None None 
MW9 16 0.0 0.0 0.0 N/A N/A None None None None 
MW10 16 0.0 0.0 0.0 N/A N/A None None None None 
MW11 16 0.369 0.4 0.307 Yes No None None None None 
MW12 16 0.0 0.0 0.0 N/A N/A None None None None 
MW13 16 0.0 0.0 0.0 N/A N/A None None None None 
MW14 16 0.0 0.0 0.0 N/A N/A None None None None 

Detect. 

MW15 16 0.039 0.0 0.088 No No None None None None 
 
Notes: Comp Compliance 
 n Number of samples 
 Avg Sample mean 
 Med Sample median 
 s Sample standard deviation 
 W Normal according to Shapiro-Wilk test at 95% confidence? 
 MK Seasonality according to Mann-Kendall test at 95% confidence? 

 
4.6.  Case Study 2—Shewart/CUSUM Monitoring.  A groundwater plume at a site is currently 
being addressed via pumping and treating large amounts of groundwater. The system is very 
costly, and the site owner wishes to change the system configuration. Project regulators want to 
know whether changing the system (in this case, shutting off the treatment system) will increase 
measured trichloroethene (TCE) values near the leading edge of the plume. A special type of 
compliance monitoring was initiated to determine whether concentrations after system shutdown 
exceeded a “trigger” level. Table 4-2 lists the eight most recent TCE measurements at 
monitoring well B-37 prior to altering the system. 
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 4.6.1.  The sample mean for these data ( x ) is 4.3 parts per billion (ppb) and the sample 
standard deviation (s) is 1.1 ppb. These values are used in statistical tests for normality, which 
did not indicate the data set is non-normal. (A hypothesis of normality cannot be rejected at the 
90% significance level using any of the Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov, 
or D’Agostino tests [See Appendix F].) 
 
Table 4-2. 
Eight Most Recent TCE Measurements in B-37 

 
Well ID 

Sample 
Date 

Measured TCE 
Concentration (μg/L) 

B-37 7-Jun-99 3.0 
B-37 29-Nov-99 3.2 
B-37 26-Jun-00 4.5 
B-37 3-Jan-01 5.8 
B-37 16-May-01 5.9 
B-37 4-Oct-01 3.2 
B-37 27-Mar-02 4.6 
B-37 10-Dec-02 4.3 

 
 4.6.2.  Table 4-3 lists the measured TCE concentrations in this well over eight monitoring 
periods after system shutdown in mid-December 2002, and the associated Shewart/CUSUM sta-
tistical parameters (see Appendix K). The Shewart/CUSUM calculations shown in the table are 
plotted in the Figure 4-6. 
 
Table 4-3. 
TCE Measurements and Shewart/CUSUM Calculations 

 
Hypothetical 

Sampling Event 

 
Sampling 
Period, i 

TCE 
Concentration 

(μg/L) 

 
 

zi 

 
 

zi-1 

 
 

Si 
Winter 2002 1 4.9 0.6 –0.4 0 
Spring 2003 2 5.7 1.2 0.2 0.2 
Summer 2003 3 6.0 1.4 0.4 0.7 
Fall 2003 4 3.9 –0.4 –1.4 0.0 
Winter 2003 5 9.8 4.8 3.8 3.8 
Spring 2004 6 8.1 3.3 2.3 6.1 
Summer 2004 7 7.5 2.8 1.8 8.0 
Fall 2004 8 10.6 5.5 4.5 12.5 

zi = standardized result (or normalized concentration) 
Si = cumulative sum 

 
 4.6.3.  The quantities zi and Si (discussed in Appendix K) were calculated to determine 
whether changing the system configuration resulted in an unacceptable change (i.e., increase) in 
the TCE concentration in Well B-37.  
 



EM 1110-1-4014 
31 Jan 08 

 

4-11 

 4.6.4.  The first out-of-control event occurred in winter 2003 when the zi of 4.8 exceeded 
the Shewart threshold of 4.5. In addition, although the normalized concentration zi decreases af-
ter the fifth sampling event following the start of shutdown, Si continues to increase beyond and 
remains greater than the threshold of 5.0 for this quantity through fall 2004. 
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Figure 4-6.  Shewart/CUSUM control chart, Well B-37. 

 
 4.6.5.  The results of the testing showed that reconfiguring the system appeared to change 
the concentrations of TCE in this downgradient well at a statistically significant level. The recon-
figuration was abandoned, and project planners began to reevaluate their understanding of 
groundwater movement at the site. 
 
 4.6.6.  The Shewart/CUSUM method is commonly applied to landfills for detection moni-
toring, although it has obvious additional uses in other long-term monitoring applications. For 
instance, by looking for an insignificant change over time, a site stakeholder could suggest that 
monitoring at a natural attenuation site could be discontinued. 
 
4.7.  Optimization.  The process of optimization is similar in many ways to the process of 
sensitivity analysis. In both cases, one makes planned adjustments to the system and looks for 
changes in the outcome. The process of optimization involves assessing whether or not a change 
made in the system results in a beneficial outcome—improving system performance, for exam-
ple, by reducing cost, increasing efficiency, or shortening the time to completion. This can be ac-
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complished by comparing data taken after the adjustments have been made to historical data for 
the process using a variety of hypothesis testing tools.  
 
 4.7.1.  It is also possible to examine trends in the system after taking into account seasonal 
and other forms of cyclic correlation. For example, when a time plot is examined for trend after a 
system modification, one may find that the slope of the time plot line changes, indicating a 
change in system performance. A time series plot is a graph showing how a parameter (e.g., TCE 
concentration) changes over time. A trend is a statistically significant change upward or down-
ward with a certain degree of confidence. Whether or not that change is significant and an as-
sessment of the magnitude of its impact can be addressed using trend tests such as Mann-Kendall 
and Sen’s Slope Estimator.*  
 
 4.7.2.  Another example of system optimization is in addressing such issues as the moni-
tored analyte list and the frequency of sampling, both of which have economic implications and 
can have regulatory implications as well. As a hypothetical extreme case for illustration, assume 
that a monitoring well network must be sampled four times each year; that there are 10 wells in 
the network; and that each well is monitored for 50 constituents, all of which must be non-
detects.  
 
 4.7.3.  The statistics underlying the determination of a detection limit (e.g., if normality is 
assumed and the detection limit is the “Type I detection limit” or “critical value” in Appendix C) 
are such that there is only a 1% probability of a false positive at the detection limit while, as the 
statistics employed are one-sided, there is a 50% probability of a false negative at the detection 
limit. Thus, in the course of a given year, based on probability alone, the facility could falsely 
report itself in violation an average of 20 times, while falsely reporting compliance 1000 times 
(on the average). In fact, it can be demonstrated that simply because of the inherent Type I error 
rate associated with any statistical test, where literally thousands of such comparisons may be re-
quired, whether at the detection limit or otherwise, the probability of a false conclusion of viola-
tion approaches unity. Thus, it is always in the best interest of the regulated facility to limit the 
number of analytes for which one tests to the smallest possible number. Every permit renewal 
period or 5-year review should be used as an opportunity to further limit the analyte list. Even 
hypothetically, one can see that this approach is inefficient (costly), and reaching the goal of all 
non-detect is an example of a poorly defined quality objective. Detection limits can differ across 
laboratories and over time, and, clearly, they are not related to risk management in any way. 
 
 4.7.4.  Another approach currently under study is the use of statistics to establish predict-
able correlation between the analyte of interest and some parameter that is more readily or cost-
effectively measured than the analyte of interest. This “harbinger” or “calibration” approach has 
its roots in the commonly accepted practice of monitoring for indicator parameters such as pH, 
conductivity, total organic carbon, and total organic halides in place of specific analytes. If a rig-

 
* Appendix  P. 
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orous regression analysis of historical data suggests a quantitative linkage between the concen-
tration of arsenic and magnesium at a given site, it should be possible to delete, or at least reduce 
the frequency of analysis, for one or the other analyte, particularly in the case where both ana-
lytes have historically displayed compliant behavior. It would also be useful in this type of situa-
tion if a functional relationship and the uncertainty associated with that relationship could be 
established.  
 
 4.7.5.  To assess the viability of monitored natural attenuation as a remedial alternative, it is 
essential to demonstrate: i) degradation of VOCs from parent products through to mineralization; 
and ii) correlation between that degradation and appropriate geochemical conditions. An 
example of assessing the correlation of parameters at a site in Maryland is illustrated in Case 
Study 3. Correlation measures show how strongly variables (or parameters) are related, or 
change with each other. 
 
4.8.  Case Study 3—Trend Analysis and Correlation in Natural Attenuation Data. 
 
 4.8.1.  The data used for a site in Maryland were organized along a single geographic line, 
from the suspected source to a groundwater discharge zone located along a creek bed. Location 
was displayed in feet from the center of the suspected source. The parent constituent was PCE. 
The primary geochemical indicators of interest (for purposes of this case study) were dissolved 
oxygen (DO) and oxidation-reduction potential (redox).  
 
Table 4-4. 
Attenuation Data 

Distance from Source 
(feet) PCE (μg/L) DO (mg/L) Redox (mV) 

0 320 0 –210 
50 1430 0 –220 

100 960 0.2 –170 
150 780 0.3 –140 
200 570 0.6 –80 
250 630 0.5 –30 
300 580 0.8 10 
350 340 1.1 40 
400 430 1.4 70 
450 130 1.7 90 
500 12 3.5 120 

 
 4.8.2.  The data for the three parameters of interest are presented in Table 4-4. The data 
were then plotted against distance from the origin (source) to identify trends over distance. A 
Mann-Kendall trend analysis showed that PCE concentration decreased over distance. Redox and 
DO are positively correlated to one another with a Pearson’s r value of 0.84. Geochemical un-
derstanding of natural attenuation requires that redox and DO should be inversely correlated to 
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PCE concentration, and the Pearson’s r values for DO and redox are –0.71 and –0.74, respec-
tively. The results are displayed in the Figures 4-7 and 4-8. In summary, the results suggest that 
conditions for natural attenuation are present. 
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Figure 4-7.  PCE concentration versus distance. 
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Figure 4-8.  Geochemical parameters versus distance from source 
(yellow triangle—redox; blue diamond—dissolved oxygen). 
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Section II 
Applying Cleanup Levels 
 
4.9.  Introduction.  When derived in accordance with USEPA’s risk assessment guidance, risk-
based cleanup levels are intended to represent the average contaminant concentration within the 
exposure unit that can be left on the site following remediation (Schulz and Griffin, 2001). In 
contrast, a “not-to-exceed” cleanup level drives remediation solutions that involve treating or 
removing any and all media with contaminant concentrations that exceed the cleanup level. The 
result is that applying a not-to-exceed level may result in over-remediation. 
 
 4.9.1.  Calculated using risk assessment principles, the cleanup goal concentration is 
usually defined as an exposure unit concentration that will meet the target risk level agreed to by 
the design team and regulatory authorities. Some sample concentrations exceeding the cleanup 
objective can remain in place as long as the overall exposure concentration, calculated to a 
predetermined level of certainty, meets the cleanup goal (and likewise the agreed upon risk 
level). Because of the uncertainty associated with estimating the true average concentration of a 
contaminant at a site, USEPA recommends use of the 95% one-sided, upper confidence limit of 
the arithmetic mean (95% UCL) of the sample data to represent the exposure unit concentration 
term in risk assessments (EPA 9285.7-09A and EPA OSWER 9285.6-10). Consequently, a risk-
based cleanup level should generally be interpreted as the 95% UCL of the contaminant 
concentration within the exposure unit following remediation. 
 
 4.9.2.  However, draft USEPA guidance suggests specific situations in which application of 
the cleanup level as an area average may not be appropriate (USEPA, 2002) These include the 
following. 
 
 4.9.2.1.  Exposure within the exposure unit is not random. 
 
 4.9.2.2.  The cleanup level is based on acute rather than chronic exposure. 
 
 4.9.2.3.  The cleanup level is not risk-based (i.e., it considers factors other than risk). 
 
 4.9.2.4.  The quality of site characterization data is not optimal but it is not worth investing 
in additional sampling. 
 
 4.9.2.5.  Given the site conditions (complexity, size, characterization, contaminant 
distribution), it is not cost-effective to do the necessary sampling and statistical analysis. 
 
 4.9.2.6.  The community will not accept leaving soil with contaminant concentrations that 
exceed the cleanup level on the site. 
 



EM 1110-1-4014 
31 Jan 08 
 

4-16 

 4.9.3.  If applying cleanup levels as an area average is appropriate, there are two basic ap-
proaches: i) using non-spatial statistical methods to determine a not-to-exceed concentration, and 
ii) using spatial statistical methods to iteratively re-calculate the UCL until the optimal “design 
line” for the remedial action is determined.  
 
4.10.  Determining Not-to-Exceed Concentrations Using Non-Spatial Statistics.  Draft 
USEPA guidance (USEPA, 2002) defines the remedial action level (RAL) as the maximum con-
centration that may be left in place within an exposure unit such that the average concentration 
(or 95% UCL) within the exposure unit is at or below the cleanup level. Non-spatial techniques 
may be appropriate for calculating the RAL when there is no spatial correlation between con-
taminant concentrations, such as at a dump site where small, randomly located spots of high 
contaminant concentrations are interspersed with areas of lower concentrations. Non-spatial 
techniques are based on the mean and standard deviation of the sample contaminant concentra-
tion data and on how those metrics change as soils with high contaminant concentrations are re-
placed with post-remediation concentrations during remediation. The draft guidance describes 
two non-spatial statistical methods for calculating remedial action levels that ensure that post-
remediation area average contaminant concentrations achieve cleanup levels: i) iterative trunca-
tion method, and ii) confidence response goal method. These methods are also reviewed in 
Schulz and Griffin (2001). Both methods can be applied in a spreadsheet calculation or pro-
gramming language.  
 
 4.10.1.  Iterative Truncation Method.  
 
 4.10.1.1.  The iterative truncation method is based on the identifying and removing 
(truncating) high values in the sample concentration measurements (hot spots), replacing them 
with the post-remediation concentration (e.g., concentration in clean fill), and calculating the hy-
pothetical post-remediation average concentration (95% UCL) in the exposure unit. Starting with 
the highest concentration in the data set, the process is repeated iteratively until the post-
remediation 95% UCL is less than or equal to the cleanup level. The highest sample concentra-
tion remaining in the data set is designated the RAL. 
 
 4.10.1.2.  This method is sensitive to the completeness of site characterization and the 
range of resultant sample concentrations. According to the draft USEPA guidance, to use this 
method with confidence, good site characterization through extensive, unbiased sampling is re-
quired and the resulting data must adequately represent random, long-term exposure to receptors. 
This method is not reliable when samples are not independently and randomly located. 
 
 4.10.2.  Confidence Response Goal Method.  Bowers et al. (1996) developed a method for 
calculating a confidence response goal (CRG), which, like the RAL, is a not-to-exceed level. 
This method can be applied at sites where there is a non-spatial, lognormal distribution of con-
tamination (USEPA, 2002).  
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 4.10.2.1.  As described in the draft USEPA guidance, the basic premise of the method is 
that the CRG can be expressed as a function of the geometric mean and the geometric standard 
deviation of contaminant concentrations, and the desired reduction in exposure, which is defined 
as the ratio of average post-remediation concentration to the average pre-remediation concentra-
tion. The guidance provides a summary of the method, documents the equation for calculating 
the CRG, and refers the reader to the original paper (Bowers et al., 1996) for details on the deri-
vation of the function.  
 
 4.10.2.2.  The Schulz and Griffin (2001) review of the two non-spatial methods concludes 
that the CRG method is less sensitive than the iterative truncation method to changes in the high-
est sample concentrations and recommends the use of the CRG method when the contaminant 
distribution is lognormal.  
 
 4.10.3.  Using Spatial Statistical Methods to Determine “Design Line” for Remediation.  
The distribution of contaminant concentrations may be spatially correlated at many sites where 
there is an original source or release that is subject to environmental fate and transport mecha-
nisms. Contaminant concentrations in and around the original source or release may be higher 
than those at greater distances, or they may be higher where there is a mechanism of accumula-
tion or an environmental “sink.” Biased sampling is frequently applied in such cases because a 
high number of samples is desired in areas with high variance and uncertainty (for example, near 
the source area), and a lower number of samples is often sufficient to characterize areas with ex-
pected low variance and uncertainty. The concept of taking “step out” samples in the vicinity of 
sample locations where high contaminant concentrations are detected also introduces bias into 
the sampling plan. Geostatistical techniques are statistical procedures designed to process spa-
tially correlated data (see Appendix R on Geostatistics). Unlike the non-spatial techniques, geo-
statistical techniques are well suited for evaluation of biased data sets.  
 
 4.10.3.1.  The draft USEPA guidance presents an example of the determination of RALs 
using geostatistical techniques. The example has two simplifying features that can be found on 
many (but not all) sites: i) contamination that is surface only, and ii) the importance of a residen-
tial scenario. For this example, the steps for determining RALs are as follows. 
 
 4.10.3.1.1.  Create an iso-concentration map of the site by modeling the spatial correlation 
underlying measured values. 
 
 4.10.3.1.2.  Superimpose a grid of exposure units over the site and compute average con-
taminant concentrations in each exposure unit. 
 
 4.10.3.1.3.  Identify zones that must be remediated to reduce average concentrations in all 
exposure units to the appropriate cleanup level. This is an iterative process, where the higher 
contaminant concentrations are replaced with post-remediation concentrations and average con-
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taminant concentrations in each exposure unit are re-calculated. The final cutoff concentration is 
the RAL.   
 
 4.10.3.1.4.  Use the original iso-concentration map to define zones with concentrations in 
excess of the RAL. The contoured zone is the area that requires remediation. 
 
 4.10.3.2.  The draft guidance cautions against using geostatistical techniques if contaminant 
concentrations show a random, non-spatial pattern, or if the anticipated benefits from geo-
statistical analysis do not justify the costs. For example, even in cases of conservatively biased 
data, spatial statistical methods may not be warranted when non-spatial methods are determined 
to result in cleanup objectives that are both sufficiently conservative from the risk perspective 
and acceptable from the cleanup cost perspective. Additionally, conservatively biased, non-
spatial methods may be needed from a practical view when adequate technical or computational 
resources are not available. Proponents of geostatistical techniques counter that presentating the 
site contamination and remediation results as spatial is a highly intuitive and visually powerful 
approach, and therefore enhances communication among the parties during risk management 
discussions. Available computational tools make it possible to find the point of diminishing re-
turns where an increase in remediation has little effect on reducing risk in a cost-effective man-
ner. 
 




