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APPENDIX P 
Comparing Laboratory and Field Data 

 
P-1.  Introduction.  Interpreting field data may arise in the SI and RI phases of a CERCLA pro-
ject. The following discussion applies to comparing field data results to laboratory results. 
 
 P-1.1.  As previously discussed, there is an inherent relationship among variability, the sta-
tistical decision confidence required, and the number of data points one must have to make the 
decision. There is a trade-off between cost and data quality (level of confidence for the decision-
making). In general, cost and the level of confidence increase as the number of samples in-
creases. In fact, a small set of very high quality individual measurements (e.g., from a fixed-
laboratory analytical method) is frequently not as desirable as a large number of lower quality 
measurements (e.g., from a field analytical method). If rapid and inexpensive methods of sam-
pling and analysis were available for the SI, a larger number of samples could be used to charac-
terize the study area, reducing both cost and decision uncertainty. However, such methods with 
sufficient reliability are not always available. 
 
 P-1.2.  There are many innovative field-based sampling and analysis techniques and tech-
nologies available to environmental scientists. Because of the ability to reproduce these sampling 
techniques with an acceptable level of accuracy and at relatively low cost, investigators can still 
make decisions with confidence based on field analyses. 
 
 P-1.3.  When applying field analytical technologies to a given site, the project team often 
collects larger sample aliquots for a percentage of the field samples to ensure that the field meth-
ods are providing reasonably precise, accurate, and representative results. Each aliquot is thor-
oughly homogenized (i.e., unless VOCs are being analyzed) and split into a pair of duplicate 
samples; one sample is analyzed by the field method and the remaining sample of the duplicate 
pair is sent to a fixed laboratory for analysis. The results of the laboratory and field analyses are 
then compared to assess the usability of the field results. 
 
 P-1.4.  Although the EPA has generally specified splitting 10% of screening samples with a 
fixed laboratory for confirmation analysis, this is an arbitrary criterion. Furthermore, there is lit-
tle guidance on how to compare field and fixed laboratory results and the criteria for acceptable 
agreement. Therefore, a number of possible approaches are available and discussed here, includ-
ing the following. 
 
 P-1.4.1.  Relative percent difference (RPD). 
 
 P-1.4.2.  Correlation analysis. 
 
 P-1.4.3.  Regression analysis. 
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 P-1.4.4.  Group comparisons. 
 
 P-1.4.5.  Percent decision match. 
 
 P-1.5.  Project planners should be sensitive to the possible comparison methods so that 
sampling design is appropriate for the data collected and the decision to be made at their particu-
lar site. 
 
P-2.  Relative Percent Difference.  The RPD for a duplicate pair of measurements (x1, x2) is the 
absolute value of the difference between the measurements divided by the mean of the measure-
ments x , expressed as a percentage: 
 

 10021 ×
−

=
x

xx
RPD  . 

 
 P-2.1.  The RPD is simple to calculate and has historically been used to compare two sets 
of data. The field values and the corresponding laboratory values are treated as duplicate pairs, 
and an RPD is calculated for each pair. It should be noted that, as it is usually used for environ-
mental applications, the RPD is not a statistically based measure of agreement. The approach is 
semi-quantitative at best, and, in general, is not recommended. Acceptance limits for the RPDs 
tend to be arbitrarily defined and unrelated to acceptable tolerances for uncertainty (i.e., the RPD 
acceptance limits are not derived from statistically based data quality objectives for the project). 
Furthermore, the EPA has not established fixed acceptance limits for the RPDs of field dupli-
cates, though EPA Region II has specified field duplicate acceptance limits for metals for data 
review. 
 
 P-2.2.  The RPD limit for field duplicates is 50% for water and 100% for soils. RPD values 
from intra-laboratory studies are available for most SW-846 methods, but the values represent 
only the analytical component of the variability. As the RPD is proportional to the absolute dif-
ference, it is not useful for evaluating bias. Moreover, in terms of project decision-making, a 
process has not been developed to readily quantify the uncertainty associated with field results, 
nor has a range of acceptable RPD results been developed to determine whether field results are 
within decision limits. 
 
P-3.  Correlation Analysis. 
 
 P-3.1.  Field data can be compared to confirmation data, typically fixed laboratory data, us-
ing correlation analysis. In this case, the data are paired and plotted on a graph, and a Pearson’s 
r,* which is a measure of the degree of linear association between the two sets of data, is calcu-

                                                 
* Appendices O and Q. 
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lated. Paired statistical tests are useful because they can be used to determine whether a screen-
ing-level method is producing data that are significantly different from a definitive method. 
Higher values of Pearson’s r are preferred, as this indicates increasing similarity between the 
field and confirmation data. For sufficiently high values of Pearson’s r, the field data can reliably 
be used as a proxy for the confirmation data. As previously stated, there are no fixed limits for 
comparison, but Appendix O provides some guidance for assessing correlation results in terms of 
values of Pearson’s r.  
 
 P-3.2.  However, there are a number of problems with using correlation analysis as a com-
parison tool. A principal problem is that correlation does not imply a cause-and-effect type of re-
lationship or provide predictive capabilities. In other words, correlation analysis cannot be relied 
upon to show how variable X affects variable Y, or how X is a predictor of unknown values of Y. 
Thus, correlation analysis is intended as a statistical tool to simply show how two variables are 
linearly related and the strength of this relationship. An additional problem, or complexity, with 
correlation analysis is that the principal statistic reported in the analysis, Pearson’s r, requires the 
X and Y variables to possess a bivariate normal distribution* (not only must X and Y be normal 
but the “joint variation” must also be normal; that is, if every possible (x, y) pair were available, 
Y must be normal for every fixed value X = x and X must be normal for every fixed value Y = y). 
Finally, it is entirely possible that data sets paired in order of concentration will show linear cor-
relation when the absolute differences between them are very large, but in some manner propor-
tional. Thus, along with other measures, if the data give a good linear or curvilinear fit with 
strong correlation, this may be taken to support but not prove confirmation between results. 
 
P-4.  Regression Analysis.  Field data are often compared to confirmation data, typically fixed 
laboratory data, using regression analysis. In this case, the data are paired and plotted on a graph 
and a best-fit line is created. The regression model can provide information regarding the magni-
tude of the difference or the functional relationship between the screening-level and definitive 
methods, so that screening-level data can be converted to definitive data. 
 
 P-4.1.  However, functional relationships between screening-level and definitive data are 
often inappropriately established. Classical linear regression analysis, as presented in Appendix 
O, is not appropriate for this analysis because both screening-level data (the “dependent” vari-
able) and laboratory concentrations (the “independent” variable) are measured values, and be-
cause the laboratory concentrations (the “independent” variable) has more than a negligible 
amount of variability. For example, the laboratory concentrations could be selected as the “inde-
pendent” variable X to generate a regression line of the form, 
 
 .  01 bxby +=
 

 
* Appendix O. 
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 P-4.2.  This implies  
 
 . /()/1( 101 bbybx −+=
 
 P-4.3.  However, the alternative selection of Y as the “independent” variable would produce 
a regression line,  
 
  . 01 bybx ′+′=
 
 P-4.4.  Unfortunately,  and 11 /1 bb ≠′ )/( 100 bbb −≠′ . In other words, the classic or ordinary 
least squares (OLS) line produced from X and Y measurement data depends upon whether X or Y 
is arbitrarily selected as the independent variable. Therefore, it would be inappropriate to gener-
ate a regression line to “convert” screening level measurements to laboratory concentrations (or 
vice versa). 
 
 P-4.5.  In place of OLS linear regression, reduced major axis (RMA) regression is a rea-
sonable parametric approach, while the Kendall-Theil line is a desirable non-parametric ap-
proach for establishing a linear relationship. Advantages to reduced major axis regression are the 
following. 
 
 P-4.5.1.  While a classic (OLS) regression line of the form y = b1x + b0 minimizes the sum 
of the distances in the y-direction from the regression line to each observed point yi, the RMA 
line minimizes error for both X and Y by minimizing the sum of the areas of right triangles 
formed by horizontal and vertical lines extending from each observation  to the best-fit 
straight line (Helsel and Hirsch, 1992, p. 276). 

( ii yx , )

 
 P-4.5.2.  Unlike OLS regression, RMA regression produces a unique line regardless of 
which variable, X or Y, is used as the response or independent variable. 
 
 P-4.6.  RMA regression is used to model the correct functional relationship between two 
variables when both variables possess comparable measurement error. It is commonly used to 
evaluate biological data. All of the assumptions required for OLS regression are required for 
RMA regression (e.g., the residuals must be normally distributed). RMA regression has also 
been called “line of organic correlation,” “geometric mean functional regression,” and “Mainte-
nance of Variance-Extension” (Helsel and Hirsch, 2003). Reduced major axis regression should 
not be confused with an alternative approach referred to as “major” or “principal axis” regres-
sion. Major axis regression is often used in lieu of RMA regression as it is conceptually similar; 
the best fit line minimizes the sum of the squares of the perpendicular distances between the line 
and each plotted observation (rather than the areas of right triangles). Both reduced major axis 
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and major axis regression are often referred to as “model II” regression (OLS regression is 
“model-I” regression). 
 
 P-4.7.  The slope  and intercept )( 1b ′′ )( 0b ′′  of the RMA regression line 01 bxby ′′+′′=  are as 
follows: 
 
 ( )xy ssrsignb /][1 =′′  
 
 xbyb 10 ′′−=′′  
 
where is the algebraic sign of Pearson’s r; and are the sample standard deviations of 

and 
][rsign ys xs

Y X , respectively; and y and x  are the sample arithmetic averages of Y and X , respec-
tively. Like an OLS regression line, the RMA regression line passes through the point ( y),x , but 
(unlike an OLS regression line) the slope does not depend upon the magnitude of the regression 
coefficient r. Given the OLS regression lines 0b1xy b += and 01 bybx ′+′= , an alternative ex-
pression for the major axis regression slope is: 
 
 111 /][ bbrsignb ′=′′ . 
 
 P-4.8.  Thus, the slope of the RMA regression line is essentially the geometric mean of 
the OLS slopes b1 and  (hence the use of the terminology “geometric mean regression”). An 
equivalent expression for the RMA slope is: 

1/1 b′

 
 rbb 11 =′′  
 
Note that, because r ≤ 1, the RMA slope will be equal to or greater than the slope of the corre-
sponding OLS regression line. 
 
 P-4.9.  Confidence limits can be calculated for the slope and intercept of the RMA re-
gression line. The (1 – α)100% confidence interval for the slope is as follows (Warton, 2005)  
 

 ( ) ( )[ ]BBbBBb ++′′−+′′ 1,1 11  (P-1) 

where 
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2,1,1 −− nF α  is the critical value of the F-distribution with 1 degree of freedom in the numerator and 
n – 2 degrees of freedom in the denominator.  The confidence limits for the intercept are: 
 
 02,210 stb n −−±′′ α  . (P-2) 
 
 P-4.10.  The quantity s0 denotes the estimated standard deviation of the intercept of the 
OLS regression line , which may be determined from the equation: 01 bxby +=
 

 2
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 P-4.11.  The quantity s2 denotes the estimated variance of residuals of the OLS regression 
line  and  the estimated variance of slope of the OLS slope 01 bxby += 2
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 P-4.12.  The reader is referred to software that can be used to calculate RMA regression 
lines as well as confidence limits for the slopes and intercepts (Bohonak, 2004), though the soft-
ware does not calculate the confidence limits of the slope using Equation P-1 but using an ap-
proximation that produces a similar result: 
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 12,211 stb n −−±′′ α  . 
 
 P-4.13.  A non-parametric approach for establishing a linear relationship is the Kendall-
Theil line. The line takes the form: . The slope  is computed by comparing each 
data pair to all others in a pairwise fashion. A data set of n (x, y) pairs will result in n(n – 1)/2 
pairwise comparisons. For each of these comparisons, a slope is computed by  

01
ˆˆ bxby += )ˆ( 1b
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 P-4.14.  Note that is the value of the random variable,ijm M . The slope  and intercept 

 are estimated as follows: 

)ˆ( 1b

)ˆ( 0b
 
 mb ~

1̂ = , where m~ is the median of M  
 
and 
 
 xbb ~ˆ-y~ˆ

10 = , where y~ and x~ are the medians of Y and X , respectively. 
 
 P-4.15.  Therefore, the line passes through the point )y~,~(x , analogous to the ordinary least 
squares regression line, which passes through the point ), y(x . The Kendall-Theil line is closely 
related to the Kendall’s τ (see Appendix O) because the hypothesis test that is equal to zero is 
the same as the hypothesis test that τ is equal to zero. The Kendall-Theil line has the desirable 
property of a nonparametric estimator: it is almost as efficient as the parametric estimator when 
all assumptions of normality are met, and is much better when those assumptions are not met 
(Helsel and Hirsch, 2003). A confidence limit for the slope of the line can be calculated by order-
ing the slopes  for all 

1̂b

ijm ji < ; )1(,,2,1 −= ni K  and nj ,,3,2 K=  from smallest to largest, and 
selecting the rth and sth slopes such that the following inequality holds true: 
 
 ( ) .1)()( α−≥<< sr mMmP   
 
 P-4.16.  For more details about this confidence limit, see Statistical Methods in Water Re-
sources (Helsel and Hirsch, 2003) or Practical Nonparametric Statistics (Conover, 1980).  

 
P-5.  Group Comparisons.  In a manner similar to the comparison between background and on-
site data, screening and definitive confirmation data can be compared as groups. After verifying 
that the minimum assumptions of the various tests are met, group means and variances can be 
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compared using t- and F-tests or their non-parametric equivalents (see Appendices M and N). In 
this case, the project team must decide on the decision confidence required, most likely α will be 
0.2 or less. Methods for determining decision confidence levels are discussed in Appendix K. 
 
 P-5.1.  The following provides a review of issues that must be considered when applying 
the method of group comparisons; the review primarily focuses on comparing distinctly different 
groups of data. Consider a site that contains areas of both high and low contamination. Given the 
extreme divergence in contamination levels, there will be different population means across the 
sampled areas. Sample data analyzed using Field Method A cannot simply be compared to the 
entire set of sample data using Laboratory Method B with a two-sample t-test (refer to Appendix 
N) because of the different mean levels of the measured contaminant. For this approach to be vi-
able (i.e., two sample t-test based on field and laboratory methods), the underlying population 
would need to be relatively homogeneous. If this condition is not met, statistical tests for paired 
data would need to be used.  
 
 P-5.2.  Paired statistical tests are recommended to determine whether Field Method A and 
Laboratory Method B are significantly different. To conduct these tests, an aliquot is homoge-
nized and split into duplicates (it is possible the sample extracts would be split as well). One du-
plicate is analyzed by Method A and the other analyzed by Method B. For each data pair, the 
researcher evaluates the difference in results provided between Methods A and B. If the results 
from Method A are not different from corresponding results provided by Method B and the dif-
ferences are normally distributed, then on the average, the difference between the two methods is 
zero. However, it should be noted that, as the differences are usually calculated over a range of 
concentrations (rather than at a single concentration), an average difference of zero does not 
necessarily demonstrate that Methods A and B are comparable. For example, it would be possi-
ble for Method A to produce much smaller values than Method B at low concentrations but much 
larger values at high concentrations so that, on the average, the differences between Method A 
and Method B over the entire concentration range is nearly zero. If Methods A and B are differ-
ent, then the researcher should establish a functional relationship (XB = f(XA)) using regression 
analysis to “convert” the Field Method A results (XA) to the corresponding laboratory Method B 
results (XB) (see Paragraph P-4 for a discussion of regression analysis). The computed relation-
ship, though, would need to quantify the uncertainty associated with the conversion. If this un-
certainty is small relative to the uncertainty contributed by the field component, then the 
conversion uncertainty can be ignored and the “converted results” (XB) used directly (i.e., can be 
treated as if they were directly obtained from a definitive laboratory method). 
 
P-6.  Percent Decision Match (PDM).  The PDM may be a practical and useful approach to 
confirmation testing. The PDM is a qualitative evaluation strategy, as opposed to a more tradi-
tional statistical or quantitative strategy. For example, in the PDM, the decision error is not quan-
tified and the variability in PDM results for a study area is not incorporated into the analysis. The 
PDM approach may be useful certain data quality objectives, namely to determine whether site 
contamination exceeds a specified decision limit.  
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 P-6.1.  The PDM is calculated as the number of times both data points in a data pair lead to 
the same conclusion divided by the total number of data pairs, expressed as a percentage: 
 

 PDM Number of Decision Matches
Number of Data Pairs

= . 

 
 P-6.1.2.  For example, suppose the regulatory threshold to which the data will be compared 
is fixed at 100 ppm. Suppose further that 100% of the data points from the screening technology 
are less than the threshold and the mean concentration is 50 ppm. Now, let us suppose that the 
definitive method of analysis systematically produces lower results and the mean concentration 
is 10 ppm. If both the screening data and the definitive data lead to the same conclusion, namely, 
that all of the samples are less than the threshold, is the difference between the absolute values of 
the screening and definitive analyses of any real significance?  A PDM greater than 90% has his-
torically been found to be acceptable to regulators in a number of differing jurisdictions. 
 
 


