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APPENDIX M 

Hypothesis Testing—Two-Population and General Cases 
 
M-1.  Introduction.  A two-sample test is used when a data user is interested in making infer-
ences about two independent populations, comparing some parameter from one population to the 
corresponding parameter from a second population. For example, a common environmental ap-
plication entails comparing the population mean or median of the study area data set to the popu-
lation mean or median of the background data set. EPA 600/R-96/084, QA/G-9 contains 
additional examples of the basic statistical tests presented here. Lehmann (1975) is a good re-
source for nonparametric tests. Montgomery (1997) contains a fuller treatment of two-sample t-
tests, matched pairs t-tests, ANOVA, and multiple comparison tests. 
 
M-2.  Comparing Two Means.  Two-sample tests do not require equal sample sizes, though 
equal sample sizes are recommended. The accuracy of estimating summary statistics from each 
sample is based on the number of samples available; data sets with many samples can provide 
more accurate estimates of the mean and standard deviation than those with only a few. When 
sample sizes are not equal, it may mean that one population is not defined as well as the other. If 
sample sizes are grossly unequal, the result of the two-sample test may produce an incorrect con-
clusion. 
 
 M-2.1.  Student's Two-Sample t-Test.  Student's two-sample t-test is a parametric statistical 
test that can be used to compare two population means based on the independent random sam-
ples x1, x2,..., xm from the first population, and samples y1, y2,..., yn from the second population. 
This test assumes the variances of the two populations are approximately equal. This supposition 
can be verified using an F-test or Levene’s test (Appendix N, Paragraph N-4). However, the F-
test is not recommended because it is not robust to deviations from normality. A positively 
skewed distribution tends to give rise to higher values of F and false rejection of the null hy-
pothesis that the variances of two distributions are equal. If the two variances are not equal, the 
Satterthwaite’s t-test is recommended (See Paragraph M-2.1.2 for directions and Paragraph M-
2.1.3 for an example). 
 
 M-2.1.1.  Introduction.  The principal assumption required for the two-sample t-test is that 
a random sample of size m (x1, x2,..., xm) is drawn from population 1, and an independent random 
sample of size n (y1, y2,..., yn) is drawn from population 2. The second assumption required for 
the two-sample t-test is that the sample means, x (sample 1) and y  (sample 2), are approxi-
mately normally distributed (if X and Y are normal, the sample means x and y will be also be 
normally distributed). 
 
 M-2.1.1.1.  The two-sample t-test is commonly used to compare site contaminant concen-
trations to background concentrations: 
 
 00 : δμμ ≤− BSH , 0: δμμ >− BSAH  . 
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The “true” mean site concentration and “true” mean background concentrations are denoted by 

Sμ  and Bμ , respectively. When the above null hypothesis is selected, often δ0 = 0 and α = 0.2 or 
0.1. For this situation, the value of α tends to be somewhat higher than that used for other statis-
tical applications (e.g., where α may be 0.05 or 0.01). This occurs to avoid a large Type II error 
(in this case, concluding the site is “clean” when it is “dirty” relative to background). As α de-
creases, the value of x > y  required to reject yxH μμ ≤:0  increases. The following null and al-
ternative hypotheses are also frequently used: 
 
 00 : δμμ ≥− BSH ,  0: δμμ <− BSAH  . 
 
 M-2.1.1.2.  In this situation, a common value for α is 0.05. However, the value for δ0 de-
pends greatly on the project. To reject H0, that is, to demonstrate that the site is “clean” relative 
to background, the site mean must be significantly less than the background plus δ0 (e.g., x << 
y + δ0). When there is actually no difference between the site and background populations (i.e., 
μS = μB), rejecting the null hypothesis in favor of the alternative hypothesis (i.e., the site is 
“clean” relative to background), becomes less probable as the selected value of δ0 decreases. In 
general, a small value of δ0 is undesirable from a cost perspective as a larger than budgeted num-
ber of samples may be required to determine if the means differ by δ0. However, an extremely 
large value of δ0 is undesirable from an environmental risk perspective as H0 may be rejected 
even when the site mean is much larger than the background mean. Occasionally, δ0 is equal to 
one or two standard deviations of the background data set. The selection of an appropriate value 
of δ0 is a critical component of the DQO process during project planning; the value should be 
established only after input is obtained from all users and stake holders. 
 
 M-2.1.2.  Directions to Apply the Two-sample t-test for Differences Between the Population 
Means.  Steps to apply the two-sample t-test for differences between the population means for 
Case 1 and Case 2 are as follows: Case 1: oo yxH δμμ ≤−: , 0: δμμ ≥− yxAH ; and Case 2: 

00 : δμμ ≥− yxH , 0: δμμ ≤− yxAH , which is given in braces { }. 
 
 M-2.1.2.1.  Verify that both data sets are normal, using procedures in Appendices F and J, 
such as the Shapiro-Wilk test (Paragraphs F-3.2 and F-3.3) and a normal probability plot (Para-
graphs J-5.5 and J-5.6). 
 
 M-2.1.2.2.  Calculate the sample mean, x , and the sample variance,  (Appendix D), for 
the first data set (containing m points) and compute the sample mean, 

2
Xs

y , and the sample vari-
ance, , for the second data set (containing n points). 2

Ys
 
 M-2.1.2.3.  Determine if the variances of the two populations are equal. If the variances of 
the two populations are not equal, use Satterthwaite’s t-test (presented below). Otherwise, com-
pute the pooled standard deviation: 
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 M-2.1.2.5.  Use Table B-23 of Appendix B to find the critical value, , such that 2,1 −+− nmt α

100)1( α− % of the t-distribution with (m + n – 2) degrees of freedom is below . 2,1 −+− nmt α
 
 M-2.1.2.5.1.  If }{ 2,12,1 −+−−+− −<> nmnm tttt αα , reject . Go to step M-2.1.2.7.  0H
 
 M-2.1.2.5.2.  If }{ 2,12,1 −+−−+− −≥≤ nmnm tttt αα , there is not enough evidence to reject . 
Therefore, the false acceptance error rate will need to be verified. Go to M-2.2.6.  

0H

 
 M-2.1.2.6.  To calculate the power of the test, assume that the true values for the mean and 
standard deviation are those obtained in the sample and use a statistical software package like 
DEFT (EPA QA/G-4D) or DataQUEST (EPA QA/G-9D) to generate the power curve of the 
two-sample t-test. If only one false acceptance error rate (β) has been specified (at δ1), it is possi-
ble to calculate the sample size that achieves the DQOs, assuming the true mean and standard 
deviation are equal to the values estimated from the sample, instead of calculating the power of 
the test. 
 
 M-2.1.2.7.  Calculate:  
 

 
( )
( )

2
12

01

2
11

2

)25.0(
2

** α
βα

δδ −
−− +

−

+
== z

zzs
nm E . 

 
If  and , the false acceptance error rate has been satisfied. Otherwise, the false ac-
ceptance error rate has not been satisfied. 

mm ≤* nn ≤*

 
 M-2.1.2.8.  The results of the test could be: 
 
 M-2.1.2.8.1.   is rejected; 0H }{ 00 δμμδμμ <−>− yxyx . 
 
 M-2.1.2.8.2.   is not rejected and the false acceptance error rate is satisfied; 0H

}{ 00 δμμδμμ ≥y−≤− xyx . 
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 M-2.1.2.8.3.   is not rejected and the false acceptance error rate was not satisfied; 0H

}{ 00 δμμδμμ ≥y−≤− xyx , but this conclusion is uncertain because the sample size was too 
small. 
 
 M-2.1.3.  Example of the Student's Two-Sample t-Test (Equal Variances) for Simple and 
Systematic Random Samples.  Consider the case where nickel (Ni) surface soil concentrations are 
compared between Site A and Background using the test:  
 
 oo yxH δμμ ≤−: ,  0: δμμ >− yxAH  . 
 
Let X refer to the site Ni concentrations and Y to the background Ni concentrations. Let δ0 = 0. 
 
 M-2.1.3.1.  The following Ni concentrations are obtained for the site soil (m = 6): 2.665, 
3.610, 5.470, 7.150, 8.340, and 7.960 mg/kg. 
 
 M-2.1.3.2.  The following Ni concentrations are obtained for the background soil (n = 10): 
5.140, 7.460, 5.990, 3.360, 3.190, 2.870, 5.950, 1.720, 4.770, and 5.605 mg/kg. 
 
 M-2.1.3.3.  In this example, the Shapiro-Wilk test was used to test the assumption of nor-
mality and an F-test was used to test the assumption of equal variances. Because the data have 
equal variances at a significance level of 0.05, the Student’s two-sample t-test is more appropri-
ate. 
 

 Sample Mean Sample Variance Sample Size 
Site data (X) 5.87 5.53 6 
Background data (Y) 4.61 3.12 10 
 
 M-2.1.3.4.  Using methods presented above in Paragraph M-2.1, determine if the variances 
of the two populations are equal. If the variances of the two populations are not equal, use Satter-
thwaite’s t-test (Paragraph M-2.2). Otherwise, compute the pooled standard deviation: 
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 M-2.1.3.6.  Because we want an 80% level of confidence, 20.0=α . So, 8681.014,80.0 =t

8681
. 

Now compare the calculated value, t, with the critical value, : . Therefore, 14,80. 22.10t .0>
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reject . At the 80% level of confidence, the mean concentration of Ni at Site A is greater than 
the mean background concentration of Ni. 

0H

 
 M-2.2.  Satterthwaite’s t-Test (Unequal Variances).  If the two variances are not equal, the 
use of Satterthwaite’s t-test is recommended. Directions are provided below in Paragraph M-
2.2.1, followed by an example in Paragraph M-2.2.2. 
  
 M-2.2.1.  Directions for Applying Satterthwaite’s t-Test to Unequal Variances.  This de-
scribes the steps for applying the two-sample t-test for differences between the population means 
for: Case 1: oyxH δμμ ≤−:0 vs. 0: δμμ >− yxAH ; and Case 2: 00 : δμμ ≥− yxH  vs. 

0: δμμ −x <yAH , which is given in braces { }. 
 

 M-2.2.1.1.  Verify that both data sets come from a normal distribution, using the tests 
presented in Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal 
probability plot (Paragraph J-5.5).  
 

 

 M-2.2.1.2.  Calculate the sample mean, x , and the sample variance,  (Appendix C), for 
sample 1 and compute the sample mean, 

2
Xs

y , and the sample variance, , for sample 2. 2
Ys

 
 M-2.2.1.3.  Test for equal variances, using tests presented in Appendix N, such as Bart-
lett’s test (Paragraph N-3). If the variances are approximately equal, use the two-sample t-test 
(presented in Paragraph M-2.2.2). Otherwise, compute the standard deviation for unequal vari-
ances: 
 

 
n
s

m
s YX

22

+=sNE . 

 
 M-2.2.1.4.  Calculate  
 

 
NEs
yx

t
−−

=

)

0δ . 
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Round down the degrees of freedom to the nearest integer. Compare t to the critical value: 
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 M-2.2.1.5.1.  If , may be rejected.  }{ ,1,1 νανα −− −<> tttt 0H
 
 M-2.2.1.5.2.  If , there is not enough evidence to reject . Therefore, 
the false acceptance error rate will need to be verified. Go to M-2.2.1.6. 

}{ ,1,1 νανα −− −≥≤ tttt 0H

 
 M-2.2.1.6.  If  was not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false rejection and false acceptance error rates. To calculate the power, 
assume that the true values for the mean and standard deviation are those obtained in the sample 
and use a statistical software package to generate the power curve of the two-sample t-test. A 
simple method to check on statistical power does not exist. 

0H

 
 M-2.2.1.7.  The results of the test could be: 
 
 M-2.2.1.7.1.   is rejected: 0H }{ 00 δμμδμμ <−>− yxyx . 
 
 M-2.2.1.7.2.   is not rejected and the false acceptance error rate is satisfied, 0H

}{ 00 δμμδμμ ≥y−≤− xyx . 
 
 M-2.2.1.7.3.   is not rejected but the false acceptance error rate is not satisfied;  is 
uncertain because the sample size was too small. 

0H 0H

 
 M-2.2.2.  Example of Applying Satterthwaite’s t-test to Unequal Variances.  Because we 
want a 95% level of confidence, 05.0=α  and v = 6 (round down to the nearest integer). So, 

. Now compare the calculated value (t) with the critical value, . Because 
, there is not enough evidence to reject . 

943.16,95.0 =t
943.1031.1 ≤−

6,95.0t
0H

 
 M-2.2.2.1.  As a result of not having enough evidence to reject the null hypothesis, it is 
necessary to calculate either the power of the test or the sample size necessary to achieve the 
false rejection and false acceptance error rates. DEFT can be used to evaluate power and sample 
size and is presented in this example. To calculate the power of the test, one must consider what 
an acceptable difference among the means is before concluding H0 should be rejected. The dif-
ference that one is willing to accept depends on the detection limits achieved, the range of con-
centrations from each data set, and what is considered to have practical significance vs. statistical 
significance. 
 
 M-2.2.2.2.  The power curve (Figure M-1) shows where a statistically significant difference 
between the means was assumed to be 1 mg/kg (the region between the vertical dashed and solid 
lines). According to DEFT, 21 samples are needed for the estimated performance curve. In the 
above example, the site data have 36 samples and the background data only have 8. Therefore, 
there may be a need to take more background samples. It is important to note that the true differ-
ence in the mean (4.619 – 4.925 = –0.31) is to the left of the action level. 
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Figure M-1.  Estimated power performance curve. 
 

 
 M-2.3.  Matched Pairs t-Test. 
 
 M-2.3.1.  Introduction.  Sometimes, the two populations of interest represent different 
measurements on the same homogenous group. For example, contaminant concentration in 
groundwater before and after a certain remediation treatment may need to be compared. If meas-
urements are taken from the same set of wells both before and after treatment, we can match the 
results by well. That is, each well will have a result from before the treatment and a result from 
after the treatment. Under this experimental design, the observed differences for each well before 
and after treatment become the sample data because we expect the two results from each well to 
be more homogeneous than the results among wells. 
 
 M-2.3.1.1.  The differences are then analyzed using the one-sample t-test if the assumptions 
for that test are met. Namely, the one-sample t-test assumes the differences represent a random 
sample. It also assumes that the average difference follows a normal distribution. If the normal 
assumption is not valid, Paragraph M-4.1.6 discusses a non-parametric alternative for matched 
pairs designs. In addition to matched pairs, one would ideally assign the order of the treatments 
randomly to each subject, although that would not be possible in the groundwater remediation 
example. Matching can also occur between subjects that are closely alike in all respects except 
the treatment that is applied. 
 
 M-2.3.1.2.  The matched pairs t-test is commonly used to compare site contaminant con-
centrations before and after a treatment: 
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BAH μμ ≥:0 , BAAH μμ <:  . 
 
 M-2.3.1.3.  The “true” mean concentration before treatment and the “true” mean concentra-
tion after treatment are denoted by μB and μA, respectively. The before treatment mean is often 
referred to as the “baseline” mean. Directions are provided below in Paragraph M-2.3.2, fol-
lowed by an example in Paragraph M-2.3.3. 
 
 M-2.3.2.  Directions to Apply the Matched Pairs t-test for Differences Between the Means 
Before and After a Treatment.  Steps to apply the Matched Pairs t-test for differences between 
the means for Case 1 and Case 2 are as follows: Case 1: BAH μμ ≥:0 , BAAH μμ <: ; and Case 
2: BAH μμ ≤:0 , BAAH μμ >: , which is given in braces { }. 

 
 M-2.3.2.1.  Subtract the before treatment concentration (Bi) from the corresponding after 
treatment concentration (Ai) for each pair of results (Bi, Ai) to obtain the differences: 
 
  . iii BAd −=
 
 M-2.3.2.2.  Verify that the differences, , are normal, using procedures in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraphs F-3.2 and F-3.3) and a normal 
probability plot (Paragraphs J-5.5 and J-5.6). 

ndddd ...,, 321

 

 M-2.3.2.3.  Calculate the sample mean, d , and the sample variance,  (Appendix D). 2
ds

 
 M-2.3.2.4.  Calculate  
 

 
ns

dt
d

= . 

 
 M-2.3.2.5.  Use Table B-23 of Appendix B to find the critical value, , such that 1,1 −− nt α

100)1( α− % of the t distribution with (n – 1) degrees of freedom is below . 1−n,1−t α

 
 M-2.3.2.5.1.  If }{ 1,11,1 −−−− >−< nn tttt αα , reject . Go to M-2.3.2.7.  0H
 
 M-2.3.2.5.2.  If }{ 1,11,1 −−−− ≤−≥ nn tttt αα , there is not enough evidence to reject . There-
fore, the false acceptance error rate will need to be verified. Go to M-2.3.2.6.  

0H

 
 M-2.3.2.6.  To calculate the power of the test, assume that the true values for the mean and 
standard deviation are those obtained in the sample and use a statistical software package like the 
DEFT software (EPA QA/G-4D) or the DataQUEST software (EPA QA/G-9D) to generate the 
power curve of the matched pairs t-test. If only one false acceptance error rate (β) has been speci-
fied (at µ1), it is possible to approximately calculate the sample size that achieves the DQOs, as-
suming the true mean and standard deviation are equal to the values estimated from the sample, 
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 A derivation of the following formula is given in Ap-

endix A of EPA 600/R-96/055, QA/G-4. 

M-2.3.2.7.  Calculate:  
 

 

instead of calculating the power of the test.
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where Zp is the p100th percentile of th ndard normal distribution (Table B-15 of Appendix B). 

 m up to the next integer. If nm ≤ , the false acceptance error rate has been satisfied. If 
, the false acceptance error rate has not been satisfied.  

M-2.3.2.8.  The results of the test could be: 

M-2.3.2.8.1.  is rejected; 

n>m
 
 
 

  0H }{ BABA μμμμ >< . 

 M-2.3.2.8.2.  is not rejected and the false acceptance error rate is satisfied; 
 

 0H
}{ BABA μμμμ ≤≥ . 

 
0H  is not rejected and the false acceptance error rate was not satis M-2.3.2.8.3. fied;   

}{ BABA μμμμ ≤≥ , but this conclusion is uncertain because the sample size was too small. 

st the null hypothesis that the treatment had no lowering ef-
ct at the 95% level of confidence: 

 
 M-2.3.3.  Example of the Matched Pairs t-Test for the Difference Between Means Before 
and After Treatment.  Consider the case where the results of a groundwater remediation proce-
dure are compared before and after treatment to determine if the remediation has decreased the 
concentration of the contaminant. Te
fe
 

BAH μμ ≥:0 ,  BAAH μμ <:  . 

concentrations (mg/L) at monitoring wells 
efore and after a treatment-test, given in Table M-1. 

hypothesis that the differences are normal (p = 0.4248). So, as-
ming normality is reasonable. 

M-2.3.3.3.  Calculate  

 

 
 M-2.3.3.1.  The data consist of measured TCE 
b
 
 M-2.3.3.2.  Determine if the differences follow a normal distribution. A Shapiro-Wilk test 
for normality does not reject the 
su
 
 
 

10.4
109.13
0.18
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−

==
ns

dt
d
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 M-2.3.3.4.  Assume that we want a 95% level of confidence, 05.0=α . So, 833.19,95.0 =t . 
Now c pare the calculated value, t, with the critical value 9,95.0tom − : 833.110.4 −<− . Therefore,

diation. 
 

ject . This means that there is a lower mean concentration ofre 0
 

H  TCE after reme

Table M-1. 
Measured TCE Concentrations (mg/L) at Monitoring Wells Before and After a Treatment 
Test

Sa  Baseline (01/2000) Post–T 2000) D  
 

mple ID est (12/ ifference
Well 1 2  –0.9 0.917 20.0 
Well 2 9.17 8.77 –0.400 
Well 3 5.96  4.37 –1.59
Well 4 41.5 4.34 –37.2 
Well 5 34.3 10.7 –23.6 
Well 6 19.7 1.48 –18.2 
Well 7 3 –8.9 0.272 38.6 
Well 8 8.18 0.520 –7.66 
Well 9 9.13  3.06 –6.07
Well 10 28.5 1.90 –26.6 

 
M-3.  Comparing Proportions and Percentiles: Two-Sample Test for Proportions.  This 
Paragraph considers hypotheses concerning two population proportions (or percentiles). The 
two-sample test for proportions can be used to compare two  percentiles or propor-
tions and is based on an independent random sam mxx ,,, 2 K ) from the first popula-
tion and an independent random sample of size n ( yy ,,, 21 K ) from the second population. The 
sample proportion for the first popu tio

 population
ple of m (

la n is repre ple proportion for the 
cond population is represented b . 

 sample are given below in Paragraph M-3.2, followed by an example in 
aragraph M-3.3. 

s.  Directions fo
plying the two-s  proportions are presented for Case

x1

ny
1p and the samsented by 

y pse 2
 
 M-3.1.  Introduction.  The principal assumption for this non-parametric test is that of ran-
dom sampling from the two populations. The two-sample test for proportions is valid (robust) for 
any underlying distributional shape and is robust to outliers, providing they are not pure data er-
rors. Directions for a two-sample test for proportions for a simple random sample and a system-
atic simple random
P
 
 M-3.2.  Directions for Applying the Two-Sample Test for Proportion r ap-

ample test for  1: 0210 : δ≤− PPH  and 
021: δ>− PPH A ; and Case 2: 02 10 : δ≥− PPH  and 021: δ<− PPH A , which is given in braces 

{ }. Given m rand  mxxx ,, 21 K  from the first population, and n samples from the sec-
ond population, nyyy ,, 21 K , let 1k  be the number of points from sample 1 which

om samples
ome 

M-3.2.1.  Calculate the sample proportions:

,

 be the number of points fr
,

, and let 2k
 exceed s

ceed C.  oncentration C om sample 2 that exc
 

mkp /11 = , nkp /22 = .  

e pooled proportion

 
 

: )/()( 21 nmkkp ++= M-3.2.2.  Calculate th . 
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M-3.2.3.  Compute:  

.  

 or equal to 5, continue. Otherwise, seek assistance from 
 statistician as analysis is complicated. 

M-3.2.4.  Calculate:  

 
 

1mp , )1( 1pm − , 2np , )1( 2pn − 
 
If all of the above values are greater than
a
 
 
 

)/1/1()1(/)( 21 nmppppz +−−=   
 

2.5.  Use Table B-15 of Appendix B to find the critical value, α−1Z , such that 
100)1(

 M-3.
α− % of the normal distribution is below . For example, if α  = 

.645. 

M-3.2.5.1.  If , reject

, do not reject . Proceed to M-3.2.6 to calculate the 
lse acceptance error rate. 

es estimated from the sample) instead 
f calculating the power of the test. To do this, calculate: 

 

 

α−1Z  = 0.05 then α−1Z
1
 

}{ 11 αα −− −<> ZzZz 0H .  
 
 M-3.2.5.2.  If 1−≤ Zz }{ 1 αα −−≥ Zz 0H
fa
 
 M-3.2.6.  If H0 is not rejected, calculate either the power of the test or the sample size nec-
essary to achieve the false rejection and false acceptance error rates. If only one false acceptance 
error rate (β) has been specified at P1 – P2, it is possible to calculate the sample sizes that achieve 
the DQOs (assuming the proportions are equal to the valu
o
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p is the  percentile of the standard normal distribution (Table B-15 of Appendix B).  

M-3.2.6.1.  If m > m* and n > m*, then the false acceptance error rate has been satisfied.  

m and n are below m*, the false acceptance error rate has not been satis-
ed.  

a
ST t, assuming that the true values for the proportions 

d

 

 
th100pZ

 
 
 
 M-3.2.6.2.  If both 
fi
 
 M-3.2.6.3.  If m* is between m and n, use a software package like the DEFT or Dat -
QUE  to calculate the power of the tes 1P  
an 2 are those obtained in the sample.   P
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.  If the estimated power is below 1 – β, the false acceptance error rate has not 
een satisfied. 

M-3.2.7.  The results of the test could be: 

M-3.2.7.1.  is rejected; 

 M-3.2.6.4
b
 
 
 

  0H 021 δ>− PP { 021 δ<− PP }. 

 M-3.2.7.2. was not rejected, the false acceptance error rate was satisfied, and it seems 
 

 0H

021 δ≤− P {P 01 2 δ≥P − P }. 

-3.2.7.3. was not re
 
 M jected, the false acceptance error rate was not satisfied, and it 
seems 021

  0H
δ≤− PP { 021 δ≥− PP }, but this outcome is uncertain because the sample size was 

robably too small. 

s.  Gasoline groundwater concentrations at Site A are compared to background concentra-
ons:  

p
 
 M-3.3.  Example of Two-Sample Test for Proportions for Simple and Systematic Random 
Sample
ti
 

0210 : δ≤− PPH ,  021: δ>− PPH A  . 

: 243, 700, 781, 385, 642, 97.2, 
33, 11.1, 10.60, 14.90, 14.90, 12.70, 9.57, 6.04, and 7.32 μg/L. 

4.27, 10.60, 
0.60, 14.90, 14.60, 12.70, 9.57, 6.04, 7.32, 7.32, 7.32, 111.00, 6.90, and 6.90 μg/L. 

 

Sam ize 

ackground data (i = 2) 6 45 

here ki is the number of detected concentrations above the regulatory threshold (35 μg/L).  

M-3.3.3.  Determine whether or not , 

 
 M-3.3.1.  The groundwater site data are following (m = 15)
2
 
 M-3.3.2.  The groundwater background data are following (n = 45): 177.0, 4.27, 10.60, 
10.60, 14.90, 14.60, 12.70, 9.57, 95.70, 7.32, 7.32, 7.32, 6.58, 6.90, 6.90, 39.5, 4.27, 10.60, 
10.60, 14.90, 14.60, 12.70, 9.57, 6.04, 7.32, 7.32, 7.32, 146.00, 6.90, 6.90, 44.5, 
1

 ki ple S

Site data (i = 1) 7 15 

B

 
w
 

1mp )1( 1pm − , 2np , )1( 2pn − are all greater than 5:  

  

 
467.015/7/11 === mkp   

 
133.045/6/22 === nkp   

 
57)467.0(151 >==mp 
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. 

M-3.3.4.  Calculate the following: 

58)467.01(15)1( 1 >=−=− pm   
 

56)133.0(452 >==np 
 

539)133.01(45)1( 2 >=−=− pn 
 
 
 

217.0)4515/()67()/()( 21 =++=++= nmkkp   
 

 
72.2)45/115/1()217.01(217.0/)133.0467.0(

)/1/1)(1(/)( 21

=+−−=

+−−= nmppppz
 . 

M-3.3.5.  Bec
 
 ause the level of confidence is 95%, 05.0=α . Using Table B-15, we find 

1that 645.05.01 =−Z
645.1> .  

. Now compare the calculated value, e critical value, 

 greater than the proportion above the regulatory threshold in the background well samples). 

-4.  Nonparametric Comparisons of Two Populations 

random sam

robability that an observation from distribution Y ex-
eeds a value from distribution X, such as: 

z, with th 05.01−Z : 
74.2

 
 M-3.3.6.  Therefore, there is enough evidence to reject H0 (i.e., the results suggest that the 
proportion of samples with gasoline levels above the regulatory threshold in the site well samples 
is
 
M
 
 M-4.1.  The Wilcoxon Rank Sum Test.  The Wilcoxon rank sum test is a nonparametric test 
that can be used to compare two population distributions based on n independent -
ples ( nxxx ,,, 21 K ) from the first population, and m independent random samples ( myyy ,,, 21 K ) 
from the second population. The most general form of the hypotheses for a one-tailed Wilcoxon 
rank sum test can be stated in terms of the p
c
 

( ) ( ) 5.0:,5.0:0 <<≥< YXPHYXPH A  . 

-

 
 M-4.1.2.  Introduction.  Hypotheses on the relative rank of the mean of each population can 
also be formulated with the additional assumption that the two underlying distributions have the 
same shape and dispersion (Conover, 1980). That is, one distribution differs by some fixed 
amount (or is increased by a constant) when compared to the other distribution. An important 
advantage of the Wilcoxon rank sum test is its partial robustness to outliers, because the analysis 
is conducted on rankings of the observations. This limits the influence of outliers because a given 
observation can be no more extreme than the first or last rank. Directions and an example for the 
Wilcoxon rank sum test are given in Paragraphs M-4.1.3 and M-4.1.4, respectively. If a rela-
tively large number of samples have been taken, it is more efficient to use the large sample ap
proximation to the Wilcoxon rank sum test (Paragraph M-4.1.6) to perform the hypothesis test. 
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.3.  Directions for the Wilcoxon Rank Sum Test for Simple and Systematic Random 
amples.   

 M-4.1.3
present  observations from population 2, where both n and m are less than 

r equal to 20.  

M-4.1.3.1.1.  Case 1: 

:  Values of X tend to be smaller than or equal to values of Y. 

:  Values of X tend to be larger than values of Y.  

M-4.1.3.1.2.  Case 2: 

:  Values of X tend to be larger than or equal to values of Y.  

:  Values of X tend to be smaller than values of Y. 

M-4.1.3.1.3.  Case 3: 

:  Values of X tend to be equal to values of Y.  

:  Values of X tend to be smaller than or greater than values of Y. 

 least 4 (Leh-
ann, 1975), use the large sample approximation described in Paragraph M-4.1.5. 

om smallest to largest, keeping track of which population contributed each measurement.  

st value of the combined data sets and note 
hether the smallest value is from population 1 or 2. 

 2 to the second smallest value of the combined data sets 
oting the population), and so forth.  

sign the average of the ranks that would otherwise have 
een assigned to the tied observations. 

M-4.1.3.4.  Calculate R, the sum of the ranks of the data from population 1, and then calcu-
te: 

 

 M-4.1
S
 

.1.  Let nxxx ,,, 21 K  represent the n observations from population 1 and 
myyy ,,, 21 K  re the m

o
 
 
 

( ) 5.0:0 ≥< YXPH 
 

( ) 5.0: << YXPH A 
 
 
 

( ) 5.0:0 ≤< YXPH 
 

( ) 5.0: >< YXPH A 
 
 
 

( ) 5.0:0 =< YXPH 
 

( ) 5.0: ≠< YXPH A 
 
 M-4.1.3.2.  If either m or n is larger than 20 and the smaller of the two is at
m
 
 M-4.1.3.3.  Combine the two data sets and rank the measurements (from both data sets) 
fr
 
 M-4.1.3.3.1.  Assign the rank of 1 to the smalle
w
 
 M-4.1.3.3.2.  Assign the rank of
(n
 
 M-4.1.3.3.3.  If there are ties, as
b
 
 
la
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2

)1( +
−=

nnRW . 

 
 M-4.1.3.5.  Use Table B-17 of Appendix B to find the critical value,  (or  for Case 
3). 

αW 2/αW

 
 M-4.1.3.6.  Compare W to the critical value . αW
 
 M-4.1.3.6.1.  For Case 1, reject H0 if αWnmW −> .  
 
 M-4.1.3.6.2.  For Case 2, reject H0 if αWW < .  
 
 M-4.1.3.6.3.  For Case 3, reject H0 if 2/αWnmW −>  or 2/αWW < .  
 
 M-4.1.3.7.  The results of the test could be: 
 
 M-4.1.3.7.1.  0H was rejected and it seems values from population 1 tend to be greater than 
(Case 1), smaller than (Case 2), or different from (Case 3) values from population 2. 
 
 M-4.1.3.7.2.  was not rejected, and it seems that values from population 1 tend to be 
smaller than or equal to (Case 1), greater than or equal to (Case 2), or not different from (Case 3) 
values from population 2. 

0H

 
 M-4.1.3.7.3.  If is not rejected, it should be determined whether adequate power was 
achieved. However, as power calculations tend to be complex and difficult to do manually, it is 
recommended that a statistician be consulted. 

0H

 
 

 M-4.1.4.  Example of the Wilcoxon Rank Sum Test for Simple and Systematic Random 
Samples.   
 
 M-4.1.4.1.  Consider the Case 1 (Paragraph M-4.1.3), where lead (Pb) surface soil concen-
trations are compared between Site A and background at a significance level of α = 0.05 using 
the test. 
 
 M-4.1.4.1.1.  : Site A Pb concentrations tend to be less than or equal to background Pb 
concentrations. 

0H

 
 M-4.1.4.1.2.  AH : Site A Pb concentrations tend to be greater than background Pb concen-
trations. 
 
 M-4.1.4.2.  Suppose the Pb surface site concentrations (X) are as follows (n = 20): 8.24, 
6.57, 4.48, 4.34, 16.00, 3.83, 4.11, 3.48, 3.66, 5.01, 93.80, 3.70, 129.00, 4.92, 91.80, 3.86, 4.21, 
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4.32, 10.00, and 9.38 mg/kg.  
 
 M-4.1.4.3.  Suppose the Pb surface background concentrations (Y) are as follows (m = 16): 
3.81, 3.68, 3.72, 3.68, 5.97, 4.12, 6.42, 4.13, 8.88, 3.01, 5.34, 3.74, 10.70, 3.86, 10.80, and 4.40 
mg/kg. 
 
Table M-2. 
Example M-4.1.4 Pb Concentrations 

Location Result Rank Location Result Rank 
background 3.01 1 background 4.4 19 
Site 3.48 2 site 4.48 20 
Site 3.66 3 site 4.92 21 
background 3.68 4.5 site 5.01 22 
background 3.68 4.5 background 5.34 23 
Site 3.70 6 background 5.97 24 
background 3.72 7 background 6.42 25 
background 3.74 8 site 6.57 26 
background 3.81 9 site 8.24 27 
Site 3.83 10 background 8.88 28 
background 3.86 11.5 site 9.38 29 
Site 3.86 11.5 site 10.0 30 
Site 4.11 13 background 10.7 31 
background 4.12 14 background 10.8 32 
background 4.13 15 site 16.0 33 
Site 4.21 16 site 91.8 34 
Site 4.32 17 site 93.8 35 
Site 4.34 18 site 129.0 36 

 

 5.199
2

)120(205.409
2

)1(
=

+
−=

+
−=

nnRW  

 
  10805.0 ==WWα

 
  . 212108)16)(20( =−=− αWnm
 
 M-4.1.4.4.  Because , H0 cannot be rejected. There is insufficient evidence to 
conclude that the lead concentrations from Site A are greater than background lead concentra-
tions. 

2125.199 ≤

 
 M-4.1.5.  Large Sample Approximation of the Wilcoxon Rank Sum Test.  When a relatively 
large number of samples has been taken, it is more efficient to use a large sample approximation 
of the Wilcoxon rank sum test to obtain the critical value of W. Directions and an example are 
presented in Paragraphs M-4.1.5.1 and M-4.1.5.2, respectively. Required sample size to achieve 
a specified power is explored in Paragraphs M-4.1.4.3 and M-4.1.4.4. 
 
 M-4.1.5.1.  Directions for a Large Sample Approximation of the Wilcoxon Rank Sum Test 
for Simple and Systematic Random Samples.   
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 M-4.1.5.1.1.  Let  represent the n observations from population 1 and 

 represent the m observations from population 2 where either n or m is greater than 
20 and the smaller of n and m is at least 4 (Lehmann, 1975). The following hypothesis tests are 
considered: 

nxxx ,,, 21 K

myyy ,,, 21 K

 
 M-4.1.5.1.1.1.  Case 1.  ( ) 5.0:0 ≥< YXPH , ( ) 5.0: << YXPH A . 
 
 M-4.1.5.1.1.2.  Case 2.  ( ) 5.0:0 ≤< YXPH , ( ) 5.0: >< YXPH A . 
 
 M-4.1.5.1.1.3.  Case 3.  ( ) 5.0:0 =< YXPH , ( ) 5.0: ≠< YXPH A . 
 
 M-4.1.5.1.2.  List and rank the measurements from both populations from smallest to larg-
est, keeping track of which population contributed each measurement.  
 
 M-4.1.5.1.2.1.  The rank of 1 is assigned to the smallest value of the combined data sets, 
the rank of 2 to the second smallest value of the combined data sets, and so forth. 
 
 M-4.1.5.1.2.2.  If there are ties, assign the average of the ranks that would otherwise have 
been assigned to the tied observations. 
 
 M-4.1.5.1.3.  Calculate R, the sum of the ranks of the data from population 1, and then cal-
culate:  
 

 
2

)1( +
−=

nnRW . 

 
 M-4.1.5.1.4.  Calculate:  
 

 12/)1(
2

+++= mnmnZmnw pp  . 

 
 M-4.1.5.1.4.1.  Case 1.  α−= 1p  
 
 M-4.1.5.1.4.2.  Case 2: α=p   
 
 M-4.1.5.1.4.3.  Case 3.  Calculate both )2/(2/ αα =pw  and )2/1(2/1 αα −=− pw  (Leh-
mann, 1975). 
 
 M-4.1.5.1.5.  Note that  is the  percentile of the standard normal distribution (Ta-
ble B-15 of Appendix B). 

pZ thp100

 
 M-4.1.5.1.5.1.  For Case 1, reject H0 if .  α−> 1wW
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 M-4.1.5.1.5.2.  For Case 2, reject H0 if αwW < .  
 
 M-4.1.5.1.5.3.  For Case 3, reject H0 if  or 2/1 α−> wW 2/αwW < .  
 
 M-4.1.5.1.6.  The results of the test could be as follows.  
 
 M-4.1.5.1.6.1.  H0 was rejected and it seems values from population 1 tend to be greater 
than (Case 1), smaller than (Case 2), or different from (Case 3) values from population 2. 
 
 M-4.1.5.1.6.2.  H0 was not rejected, and it seems that values from population 1 tend to be 
smaller than or equal to (Case 1), greater than or equal to (Case 2), or not different from (Case 3) 
values from population 2. 
 
 M-4.1.5.2.  Example of the Large Sample Approximation to the Wilcoxon Rank Sum Test 
for Simple and Systematic Random Samples. 
 
 M-4.1.5.2.1.  Consider the case where lead (Pb) surface soil concentrations are compared 
between Site A and background at a significance level of 0.05 using the test (Case 1 in Paragraph 
M-4.1.5.1) (Table M-3). 
 
 M-4.1.5.2.1.1.  : Site A Pb concentrations tend to be less than or equal to background 
Pb concentrations. 

0H

 
 M-4.1.5.2.1.2.  : Site A Pb concentrations tend to be larger than background lead con-
centrations. 

AH

 
 M-4.1.5.2.2.  Suppose the surface soil Pb concentrations for Site A (X) are: 8.24, 6.57, 
4.48, 4.34, 16.00, 3.83, 4.11, 3.48, 3.66, 5.01, 93.80, 3.70, 129.00, 4.92, 91.80, 3.86, 4.21, 4.32, 
10.00, and 9.38 mg/kg.  
 
 M-4.1.5.2.3.  Suppose the background surface soil Pb concentrations (Y) are: 3.05, 3.81, 
3.68, 3.72, 4.20, 3.68, 5.97, 4.12, 6.42, 6.20, 4.13, 8.88, 3.01, 15.5, 5.34, 3.74, 20.6, 10.70, 3.86, 
10.80, and 4.40 mg/kg. 
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Table M-3. 
Example M-4.1.5.2 Pb Concentrations 

Location Result Rank Location Result Rank 
Background 3.01 1 site 4.48 22 
Background 3.05 2 site 4.92 23 
Site 3.48 3 site 5.01 24 
Site 3.66 4 background 5.34 25 
Background 3.68 5.5 background 5.97 26 
Background 3.68 5.5 background 6.2 27 
Site 3.7 7 background 6.42 28 
Background 3.72 8 site 6.57 29 
Background 3.74 9 site 8.24 30 
Background 3.81 10 background 8.88 31 
Site 3.83 11 site 9.38 32 
Site 3.86 12.5 site 10 33 
Background 3.86 12.5 background 10.7 34 
Site 4.11 14 background 10.8 35 
Background 4.12 15 background 15.5 36 
Background 4.13 16 site 16 37 
Background 4.2 17 background 20.6 38 
Site 4.21 18 site 91.8 39 
Site 4.32 19 site 93.8 40 
Site 4.34 20 site 129 41 
Background 4.4 21 — — — 

 
 M-4.1.5.2.4.  Note that tied values occur at for concentrations 3.68 and 3.86. These ties are 
assigned the average of the ranks they would otherwise have been assigned. The rank of 3.68 is 
5.5, which is the average of ranks 5 and 6, and the rank of 3.86 is 12.5, which is the average of 
ranks 12 and 13. 
 
 M-4.1.5.2.5.  Population 1 is the lead surface site data (n = 20), and population 2 is the 
background lead data (m = 21). Calculate W as:  
 

 5.248
2

)120(205.458
2

)1(
=

+
−=

+
−=

nnRW . 

 
 M-4.1.5.2.6.  Calculate  
 

 12/)12120(2021645.1
2

202112/)1(
2

++×+
×

=+++= mnmnZmnw pp = 273.1 

 
 . 645.195.01 === − ZZZ p α

 
 M-4.1.5.2.6.  Compare the calculated statistic W to the critical value , (248.5 < 273.1). 
Because , do not reject the null hypothesis. Lead concentrations from Site A may be 

α−1w
α−≤ 1wW
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less than or equal to background lead concentrations. The power of the test needs to be deter-
mined (refer to Paragraph M-4.1.5.3).  
 
 M-4.1.5.3.  Directions for Calculating Sample Size to Achieve a Specified Power for the 
Wilcoxon Rank Sum Test.   
 
 M-4.1.5.3.1.  Noether (1987) discusses the determination of an adequate sample size based 
on a predefined level of power to apply the Wilcoxon rank sum test for the following hypothesis 
test. The n values of X ( ) compared to m values of Y ( ): nxxx ,,, 21 K myyy ,,, 21 K

 
 M-4.1.5.3.1.1.  Case 1.  ( ) 5.0:0 ≥< YXPH ,  ( ) 5.0: << YXPH A . 
 
 M-4.1.5.3.1.2.  Case 2.  ( ) 5.0:0 ≤< YXPH ,  ( ) 5.0: >< YXPH A . 
 
 M-4.1.5.3.1.3.  Case 3:  ( ) 5.0:0 =< YXPH ,  ( ) 5.0: ≠< YXPH A . 
 
 M-4.1.5.3.2.  The total number of samples collected, N = n + m, is compared with a con-
servative estimate of the number of samples N ′  required to achieve some desired power 1 – β  
Under the assumption that the test statistic (in this case, the large sample approximation for the 
Wilcoxon rank sum statistic in Paragraph M-4.1.5.1) is normally distributed,  is determined 
as follows. For Cases 1 and 2:  

N ′

 

 
( )
( )

2

2
11

2
1112 ⎟
⎠
⎞

⎜
⎝
⎛ −′′−

+
=′ −−

pcc

ZZ
N βα  

 
and for Case 3: 
 

 
( )
( )

2

2
121

2
1112 ⎟
⎠
⎞

⎜
⎝
⎛ −′′−

+
=′ −−

pcc

ZZ
N βα  

 
where  = q quantile of the standard normal distribution (from Table B-15) qZ
 α  = significance level of the test 
 β−1  = desired power for the test 

  
N
nc =  

   =  . p ′′ ( )YXP <
 
 M-4.1.5.3.4.  Setting c equal to 0.5 will be best unless there are reasons to sample more 
heavily from one of the populations. The value of p ′′  can be taken from past information, a pi-
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lot sample, or chosen to represent a meaningful shift in the data (Noether, 1987). The normality 
of the test statistic under the null hypothesis is generally valid if either n or m exceeds 20 and 
the smaller of the two is at least 4. If the suggested sample size does not meet these require-
ments, consult a statistician. 
 
 M-4.1.5.4.  Example of Calculating Sample Size to Achieve a Specified Power for the Wil-
coxon Rank Sum Test.  Suppose Pb surface soil concentrations at a site are to be compared to 
background concentrations using a 95% level of confidence ( 05.0=α ) using the following hy-
pothesis test (Case 1). 
 
 M-4.1.5.4.1.  : Site A Pb concentrations tend to be less than or equal to background 
concentrations. 

0H

 
 M-4.1.5.4.2.  : Site A Pb concentrations tend to be higher than background concentra-
tions. 

AH

 
 M-4.1.5.4.3.  We wish to ensure that the sample size is large enough to find a meaningful 
elevation of lead concentrations with 80% probability ( 20.0=β ). Suppose historical information 
indicates that the probability of site lead concentration being less than background lead concen-
tration is about 1/3. We decide to use this as our estimate of p ′′ . We wish to take an equal num-
ber of samples from the site and background, so that c = 0.5. The required sample size to meet 
the power requirement is: 
 

 
( )
( )

( )
( )( )( )

2.74
5.0333.05.015.012

842.0645.1

2
1112

2

2

2

2
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=
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⎠
⎞

⎜
⎝
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 M-4.1.5.4.4.  As we wish to collect and equal number of samples from the site and back-
ground, the calculated required total sample size is rounded up to the next largest even whole 
number, 76 (an even number is required because it is being assumed that the required sample 
size is equal to the sum of an equal number of site and background samples). If it is assumed that 
38 site plus 38 background samples are required to achieve adequate power for the test per-
formed in Paragraph M-4.1.5.2, it follows that, though the null hypothesis was not rejected, the 
result is not conclusive (as only 20 site and 21 background samples were collected). 
 
 M-4.1.6.  Matched Pairs Wilcoxon Signed Ranks Test.  As discussed in Paragraph M-2.3, 
matching subjects can lead to efficient comparisons between two populations. However, the ob-
served differences between treatments will not always appear to come from a normal distribu-
tion. In that case, the one-sample Wilcoxon signed ranks test that was discussed in Appendix L 
can be used to test whether the mean or median difference differs significantly from zero. Direc-
tions for applying the Wilcoxon signed ranks test to a matched pairs design are presented in 
Paragraph M-4.1.6.1 and an example is presented in Paragraph M-4.1.6.2. See the discussion in 
Appendix L for more details on applying the Wilcoxon signed ranks test. 
 

M-21 



EM 1110-1-4014 
31 Jan 08 
 
 M-4.1.6.1.  Directions for the Wilcoxon Signed Ranks Test for Matched Pairs.  The follow-
ing describes the steps for applying the Wilcoxon signed ranks test for a matched pairs design 
when the sample size, n, is less than 20 for: Case 1: BAH μμ ≥:0 , BAAH μμ <: ; and Case 2: 

BAH μμ ≤:0 , BAAH μμ >: , which is given in braces { }. 
 

 M-4.1.6.1.1.  Subtract each before concentration (Bi) from the after concentration (Ai) to get 
the difference: 
 
  . iii BAd −=
 
If any of the differences are zero, delete them and correspondingly reduce the sample size (n).  
 
 M-4.1.6.1.2.  Assign ranks from 1 to n based on ordering the absolute deviations id  (i.e., 
magnitude of differences ignoring the sign) from smallest to largest. The rank 1 is assigned to the 
smallest value, the rank 2 to the second smallest value, and so forth. If there are ties, assign the 
average of the ranks that would otherwise have been assigned to the tied observations. 
 
 M-4.1.6.1.3.  Assign the sign for each observation to create the signed rank. The sign is 
positive if the deviation di is positive and the sign is negative if the deviation di is negative. 
Calculate R, the sum of the ranks with a positive sign. 
 
 M-4.1.6.1.4.  Use Table B-24 of Appendix B to find the critical value . nw ,α

 
 M-4.1.6.1.5.  Compare the calculated test statistic, R, to the critical value: 
 
 M-4.1.6.1.5.1.  If nwnnR ,}2/)1({ α−+≤ }{ , nwR α≥ , may be rejected.  0H
 
 M-4.1.6.1.5.2.  If nwnnR ,}2/)1({ α−+> }{ , nwR α< , there is not enough evidence to reject 

; verify the false acceptance error rate.  0H
 
 M-4.1.6.1.6.  If H0 was not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false rejection and false acceptance error rates using a software package 
like DEFT (EPA QA/G-4D).  
 
 M-4.1.6.1.7.  The results of the test may be:  
 
 M-4.1.6.1.7.1.   is rejected; 0H }{ BABA μμμμ >< . 
 
 M-4.1.6.1.7.2.  H0 is not rejected and the false acceptance error rate is satisfied; 

}{ BABA μμμμ ≤≥ . 
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 M-4.1.6.1.7.3.  H0 is not rejected and the false acceptance error rate was not satisfied; 

}{ BABA μμμμ ≤≥ , but this conclusion is uncertain because the sample size was too small. 
 
 M-4.1.6.2.  Example of the Matched Pairs Wilcoxon Signed Ranks Test for the Difference 
Between Means Before and After Treatment.  Consider the case where the results of a groundwa-
ter remediation procedure are compared before and after treatment to see if the remediation has 
lowered the concentration of the contaminant. Test the hypothesis that the treatment had no low-
ering effect at the 95% level of confidence: 
 
 BAH μμ ≥:0 ,  BAAH μμ <:  . 
 
 M-4.1.6.2.1.  The data consist of measured TCE concentrations (mg/L) at monitoring wells 
before and after treatment (Table M-4). Negative values of the difference support the alternative 
hypothesis. 

 
Table M-4. 
Measured TCE Concentrations (mg/L) at Monitoring Wells Before and After Treatment 
for Example M-4.1.6.2 

Sample Baseline (01/2000) Post–Test (12/2000) Difference Signed Rank 
Well 1 20.9 0.917 –20.0 –6 
Well 2 9.17 8.77 –0.400 –1 
Well 3 5.96 4.37 –1.59 –2 
Well 4 41.5 4.34 –37.2 –9 
Well 5 34.3 10.7 –23.6 –7 
Well 6 19.7 1.48 –18.2 –5 
Well 7 38.9 0.272 –38.6 –10 
Well 8 8.18 0.520 –7.66 –4 
Well 9 9.13 3.06 –6.07 –3 

Well 10 28.5 1.90 –26.6 –8 

 
 M-4.1.6.2.2.  The differences are roughly symmetrical so the Wilcoxon signed ranks test 
can be applied. 
 
 M-4.1.6.2.3.  Because the sign ranks are all negative, 0=R . 
 
 M-4.1.6.2.4.  Using Table B-24 of Appendix B, we find the critical value . 1110,05.0 =w
 
 M-4.1.6.2.5.  Recall that negative values of the difference support the alternative hypothe-
sis. Therefore we reject  if R is smaller than the critical value. Comparing the calculated test 
statistic and the critical value, 

0H
4411}2/)11(10{}2/)1({0 , =−=−+≤= nwnnR α , so  is re-

jected. The treatment appears to have lowered TCE concentration in groundwater. 
0H

 
 M-4.1.6.2.6.  If the differences do not meet the symmetry assumption of the Wilcoxon 
signed ranks test, the one-sample sign test could be used for the analysis. However, a specific 
example will not be presented here. 

M-23 



EM 1110-1-4014 
31 Jan 08 
 
 M-4.2.  The Quantile Test.  The quantile test is used to compare two populations using m 
independent random samples (x1, x2,..., xm) from the first population and n independent random 
samples (y1, y2,..., yn) from the second population. The quantile test is useful in detecting in-
stances where only parts of the data are different rather than a complete shift in the data. It looks 
at a certain number of the largest data values to determine if too many data values from one 
population are present to be accounted for by pure chance. When the quantile test and the Wil-
coxon rank sum test (discussed above) are applied together, the combined tests are the most 
powerful at detecting true differences between two populations. 
 
 M-4.2.1.  Introduction.  The quantile test assumes a set of random samples from population 
1 and an independent set of random samples from population 2. The quantile test is not robust to 
outliers, and assumes either a systematic (e.g., a triangular grid) or simple random sampling de-
sign. The quantile test may not be used for stratified designs. In addition, exact false rejection er-
ror rates are not available, only approximate rates. The quantile test is difficult to do by hand so 
directions are not included in this guidance, but the DataQUEST software (EPA QA/G-9D) can 
be used. Directions for a modified quantile test that can be done by hand are contained below in 
Paragraph M-4.2.2, followed by an example in Paragraph M-4.2.3. 
 
 M-4.2.2.  Directions for a Modified Quantile Test Done by Hand.  Let there be m meas-
urements from population 1 (the reference area or background group) and n measurements from 
population 2 (the test area). The modified quantile test can be used to detect differences in shape 
and location of the two distributions. For this test, the significance level,α , can either be ap-
proximately 0.10 or approximately 0.05.  
 
 M-4.2.2.1  H : population 1 = population 2. 0

 
 M-4.2.2.2.  AH : population 2 > population 1. 
 
 M-4.2.2.3.  Combine the two samples and order them from smallest to largest, keeping 
track of which sample a value came from. 
 
 M-4.2.2.4.  Using Table B-25 of Appendix B, determine the critical number (C) for a sam-
ple size n from the reference area and sample size m from the test area using the significance 
levelα . If the Cth largest measurement of the combined population is the same as others, in-
crease C to include all of these tied values.  
 
 M-4.2.2.4.1.  If the largest C measurements from the combined samples are all from popu-
lation 2 (the test area), then reject the null hypothesis and conclude that there are differences be-
tween the two populations. 

 
 M-4.2.2.4.2.  Otherwise, the null hypothesis is not rejected and it appears that there is no 
difference between the two populations. 
 
 M-4.2.3.  Example of a Modified Quantile Test Done by Hand.  Consider the case where 
nickel surface soil concentrations are compared between Site A and background using the test 
(Table M-5). 
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0 M-4.2.3.1.  H : population 1 = population 2. 
 
 M-4.2.3.2.  AH : population 1 > population 2. 
 
 M-4.2.3.3.  Suppose data for nickel surface site data (population 1) are the m = 6 values: 
2.67, 3.61, 5.47, 7.15, 8.34, and 7.96 mg/kg.  
 
 M-4.2.3.4.  Suppose data for nickel surface background data (population 2) are the n = 10 
values: 5.14, 7.46, 5.99, 3.36, 3.19, 2.87, 5.95, 1.72, 4.77, and 5.61 mg/kg. 
 
Table M-5. 
Nickel Surface Soil Concentrations for Example M-4.2.3 

Location Result Rank 
Background 1.72 1 
Site 2.67 2 
Background 2.87 3 
Background 3.19 4 
Background 3.36 5 
Site 3.61 6 
Background 4.77 7 
Background 5.14 8 
Site 5.47 9 
Background 5.61 10 
Background 5.95 11 
Background 5.99 12 
Site 7.15 13 
Background 7.46 14 
Site 7.96 15 
Site 8.34 16 

 
 M-4.2.3.5.  C ; because the fifth largest value is 5.99, there is no need to 
increase C.  

505.0,6,10,, == Cmn α

 
 M-4.2.3.6.  Only three of the largest five values are from population 1 (site concentrations), 
therefore the null hypotheses cannot be rejected. The result is that there is no difference between 
the site concentrations and the background concentrations of nickel. 
 
M-5.  Multiple Population Tests.  This Paragraph describes procedures to evaluate data from 
more than two populations. One could accomplish the same objectives by applying the tests de-
scribed above multiple times. However, doing so would underestimate the true false rejection 
decision error rate. In other words, if multiple individual tests are done, H0 is rejected more fre-
quently than desired. The tests described in this Paragraph control the overall false rejection de-
cision error rate by making multiple comparisons simultaneously. 
 
 M-5.1.  One-Factor Analysis of Variance (ANOVA).  The one-factor ANOVA is a statisti-
cal procedure to determine whether differences in mean concentrations among two or more 
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populations are statistically significant. When a single variable is being measured for multiple 
populations (e.g., the concentration of chromium at multiple sites), the one-factor ANOVA al-
lows the comparison of multiple population means in one test. Because the ANOVA test com-
pares all the means to one another simultaneously, large false positives rates associated with 
multiple separate pairwise mean comparisons are avoided. Multi-factor ANOVA tests would be 
used when comparing several variables from multiple populations (e.g., the concentration of ar-
senic and chromium at multiple sites), but these are more complex than one-factor ANOVA tests 
and are beyond the scope of this document. 
 
 M-5.1.1.  Introduction.  There are two types of ANOVAs: parametric and nonparametric. 
The parametric ANOVA assumes that the errors, called residuals, are normally distributed with 
equal variance. The one-way parametric ANOVA model is the following: 
 
 jiijix ,, εμ +=  . 
 
The denotes the jth measured value of the ith group, where the ith group contains ni values and i 
= 1, 2, …K (the number of groups or populations). The residuals 

jix ,

ji ,ε  are assumed to be values of 
a random variable ε that possess a normal distribution with mean of zero and standard deviation 
of σ. The parameters iμ are the populations means for the groups; each possessing a common 
standard deviation σ. The equation is a model in the sense that it is of the form: 
 
 Measured value = Function one or more parameters + Residual (random error). 
 
(Also refer to the linear regression model in Appendix Q.) As the population means μi are un-
known, they are estimated by the sample group means:  
 

 
i

n

j ji
i n

x
x

i∑ == 1 ,
for i = 1, 2, …K. 

 
 M-5.1.1.1.  Thus, the “true” residuals ji,ε are estimated by the “sample” residuals as fol-
lows: 
 

ijiji xxe −= ,,  . 
 
The sample residuals for each group (e.g., the ni residuals for group i) must each be tested for 
normality and must be normally distributed. 
 
 M-5.1.1.2.  The ANOVA is especially useful in situations where sample sizes are small. To 
apply a parametric one-way ANOVA, at least two groups must be present in the data and at least 
two samples must be available for each group. Although the ANOVA assumes equal variances, 
the test is not sensitive to unequal variances as long as the violation is not severe. 
 
 M-5.1.1.3.  Directions for the ANOVA are given in Paragraph M-5.1.2, followed by an ex-
ample in Paragraph M-5.1.3.  

M-26 



EM 1110-1-4014 
31 Jan 08 

 
 M-5.1.2.  Directions for the ANOVA Test.  Let  represent the sample sizes of 
each of the K sample populations to be compared to one another. Let the values from each popu-
lation be represented by  where 

Knnn ,,, 21 K

jix , Ki ,,2,1 K=  for the K groups and  for the ob-
servations in the ith group. 

inj ,,2,1 K=

 
 M-5.1.2.1.  KH μμμ === L210 : (no difference among the population means). 
 
 M-5.1.2.2.  HA : at least one mean, iμ  is different from one or more of the other means. 
 
 M-5.1.2.3.  Verify that the residuals are normally distributed with equal variances (see Ap-
pendix F and Appendix N, respectively).  
 
 M-5.1.2.4.  Let %100)1( α−  represent the chosen significance level for the test, so α is the 
false rejection rate for the test. Set up the ANOVA table as follows: 
 

Source of 
Variation 

Degrees of  
Freedom (v) 

Sum of 
Squares Mean Square F-Value 

 
Groups 

 
1v KG = −  

 
SSG 

 

 
MSG SSG /( 1)K= −  
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MSE

F=  
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Note that 
 
 EGT ννν +=   
 
 . SST = SSG + SSE
 
 M-5.1.2.5.  It may be convenient to calculate MSE using the formula: 
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In this form, MSE is often referred to as the “pooled” variance for the K groups, where is the 
sample variance for the ith group: 
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 M-5.1.2.6.  Use Table B-7 of Appendix B to determine the critical value, 

EG
, where 

is the 
vvF ,,1 α−

nmF ,,γ 100γ th percentile of the F distribution with m degrees of freedom for the numerator 
and n degrees of freedom for the denominator. Compare F to 

EG
. If 

EG
F , then re-

ject (the means of the sample populations are not all equal). Otherwise, conclude that there is 
no difference among the sample population means. If  is rejected, perform multiple compari-
son tests to determine which populations are significantly different. 

vvF ,,1 α− vvF ,,1 α−>

0H
0H

 
 M-5.1.2.7.  Statistical software sometimes outputs the coefficient of determination for the 
ANOVA:  
 
 . 2 SSG/SSTANOVAr =
 
The square root of this quantity is similar in function to the regression coefficient for an ordinary 
least squares regression line (refer to Appendix Q) in that it accounts for the variation in the 
measured values accounted for by the model (often referred to as the explained variation). A 
large value for  (which ranges from 0 to 1) indicates that most of the variation is ascribable 
to differences between the group means. It can be shown that 

2
ANOVAr
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Therefore, when the calculated value of the statistic F is small (i.e., when the null hypothesis is 
not rejected),  will be near zero. 2

ANOVAr
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 M-5.1.3.  Example of ANOVA.  Suppose manganese (Mn) groundwater concentrations are 
going to be compared among the seven different wells at Site A using the following test with 
95% level of confidence. 
 
 M-5.1.3.1.  KH μμμ === L210 :  (no difference among the sample means).  
 
 M-5.1.3.2.  HA: at least one mean, iμ  is different from one or more of the other means.  
 
 M-5.1.3.3.  Table M-6 presents the data. All Mn concentrations were detected, so no proxy 
concentrations are needed to evaluate the data. 
 
 M-5.1.3.4.  The data were tested for equal variances using Bartlett’s test for equal variances 
(see Paragraph N-3). The data were also tested for normality using the Shapiro-Wilk test. Be-
cause the data were not normal, the data were transformed so that the residuals would follow a 
normal distribution. 
 
 M-5.1.3.5.  Summary statistics for each well are presented in Table M-7. 
 
 M-5.1.3.6.  Let %100)1( α−  represent the chosen significance level for the test, where 

.05.0=α  Note that in this example K = 7 and ni = 8 for i = 1, 2, … 7. Set up the ANOVA table 
as follows: 
 

Source of 
Variation 

Degrees of Free-
dom (v) 

Sum of 
Squares 

Mean 
Square 

F 
Value 

Groups 6 137.29 22.88 346.09 
Error 49 3.24 0.066  
Total 55 140.53   
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Table M-6. 
Manganese (Mn) Groundwater Concentrations to be Compared Among the Wells at Site A 

Well Location Result Log Result Well Location Result Log Result 
69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 
69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 
69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 
69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 
69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 
69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 
69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 
69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 
69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 
69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 
69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 
69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 
69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 
69-2-04 0.0556 –2.890 69-2-07 0.0137 –4.290 
69-2-04 0.0534 –2.930 69-2-07 0.019 –3.963 
69-2-04 0.0517 –2.962 69-2-07 0.0163 –4.117 
69-2-05 0.00684 –4.985 69-2-07 0.0195 –3.937 
69-2-05 0.00639 –5.053 69-2-07 0.0112 –4.492 
69-2-05 0.00631 –5.066 69-2-07 0.0112 –4.492 
69-2-05 0.00813 –4.812 69-2-07 0.0102 –4.585 
69-2-05 0.00747 –4.897 69-2-07 0.00946 –4.661 
69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 
69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 
69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 
69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 
69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 
   69-2-08 0.33 –1.109 
   69-2-08 0.27 –1.309 

 
Table M-7. 
Summary Statistics 

Well Sample Size Mean of Log Result Standard Deviation of Log Result 
69-2-02 8 –0.832 0.2539 
69-2-04 8 –2.877 0.2026 
69-2-05 8 –5.018 0.1818 
69-2-06A 8 –1.144 0.1031 
69-2-06B 8 –2.008 0.3779 
69-2-07 8 –4.317 0.2832 
69-2-08 8 –0.907 0.3011 

 
 M-5.1.3.7.  The power of an ANOVA F-test can be estimated prior to a study. Table B-28 
in Appendix B lists the power for K = 3 to 10 groups and significance levels of α = 0.2, 0.1, and 
0.05, where each group contains an equal number of samples n. To use the tables, the “effect 
size,” Δ , must be also estimated as: 
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  (largest group mean – smallest group mean)/(MSE)1/2 . =Δ
 
 M-5.1.3.8.  The tables list various values of Δ . For a specified value of K, n, α, andΔ , the 
tables list the minimum power (probability) corresponding to the alternative hypothesis that all 
group means, other than the two extremes, are equal to the “grand mean,” which is equal to the 
median of the largest and smallest group means. When comparing K groups of equal size n, the 
tables are useful for determining approximately how large a sample size for each group is re-
quired to achieve a particular level of confidence 1 – α and power 1 – β. For example, for K = 3 
groups and α = 0.05, to detect a size effect Δ  = 1.0 (i.e., a difference between the largest and 
smallest mean equal to MSE1/2) with power of at least 1 – β = 0.80, the required sample size for 
each group . 20≈n
 
 M-5.2.  Kruskal-Wallis Test.  The Kruskal-Wallis test is the nonparametric version of the 
ANOVA. It is a statistical procedure to determine whether differences in median concentrations 
among a number of groups or multiple populations are statistically significant. The Kruskal-
Wallis allows the comparison of multiple population means in one test. If the test shows statisti-
cally significant differences among the groups, multiple comparison procedures can be used to 
identify which group or groups are different. 
 
 M-5.2.1.  Introduction.  In terms of hypothesis tests, the null hypothesis is that all group 
medians are equal and the alternative hypothesis is that at least one group is different from one or 
more other groups. To test this hypothesis, no assumptions are required about the shape of the 
distributions; each group may have a different distribution. The Kruskal-Wallis test is used to 
evaluate whether the distributions are identical. Directions for the Kruskal-Wallis test are given 
below in Paragraph M-5.2.2, followed by an example in Paragraph M-5.2.3. 
 
 M-5.2.2.  Directions for the Kruskal-Wallis Test.  Let %100)1( α−  represent the chosen 
significance level for the test. 
 
 M-5.2.2.1.  Rank all xi,j observations from lowest to highest. Let Ri,j denote the rank of the 
xi,j observation.  

 
 M-5.2.2.1.1.  Ties.  If two or more observations are numerically equal, then use an average 
rank for each observation. The average rank is calculated as the average of the ranks that the tied 
observations would have received had the observations been different. 

 
 M-5.2.2.1.2.  Censored Data.  If any values are not-detected, it is appropriate to consider 
the ranks for these values equal to zero. (It is irrelevant what number is assigned to the non-
detected values as long as all such values are assigned the same number, and it is smaller than 
any detected value.) 
 
 M-5.2.2.2.  Add the ranks of the observations in each group. Call the sum of the ranks for 
the ith group Ri. Also calculate the average rank for each group, iii nRR /= . If there are at least 
50% detected results and no tied values, then compute the Kruskal-Wallis statistic: 
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where  
 

 .  

 
 M-5.2.2.3.  If there are at least 50% detected results and there are tied values present in the 
data, then compute the adjusted Kruskal-Wallis statistic:  
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where g is the number of groups of distinct tied observations and W , where w is 
the number of tied data in the tied group k. Note that the unique observations can be considered 
groups of size 1, with the corresponding W . If all the group medians are equal, 
then H = 0. As the differences between the group medians increase, H will also increase; so the 
larger the value of H, the less probable H0 is true. 
 

H M-5.2.2.4.  Compare the calculated value H (or ′ ) to the tabulated critical value for the 
chi-square distribution, , with K – 1 degrees of freedom and 2

1,1 −− Kαχ %100)1( α−  level of confi-
dence (found in Table B-2 of Appendix B).  
 
 M-5.2.2.5.  Reject H0 if H > . If H0 is rejected use multiple comparison tests to de-
termine which populations are significantly different. 

2
1,1 −− Kαχ

 
 M-5.2.3.  Example of the Kruskal-Wallis Test.  Suppose lead groundwater concentrations 
are going to be compared among seven wells using the Kruskal-Wallis test with 95% level of 
confidence. 

 
 M-5.2.3.1.  7210 : μμμ === KH  (i.e., no difference among the well means). 
 
 M-5.2.3.2.  :AH  at least one mean is different from one or more of the other means. 
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 M-5.2.3.3.  Table M-8 presents the data. All lead concentrations were detected so no proxy 
concentrations were needed to evaluate the data. 
 
 M-5.2.3.4.  The sum of the ranks for each of the seven groups is: 

 

2721 =R , , , 1682 =R 5.623 =R 4204 =R , 3045 =R , 5.736 =R ,  2967 =R
 

 M-5.2.3.5.  Because there are at least 50% detected results and there are tied values present 
in the data, compute the adjusted Kruskal-Wallis statistic: 
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The table below summarizes the g = 4 tied groups: 
 

Tied Rank Number of Tied Observations 
 kw

kkK wwW −= 3  

4 3 24 
12.5 2 6 
19.5 2 6 
21.5 2 6 
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 M-5.2.3.6.  Now compare the calculated value to the critical value, 48.91 > 12.59. As the 
calculated value exceeds the critical value, reject H0. 
 
 M-5.2.3.7.  Because there is a difference in the average lead concentration among the seven 
wells, a multiple comparison test should be done to determine which wells are significantly dif-
ferent. A multiple comparison test based on ranks is discussed in Conover (1980). 
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Table M-8. 
Lead Concentrations for Example M-5.2.3 

Well Result Rank Well Result Rank 
6 0.978 1 5 3.100 29 
6 1.037 2 7 3.118 30 
3 1.061 4 5 3.144 31 
3 1.061 4 7 3.178 32 
3 1.061 4 1 3.215 33 
6 1.095 6 1 3.219 34 
6 1.109 7 1 3.235 35 
3 1.144 8 5 3.346 36 
3 1.227 9 1 3.395 37 
3 1.241 10 5 3.421 38 
3 1.270 11 5 3.434 39 
3 1.426 12.5 1 3.478 40 
6 1.426 12.5 1 3.586 41 
6 1.513 14 5 3.605 42 
6 1.530 15 5 3.627 43 
6 1.601 16 7 3.671 44 
2 2.588 17 7 3.689 45 
2 2.595 18 5 3.694 46 
2 2.610 19.5 7 3.922 47 
2 2.610 19.5 7 3.932 48 
2 2.625 21.5 4 4.057 49 
2 2.625 21.5 4 4.101 50 
2 2.639 23 4 4.103 51 
7 2.918 24 4 4.119 52 
1 3.011 25 4 4.159 53 
7 3.035 26 4 4.177 54 
1 3.068 27 4 4.214 55 
2 3.073 28 4 4.228 56 

 
M-6.  Multiple Comparison Tests.  Multiple comparisons occur whenever more than one statis-
tical test is performed with the same data. These comparisons can arise, for example, as a result 
of the need to test multiple down-gradient wells against a pool of up-gradient background data or 
to regularly test several indicator parameters for contamination. The multiple comparison tests 
described in this section may not be needed if a significant difference is not obtained from the 
ANOVA F-test. 
 
 M-6.1.  Introduction.  Comparisons are usually written in terms of linear combinations of 
the population means, and are often referred to as “contrasts.” For example, we may want to 
know if the mean for population 1, 1μ , differs from the mean for population 2, 2μ . This contrast 
can be written as 21 μμ − . In general, a contrast is a linear combination  
 
  ∑= iia μθ
 
where  
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 .  ∑ = 0ia
 
Beyond comparing pairs of means, a contrast to compare the mean of population 1 to the means 
of populations 2 and 3 can be written as 3212 μμμ −− . 
 
 M-6.1.1.  The Type I error rate for multiple comparison tests can be viewed in two ways. 
Comparison-wise significance considers the probability of rejecting the hypothesis that only a 
single contrast equals zero ( 0: 10 =θH ) when it is actually true. Experiment-wise significance 
considers the probability of rejecting any of a set of m hypotheses on contrasts 
( mjH j ...,,1,0:0 ==θ ) when all of them are true. 
 
Table M-9. 
Summary of Multiple Comparison Tests 

Test Purpose 
Dunnett’s Comparing treatment means to a control mean 
Fisher’s LSD Comparing all pairs of means 
Duncan’s multiple range Comparing all pairs of means 
Tukey’s Comparing all pairs of means 
Bonferroni’s Comparing any set of contrasts  
Scheffé’s Comparing any set of contrasts 

 
 M-6.1.2.  Table M-9 summarizes the multiple comparison tests that will be covered in this 
document. The Fisher’s Least Significant Difference (LSD) test and Bonferroni’s test are multi-
ple comparison tests that are based on the Student’s t distribution, whereas the Tukey’s test and 
Duncan’s multiple range test are based on the Studentized range statistic. Scheffé’s multiple 
comparison test is used to achieve an experiment-wise false positive rate for all possible con-
trasts or linear combinations of means at the same time. All the multiple comparison tests pre-
sented rely on the assumption of normality. Assumptions of normality should have been verified 
during the ANOVA process, which is typically performed prior to these multiple comparison 
tests. More information on multiple comparison tests can be found in Mason et al. (1989) and 
Montgomery (1997). 
 
 M-6.1.3.  There is no clear answer to the question of which multiple comparison technique 
should be used. For comparing all pairs of treatment means, Fisher’s LSD is the least conserva-
tive (most powerful) test for identifying differences between means (i.e., it rejects H0 most often) 
followed by Duncan’s Multiple Range, Tukey, and finally Sheffé. The relative conservatism of 
the Bonferroni Test will depend on the number of groups. Montgomery (1997) recommends 
Fisher’s LSD or Duncan’s multiple range test for comparing all treatment means as long as the 
ANOVA F-test is significant, based on Monte Carlo studies conducted by Carmer and Swanson 
(1973). Mason et al. (1989) recommend Fisher’s LSD to control the comparison-wise error rate 
and Tukey’s test to control the experiment-wise error rate for comparing all treatment means. 
When many comparisons need to be made, multiple range tests such as Duncan’s multiple range 
test and Tukey’s test should be used as a compromise between the desired experiment-wise error 
rate and an unacceptable comparison-wise error rate (Mason et al., 1989). Obviously, if one’s 
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purpose is to compare treatment means to a control or if contrasts other than pairwise compari-
sons of treatments are of interest, Dunnett’s, Bonferroni’s, or Scheffé’s test may be preferred. 
 
 M-6.2.  Fisher’s Least-Significant Difference Test.  Fisher’s LSD test is an extension of the 
t-test for comparing all pairs of treatment means. Each pairwise comparison will have a Type I 
error rate (probability of declaring the pair of means different when they are not) of α . There-
fore, the experiment-wise error rate (the probability of declaring any pair of means different 
when they are not) will be larger than α . The disadvantage to the Fisher’s LSD test is that its 
experiment-wise error rate is not satisfactory for testing all possible pairs of group means when 
there are a moderate to large number of groups to be compared (Mason et al., 1989). Directions 
for Fisher’s LSD test (from Mason et al., 1989) are given in Paragraph M-6.2.1 and an example 
is presented in Paragraph M-6.2.2. 
 
 M-6.2.1.  Directions for Fisher’s LSD Test.  Let K represent the total number of popula-
tions to be compared. Let  represent the sample sizes of each of the K sample popu-
lations. Let the values from each population be represented by  where i = 1, 2,…, K for the K 
groups and  for the observations at the ith group. Let 

Knnn ,,, 21 K

jix ,

1(inj ,...,2,1= %100)α−  represent the cho-
sen confidence level for the test. 
 
 M-6.2.1.1.  Verify the assumptions of normality. 
 
 M-6.2.1.2.  The means of two groups, ix  and kx , in an ANOVA are declared to be signifi-
cantly different if:  
 
 LSD>− ki xx   
 
where 
 

 
2/1
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1 .  

 
 vE t , γ is the γ100th percentile for the Student’s t distribution with vE degrees of freedom (see Table 
B-23 in Appendix B). MSE and vE come from the ANOVA procedures previously defined. Note 
that for K groups, differences 2/)1( −KK ki xx −  need to be calculated. 
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 M-6.2.2.  Example of Fisher’s LSD Test.  Mean manganese groundwater concentrations in 
seven wells were compared to one another using the ANOVA. The null hypothesis was rejected. 
The LSD test is subsequently applied below using the 95% level of confidence. 
 
 M-6.2.2.1.  The table in Paragraph M-5.1.3 presents the data. All manganese concentrations 
were detected so no proxy concentrations are needed to evaluate the data. 
 
 M-6.2.2.2.  Assumptions of normality were verified for the log result during the ANOVA 
process. 
 

 

1/ 2

1 / 2,

1/ 2
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8 8
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 M-6.2.2.3.  Means that differ by more then 0.2584 would be considered statistically differ-
ent with 95% confidence. Alternatively, confidence intervals for the difference in means can be 
calculated as LSD)( ±− ki xx . If zero is not in the confidence interval, the two population 
means are declared significantly different at the α  significance level. Table M-10 summarizes 
the results. Comparisons significant at the 0.05 level are indicated by ***. 
 
 M-6.2.2.4.  Another way to visualize the conclusions is to list the means in order and iden-
tify those that are not significantly different. In Table M-11, means designated with the same 
“group” letter (A, B, C, etc.) are not significantly different at 05.0=α . 
 
 M-6.2.2.5.  As Wells 69-2-02 and 69-2-08 are in LSD grouping A, the means for these 
wells are not statistically different. The preceding table indicates that the difference between the 
two means is 0.0758, which is less than LSD = 0.2584. 
 
 M-6.3.  Bonferroni’s Test.  The Bonferroni’s test is designed to control the experiment-wise 
error rate (the probability of declaring any two means different when they are not). The test uses 
the overall significance level divided by the number of selected comparisons as the comparison-
wise significance level. Mason et al. (1989) warn that Bonferroni’s test should not be used when 
the number of comparisons becomes very large, because this results in an extremely conservative 
comparison-wise test. However, they do state that the experiment-wise error rate can be better 
controlled using Bonferroni’s test rather than the Fisher’s LSD test (where comparison-wise er-
ror is controlled). Also, note that Bonferroni’s test can be used to test any contrast of interest 
(Mason et al., 1989). Directions for Bonferroni’s Test (from Mason et al., 1989) are presented in 
Paragraph M-6.3.1 and an example is presented in Paragraph M-6.3.2. 
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Table M-10. 
Results for Example M-6.2.2   

Well Comparison Difference Between Means ki xx −  95% Confidence Interval 
02 – 08 0.0758 (–0.1825, 0.3342) 

02 – 06A 0.3123 (0.0539, 0.5706)*** 
02 – 06B 1.1769 (0.9186, 1.4353)*** 
02 – 04 2.0452 (1.7868, 2.3036)*** 
02 – 07 3.4857 (3.2273, 3.7440)*** 
02 – 05 4.1861 (3.9277, 4.4444)*** 

08 – 06A 0.2365 (–0.0219, 0.4948) 
08 – 06B 1.1011 (0.8427, 1.3595)*** 
08 – 04 1.9694 (1.7110, 2.2277) *** 
08 – 07 3.4098 (3.1515, 3.6682)*** 
08 – 05 4.1103 (3.8519, 4.3686)*** 

06A – 06B 0.8646 (0.6063, 1.1230)*** 
06A – 04 1.7329 (1.4746, 1.9913)*** 
06A – 07 3.1734 (2.9150, 3.4317)*** 
06A – 05 3.8738 (3.6154, 4.1322)*** 
06B – 04 0.8683 (0.6099, 1.1266)*** 
06B – 07 2.3088 (2.0504, 2.5671)*** 
06B – 05 3.0092 (2.7508, 3.2675)*** 
04 – 07 1.4405 (1.1821, 1.6988)*** 
04 – 05 2.1409 (1.8825, 2.3992)*** 
07 – 05 0.7004 (0.4420, 0.9588)*** 

 

Table M-11. 
List of the Means in Order for Example M-6.2.2 

Well  Mean n LSD Groupings  
69-2-02 –0.8315 8 A 
69-2-08 –0.9073 8 B  A 

69-2-06A –1.1438 8 B 
69-2-06B –2.0084 8 C 
69-2-04 –2.8767 8 D 
69-2-07 –4.3172 8 E 
69-2-05 –5.0176 8 F 

 
 M-6.3.1.  Directions for Bonferroni’s Test.  Let K represent the total number of populations 
to be compared. Let  represent the sample sizes of each of the K sample populations. 
Let the values from each population be represented by  where i = 1, 2,…, K for the K groups 
and for the observations in the ith group. Let 

Knnn ,,, 21 K

jix ,

1(inj ,...,2,1= %100)α−  represent the selected con-
fidence level for the test. 
 
 M-6.3.1.1.  Verify the assumptions of normality.  
 
 M-6.3.1.2.  Let  
 

M-38 



EM 1110-1-4014 
31 Jan 08 

 

   iia μθ ∑=
 
represent one of m linear combinations of the means, kμ , for which the hypothesis 0:0 =θH  
vs. 0: ≠θAH  is being tested. 
 
 M-6.3.1.3.  Reject H0 if  
 
 ∑= ii xaθ   
 
exceeds 
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t νγ , is the 100γ th percentile for the Student’s t distribution with vE degrees of freedom (see Table 
B-23 in Appendix B), and m is the number of comparisons. For K means (groups), there are  
 

 ( )
2

1−
=

KKm  

 
possible comparisons. MSE and vE are determined from the ANOVA procedures previously de-
fined. 
 
 M-6.3.2.  Example of Bonferroni’s Test.  Suppose manganese groundwater concentrations 
are going to be compared among the seven different wells at Site A using Bonferroni’s test with 
95% level of confidence. 
 
 M-6.3.2.1.  Table M-6 presents the data. All manganese concentrations were detected, so 
no proxy concentrations are needed to evaluate the data. 
 
 M-6.3.2.2.  The assumptions of normality were verified during the ANOVA process. The 
contrasts to make pairwise comparisons of all 7 means are the 21 differences (where 1±=ia ): 
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` 0426902269 −−−− − μμ  A0626904269 −−−− − μμ  0826905269 −−−− − μμ  
0526902269 −−−− − μμ  B0626904269 −−−− − μμ  BA 0626906269 −−−− − μμ  

A0626902269 −−−− − μμ  0726904269 −−−− − μμ  0726906269 −−−− − μμ A  

B0626902269 −−−− − μμ  0826904269 −−−− − μμ  0826906269 −−−− − μμ A  

0726902269 −−−− − μμ  A0626905269 −−−− − μμ  0726906269 −−−− − μμ B  

0826902269 −−−− − μμ  B0626905269 −−−− − μμ  0826906269 −−−− − μμ B  

0526904269 −−−− − μμ  0726905269 −−−− − μμ  0826907269 −−−− − μμ  
 

[ ] 412.0128.020.3
8
1

8
1066.0/MSEBSD

2/1

49,999.0
2/12

,2/1 =×=⎥
⎦

⎤
⎢
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⎡
⎟
⎠
⎞

⎜
⎝
⎛ +== ∑− tnat iivm Eα  . 

 

Means that differ by more than 0.412 would be considered statistically different with 95% confi-
dence. Alternatively, confidence intervals for the difference in means can be calculated as 

BSD±− ki xx . If zero is not covered by the confidence interval, the two population means are 
declared significantly different at the α  significance level.  
 
 M-6.3.2.3.  In Table M-12, means with the same letter are not significantly different at 

05.0=α . For example, the mean for 69-2-02 does not differ from the mean for 69-2-08 by more 
than 0.412, so we accept  
 
 0: 08269022690 =− −−−− μμH .  
 
Table M-12. 
Means with the Same Letter are not Significantly Different at 05.0=α  in Example M-6.3.2 

Well Mean n Bonferroni Grouping 
69-2-02 –0.8315 8 A 
69-2-08 –0.9073 8 A 

69-2-06A –1.1438 8 A 
69-2-06B –2.0084 8 B 
69-2-04 –2.8767 8 C 
69-2-07 –4.3172 8 D 
69-2-05 –5.0176 8 E 

 
On the other hand, we can reject 
 
 0: 05269022690 =− −−−− μμH   
 
because the two observed means differ by more than 0.412. Notice that the more conservative 
Bonferroni test does not reject  
 
 0: 06269022690 =− −−−− AH μμ   
 
with 95% confidence while Fisher’s LSD test did. 
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 M-6.4.  Tukey’s Test.  Tukey’s test is designed to control the experiment-wise chance of a 
Type I error (declaring any two population means different when they are not) at α  assuming 
equal sample sizes (Mason et al., 1989). Because of this, it is less powerful than Fisher’s LSD or 
Duncan’s multiple range test (Montgomery, 1997). Directions and an example for Tukey’s Test 
(from Mason et al., 1989) are given in Paragraphs M-6.4.1 and M-6.4.2, respectively. 
 
 M-6.4.1.  Directions for Tukey’s Test.  Let K represent the total number of populations to 
be compared. Let  represent the sample sizes of each of the K sample populations. 
Let the values from each population be represented by , where i = 1, 2,…, K for the K groups 
and  for the observations at the ith group. Let 

Knnn ,,, 21 K

jix ,

1(inj ,...,2,1= %100)α−  be the confidence level. 
 
 M-6.4.1.1.  Verify the assumptions of normality. Two averages, ix  and rx , are based on 

and samples, respectively, where in rn
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Two means are significantly different if TSD|| >− ri xx  where: 
 

 
2/1

,, 2
/1/1

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

= ri
vk

nn
MSEqTSD

Eα  . 

 
 M-6.4.1.2.  The quantity is the Studentized range statistic in Table B-22 of Appendix 
B, where k is the number of means being compared (typically equal to the number of groups K); 
MSE and vE are from the ANOVA procedure previously defined, and 

Evkq ,,α

α  represents the desired 
significance level. 
 
 M-6.4.2.  Example of Tukey’s Test.  Manganese groundwater concentrations are compared 
among the seven different wells at Site A using Tukey’s Test with 95% level of confidence. 
 
 M-6.4.2.1.  Table M-6 presents the data. All manganese concentrations were detected so no 
proxy concentrations are needed to evaluate the data. Assumptions of normality were verified 
during the ANOVA process. 
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 M-6.4.2.2.  Means that differ by more then 0.3952 would be considered statistically differ-
ent with 95% confidence. Alternatively, confidence intervals for the difference in means can be 

M-41 



EM 1110-1-4014 
31 Jan 08 
 
calculated for the difference of any two means as TSD±− ri xx . If z ro is not in the confidence 
interval, the two population means are significantly different at the 

e
α  significance level. Table 

-13 summarizes the results. Comparisons significant at M 0.05=α  are indicated by ***. 

 M-6.4.2.3.  In Table M-14, means with the same letter are not significantly different at 
 

0.05=α . 
 
Table M-13. 
Results from Example M-6.4.2 

Diffe ween 
Confidence Intervals Well Comparison 

r
Means 
ence Bet Simultaneous 95% 

69-2-02–69-2-08 0.0758 (–0.3194, 0.4710) 
69-2-02–69-2-06A 0.3123 (–0.0829, 0.7075 
69-2-02–69-2-06B 1.1769 (0.7817, 1.5721)*** 
69-2-02–69-2-04 2.0452 (1.6500, 2.4404) *** 
69-2-02–69-2-07 3.4857 (3.0905, 3.8809)*** 
69-2-02–69-2-05 4.1861 (  3.7909, 4.5813)***

69-2-08–69-2-06A 0.2365 (–0.1587, 0.6317) 
69-2-08–69-2-06B 1.1011 (0.7059, 1.4963)*** 
69-2-08–69-2-04 1.9694 (1.5742, 2.3646)*** 
69-2-08–69-2-07 3.4098 (3.0146, 3.8051)*** 
69-2-08–69-2-05 4.1103 (3.7150, 4.5055)*** 

69-2-06A–69-2-06B 0.8646 (0.4694, 1.2598)*** 
69-2-06A–69-2-04 1.7329 (1.3377, 2.1281)*** 
69-2-06A–69-2-07 3.1734 (2.7782, 3.5686)*** 
69-2-06A–69-2-05 3.8738 (3.4786, 4.2690)*** 
69-2-6B–69-2-04 0.8683 (0.4731, 1.2635)*** 
69-2-06B–69-2-07 2.3088 (1.9135, 2.7040)*** 
69-2-06B–69-2-05 3.0092 (2.6139, 3.4044)*** 
69-2-04–69-2-07 1.4405 (1.0453, 1.8357)*** 
69-2-04–69-2-05 2.1409 (1.7457, 2.5361)*** 
69-2-07–69-2-05 0.7004 (0.3052, 1.0956)*** 

 
 
Table M-14. 
Mea e Letter are ignificantly Differ α = 0.05  

Tukey ng 
ns with the Sam  not S ent at 

Groupi Mean N Well 
A –0.8315 8 69-2-02 
A –0.9073 8 69-2-08 
A –1.1438 8 69-2-06A 
B –2.0084 8 69-2-06B 
C –2.8767 8 69-2-04 
D –4.3172 8 69-2-07 
E –5.0176 8 69-2-05 

 
 M-6.5.  Duncan’s Multiple Range Test.  Duncan’s multiple range test is used to test for dif-
ferences in all pairs of means. Considering the ordered list of means, this procedure provides an 
xperiment-wise error rate of  e
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omery, 

 by  where i = 1, 2,…, K  and j = 1, 
,…, 

M-6.5.1.1.  Verify the assumptions of normality. The means  
 

( ) 111 −−− pα 
 
when the pair of means are p steps apart in the ordered list (Montgomery, 1997). Thus, the ex-
periment-wise probability of a Type I error depends on how far apart in the ordered list the two 
means lie (Mason et al., 1989). Duncan’s multiple range test is similar to Tukey’s test except that 
it has greater power to detect differences but does not control the experiment-wise error rate as 
well. Directions for Duncan’s multiple range test (from Mason et al., 1989, and Montg
1997) are presented in Paragraph M-6.5.1 followed by an example in Paragraph M-6.5.2. 
 
 M-6.5.1.  Directions for Duncan’s Multiple Range Test.  Let K represent the total number 
of populations to be compared. Let n  represent the sample sizes of each of the K sample popula-
tions. Let the values from each population be represented jix ,

n for the observations in the i  group (population).  th2
 
 

∑
=

=
in

j
jii x

n
x
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are sorted from smallest to largest. The two extreme means are compared first. The largest and 
smalle erages,st of p = K av ax and bx (each based on a sample size of n), are significantly differ-
nt if pba Rxx >−e  where  
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n
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Evpp α . 

M-6.5.1.2.  The quantity 

se error rate. The ex-
eriment-wise significance level for comparing the extremes of p means is  

comparisons r comparisons are declared not significantly different at the 

 
 
 
 

Evp,,α

 
is the Studentized range critical value (see Table B-6 of Appendix B). MSE and vE are from the 

NOVA procedure previously defined, and α represents the comparison-wi

q  

A
p
 

( ) 111 −−−= pαα .  p

 
 M-6.5.1.2.1.  If the smallest and largest means are not significantly different, then no more 

are made and all othe
( ) %1001  level of confidence.  pα−
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M-6.5.1.2.2.  If the smallest and largest averages are significantly different, then two com-

parisons, if neither of these tests is significantly different, 

 
parisons are made where p = k – 1: one for the second smallest and the largest averages, and one 
for the smallest and the second largest averages. 
 

M-6.5.1.2.3.  For the two com 
then no more comparisons are performed and only two extreme means ( ax and bx ) are concluded 
to be significantly different. 
 
 M-6.5.1.2.4.  If one or both of these tests are statistically significant, testing should con-

ificantly 
ifferent.  

ed so 

ere verified during the ANOVA process. 

M-6.5.2.3.  There are seven groups to compare so we begin by comparing the one with the 
allest mean to the one with the largest mean. 

tinue with groups of averages lying within the two extremes that have been declared sign
d
 
 M-6.5.1.3.  Testing continues until no further significant differences are obtained. 
 
 M-6.5.2.  Example of Duncan’s Multiple Range Test.  Suppose manganese groundwater 
concentrations are going to be compared among the seven different wells at Site A using Dun-
can’s multiple range test with 95% level of confidence. 
 
 M-6.5.2.1.  Table M-6  presents the data. All manganese concentrations were detect
no proxy concentrations are needed to evaluate the data. 
 
 M-6.5.2.2.  The assumptions of normality w
 
 
sm
 

( ) ( ) 296.00908.0255.38/066.0/MSE 2/1
49,7,05.0

2/1
,7,7 =×=== qnqR

Evα .  
 
Considering 
 

296.0186.4)0176.5(8315.00526902269 >=−−−=− −−−− xx   
 
we can conclude that the population means for these two wells differ at the  

gnificance level. As the two extreme means were significantly different, we now test means 
at are 6 levels apart. 

 
 1)1(1 171 =−− −−pα 26.0)05.01( =−−   
 
si
th
 

( ) ( ) 292.00908.0212.38/066.0/MSE 2/1
49,6,05.0

2/1
,6,6 =×=== qnqR

Evα .  
 
Considering  
 

292.0486.3)3172.4(8315.00726902269 >=−−−=− −−−− xx  
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nd a

 
292.0110.4)0176.5(9073.00526908269 >=−−−=− −−−− xx   

 
we can conclude that the population means for these two comparisons differ at the  

.4.  Because means 6 levels apart are significantly different, continue the process 
levels apart and so on. The final results are summarized in the Table M-15, where 

 level 

 

Table M

 
 23.0)05.01(1)1(1 =−−=−− α   
 
significance level. 
 

M-6.5.2

161 −−p

 
with means 5 
means with the same letter are not significantly different at an experiment-wise significance
of α = 0.05. 

-15. 
Means ame Letter ar nificantly Differe  at Significance of α  

Dun ng Well 
with the s e not Sig nt = 0.05 
can Groupi Mean N 
69-2-02 –0.8315 8 A  
69-2-08 –0.9073 8 B     A

69-2-06A  –1.1438 8 B 
69-2-06B  –2.0084 8 C 
69-2-04 –2.8767 8 D 
69-2-07 –4.3172 8 E 
69-2-05 –5.0176 8 F 

 
 M-6.6.  Dunnett’s Test for Simple Random and Systematic Samples. Dunnett’s test is used 
to test the difference between sample or “treatment” means from different populations against a 
control population. Dunnett’s method is the same as the standard two-sample t-test (Paragraph 
M-2), except for the use of a larger pooled estimate of variance and the need for special t type ta-
bles (Table B-26 of Appendix B). The experiment-wise significance level for all comparisons 

ples.  Let K 
present the total number of populations to be compared so there are (K – 1) sample populations 

m represent the sample size of the control population.  

≤−i

will be α (Montgomery, 1997). Directions for the use of Dunnett’s method for a simple random 
sample or a systematic random sample are presented in Paragraph M-6.6.1 and followed by an 
example in Paragraph M-6.6.2. 
 
 M-6.6.1.  Directions for Dunnett’s Test for Simple Random and Systematic Sam
re
and a single control population. Let 121 ,,, −Knnn K  represent the sample sizes of each of the (K – 
1) sample populations and let 
 
 M-6.6.1.1.  H0:  0Cμμ  (no difference between the sample means and the control 
mean).  
 
 M-6.6.1.2.  HA: 0>− Ci  for i = 1, 2,…, K – 1 where iμ μ μ  represents the mean of the ith 
sample population and C  represents the mean of the control population. μ
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M-6.6.1.4.  Verify the assumptions of normality. For each sample population, make sure 
0

M-6.6.1.5.  Calculate the sample mean, 

 M-6.6.1.3.  Let α represent the chosen significance level for the test. 
 
 
that 2/5. << inm . If not, Dunnett’s Test should not be used. 
 
 ix , and the variance, 2

is , for each of the K – 1 
populations and the control ( CKi ,1,,2,1 −= K ).  
 
 M-6.6.1.6.  Calculate the pooled standard deviation: 
 

 
)1()1()1( 11 −++−+− −K

p nnm K

)1()1()1( 2
11

2
11

2 −++−+−
= −− KKC snsnsm

s
K

 . 

or each of the K – 1 sample populations, compute  
 
F
 

 
Cip nns 11 +

 
 M-6.6.1.7.  Use Table B-

Ci
i

xx
t

−
=  . 

26 of Appendix B to determine the critical value, 
Evt ,1 α− , where 

e degrees of freedom vE = )1()1()1( 11+ − + + −th − −Knnm K . Compare ti to vt ,1 α−  for each of 
e K ns.  

M-6.6.1.7.1.  If t  > t  for any sample population, then reject H and conclude that the 

M-6.6.1.7.2.  Otherwise, conclude that the mean of the sample population does not exceed 

.  Suppose 
a  to be compared to a back-

M-6.6.2.1.  H0

E

th  – 1 sample populatio
 
 i Ev,1 α− 0

mean of the sample population exceeds the mean of the control population.  
 
 
the mean of the control population. 
 
 M-6.6.2.  Example of Dunnett’s Test for Simple Random and Systematic Samples
m nganese (Mn) groundwater concentrations at six wells are going
ground well at Site A using the following test with 95% level of confidence. 
 
 : 0≤− Ci μμ  (no difference between the sample means and the control 

M-6.6.2.2.  HA

mean). 
 

 for i = 1, 2,…, K – 1 where  : 0>− Ci μμ iμ represents the mean of the ith 
mpsa le population and Cμ  represents the mean of the control population.  

 
 M-6.6.2.3.  All Mn concentrations were detected so no proxy concentrations are needed to 
evaluate the data. 
 

M-46 



EM 1110-1-4014 
31 Jan 08 

 
M-6.6.2.4.  The assumptions of normality were verified during the ANOVA process. Be-
the sam lati ch ua  o  c ni o s 

/8 = een 2, it ab ly D

ell 69-2-02 69-2-04 69-2-08 69-2-05 69-2-06B 69-2-06A Bkgd 
Mean –0.832 –2.877 –0.907 –5.018 –2.008 –1.144 –4.317 

ariance 0.064 0.041 0.091 0.033 0.143 0.011 0.080 
 

 

 
cause ple popu on for ea well is eq l to 8, we nly have to alculate m/ nce. A
m/ni = 8  1 is betw  0.5 and is reason le to app unnett’s test. 
 
W

V

)1()1()1(
)1()1()1(

11

2
11

2
11

2

−++−+−
−++−+−

=
−

−−

K

KKc
p nnm

snsnsms
K

K   

 

49
240.3

7777777
)011.0143.0033.0091.0041.0064.0080.0(7
=

++++++
++++++

= = 0.2571 

 
( )

1286.0
317.4

81812571.0
317.4

11
+

=
+

−−
=

+
−

= Ci
i nns

xxt ii

Cip

xx  

 
so for each sample wel
 

Sam i 

69-2-05 –5.45 
17.96 

.68 

l 

ple Well, ti 
69-2-02 27.11 
69-2-04 11.20 
69-2-08 26.52 

69-2-06B 
69-2-06A 24

 
 M-6.6.2.5.  The degrees of freedom are 49)18(8()18( =)1 + −+−+− K . So, using Table 
B-26 of Appendix B with 49 degrees of freedom, the critical value 49,95.0t  = 2.32.  
 
 M-6.6.2.5.  For all wells except Well 69-2-05, ti > t0.95, 49. We then reject H0 and conclude 
that the means of the sample well populations exceed the mean of the control well population, 
except for Well 69-2-05. 
 

M-47 



EM 1110-1-4014 
31 Jan 08 
 
 
Table M-16. 
Data for Example M-6.6.2 

Well Location Result Log Result Well Location Result Log Result 
69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 
69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 
69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 
69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 
69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 
69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 
69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 
69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 
69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 
69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 
69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 
69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 
69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 
69-2-04 0.0556 –2.890 bkgd 0.0137 –4.290 
69-2-04 0.0534 –2.930 bkgd 0.019 –3.963 
69-2-04 0.0517 –2.962 bkgd 0.0163 –4.117 
69-2-05 0.00684 –4.985 bkgd 0.0195 –3.937 
69-2-05 0.00639 –5.053 bkgd 0.0112 –4.492 
69-2-05 0.00631 –5.066 bkgd 0.0112 –4.492 
69-2-05 0.00813 –4.812 bkgd 0.0102 –4.585 
69-2-05 0.00747 –4.897 bkgd 0.00946 –4.661 
69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 
69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 

69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 
69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 
69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 

   69-2-08 0.33 –1.109 
   69-2-08 0.27 –1.309 

 
 M-6.7.  Scheffé’s Test.  Scheffé’s test is designed to allow the comparison of any set of 
contrasts while controlling the experiment-wise Type I error rate (the probability of declaring 
any contrast different from 0 when it is not) to be no more then α  (Montgomery, 1997). When 
the experimenter is only interested in comparing pairs of treatment means, Scheffé’s test is not 
the most sensitive. Directions for Scheffé’s Test and an example are presented in Paragraphs M-
6.7.1 and M-6.7.2, respectively. 
 
 M-6.7.1.  Directions for Scheffé’s Test.  Let K represent the total number of populations to 
be compared. Let  represent the sample sizes of each of the K sample populations. 
Let  

Knnn ,,, 21 K

∑
=

=
K

i
inN

1
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jix ,

inj ...,,2,1
be the overall sample size. Let the values from each population be represented by  where i = 
1, 2,…, K for the K groups and =  for the observations in the ith group. Let 

%100)1( α−

iia μθ ∑=

i 0:0 =

 be the confidence level for the test. 
 
 M-6.7.1.1.  Verify the assumptions of normality. Let  
 

   
 
represent one of m linear combinations of the meansu being tested for θH 0: vs. θ ≠AH .  
 
 M-6.7.1.2.  Reject H0 if ∑= ii xaθ

( )

 exceeds the critical value  
 

KNK

K

i
ii FKnaMSES −−−

=

−= ∑ ,1,1
1

2 )1(/ αα

in

  
 
where is the number of observations in the ith group of  
 

 ∑
=

=
in

j
ji

i
i x

n
x

1
,

1

KNKF −−− ,1,1 α

%100)1(

 

 
and  
 
   
 

αis the −  percentile for the F distribution with K – 1 numerator degrees of freedom and  
N – K denominator degrees of freedom (see Table B-7 in Appendix B). 
 
 M-6.7.2.  Example of Scheffé’s Test.  Suppose manganese concentrations in groundwater 
are going to be compared in six different sampling wells and a background well using Scheffé’s 
test with a 95% level of confidence. 
 
 M-6.7.2.1.  Table M-16 presents the data. All manganese concentrations were detected, so 
no proxy concentrations are needed to evaluate the data. The assumptions of normality were 
verified during the ANOVA process.  
 
 M-6.7.2.2.  Suppose two contrasts are of interest: comparing the background well to all of 
the other wells combined and comparing well 69-2-06A to well 69-2-06B. These two contrasts 
can be written: 
 
 0826906269062690526904269022691 6 −−−−−−−−−−−− −−−−−−= μμμμμμμθ BAbkgd  
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M-50 

 BA 06269062692 −−−− −= μμθ  . 
 
The contrast estimates are: 
 
 0826906269062690526904269022691 6ˆ

−−−−−−−−−−−− −−−−−−= xxxxxxx BAbkgdθ  
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1177.13
907.0008.2144.1018.5877.2832.0317.46

−=
−−−−−−−−−−−−−=

 

 
 ( ) 8646.0008.2144.1ˆ

06269062692 =−−−=−= −−−− BA xxθ . 
 
The critical values are: 
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( )

1841.229.26589.0
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∑

 

 
 M-6.7.2.3.  Because the absolute value of each contrast exceeds the relevant critical value, 
we reject 0: 10 =θH  and 0: 20 =θH  with 95% confidence. In other words, the average meas-
urement at the background well is significantly different from the average measurement at the 
other six wells, and the average measurement at well 69-2-06A differs significantly from the av-
erage at well 69-2-06B.  
 


	 M-4.1.6.2.6.  If the differences do not meet the symmetry assumption of the Wilcoxon signed ranks test, the one-sample sign test could be used for the analysis. However, a specific example will not be presented here.
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