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APPENDIX L 
Hypothesis Testing—Simple Cases 

 
L-1.  Introduction.  This Appendix provides an extensive discussion of the statement of hy-
potheses (null and alternative) and the consequences deriving from that choice. Also, a general 
introduction of the basic types of hypothesis testing commonly employed in environmental op-
erations is provided. Further reading on the foundations of hypothesis testing can be found in 
EPA 600/R-96/055, QA/G-4. Additional reading on the one-sample hypothesis tests presented 
below can be found in EPA 600/R-96/084, QA/G-9. 
 
L-2.  Translating Objectives into Statistical Hypotheses.  A data user’s question, or a decision 
rule from the DQO process, must be translated into a precise statistical statement to be tested us-
ing environmental data. Such a statement is called a hypothesis. It includes a null hypothesis (H0) 
and an alternative hypothesis (HA). The null hypothesis is a baseline condition presumed to be 
true in the absence of strong evidence to the contrary, and the alternative hypothesis is the oppo-
site condition that bears the burden of proof. In other words, unless it is demonstrated that the al-
ternative hypothesis is correct based upon weight of evidence, the baseline condition is retained. 
 
 L-2.1.  A hypothesis test consists of the following elements. 
 
 L-2.1.1.  It has a quantitative population parameter of interest describing the feature of the 
environment that the data user is investigating, such as a mean, median, or proportion, 
 
 L-2.1.2.  It has a numerical value to which the parameter of interest will be compared, such 
as a regulatory or risk-based threshold or a similar parameter from another population (i.e., com-
parison to a reference site) or time (i.e., comparison to a prior time). 
 
 L-2.1.3.  It has a relation that specifies precisely how the parameter will be compared to the 
numerical value, such as “is equal to” or “is greater than.” 
 
 L-2.2.  If the data user is interested in drawing inferences about only one population, the 
null and alternative hypotheses are stated in terms that relate the true value of the parameter to 
some fixed threshold value. A typical example of this one-sample problem in environmental 
studies is when the concentration of a contaminant is compared to a fixed regulatory limit or 
threshold value. For example, a data user may wish to determine whether the true mean concen-
tration (µ) of the herbicide atrazine in groundwater at a hazardous waste site is greater than a 
fixed threshold value C, determined from a human or ecological risk assessment. If the decision 
maker wishes to “prove” that the contamination is less than C, it is initially assumed that the true 
(population) mean concentration is greater than or equal to C. This assumption is known as the 
null hypothesis and is denoted as H0. If the data provide compelling evidence that the null hy-
pothesis is false, then the null hypothesis is rejected and it would be concluded that the popula-
tion mean concentration is less than C. The opposite conclusion is known as the alternative 
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hypothesis and is denoted as HA or H1. For this example, the null and alternative hypotheses can 
be stated as follows: 
 
 CHCH A <≥ μμ :,:0  . 
 
 L-2.2.1.  The null hypothesis (H0) is the mean is greater than or equal to the threshold value 
C. The alternative hypothesis (HA) is the opposite condition: the mean is less than the threshold 
value C. 
 
 L-2.2.2.  If the decision maker wishes to demonstrate that the true mean is greater than the 
threshold value, the data must provide compelling evidence to reject this presumption, and the 
hypotheses can be stated as follows: 
 
 CHCH A >≤ μμ :,:0  . 
 
 L-2.2.3.  Note that, thus far, two possible null hypotheses, μ ≤ C and μ ≥ C, have been dis-
cussed. Depending upon the data quality objectives of the project, it is possible to legitimately 
assign either alternative to the null hypothesis. Because of this freedom or ambiguity, the most 
appropriate assignment must be determined from the project’s data quality objectives. 
 
 L-2.2.4.  Lastly, it should be noted that the null and alternative hypotheses for the examples 
presented above would be used for a one-sample, one-tailed statistical test. Typically, the sample 
mean of some set of measured concentrations would be statically compared to the threshold, C. 
The test is one-sample in nature because one data set (from one population) is used to calculate 
the test statistic, the sample mean. If, however, the statistical test entailed the use of two different 
data sets, in which each was potentially drawn from a separate population, it would be described 
as a two-sample test. The test is one-tailed in nature when the null hypothesis is an inequality. 
Although less common for environmental applications, the null and alternative hypotheses for 
the corresponding one-sample two-tailed test are as follows: 
 
 CHCH A ≠= μμ :,:0   (i.e., μ > C or μ < C) . 
 
 L-2.2.5.  The null hypothesis is that the population mean is equal to C and the alternative 
hypothesis is that the population mean is either greater than or less than C.  
 
 L-2.3.  If two populations are being compared, the null and alternative hypotheses are 
stated in terms that compare the true parameter value of one population to the corresponding true 
parameter value of the other population. A common example of this two-sample problem is 
when a potentially contaminated waste site is compared to a reference area using samples col-
lected from the respective areas. In this situation, the hypotheses often are stated in terms of the 
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difference between the two parameters; for example, the difference between the mean site con-
centration and the mean background concentration: 
 
 0:,0:0 >−≤− BackgroundSiteABackgroundSite HH μμμμ  . 
 
 L-2.3.1.  The hypothesis above would be used for a two-sample, one-tailed statistical test. 
As previously stated, the null and alternative hypotheses must be determined from project data 
quality objectives. Environmental regulations may specify particular null and alternative hy-
potheses. For example, the null hypothesis for a RCRA facility groundwater monitoring program 
is as follows: The concentration in down-gradient groundwater is less than or equal to the back-
ground concentration. When the null hypothesis is not specified by regulation, however, this de-
termination should be made by carefully considering the consequences of making decision errors 
and taking the wrong actions. Selecting the null hypothesis is extremely important to the out-
come of the decision process. The same set of sample data from a decision unit can lead to dif-
ferent decisions, depending on which possibility was selected as the null hypothesis.  
 
 L-2.3.2.  Typically, hypothesis tests are established to prove a desired hypothesis. The con-
dition or alternative that requires proof is selected as the alternative or research hypothesis. The 
alternative hypothesis is accepted (via burden of proof) when the null hypothesis is rejected (that 
is, disproved) based upon the weight of the evidence.  
 
 L-2.4.  EPA 600/R-96/055, QA/G-4 recommends that the null hypothesis be defined as the 
true condition associated with the “more severe decision error”; that is, the more undesirable 
outcome if a wrong decision were made. For example, when the mean concentration of a con-
taminant is compared to a risk-based action level, C, the most severe decision error often consists 
of concluding μ < C when μ ≥ C is the true condition. Therefore, as per EPA guidance, the null 
hypothesis is often μ ≥ C. In other words, it would typically be assumed that the site is “dirty” 
(H0: μ ≥ C) until the weight of evidence demonstrates that the site is “clean” (HA: μ < C), the hy-
pothesis that one wishes to demonstrate.  
 
 L-2.5.  Rather than defining the null hypothesis based on the most severe condition, a sec-
ond approach consists of defining the null hypothesis based on the least probable condition (or, 
equivalently, the alternative hypothesis based on the most probable condition). According to this 
approach, if a large amount of existing information suggests that one hypothesis is extremely 
likely, then this hypothesis would be defined as the alternative hypothesis. The advantage of this 
approach is that a large number of data may not be necessary to provide overwhelming evidence 
that the null hypothesis is false. For example, if the waste from an incinerator was previously 
hazardous and the waste process has not changed, it may be more cost-effective to define the al-
ternative hypothesis as “the waste is hazardous” (HA: μ ≥ C) and the null hypothesis as “the 
waste is not hazardous” (H0: μ < C). This approach generally will not result in the same null hy-
pothesis as the approach EPA recommends. The most protective alternative for H0 will not nec-
essarily be the least probable alternative for H0 (i.e., the most probable alternative for HA). 
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Table L-1. 
Commonly Used Statements of Statistical Hypotheses 

 
Type of Decision 

 
Null Hypothesis 

Alternative Hypothe-
sis 

Compare environmental conditions to a fixed threshold value, 
such as a regulatory standard or acceptable risk level; presume 
that the true condition is less than the threshold value. 

 
H0: Θ ≤ C 

 
HA: Θ > C 

Compare environmental conditions to a fixed threshold value; 
presume that the true condition is greater than the threshold 
value. 

 
H0: Θ ≥ C 

 
HA: Θ < C 

Compare environmental conditions to a fixed threshold value; 
presume that the true condition is equal to the threshold value 
and the data user is concerned whenever conditions vary 
significantly from this value. 

 
 

H0: Θ = C 

 
 

HA: Θ ≠ C 

Compare environmental conditions associated with two 
different populations to a fixed threshold value (δ0), such as a 
regulatory standard or acceptable risk level; presume that the 
true condition is less than the threshold value. If it is presumed 
that conditions associated with the two populations are the 
same, the threshold value is 0. 

H0: Θ1 – Θ2 ≤ δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 ≤ 0 
H0: Θ1 ≤ Θ2 

HA: Θ1 – Θ2 > δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 > 0 
HA: Θ1 > Θ2 

Compare environmental conditions associated with two 
different populations to a fixed threshold value (δ0), such as a 
regulatory standard or acceptable risk level; presume that the 
true condition is greater than the threshold value. If it is 
presumed that conditions associated with the two populations 
are the same, the threshold value is 0. 

H0: Θ1 – Θ2 ≥ δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 ≥ 0 
H0: Θ1 ≥ Θ2 

HA: Θ1 – Θ2 < δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 < 0 
HA: Θ1 < Θ2 

Compare environmental conditions associated with two 
different populations to a fixed threshold value (δ0), such as a 
regulatory standard or acceptable risk level; presume that the 
true condition is equal to the threshold value. If it is presumed 
that conditions associated with the two populations are the 
same, the threshold value is 0. 

H0: Θ1 – Θ2 = δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 = 0 
H0: Θ1 = Θ2 

HA: Θ1 – Θ2 ≠ δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 ≠0 
HA: Θ1 ≠ Θ2 

 
 L-2.6.  Table L-1 summarizes common environmental decision rules and the corresponding 
hypotheses. The population parameter of interest (e.g., μ) in this table is denoted by the symbol 
Θ and the difference between two population parameters is denoted as Θ1 – Θ2, where Θ1 repre-
sents the parameter of the first population (such as a constituent from a hazardous waste site) and 
Θ2 represents the parameter of the second population (such as a constituent from background). 
The use of Θ is intended to avoid using the terms “population mean” or “population median” re-
peatedly because the structure of the hypothesis test remains the same regardless of the popula-
tion parameter. The fixed threshold value is denoted as C, and the difference between two 
parameters is denoted as δ0 (often the null hypothesis is defined such that δ0 = 0). 
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 L-2.7.  As previously discussed, hypothesis tests may be one-tailed or two-tailed, depend-
ing on the specified null and alternative hypotheses. The first, second, fourth, and fifth rows of 
Table L-1 are examples of one-tailed hypothesis tests. The third and sixth rows are examples of 
two-tailed tests. Most hypotheses connected with environmental monitoring are one-tailed be-
cause high pollutant levels can cause harm to humans or ecosystems, whereas lowered concen-
trations are of little, if any, concern. 
 
L-3.  Decision Errors Associated with Hypothesis Tests.  Table L-2 presents all of the possible 
scenarios that can result from a statistical hypothesis test. Two correct decisions and two incor-
rect decisions are possible. The probability of each event is presented in parenthesis. 
 
Table L-2. 
Conclusions Associated with Any Statistical Hypothesis Test 

True Hypothesis (Actual site conditions)  
H0 True Ha True 

 
Do Not  
Reject H0 

Correct decision 
Confidence Level =  

(1 – α)100% 

Incorrect decision 
False Acceptance of H0 

Type II error tolerance = β 

 
Decision 
 
(Conclusion from 
sample data) 

 
Reject H0 

Incorrect decision 
False Rejection of H0 

Type I error tolerance = α 

Correct decision 
Power of test =  

(1 – β)100% 

 
 L-3.1.  The two incorrect answers for a hypothesis test are the following. 
 
 L-3.1.1.  False rejection of H0, or Type I error.  The null hypothesis is rejected when the 
null hypothesis is true. The probability for a Type I error is defined as the level of significance. 
The maximum allowable probability for a Type I error is typically denoted by the symbol α. The 
level of confidence is defined as one minus the level of significance. Thus, the minimum level of 
confidence for a correct decision is 1 – α. 
 
 L-3.1.2.  False acceptance or Type II error.  The null hypothesis is accepted (more accu-
rately, not rejected) when the null hypothesis is false. The maximum allowable probability for a 
Type II error is denoted by the symbol β. The power of the test is defined as one minus the Type 
II error probability. Therefore, the minimum power is 1 – β. 
 
 L-3.2.  A false rejection decision error occurs when it is concluded, from the observed data, 
that the null hypothesis is false when it is actually true. (This is sometimes called a “false posi-
tive.”) A false acceptance decision error occurs when it is concluded that the null hypothesis is 
true when it is really false. (This is sometimes called a “false negative.”) For example, suppose 
the null hypothesis states that the true value of the parameter of interest exceeds the action level. 
If the null hypothesis is actually correct and the sample data, by chance, contained an abnormally 
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large proportion of low values, it would be concluded that the true value did not exceed the ac-
tion level; therefore, a false rejection decision error would occur. 
 
 L-3.3.  Three different equivalent approaches can be used to perform hypothesis tests: “The 
confidence interval,” “p-value,” and “critical value” approaches. Table L-3 illustrates the use of 
each of these three approaches for hypothesis testing. 
 
Table L-3. 
Relationship Between Hypothesis Tests and Confidence Intervals 

 
Hypotheses 

 
 

 
p-Value 

Approach 
Reject H0 when 

 
Critical Value Approach  

Reject H0 when 

 
Confidence Interval Approach 

Reject H0 when 

 

0 :H CΘ =  

:AH CΘ ≠  

 
p < α 

Test statistic less than or greater 
than critical values. Example: 

2, 1nt tα −
<  or 1 2, 1nt t α− −

>  

Two-sided 1 – α confidence 
interval for Θ does not  
contain C 

0 :H CΘ ≥  

:AH CΘ <  

 
p < α 

Test statistic less than “critical 
value. 
Example: , 1nt tα −

< . 

One-sided 1 – α upper  
confidence interval limit for Θ is 
less than C: UCL < C 

0 :H CΘ ≤  

:AH CΘ >  

 
p < α 

Test statistic exceeds “critical 
value.” 
Example: 1 , 1nt t α− −

> . 

One-sided 1 – α lower  
confidence limit for Θ is greater 
than C: LCL > C 

 
 L-3.4.  Table L-3 lists the possible null hypotheses for a one-sample statistical test. The ob-
jective is to determine if some population parameter of interest,Θ  (the value of which is typi-
cally known) equals, is less than, or is greater than some fixed threshold value C. For the critical 
value approach for hypothesis testing, the decision to reject the null hypothesis is essentially de-
termined by calculating some sample test statistic and comparing the value of the sample test sta-
tistic to a threshold or “critical value” for the sample statistic. If the sample statistic is greater 
than or less than the “critical value” (depending upon the null hypothesis selected), the null hy-
pothesis is rejected. 
 
 L-3.5.  Confidence intervals are directly related to hypothesis tests. Whenever a hypothesis 
test can be used to evaluate a parameter of interest (such as the mean, variance, median, etc.), a 
confidence interval also can be estimated and used to evaluate the same parameter. An equiva-
lent approach consists of the following: Use the sample data to derive an estimate of the popula-
tion parameter Θ̂ , construct a confidence interval for Θ using the estimate Θ̂ , and determine 
whether C falls within the confidence interval for Θ . If C does not fall within the confidence in-
terval forΘ , then the null hypothesis is rejected. This is referred to as the “confidence interval 
approach for hypothesis testing.” 
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 L-3.6.  A third approach for hypothesis testing is referred to as the “p-value approach for 
hypothesis testing.” The “p-value” is the probability of obtaining the calculated sample statistic if 
the null hypothesis is true. If the p-value is sufficiently small, that is, if p < α, where α is the 
Type I error tolerance, then the null hypothesis is rejected. All three approaches are illustrated 
below. This document predominately uses the critical value approach for hypothesis tests. 
 
L-4.  Illustration of Hypothesis Testing.  To illustrate hypothesis testing, a one-population test 
to threshold value C is considered, with the following null and alternative hypotheses: 
 
 CHCH A <≥ μμ :,:0  . 
 
Assume that the variable X is normally distributed with an unknown population mean μ but a 
known standard deviation σ. A single sample measurement x is compared to the threshold value, 
C, to determine whether or not to reject the null hypothesis, H0: μ ≥ C. Because the standard de-
viation of the population (σ) typically would not be known for environmental applications, the 
example is not realistic, but serves only to illustrate the concept of hypothesis testing. Figure L-1 
illustrates the decision errors for hypothesis testing. 
 
 L-4.1.  Type I Error Tolerance and the Rejection of the Null Hypothesis.  If the null hy-
pothesis is true with μ = C, a distribution of measured values of X would be obtained, as shown 
by the blue normal curve centered about μ = C. The probability that a measurement, x, would be 
less than the critical value, Xα, is equal to α (refer to the region shaded in blue). The value of Xα 
depends upon the α value selected. The value of α is determined from the project’s data quality 
objectives but is usually some acceptably small positive number (e.g., α = 0.01 or 0.05). As the 
probability a measurement, x, will be less than Xα is acceptably small when μ = C, the null hy-
pothesis (H0: μ ≥ C) is rejected when a measurement of x < Xα  is obtained. (The null hypothesis 
is retained when x > Xα.) The value α represents the tolerance for Type I error; that is, the 
maximum acceptable probability for rejecting H0 when H0 is actually true. When H0 is μ ≥ C, the 
Type I error can be roughly described as the probability of concluding that a “dirty” site is 
“clean.”  
 
 L-4.1.1.  When X is normal with known standard deviation, σ, it is convenient to “standard-
ize” the variable X using the linear transformation: 
 

 
σ

μ−
=

XZ  . 

 
 L-4.1.2.  The variable Z is a standard normal variable. If x < Xα, it follows that 
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σ

μ
σ

μ α
α

−
=<

−
=

X
Zxz  . 

 
 L-4.1.3.  The quantity Zα is the α100th percentile of the standard normal distribution. Thus, 
if the null hypothesis μ = C is true and x < Xα, then 
 

 ασ
ZCxz <

−
=  . 

 
 

Xα

β 

C* C 

Gray Region 
C  −  C* 

 
=  (Z1 - α 

 +   Z1 - β)  σ  

α 

Hypothesis Test: H 0: μ  ≥  C, 
      μH   < C  A: 

Type II Error = 
P(x  ≥   X α   |  μ   =   C* )  =   β 

σ Ζ1−β

Type I Error = 
  =  C)  =   α P(x  <  Xα 

|  μ

If  x < X α, reject H 0
  

If  x  ≥  Xα,   accept   H 0

Gray Region

σ Ζ1−α

 
 

Figure L-1.  Decision errors associated with a hypothesis test. 
 
 L-4.1.4.  Because H0 is rejected when x < Xα, it may be also be rejected when the test statis-
tic z < Zα. In this context, the percentile Zα is called the “critical value.” If the sample statistic z 
is less than the “critical value” Zα, it is often stated that the null hypothesis is rejected at the 
“α100% level of significance” or, equivalently, at the “(1 – α)100% level of confidence. ” This 
is a convenient approach as the sample test statistic z can be calculated and compared to a de-
sired percentile of the standard normal distribution (Zα), which is readily available from a statis-
tical table. The comparison of a sample statistic such as z to some percentile Zα to determine 
whether or not to reject H0 is referred to as the “critical value approach.” 
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 L-4.1.5.  Statistical software provides an alternative to the critical value approach (for de-
termining whether H0 should be rejected), referred to as the “p value approach.” For this particu-
lar example, given that a measure x from a normal distribution with known standard deviation 
(σ) is taken, the software also initially assumes that the null hypothesis is true (i.e., sets μ = C), 
and calculates z. The calculated value is assumed to be equal to some percentile, Zp, of the stan-
dard normal distribution. Rather than reporting the statistic z and comparing it to the percentile 
Zα, the software outputs the fraction of the normal probability distribution, p, that falls below the 
calculated value of z when μ = C. This value is referred to as the “p value.” The p value is the 
probability of obtaining a measured result of x (or a result different than the null hypothesis) 
when the null hypothesis is true (μ = C). If p is sufficiently small relative to α  (i.e., p < α), the 
null hypothesis is rejected. 
 
 L-4.1.6.  The third approach is referred to as the “confidence interval approach for hy-
pothesis testing.” It entails calculating a confidence interval for the population mean μ. In this 
situation, the best estimate of μ is the single measurement x. Because rejecting the null hypothe-
sis requires 
 

 ασ
ZCx

<
−  

 
and Zα = –Z1–α, it follows that the null hypothesis would be rejected if: 
 
 1UCL x Z Cα σ−= + <  . 
 
 L-4.1.7.  The left side of the inequality is the one-sided (1 – α)100% upper confidence limit 
for μ for a normal distribution with known standard deviation σ. Therefore, the null hypothesis is 
rejected if the UCL for μ is less than C. More information on confidence limits is contained in 
Appendix N. 
 
 L-4.1.8.  The strategies discussed above are generally applicable for hypothesis tests, but 
the critical value approach is predominately used in this document.  
 
 L-4.2.  Type II Error and Power.  The discussion above focused on the criteria for rejecting 
the null hypothesis. The alternative hypothesis is discussed here. When the alternative hypothesis 
is true with μ = C* < C (when the mean [μ] is equal to some value C* < C), a normal distribu-
tion of measurements centered about μ = C* will be obtained (refer to the red normal curve). 
When μ = C*, the probability x > Xα equals β (refer to the red shaded region). Because the null 
hypothesis is retained when x > Xα, β is equal to the probability of retaining the null hypothesis 
(H0: μ ≥ C) when the null hypothesis is false (i.e., when μ = C* < C). The value of β determined 
from project data quality objectives represents the maximum tolerance for Type II error; that is, 
the maximum tolerable probability for erroneously retaining the null hypotheses. In terms of an 
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environmental investigation, the Type II error can be roughly described as the probability of 
concluding that a clean site is dirty. The power of the hypothesis test is defined as 1 – β and is 
equal to the probability of accepting the alternative hypothesis (μ = C* < C) when the alternative 
hypothesis is true (the probability of concluding that a clean site is clean). 
 
 L-4.2.1.  Note that, to calculate the Type II error or the power of a test, the Type I error 
must first be specified. Also, note that, in this example, the Type II error tolerance and power is 
for some pre-specified value C* < C. Paragraph L-5.2 illustrates how to calculate the power once 
α and C* are specified for a normally distributed variable X with a known population standard 
deviation.  
 
 L-4.2.2.  When the mean (μ) is equal to some value greater than C (when it falls some-
where to the right of C), the probability that the null hypothesis will be rejected is acceptably 
small, less than α. The probability that the null hypothesis will be retained will be greater than 1 
– α. In terms of an environmental study, when μ > C, the probability that a dirty site will be 
identified as dirty will be acceptably high. Similarly, when the mean (μ) is equal to some value 
less than C*, the probability of retaining the null hypothesis (H0: μ ≥ C) will be less than β. The 
probability of correctly rejecting the null hypothesis (and accepting HA: μ < C) will be greater 
than 1 – β. When μ < C*, the probability that a clean site will be identified as clean will be ac-
ceptably high. However, when μ lies between C and C*, the probability of making a correct de-
cision will be low (the Type II error will be higher than β). This range of values, C – C*, is 
called the “gray region” or the “minimum detectable difference.” Because reliable decisions can-
not be made for differences smaller than C – C*, the difference C – C* may be viewed as the 
“resolution” of the statistical design. 
 
 L-4.2.3.  Statistical tests cannot control both types of error simultaneously. Generally, a 
hypothesis test is set up in a manner that committing false rejection (Type I) is considered the 
more serious error and is controlled by the test, and committing false acceptance (Type II) is 
considered not as serious an error and is not controlled by the test. The data user specifies the 
probability limit, α, by the data user’s tolerance for committing false rejection (Type I). Deter-
mining how large a risk the project team is willing to tolerate for Type I errors must be done be-
fore the fact, especially when the consequences of making such an error are very serious (Milton 
and Arnold, 1990). If the null hypothesis is not rejected after the test is performed, then the Type 
II error or the power (one minus the Type II error) is calculated. If the Type II error is not suffi-
ciently small (or equivalently, the power is not sufficiently large), additional sampling would be 
considered. In general, increasing the sample size simultaneously reduces both Type I and Type 
II errors.  
 
 L-4.2.4.  If the sample mean, x , for a set of n measurements, rather than a single measure-
ment, were compared to the threshold, C, to determine whether or not to reject the null hypothe-
sis (H0: μ ≥ C), then the minimum detectable difference would be given by: 
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 ( )( )βασ −− +=− 11/* ZZnCC  . 
 
 L-4.2.5.  The number of random samples that must be collected can be solved from the 
above equation: 
 

 
( )

( )2

22
11

*CC

ZZ
n

−

+
= −− σβα  . 

 
 L-4.2.6.  Hence, the number of samples is dependent upon α, β, σ, and C – C*. The num-
ber of samples increases as the tolerance of Type I and Type II error, α and β, decreases (as Z1–α 
and Z1–β increase as α and β decrease). The number of samples also increases as the variance 
(σ2) increases and C – C* decreases. This is reasonable because the variance is a measure of the 
variability of the underlying environmental population and C – C* is a measure of the resolution 
of the statistical design. The number of samples increases as variability or heterogeneity of the 
underlying populations increases. As the probability of making a correct decision when the true 
mean lies in the gray area is low, the quantity C – C* essentially represents the smallest differ-
ence between the mean contaminant concentration and the threshold level that can be tolerated or 
that is deemed to be important for the overall statistical design. The sample size increases when 
smaller differences become significant for the statistical design. 
 
L-5.  Statistical Power Associated with Hypothesis Tests.  As previously stated, the power of a 
statistical hypothesis test is defined as the likelihood that the null hypothesis is correctly rejected 
at a fixed level of significance, α, when the alternative hypothesis is truly correct. Power is re-
lated to Type II errors, or false rejection. The power of a statistical test is 1 – β where β is the 
probability of a false acceptance or Type II error. Therefore, as the power of a statistical test in-
creases, the probability of a false acceptance decreases.  
 
 L-5.1.  Introduction.  To calculate the power of a statistical test, first determine the event 
that the test rejects the null hypothesis, H0, in a form that does not contain any unknown parame-
ters. There must be a predetermined level of significance, α, so there is a set criterion for reject-
ing the null hypothesis. The power is the calculated probability for rejecting the null hypothesis 
when the alternative hypothesis is assumed to be true. Unfortunately, the specific algorithm for 
calculating power is highly dependent upon the nature of the statistical test and power calcula-
tions are often complex. Paragraph L-5.2 presents directions for calculating the power for a hy-
pothesis test of the form: 
 
 CHCH A >≤ μμ :,:0  . 
 
(Refer to Figure L-1.) The variable of interest is assumed to be normally distributed and the 
population standard deviation is known. The assumption that the population standard deviation 
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(σ) is known severely limits the utility of the approach. However, it constitutes, perhaps, the 
simplest method to estimate power. In practice, an estimate of σ could be used to estimate the 
power if the uncertainty associated with the estimate was sufficiently small.  
 
 L-5.2.  Example for Calculating the Power of a One-Tailed Test (from Mason et al., 1989).  
This procedure is strictly applicable only when the variable X is normally distributed with a 
known standard deviation. The procedure could potentially be used (to estimate the power) when 
the (population) standard deviation is not known and the sample is mean is calculated from a 
large number of samples (e.g., n > 100). 
 
 L-5.2.1.  Suppose 
 
 10:,10:0 >≤ μμ AHH  . 
 
Assume a known standard deviation of σ = 2 for a normally distributed population. Let the Type 
I error tolerance for rejecting the null hypothesis 05.0=α  and the sample size . Note that 
the threshold value C = 10. Let C* = 11 in this example. Thus the “resolution” for the test, C* – 
C = 1. Under the null hypothesis, the largest mean μ0 = 10. It follows that the power of the test is 
as follows: 

25=n

 

( ) 0
1

10 11 11 101 10| 11 1.645 1.645
/ 2/ 25 2/ 25 2/ 25

( 0.855) 1 ( 0.855) 0.804 .

x x xP x P Z P P
n

P Z P Z

α
μβ μ

σ −

− − −⎧ ⎫ ⎧ ⎫ ⎧− = > = = > = > = > −⎨ ⎬ ⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭ ⎩

= > − = − ≤ − =

− ⎫
⎬
⎭  

 

α−1Z  is the (1 – α)100th percentile of the standard normal distribution, which is provided in Table 
B-15 of Appendix B. 
 
 L-5.2.2. More generally, when comparing the sample mean (of a normally distributed vari-
able with standard deviation σ) to some decision limit μ0 using the null hypothe-
sis, CH =≤ 00 : μμ , the power at *1 C== μμ  is as follows: 
 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−≤−==>=− − n

ZZPxP
/

1|1 01
110

σ
μμ

μμμβ α  . 

 
 L-5.2.3.  For this particular example, the experiment has a probability of 0.804 of correctly 
rejecting the null hypothesis when the true population mean is 11=μ . If this power is not ac-
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ceptably large, the sample size must be increased to maintain the same significance level. For 
example, a sample size would produce the following power:  50=n
 

 
1 0

1

1.891)

Z α−

≤ −

11 101 1 1 1.645
/ 2 / 50

1 ( 0.971 .

P Z P Z
n

P Z

μ μβ
σ

⎧ ⎫ ⎧ ⎫− −⎛ ⎞ ⎛ ⎞− = − ≤ − = − ≤ −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

= − =

 

 
L-6.  Tests for the Mean. 
 
 L-6.1.  One-Sample t-test (Simple Random, Systematic Random, or Composite Sampling).  
Given a random sample of size n (or a composite sample of size n, each composite consisting of 
k aliquots), the one-sample t-test is parametric test that can be used to test hypotheses involving 
the mean (µ) of the population from which the sample was selected. The t-test is used when the 
population standard deviation is unknown but normality can be assumed.  
 
 L-6.1.1.  Introduction.   
 
 L-6.1.1.1.  The primary assumptions required for validity of the one-sample t-test are that 
the sample is random (data values are independent) and that the sample mean ( x ) has an ap-
proximately normal distribution. Note that, according to the Central Limit Theorem, the sample 
mean will be approximately normally distributed for a large n. Unfortunately, the value of n that 
is sufficiently large enough to normalize the sample mean is seldom known. For environmental 
data, normality is not typically assumed for the sample mean unless n is very large (e.g., n > 
100). Small sample sizes are common for environmental studies. As the sample mean is normal 
if X is normal, in practice, a data set consisting of n values of X is tested for normality and the t-
test is used if the assumption of normality is not rejected. 
 
 L-6.1.1.2.  Because the sample mean and standard deviation are very sensitive to outliers, 
the t-test should be preceded by a test for outliers (Appendix E). The t-test is also adversely af-
fected by censored results. Directions for a one-sample t-test are presented in Paragraph L-6.1.2, 
followed by an example in Paragraph L-6.1.3. 
 
 L-6.1.2.  Directions for a One-Sample t-test.  The steps for a one-sample t-test are pre-
sented for Case 1: H C≤μ:0 , CH A >μ: ; and Case 2: CH ≥μ:0 , CH A <μ: .  The steps for 
Case 2 are given in braces {}. Let n  represent the n data points from a normal distri-
bution. These could be either n individual samples or n composite samples consisting of k ali-
quots each.  

x,xx ,, 21 K

 
 L-6.1.2.1.  Verify that the data come from a normal distribution using tests presented in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal probability 
plot (Paragraph J-5.5). 
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 L-6.1.2.2.  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 L-6.1.2.3.  Use Table B-23 of Appendix B to find the critical value, ν , such that 100(1 
 α)% of the t distribution with 1

 α ,1−t
–  −= nν  degrees of freedom is below this value. For example, if 
α = 0.05 and n = 16, then n – 1 = 15 an 15,  = 1.753d t 95.0 . 
 
 L-6.1.2.4.  Calculate the test statistic t for the data set: 
 

ns
Cxt −

= . 

 
 L-6.1.2.5.  Compare the calculated test statistic t with the critical value  (from Table 
B-23): 

να ,1−t

 
 L-6.1.2.5.1.  If t >  {t < },  may be rejected. Go to L-6.1.2.7. να ,1−t να ,1−− t 0H
 
 L-6.1.2.5.2.  If t  {t  ≤ να ,1−t  ≥ να ,1−− t }, there is not enough evidence to reject  and the 
false acceptance error rate should be verified. Go to L-6.1.2.6. 

0H

 
 L-6.1.2.6.  If H0 is not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false rejection and false acceptance error rates. The power of the test 
can be estimated using Paragraph L-5.2, assuming the true values for the mean and standard de-
viation are those obtained in the sample. A power curve of the test can be generated using soft-
ware packages such as the Decision Error Feasibility Trial (DEFT) software (EPA QA/G-4D). 
 
 L-6.1.2.6.1.  If only one false acceptance error rate (β) has been specified (at μ1), it is pos-
sible to approximately calculate the sample size that achieves the DQOs, assuming the true mean 
and standard deviation are equal to the values estimated from the sample, instead of calculating 
the power of the test. A derivation of the following formula is provided in Appendix A of EPA 
QA/G-4D. 
 
 L-6.1.2.6.2.  Calculate: 
 

 2
12

1

2
11

2

)5.0(
)(

)(
α

βα

μ −
−− +

−

+
= Z

C
ZZs

m  

 
where Zp is the p100th percentile of the standard normal distribution (Table B-15, Appendix B).  
 
 L-6.1.2.6.3.  Round m up to the next integer. If nm ≤ , the false acceptance error rate has 
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been satisfied. If , the false acceptance error rate has not been satisfied.  nm >

0H

 
 L-6.1.2.7.  Summary of results for one-sample t-test: 
 
 L-6.1.2.7.1.   is rejected. One concludes CH A >μ: { CH A <μ: }. 
 
 L-6.1.2.7.2.  0H  is not rejected and the false acceptance error rate is satisfied. One con-
cludes CH A ≤μ:  { C≥H A μ: }; or 
 
 L-6.1.2.7.3.   is not rejected but the false acceptance error rate is not satisfied. The null 
hypothesis must be retained but the conclusions are uncertain since the sample size is too small. 

0H

 
 L-6.1.2.8.  Report the results of the test, sample size, sample mean, standard deviation, and 
t and . Note that the calculations for the t-test are the same for both simple random or com-
posite random sampling. The use of compositing usually results in a smaller value of s than sim-
ple random sampling. 

να ,1−t

 
 L-6.1.3.  Example of One-Sample t-Test for Simple and Systematic Random Samples with 
or without Compositing.  Suppose total chromium in subsurface soil (below 5 feet from ground 
surface) at Site A is to be compared to a regulatory threshold of C = 2.0 mg/kg using the follow-
ing test with 95% level of confidence: 
 
 2:0 ≥μH ,  2<AH  . : μ
 
 L-6.1.3.1.  Table L-4 presents the data. All chromium concentrations were detected, so no 
proxy concentrations are needed to evaluate the data. 
 
 L-6.1.3.2.  Verify that the data follow a normal distribution. The Shapiro-Wilk test for 
normality shows evidence that the data follow a normal distribution because the test’s p value 
was 0.8489 and is > 0.05. 
 
 L-6.1.3.3.  Calculate the mean and standard deviation: 619.4=x  and . 8980.0=s
 
 L-6.1.3.4.  Because we want a 95% level of confidence, 05.0=α . Also, because 36=n , 

35=1361 −=−= nν . 
 
 L-6.1.3.5.  Using Table B-23 of Appendix B and linear interpolation, the critical value is 
1.6905. 
 
 6905.12/)684.169795.0,1 .1(35, =+=− tt να . =
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 L-6.1.3.6.  The test statistic is 
 

 50.17
36/8980.0
0.2619.4

/
=

−
=

−
=

ns
Cxt . 

 
 L-6.1.3.7.  Comparing the calculated test statistic, t, with the critical value, , we see 
that (17.5 ≥ –1.6905) and so we cannot reject and we must check that the false ac-
ceptance rate has been achieved. 

να ,1−t
dftt ,1 α−−≥ 0H

 
Table L-4. 
Example L-6.1.3 Data 

Site A 
sample lo-

cation 

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium 
(total) concen-

tration 
(mg/kg)  

Site A 
sample lo-

cation 
Top depth 
of sample

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

EPC-SB01  9 10 2.95  EPC-SB07 9 10 5.1 
EPC-SB01  14 15 5.17  EPC-SB07 14 15 4.94 
EPC-SB01  19 20 4.8  EPC-SB07 19 20 4.76 
EPC-SB02  9 10 4.53  EPC-SB08 9 10 4.62 
EPC-SB02  14 15 4.01  EPC-SB08 14 15 4.72 
EPC-SB02  19 20 5.91  EPC-SB08 19 20 4.73 
EPC-SB03  9 10 3.96  EPC-SB09 9 10 3.21 
EPC-SB03  14 15 4.81  EPC-SB09 14 15 4.14 
EPC-SB03  19 20 5.27  EPC-SB09 19 20 4.85 
EPC-SB04  9 10 5.99  EPC-SB10 9 10 4.25 
EPC-SB04  14 15 4.6  EPC-SB10 14 15 5.09 
EPC-SB04  19 20 5.51  EPC-SB10 19 20 3.68 
EPC-SB05  9 10 4.72  EPC-SB11 9 10 5.12 
EPC-SB05  14 15 3.56  EPC-SB11 14 15 6.6 
EPC-SB05  19 20 4.22  EPC-SB11 19 20 6.19 
EPC-SB06  9 10 3.91  EPC-SB12 9 10 3.15 
EPC-SB06  14 15 5.81  EPC-SB12 14 15 4.11 
EPC-SB06  19 20 4.48  EPC-SB12 19 20 2.8 

 
 L-6.1.3.8.  Suppose the false acceptance rate is .20.0=β  
 
 L-6.1.3.9.  The power of this test is verified by assuming that the true values for the mean 
and standard deviation are those obtained in the sample. A power curve of the test was generated 
using DEFT software, as shown in the figure below. The probability of accepting the null hy-
pothesis is plotted for a range of assumed true mean concentrations. For the regulatory threshold 
concentration of 2.0, a 95% (i.e., α  = 0.05) chance of accepting the null hypothesis is requested. 
A 20% (β) probability of accepting the null hypothesis when the true concentration is μ1 = 1.0 is 
also requested (80% power). A sample size of seven is suggested for this request. For the sample 
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mean, this plot shows the probability of deciding that the true mean is higher than the regulatory 
threshold is nearly 100%, which means the test has strong power. 
 
 L-6.1.3.10.  The sample size needed to achieve the false rejection rate of 0.20 when 11 =μ  
is:  
 

 ( )
( )

34.6645.1)5.0(
21

8417.0645.18980.0)5.0(
)(

)( 2
2

22
2

12
1

2
11

2

=+
−

+
=+

−

+
= −

−−
α

βα

μ
Z

C
ZZs

m . 

 
Rounding up to the next integer, m = 7 (the reported value for “Sample Size” in Figure L-2). 

 
Figure L-2.  Power curve for the one-sample t-test for simple random sampling. 

 
 L-6.1.3.11.  Because more than seven samples have been collected (in fact, 36 samples 
have been collected), the false acceptance error rate has been satisfied. Therefore, we have evi-
dence to suggest the true mean for chromium in Site A subsurface soil is greater than the regula-
tory threshold of 2.0 mg/kg on average. 
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 L-6.2.  One Sample t-Test for the Mean (Stratified Random Sampling).  Directions for a 
one-sample t-test for a stratified random sample followed by an example are presented in Para-
graphs L-6.2.1 and L-6.2.2, respectively. 
 
 L-6.2.1.  Directions for a One-Sample t-Test for a Stratified Random Sample.  The steps for 
a one-sample t-test are presented for: Case 1: CH ≤μ:0 , CH A >μ: ; and Case 2: 

CH ≥μ:0 , CH A <μ: . The steps for Case 2 are given in braces {}. 
 
 L-6.2.1.1.  Let h = 1, 2, 3,…L represent the L strata and  represent the sample size of 
stratum h. The ith sample from stratum h is presented by . 

hn

ihx ,

 
 L-6.2.1.2.  Verify that the data come from a normal distribution using tests presented in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal probability 
plot (Paragraph J-5.5). 
 
 L-6.2.1.3.  Calculate the stratum weights  using the proportion of the volume in stra-
tum h, 

hw

 

 
∑

=

= L

h
h

h
h

v

v
w

1  
 
where  is the surface area (or volume) of stratum h divided by the total surface area (or vol-
ume) over all strata. 

hv

 
 L-6.2.1.4.  For each stratum, calculate the sample stratum mean 
 

 h

n

i
ih

h n

x
x

h

∑
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and the sample stratum standard error 
 

 ∑
− −

−
=
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 L-6.2.1.5.  Calculate overall mean and variance:  
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 L-6.2.1.6.  Calculate the degrees of freedom 
 

 ( )

( )∑
= −

= L

h hh

hh
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 L-6.2.1.7.  Use Table B-23 of Appendix B to find the critical value, , so that (1 – 
α)100% of the t-distribution with the above degrees of freedom (rounded to the next highest in-
teger) is below . 

να ,1−t

να ,1−t
 
 L-6.2.1.8.  Calculate the sample value (statistic):  
 

 
2
ST

ST

s
Cxt −

=  . 

 
 L-6.2.1.9.  Compare the calculated test statistic, t, to the critical value ,. If t > {t 
< ,} H0 may be rejected. If t 

να ,1−t να ,1−t  
να ,1−− t ≤ να ,1−t  { ≥  να ,1−− t }, there is not enough evidence to reject 

H0 and the false acceptance error rate should be verified.  
 
 L-6.2.1.10.  If H0 was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false rejection and false acceptance error rates. The results of the 
test could be: 
 
 L-6.2.1.10.1.  H0 was rejected so it seems that the true mean is less than C {greater than C}. 
 
 L-6.2.1.10.2.  H0 was not rejected and the false acceptance error rate was satisfied and it 
appears that the true mean is greater than C {less than C}; or, 
 
 L-6.2.1.10.3.  H0 was not rejected and the false acceptance error rate was not satisfied and 
it appears that the true mean is greater than C {less than C} but conclusions are uncertain since 
the sample size was too small. 
 

L-6.2.1.10.4.  If H0 is not rejected, determine whether the power is adequate. Statistical 
software such as DEFT can be used for this purpose. DEFT uses the following approximation to 
calculate the number of samples required for each stratum to achieve a power of 1 – β  at some 
desired value μ1: 
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The value is rounded up to a whole number. The power is adequate if the calculated sample 
size is less than or equal to the actual sample size for each stratum: 

hn′

hh nn ≤′ for h = 1,…, L. 
 
 L-6.2.2.  Example of a One-Sample t-Test for a Stratified Random Sample.  Suppose the to-
tal chromium in subsurface soil data used in the previous example (Paragraph L-6.2.1) came 
from a stratified sampling effort. Two strata were sampled, stratum A and stratum B, where stra-
tum B makes up one-third of the area to be investigated. The objective is to compare the chro-
mium concentration at Site A to a regulatory threshold of 2.0 mg/kg, based on a 95% level of 
confidence. 
 
 2:0 ≥μH ,  2: <μAH  . 
 
 L-6.2.2.1.  Table L-5 presents the data. All chromium concentrations were detected so no 
proxy concentrations are needed to evaluate the data. 
 
                      wA = 0.75       2=L 24=An 12=Bn 25.0=Bw  
 
 L-6.2.2.2.  Verify that the data follow a normal distribution for each stratum. The 
Shapiro-Wilk test was performed for each stratum and results indicated that the data for each 
follow a normal distribution because the tests’ p values were greater than 0.05. 
 
 L-6.2.2.3.  The mean and standard deviation of the data were calculated per stratum; 

05.0=α  because we want a 95% level of confidence: 
 
 24,027.1,674.4 === AAA nsx  
 12,5827.0,508.4 === BBB nsx  
 
Table L-5. 
Data for Example L-6.2.2 tum

 Site A sam-
ple location 

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

tum
 Site A sam-

ple location

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

A EPC-SB01  9 10 2.95 B EPC-SB07  9 10 5.1 
A EPC-SB01  14 15 5.17 B EPC-SB07  14 15 4.94 
A EPC-SB01  19 20 4.8 B EPC-SB07  19 20 4.76 
A EPC-SB02  9 10 4.53 B EPC-SB08  9 10 4.62 
A EPC-SB02  14 15 4.01 B EPC-SB08  14 15 4.72 
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tum
 Site A sam-

ple location 

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

tum
 Site A sam-

ple location

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

A EPC-SB02  19 20 5.91 B EPC-SB08  19 20 4.73 
A EPC-SB03  9 10 3.96 B EPC-SB09  9 10 3.21 
A EPC-SB03  14 15 4.81 B EPC-SB09  14 15 4.14 
A EPC-SB03  19 20 5.27 B EPC-SB09  19 20 4.85 
A EPC-SB04  9 10 5.99 B EPC-SB10  9 10 4.25 
A EPC-SB04  14 15 4.6 B EPC-SB10  14 15 5.09 
A EPC-SB04  19 20 5.51 B EPC-SB10  19 20 3.68 
A EPC-SB05  9 10 4.72 A EPC-SB11  9 10 5.12 
A EPC-SB05  14 15 3.56 A EPC-SB11  14 15 6.6 
A EPC-SB05  19 20 4.22 A EPC-SB11  19 20 6.19 
A EPC-SB06  9 10 3.91 A EPC-SB12  9 10 3.15 
A EPC-SB06  14 15 5.81 A EPC-SB12  14 15 4.11 
A EPC-SB06  19 20 4.48 A EPC-SB12  19 20 2.8 

 
 L-6.2.2.4.  The overall mean and variance are: 
 
 633.4)508.425.0()674.475.0( =×+×=x  
 

 2649.0001768.002472.0
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 L-6.2.2.5.  The degrees of freedom are (rounded to the next highest integer): 
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( ) ( )

2713.26
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 L-6.2.2.6.  Table B-23 of Appendix B gives the critical value = 1.703.  να ,1−t
 
 L-6.2.2.7.  The test statistic is 
 

 
02649.0

0.2633.4 −
=

−
=

s
Cxt . 

 
 L-6.2.2.8.  Compare the calculated test statistic t with the critical value . Because t 

(16.18 ≤ –1.703), we cannot reject and must check that the false acceptance rate has 
been achieved. 

να ,1−t
να ,1−−≥ t / 0H
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 L-6.2.2.9.  As in Paragraph L-6.1.3.9, a 20% (β) probability of accepting the null hypothe-
sis when the true concentration is 1.0 is also requested (80% power). A power curve of the test 
was generated using DEFT software in Figure L-3 (by entering the sample standard deviation si 
and the weight wi for each stratum). The required sample size for stratum A is equal to 5 and that 
for stratum B is equal to 2 (a total sample size of 7). The required power is achieved as actual the 
sample sizes for strata A and B are 24 and 12, respectively (a total of 36 samples). 
 
 L-6.3.  The Chen Test.  Environmental data such as concentration measurements are often 
confined to positive values and appear to follow a distribution with most of the data values rela-
tively small or near zero, but with a few relatively large values. Underlying such data is a distri-
bution that is not symmetrical (like a normal distribution) but is skewed to the right (like a 
lognormal distribution). Given a random sample of size n from a right-skewed distribution, the 
Chen test can be used to compare the mean (µ) of the distribution with a threshold level or regu-
latory value. This test assumes that the data arise from a right-skewed distribution and a random 
sample has been employed. Chen’s test is a generalization of the t-test, with slightly more com-
plicated calculations involving the sample mean, standard deviation, and skewness. Directions 
for conducting the Chen test are presented in Paragraph L-6.3.1, followed by an example in 
Paragraph L-6.3.2. 
 
 L-6.3.1.  Directions for Conducting the Chen Test.  Let  represent the n data 
points. Let C denote the threshold level of interest. The null hypothesis is 

nxxx ,,, 21 K

H C≤μ:0  and the al-
ternative is CH A >μ: ; the level of significance is α. 
 
 L-6.3.1.1.  If, at most, 15% of the data points are below the detection limit and C is much 
larger than the DL, then replace values (< DL) with a proxy value (Appendix C). 
 
 L-6.3.1.2.  Visually check the assumption of right-skewness by inspecting a histogram or 
frequency plot for the data.  
 
 L-6.3.1.3.  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 L-6.3.1.4.  Calculate the sample skewness  
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Figure L-3.  Power curve for the one-sample t-test for stratified sampling. 

 

 
( )

3
1

3

)2)(1( snn

xxn
b

n

i
i

−−

−
=

∑
=  

 
the quantity  
 

 
n

ba
6

=  

 
the statistic  
 

 

n
s

Cxt )( −
=  

 



EM 1110-1-4014 
31 Jan 08 
 

L-24 

)

and then compute:  
 
 . 2(4)21( 323 ttatatz ++++=
 
The skewness, b, should be greater than 1 to confirm that the data are skewed to the right. 
 
 L-6.3.1.5.  Use Table B-15 in Appendix B to find the critical value, , such that α−1Z

%100)1( α−  of the standard normal distribution is below , which is also the  percen-
tile of the standard normal distribution. For example, if 

α−1Z
05.0

thp100
=α  then . 645.11 =−αZ

 
 L-6.3.1.6.  Compare z with : α−1Z
 
 L-6.3.1.6.1.  If ,  may be rejected and it appears that the true mean is greater 
than C.  

α−> 1Zz 0H

 
 L-6.3.1.6.2.  If , there is not enough evidence to reject  so it appears that the 
true mean is less than C.  

α−≤ 1Zz 0H

 
 L-6.3.2.  Example of the Chen Test.  Suppose surface soil samples (from 0 to 5 feet below 
ground surface) have been collected at Site B to evaluate arsenic concentrations on site against a 
regulatory threshold value of 5 mg/kg using a 90% level of confidence ( 10.0=α ) and the fol-
lowing hypothesis test: 
 
 5:0 ≤μH ,  5: >μAH  
 
Table L-6 presents the analytical results from samples collected at the site. All arsenic concen-
trations were detected so no proxy concentrations are needed to evaluate the data. 
 
 L-6.4.  The Wilcoxon Signed Rank (One-Sample) Test.  Given a random sample of size n 
(or composite sample size n, each composite consisting of k aliquots), the Wilcoxon signed rank 
test is a nonparametric test can be used to test hypotheses regarding the mean or median of the 
population from which the sample was selected. The mean is used as the parameter of interest in 
this Appendix, although the median could be used equivalently. The Wilcoxon signed rank test 
assumes that the data constitute a random sample from a symmetrical, continuous population. 
(Symmetrical means the underlying population frequency curve is symmetrical about its mean or 
median.) If the data are not symmetrical, it may be possible to transform them (using a transfor-
mation such as a log or square root transformation) so that this assumption is satisfied. 
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Table L-6. 
Analytical Results From Samples Collected at the Site in Example L-6.3.2 

Site B sample location 
Top depth of 

sample 
Bottom depth 

of sample 

Arsenic Concentra-
tion (mg/kg),  ix 3( )ix x−  

EPC-BG01 1 2 4.84 –0.0024604 
EPC-BG01 4 5 4.15 –0.5615156 
EPC-BG02 1 2 4.53 –0.0881211 
EPC-BG02 4 5 4.72 –0.0165814 
EPC-BG03 1 2 4.76 –0.0099384 
EPC-BG03 4 5 4.93 –9.112×10–5 
EPC-BG04 1 2 4.34 –0.2560479 
EPC-BG04 4 5 4.51 –0.1005446 
EPC-BG05 1 2 5.01 4.288×10–5 
EPC-BG05 4 5 3.83 –1.5011236 
EPC-BG06 1 2 4.8 –0.0053594 
EPC-BG06 4 5 4.07 –0.7412176 
EPC-BG07 0.5 1 7.43 14.796346 
EPC-BG07 2 2.5 4.6 –0.0527344 
EPC-BG08 1 2 8.12 31.107274 
EPC-BG08 4 5 4.96 –3.375×10–6 

 
 L-6.4.1.  Introduction.  The Wilcoxon signed rank test is more robust to outliers. The t-test 
is not robust to outliers because the sample mean and standard deviation are strongly influenced 
by outliers. Although it is less powerful than the t-test when the data are normally distributed, it 
is usually more powerful when the data are not normally distributed. The Wilcoxon signed rank 
test is more likely than the t-test to identify differences for positively skewed distributions. In 
addition, compared to tests based on ranks, the t-test has difficulty accommodating censored val-
ues (values below the detection limit). 
 
 L-6.4.1.1.  Directions for the Wilcoxon signed rank test for a simple random sample and a 
systematical simple random sample are given below in Paragraph L-6.4.2; Paragraph L-6.4.3 is 
an example for sample sizes smaller than 20.  
 
 L-6.4.1.2.  For sample sizes greater than 20, the large sample approximation to the Wil-
coxon signed rank test should be used. Directions for this test are given in Paragraph L-6.4.4 fol-
lowed by an example in Paragraph L-6.4.5. 
 
 L-6.4.1.3.  Paragraph L-6.4.6 presents sample size calculations for the Wilcoxon signed 
rank test to achieve a certain power when the sample size is large. An example follows in Para-
graph L-6.4.7. 
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 L-6.4.2.  Directions for the Wilcoxon Signed Rank Test for a Simple Random Sample and a 
Systematic Simple Random Sample.  The following describes the steps for applying the Wilcoxon 
signed rank test for a sample size (n) less than 20 for: Case 1 ( CH ≤μ:0 , CH A >μ: ); and 
Case 2 ( CH ≥μ:0 , CH A <μ: ). Modifications for Case 2 are given in braces {}.  
 
 L-6.4.2.1.  Let  represent the n observations. nxxx ,,, 21 K

 
 L-6.4.2.2.  If possible, assign values to any measurements below the detection limit with 
procedures described in Appendix H.  
 
 L-6.4.2.3.  Subtract C from each observation  to obtain the difference . If any 
of the differences are zero, delete them and correspondingly reduce the sample size (n).  

ix Cxd ii −=

 
 L-6.4.2.4.  Assign ranks from 1 to n based on ordering the absolute differences id  (i.e., 
the magnitude of differences ignoring the sign) from smallest to largest. The rank 1 is assigned to 
the smallest value, the rank 2 to the second smallest value, and so forth. If there are ties, assign 
the average of the ranks that otherwise would have been assigned to the tied observations (e.g., if 
two equal values occur after rank 5, then assign them each a rank of 6.5 = (6 + 7)/2). 
 
 L-6.4.2.5.  Assign the sign for each observation to create the signed rank. The sign is posi-
tive if the deviation  is positive; the sign is negative if the deviation  is negative. id id
 
 L-6.4.2.6.  Calculate R, the sum of the ranks with a positive sign. 
 
 L-6.4.2.7.  Use Table B-24 of Appendix B to find the critical value . nw ,α

 
 L-6.4.2.8.  Compare the calculated test statistic, R, to the critical value.  
 
 L-6.4.2.8.1.  If  ( ) nwnnR ,2/1 α−+> { }nwR ,α< , may be rejected.  0H
 
 L-6.4.2.8.2.  If  ( ) nwnnR ,2/1 α−+≤ { }nwR ,α≥ , there is not enough evidence to reject . 0H
 
 L-6.4.2.9.  The results of the test may be:  
 
 L-6.4.2.9.1.  is rejected; 0H C>μ  { C<μ }. 
 
 L-6.4.2.9.2.  is not rejected 0H C≤μ { C≥μ }. 
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 L-6.4.3.  Example of the Wilcoxon Signed Rank Test for Simple and Systematical Random 
Samples.  Suppose  surface soil samples (from 0 to 5 feet below ground surface) were col-
lected at Site B to evaluate cadmium concentrations on site against a regulatory threshold value 
of 0.75 using a 95% level of confidence (

14=n

05.0=α ) and the following hypothesis test. 
 
 75.0:0 ≥μH ,  75.0: <μAH  . 
 
 L-6.4.3.1.  Table L-7 presents the analytical results from samples collected at the site. 
Three of the cadmium concentrations were non-detects, so proxy concentrations are defined as 
the detection limit and are presented in parentheses. 
 
Table L-7. 
Analytical Results from Samples Collected at the Site in Example L-6.4.3 

Site B sam-
ple location 

Top depth 
of sample 

Bottom 
depth of 
sample 

Flag (ND = 
not detected)

Cadmium Con-
centration 
(mg/kg), ix  i id x C= −  

Rank asso-
ciated with 

id  Sign of id
EPC-BB01 1 2  1.6 0.85 13.5 + 
EPC-BB01 4 5  1.6 0.85 13.5 + 
EPC-BB02 1 2  1.55 0.8 12 + 
EPC-BB02 4 5 ND (0.242) –0.508 9 – 
EPC-BB03 1 2  0.624 –0.126 1 – 
EPC-BB03 4 5  0.276 –0.474 7 – 
EPC-BB04 1 2  1.5 0.75 11 + 
EPC-BB04 4 5  0.301 –0.449 6 – 
EPC-BB05 1 2  0.588 –0.162 3 – 
EPC-BB05 4 5  0.264 –0.486 8 – 
EPC-BB06 0.5 1  0.899 0.149 2 + 
EPC-BB06 2 2.5  0.332 –0.418 4 – 
EPC-BB07 1 2  1.42 0.67 10 + 
EPC-BB07 4 5  0.326 –0.424 5 – 

 
 L-6.4.3.2.  Steps 1, 2, and 3 are contained in the three right-hand columns, in order. 
 
 L-6.4.3.3.  Step 4: From the six cases where the sign of  is positive,  id
 
 6220211125.135.13 =+++++=R  . 
 
 L-6.4.3.4.  Step 5: Table B-24 of Appendix B gives a critical value of . 2614,05.0 =w
 
 L-6.4.3.5.  Step 6: Compare the calculated test statistic and the critical value, , 
so  was not rejected.  

2662 ≥
0H

 



EM 1110-1-4014 
31 Jan 08 
 

L-28 

 L-6.4.3.6.  Prior to performing the test, a histogram was created to check the symmetry of 
the data, which appear symmetrical, as shown below. 
 
 L-6.4.4.  Directions for the Large Sample Approximation to the Wilcoxon Signed Rank 
Test.  The following describes the steps for applying the large sample approximation of the Wil-
coxon signed rank test for: Case 1 ( CH ≤μ:0 , CH A >μ: ); and Case 2 
( CH ≥μ:0 , CH A <μ: ). Modifications for Case 2 are given in braces {}.  
 
 L-6.4.4.1.  Let  represent the n data points where n is greater than or equal to 
20. If possible, assign values to any measurements below the detection limit with procedures de-
scribed in Appendix H. 

nxxx ,,, 21 K

 
 L-6.4.4.2.  Subtract C from each observation, , to obtain the differences ix Cxd ii −= . If 
any of the differences are zero delete them and correspondingly reduce the sample size (n). 
 
 L-6.4.4.3.  Assign ranks from 1 to n based on ordering the absolute deviations id  (i.e., 
magnitude of differences ignoring the sign) from smallest to largest. Rank 1 is assigned to the 
smallest value, rank 2 to the second smallest value, and so forth. If there are ties, assign the aver-
age of the ranks that would otherwise have been assigned to the tied observations. 
 
 L-6.4.4.4.  Assign the sign for each observation to create the signed rank. The sign is posi-
tive if the deviation, , is positive; the sign is negative if the deviation, , is negative. id id
 
 L-6.4.4.5.  Calculate the test statistic R, the sum of the ranks with a positive sign. 
 
 L-6.4.4.6.  Calculate the critical value  
 
 ( ) ( )( ) 2412141 ++++= nnnZnnw pp   
 
where }{1 αα =−= pp and is the  percentile of the standard normal distribution (Ta-
ble B-15 of Appendix B). 

pZ thp100

 
 L-6.4.4.7.  Compare the test statistic to the critical value. If { }pp wRwR <> ,  may be 
rejected. Otherwise, there is not enough evidence to reject .  

0H

0H
 
 L-6.4.4.8.  The results of the test may be: 
 



EM 1110-1-4014 
31 Jan 08 

 

L-29 

 L-6.4.4.8.1   is rejected; 0H C>μ { C<μ }. 
 
 L-6.4.4.8.2   is not rejected; 0H C≤μ { C≥μ }. 
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Figure L-2.  Histogram Plot of Wilcoxon Signed Rank Test for random samples. 

 
 L-6.4.5.  Example for the Large Sample Approximation to the Wilcoxon Signed Rank Test 
for Simple and Systematic Random Samples.  Suppose additional surface soil samples (from 0 to 
5 feet below ground surface) were collected at Site B to further delineate contamination. Addi-
tional samples were analyzed for cadmium and so the test performed earlier (see Paragraph L-
6.4.3) for cadmium must be redone. The test was set up to compare cadmium concentrations on 
site to a regulatory threshold value of 0.75 using a 95% level of confidence ( 05.0=α ) and the 
following hypothesis test. 
 
 75.0:0 ≥μH ,  75.0: <μAH  . 
 
 L-6.4.5.1.  Table L-8 presents all analytical results from samples collected from both sam-
pling events. Non-detected cadmium concentrations were present in the data set; therefore, 
proxy concentrations are defined as the detection limit and are presented in parentheses. 
 
 L-6.4.5.2.  Steps 1, 2, and 3 are contained in the three right-hand columns, in order. 
 
 L-6.4.5.3.  Step 4: The test statistic, which is the sum of the ranks associated with the posi-
tive signs, is equal to  



EM 1110-1-4014 
31 Jan 08 
 

L-30 

 
Table L-8. 
All Analytical Results from Samples Collected from Both Sampling Events 

Site B sample 
location 

Top depth 
of sample 

Bottom 
depth of 
sample 

Flag ND = not 
detected 

Cadmium concen-
tration (mg/kg), xi i id x C= −  

Rank associ-
ated with id

Sign of 
 id

EPC-BB01 1 2  1.6 0.85 21.5 + 
EPC-BB01 4 5  1.6 0.85 21.5 + 
EPC-BB02 1 2  1.55 0.8 20 + 
EPC-BB02 4 5 ND (0.242) –0.508 14 – 
EPC-BB03 1 2  0.624 –0.126 2 – 
EPC-BB03 4 5  0.276 –0.474 12 – 
EPC-BB04 1 2  1.5 0.75 19 + 
EPC-BB04 4 5  0.301 –0.449 10 – 
EPC-BB05 1 2  0.588 –0.162 4 – 
EPC-BB05 4 5  0.264 –0.486 13 – 
EPC-BB06 0.5 1  0.899 0.149 3 + 
EPC-BB06 2 2.5  0.332 –0.418 5 – 
EPC-BB07 1 2  1.42 0.67 17 + 
EPC-BB07 4 5  0.326 –0.424 8 – 
EPC-BG08 1 2  1.48 0.73 18 + 
EPC-BG08 4 5  0.302 –0.448 9 – 
EPC-BG09 1 2  1.39 0.64 15 + 
EPC-BG09 4 5  0.33 –0.42 6 – 
EPC-BG10 0.5 1  0.812 0.062 1 + 
EPC-BG10 2 2.5  0.287 –0.463 11 – 
EPC-BG11 1 2  1.41 0.66 16 + 
EPC-BG11 4 5  0.327 –0.423 7 – 

 
 152161151817319205.215.21 =+++++++++=R  . 
 
 L-6.4.5.4.  Step 5: The critical value is 
 
 ( ) ( )( ) 83.7524122212222645.1412222 =+×+−+=pw  
 
where and by linear interpolation22=n .645.12/)65.164.1(05.0 −=−−=Z  
 
 L-6.4.5.5.  Step 6: Comparing the test statistic to the critical value, ( )pwR >> ,83.75152 , 
so  is not rejected.  0H
 
 L-6.4.5.6.  Therefore, there is no evidence to suggest that the true mean for cadmium in 
Site B surface soil is less than the regulatory threshold of 0.75 mg/kg. 
 
 L-6.4.5.7.  A histogram was created to check the symmetry of the data. The data appear 
symmetrical, as indicated in Figure L-3. 
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 L-6.4.6.  Directions for Calculating Sample Size for the Wilcoxon Signed Rank Test to 
Achieve a Specified Power.  Noether (1987) discusses determining an adequate sample size 
based on a defined level of power to apply the Wilcoxon signed rank test for the following hy-
pothesis test: Case 1 ( CH ≤μ:0 , CH A >μ: ); and Case 2 ( CH ≥μ:0 , CH A <μ: ).  Modifi-
cations for Case 2 are given in braces {}.  
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Figure L-3.  Histogram plot of Wilcoxon Signed Rank Test for large random samples. 
 
 L-6.4.6.1.  If the null hypothesis is not rejected, and the number of samples n required to 
achieve some desired power 1 – β could be calculated, the power would be adequate if 

′
nn ′≥ . If 

n ≥ 20 samples are collected, a conservative estimate of the sample size required for a power of 1 
– β is:  
 

 
( )

( )2

2
11

5.03 −′

+
=′ −−

p

ZZ
n βα  

 
where  is the q quantile of the standard normal distribution (from Table B-15), qZ α  is the sig-
nificance level of the test, 1 – β is the desired power for the test, and p′  is the true probability 
that the average of any two independent observations 
 

 
2

ji xx +
 

where i ≠ j, exceeds {is less than} C. 
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 L-6.4.6.2.  The equation for n′  assumes that n is large enough for the test statistic R to be 
normally distributed (which is generally valid if the sample size exceeds 20). If the suggested 
sample size does not exceed 20, consult a statistician. 
 
 L-6.4.6.3.  The value of  can be determined from past information, a pilot sample, or 
chosen to represent a meaningful shift in the data (Noether, 1987). On the basis of what is con-
sidered to be a meaningful shift, one would assign 

p′

p′  equal to some probability greater than 0.5.  
 
 L-6.4.7.  Example of Calculating Sample Size for the Wilcoxon Signed Rank Test to 
Achieve a Specified Power.  Let us calculate the power for the hypothesis test performed in Para-
graph L-6.4.5. In this example, n = 22 samples were collected to evaluate cadmium concentra-
tions against a regulatory threshold value of 0.75 mg/kg at the 95% level of confidence 
( 05.0=α ) using the hypothesis test. 
 
 75.0:0 ≥μH , 75.0: <μAH  . 
 
The null hypothesis was not rejected. We wish to ensure that n is large enough to find a mean-
ingful decrease in the mean with 80% probability (power).  
 
 L-6.4.7.1.  The objective is to ensure that the sample size is large enough to find a mean-
ingful decrease in the mean with 80% probability. Let us assume that seven samples had been 
collected for a prior “pilot” study. Table L-9 presents the analytical results from samples col-
lected for the pilot study in the left-most column and along the top. The independent pair wise 
averages are calculated in the body of the table. Averages that fall below the regulatory thresh-
old of 0.75 mg/kg are shaded. 

 
Table L-9. 
Analytical Results from Samples Collected for the Pilot Study and Independent Pair Wise 
Averages  

Cadmium con-
centration 

(mg/kg) 
1.220 0.301 0.624 0.276 0.588 0.264 0.332 

1.220 — 0.761 0.922 0.748 0.904 0.742 0.776 
0.301 — — 0.463 0.289 0.445 0.283 0.317 
0.624 — — — 0.450 0.606 0.444 0.478 
0.276 — — — — 0.432 0.270 0.304 
0.588 — — — — — 0.426 0.460 
0.264 — — — — — — 0.298 
0.332 — — — — — — — 

 
 L-6.4.7.2.  Of the initial 7 results, 17 of the 21 independent averages are less than 0.75. 
The observed probability that the average of any two observed observations is less than C is 
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17/21 = 0.8095. Therefore, on the basis of this estimated (pilot study) probability, assume that it 
was determined that a power of 80% is required for 809.0=′p . 
 
 L-6.4.7.3.  The required sample size to meet the power requirement is: 
 

 
( ) ( )

( )
5.21

5.08095.03
842.0645.1
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 L-6.4.7.4.  The required sample size is rounded up to 22. Because , the required 
power of 80% was achieved. 

'nn ≥

 
L-7.  Tests for a Median.  A population median ( μ~ ) is another measure of the center of the 
population distribution. This population parameter is less sensitive than the sample mean to ex-
treme values and non-detected results. Therefore, this parameter sometimes is used instead of the 
mean when the data contain a large number of non-detects or extreme values. 
 
 L-7.1.  The Binomial Sign Test for the Median.  Given a random sample of size n of con-
tinuous or discrete samples, the sign test may be used to test hypotheses regarding a population 
median for a distribution from which the data were drawn. The only assumption required for the 
sign test is that it be a random sample. The procedures are also robust to outliers, as long as they 
do not represent data errors. Directions for the sign test are given below in Paragraph L-7.2, fol-
lowed by an example in Paragraph L-7.3. 
 
 L-7.2.  Directions for the Sign Test for the Median.  The following describes the steps for 
applying the sign test for a sample size (n). 
 

Case 1 ( CH x ≤μ~:0  versus CH xA >μ~: ); and  
 

Case 2 ( CH x ≥μ~:0  versus CH xA <μ~: ).  
 
Modifications for Case 2 are given in braces {}. C is the hypothesized median or critical thresh-
old value and xμ~  is the median for the variable X. The level of significance is α . 
 
 L-7.2.1.  Note that μ~  can also be defined as the median value for the variable D, where 

 and so the hypotheses tests are written in terms of the difference.  CXD −=
 

Case 1 ( 0~:0 ≤DH μ  versus 0~: >DAH μ ); and  
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Case 2 ( 0~:0 ≥DH μ  versus 0~: <DAH μ ). 
 
 L-7.2.2  The hypotheses can also be written in terms of the probability of exceeding 0. 
 
 Case 1 (  versus( ) 5.00:0 ≥≤DPH ( ) 5.00: <≤DPH A ); and 
 
 Case 2 (  versus( ) 5.00:0 ≥≥DPH ( ) 5.00: <≥DPH A ).  
 
Equivalently, 
 

Case 1 (  versus( ) 5.00:0 ≤>DPH ( ) 5.00: >>DPH A ); and 
 
Case 2 (  versus( ) 5.00:0 ≤<DPH ( ) 5.00: ><DPH A ). 

 
This formulation suggests the use of the binomial distribution with p = 0.5 to test the null hy-
pothesis. 
 

 L-7.2.3.  Noether (1987) discusses determining an adequate sample size based on a defined 
level of power to apply the sign test for the median. Under the assumption that the test statistic 
(in this case the number of samples that exceed {are less than} C) is normally distributed, a con-
servative sample size, n , is calculated as: ′
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where  is the q quantile of the standard normal distribution (from Table B-15), qZ α  is the sig-
nificance level of the test, β−1  is the desired power for the test, and p  is the true probability 
that an observation exceeds {is less than} C. The value of p  can be taken from past information, 
a pilot sample, or chosen to represent a meaningful shift in the data (Noether, 1987). The normal-
ity of the test statistic under the null hypothesis rests on the normal approximation to the bino-
mial distribution. As discussed in Appendix E, this approximation works well when the sample 
size is at least 20 ( , ). If the suggested sample size does not exceed 20, consult a 
statistician. 

10≥np 5.0=p

 
 L-7.2.4.  Let  represent the n data points. Define a new variable nxxx ,,, 21 K CXD −= . 
 
 L-7.2.4.1.  If possible, assign values to any measurements below the detection limit with 
procedures described in Appendix H. Subtract C from each observation, , to obtain the devia-ix
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tions, . If any of the deviations are zero, delete them and correspondingly reduce the 
sample size (n). 

Cxd ii −=

∑
=

y

i 0

 
 L-7.2.4.2.  Count the number of positive {negative} deviations ( ) and denote this number 
by y. 

id

 
 L-7.2.4.3.  The number of positive {negative} differences is described by a binomial dis-
tribution. In terms of the notation and terminology used in Appendix E, the number of data 
points is the number of “trials,” n. Under the null hypothesis, the probability, p, of a positive 
{negative} difference (a success) is 0.5. The total number of positive {negative} differences, y, 
is the successful occurrence of an event y times out of n. Therefore, bin(y; n, p = 0.5) is the 
probability of y positive {negative} differences for a set of n trials, where the probability of a 
positive {negative} difference p = 0.5 (when H0 is assumed to be true). The probability of ob-
taining less than or equal to y positive {negative} differences,  
 

 P(Y ≤ y) =  pnibin ),,(

 
is the value of the “cumulative binomial distribution.” Table B-1 presents the probabilities of the 
cumulative binomial distribution for various values of n, p, and k where k = y. 
 
 L-7.2.4.4.  If the probability of obtaining an equal or larger number of positive {negative} 
differences than the observed number y is small, that is, if α≤=≥ )5.0,|( pnyYP , then it is 
unlikely that the null hypothesis is true and the null hypothesis is rejected. Equivalently, 
 
 L-7.2.4.4.1.  If )1()5.0,|1()5.0,|( α−≥=−≤==< pnyYPpnyYP ,  may be re-
jected. 

0H

 
 L-7.2.4.4.2.  Otherwise, there is not enough evidence to reject . 0H

 
 L-7.2.5.  Use Table B-1 of Appendix B to find the probability value associated with n, 

 and , which is the cumulative binomial distribution probability,  ,1−y 5.0=p

|1(
 
 )5.0, =−≤ yYP

10.0

pn   
 
to determine whether or not to reject the null hypothesis. 
 
 L-7.3.  Example of the Sign Test for the Median.  Suppose arsenic concentrations at a site 
are to be compared to a regulatory threshold value of 5 mg/kg using a 90% level of confidence 
( =α ). The median can be compared to this threshold using the following hypothesis test: 
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 5~:0 ≤μH , 5~: >μAH  . 
 
 L-7.3.1.  Suppose we wish to know the adequate sample size necessary to be 80% certain 
that we can detect a meaningful difference from the null hypothesis. The meaningful difference 
for this site is defined to be when the probability of exceeding the regulatory threshold is twice 
as likely as being below the threshold, ( ) 325~ =>μP . The required sample size is 41: 
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 L-7.3.2.  Consider the data presented in Paragraph L-6.3.2 for arsenic concentrations in sur-
face soil samples (from 0 to 5 feet below ground surface) at Site B. Table L-10 presents the ana-
lytical results from samples collected at the site. All arsenic concentrations were detected, so no 
proxy concentrations are needed to evaluate the data. 
 
 L-7.3.3.  The number of positive deviations ( ), y = 3. id
 
 L-7.3.4.  Using Table B-1 in Appendix B, we find 002090.0)5.0,16|2( ===≤ pnYP . 
 
 L-7.3.5.  As 0.002090 < 0.9, H0 may not be rejected. Therefore, it appears that the true me-
dian for arsenic is less than the regulatory threshold of 5 mg/kg. However, to achieve 80% power 
and satisfy the sample size requirement calculated earlier, an additional 25 randomly selected 
samples would be needed to increase the total sample size to 41. 
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Table L-10. 
Analytical Results From Samples Collected At The Site For Example L-7.3 

Site B sample loca-
tion 

Top depth of 
sample 

Bottom depth of 
sample 

Arsenic concentra-
tion (mg/kg) di = xi  –C Sign of di

EPC–BG01 1 2 4.84 –0.16 – 
EPC–BG01 4 5 4.15 –0.85 – 
EPC–BG02 1 2 4.53 –0.47 – 
EPC–BG02 4 5 4.72 –0.28 – 
EPC–BG03 1 2 4.76 –0.24 – 
EPC–BG03 4 5 4.93 –0.07 – 
EPC–BG04 1 2 4.34 –0.66 – 
EPC–BG04 4 5 4.51 –0.49 – 
EPC–BG05 1 2 5.01 0.01 + 
EPC–BG05 4 5 3.83 –1.17 – 
EPC–BG06 1 2 4.8 –0.2 – 
EPC–BG06 4 5 4.07 –0.93 – 
EPC–BG07 0.5 1 7.43 2.43 + 
EPC–BG07 2 2.5 4.6 –0.4 – 
EPC–BG08 1 2 8.12 3.12 + 
EPC–BG08 4 5 4.96 –0.04 – 

 
L-8.  Test for a Proportion or Percentile. 
 
 L-8.1.  The One-Sample Proportion Test.  Given a random sample of size n, the non-
parametric, one-sample proportion test may be used to test hypotheses regarding a population 
proportion or population percentile for a distribution from which the data were drawn. The only 
assumption required for the one-sample proportion test is that it be a random sample. To verify 
this assumption, review the procedures and documentation used to select the sampling points and 
ascertain that proper randomization has been used in sample collection. 
 
 L-8.1.1.  The null and alternative hypotheses for this test can be stated as: 
 
 ,   CXH oP ≤:0 CXH oPA >:
 
where  is the  quantile of the variable X; that is, oPX 0P
 
  . 0)( PXXP oP =≤
 
 L-8.1.2  If P is the “true” proportion of X that is less than or equal to C = XP, then 
 
  PCXP =≤ )(  .
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 L-8.1.3.  The hypothesis statement can be written as: 
 
    PPH ≤00 : , PPH A >0: .
 
 L-8.1.4.  Equivalently, 
 

00 : PPH ≥ ,   . 0: PPH A <
 
(Note that P, the true portion of the population less than C, should note be confused with the 
probability density function P(X) for the variable X discussed in Appendix E.) 
 
 L-8.1.5.  Because the only assumption is that it be a random sample, the procedures are 
valid for any underlying distributional shape. The procedures are also robust to outliers, as long 
as they do not represent data errors. This test is recommended when fewer than 50% of the re-
sults are detected. The test may be used as long as the proportion of non-detects is smaller than 
the proportion, p0, of interest, and n must be relatively large for the test to be reliable. 
 
 L-8.1.6.  Directions for the one-sample proportion test for a simple random sample and a 
systematic random sample are given below in Paragraph L-8.2, followed by an example pre-
sented in Paragraph L-8.3. 
 
 L-8.2.  Directions for a Simple Random Sample and a Systematic Random Sample.  Direc-
tions to apply the one-sample proportion test for Case 1 and Case 2: Case 1 
( , ); and Case 2 ( ,00 : PPH ≤ 0: PPH A > 00 : PPH ≥ 0: PPH A < ), which are given in braces { }. 
 
 L-8.2.1.  Given a random sample  of measurements from the population, let P 
denote the proportion of X's that do not exceed C. This true proportion can be estimated from the 
sample data by dividing the number (k) of sample points that are less than or equal to C by the 
sample size (n). 

nxxx ,,, 21 K

 
 nkpP =≈  . 
 
 L-8.2.2.  Compute np, and n(1 – p). If both np and n(1 – p) are greater than or equal to 5, 
proceed.  
 
 L-8.2.3.  Otherwise, consult a statistician as analysis may be complex. Calculate: 
 

 
nPP

Pp
z

/)1( 00

0
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−
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 L-8.2.4.  Use Table B-15 of Appendix B to find the critical value, , such that α−1Z
%100)1( α−  of the normal distribution is below . For example, if α−1Z 05.0=α  then 

. 645.11 =−αZ
 
 L-8.2.4.1.  If , may be rejected. }{ 11 αα −− −<> ZzZz 0H
 
 L-8.2.4.2.  If , there is not enough evidence to reject . Therefore, the 
false acceptance error rate must be verified. 

}{ 11 αα −− −≥≤ ZzZz 0H

 
 L-8.2.5.  To calculate the power of the test, choose a proportion, P1, that would constitute a 
meaningful difference from P0, and use a statistical software package such as the DEFT software 
(EPA QA/G-4D) or the DataQUEST software (EPA QA/G-9D) to generate the power curve of 
the test. 
 
 L-8.2.6.  If only one false acceptance error rate (β) has been specified (at P1), it is possible 
to calculate the sample size that achieves the DQOs. To do this, calculate: 
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 L-8.2.7.  If , the false acceptance error rate has been satisfied. Otherwise, the false 
acceptance error rate has not been satisfied. It is usually more helpful to do this calculation be-
fore sampling, as all of the parameter values needed for the calculation are available before the 
sampling begins. 

nm ≤

 
 L-8.2.8.  The results of the test could be: 
 
 L-8.2.8.1.  is rejected, conclude that 0H { }00 PPPP <> . 
 
 L-8.2.8.2.  is not rejected, the false acceptance error rate was satisfied, and conclude 
that . 

0H
{ }0P0 PPP ≥≤

 
 L-8.2.8.3.  0H is not rejected, the false acceptance error rate was not satisfied, and the con-
clusion that  is uncertain because the sample size was too small. { 0PPP ≥≤ }0P
 
 L-8.2.9.  Example of the One-Sample Test for Proportions of Simple and Systematic Ran-
dom Samples.  Groundwater concentrations of gasoline at a site are compared to a regulatory 
threshold C = 35 micrograms per liter (μg/L). Suppose this site has only 13 detections out of 90 
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groundwater samples collected to date. Because more than 50% of the data are censored, the test 
of proportions is more appropriate than a t-test or Wilcoxon signed rank test. The test of propor-
tions can be used to determine if more than 95% of the concentrations are less than the regula-
tory threshold at the 90% level of confidence. The null and alternative hypotheses are as follows:  
 
  μg/L, 35: 95.00 ≥XH 35: 95.0 <XH A  μg/L . 
 
 L-8.2.9.1.  Equivalently, 
 
 ,   . 95.0:0 ≤PH 95.0: >PH A

 
(This is Case 1 in Paragraph L-8.2.) Suppose 11 of the detected concentrations exceed this regu-
latory threshold; therefore, the proportion of samples with detected concentrations below the 
threshold is . ( ) 8778.090/1190 =−=p
 
 L-8.2.9.2.  Determine whether np ≥ 5 and n(1 – p) ≥ 5: 
 
  90 0.8778 79np = × =
 
  . (1 ) 90 (1 0.08778) 11n p− = × − =
 
 L-8.2.9.3.  Because np ≥ 5 and n(1 – p) ≥ 5, the test of proportions can be used. In this ex-
ample, P0 = 0.95 and 1 – α = 0.90. 
 

 143.3
90/)95.01(95.0

95.08778.0
/)1( 00
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nPP
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z . 

 
 L-8.2.9.4.  Using Table B-15 of Appendix B, we find the critical value =1.282.  90.0Z
 
 L-8.2.9.5.  Compare the calculated value z with the critical value. The null hypothesis is re-
jected if  As .90..0Zz > )(282.1143.3 90.0Zz ≤≤− , there is not enough evidence to reject . 
Therefore, the false acceptance error rate has to be verified through a power curve or sample size 
calculation. Suppose a false acceptance error rate was specified at 

0H

99.01 =P  ( 20.0=β ); it is 
possible to calculate the sample size that achieves this error rate using the following equation: 
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.8343.82
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 L-8.2.9.6.  Because ),(9083 nm ≤≤

95

the false acceptance error rate has been satisfied. 
Therefore, was not rejected and the false acceptance error rate was satisfied. There is at least 
90% confidence that the proportion of gasoline concentrations below the regulatory threshold is 
less than 0.95 (i.e., , or, equivalently, ). 

0H

.0≤P 3595.0 ≥X
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