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APPENDIX I 
Identification and Handling of Outliers 

 
I-1.  Purpose. 
 
 I-1.1.  Outliers are measurements that are extremely large or small relative to the rest of the 
data and, therefore, are suspected of misrepresenting the population from which they were col-
lected. Outliers influence statistics if used in calculations, and statistical tests based on paramet-
ric methods are generally more sensitive than nonparametric methods to outliers. Outliers may 
result from transcription errors, data-coding errors, or measurement system problems, such as in-
strument breakdown. However, outliers may also represent true extreme values of a distribution 
and may indicate more variability in the population or a different underlying distribution for the 
population than what was initially assumed. For example, a point that appears as an outlier under 
the assumption that the underlying distribution is normal will not necessarily appear as an outlier 
if it were initially assumed that the distribution is lognormal. Not removing true outliers or re-
moving false outliers can lead to a distortion of estimates of population parameters. 
 
 I-1.2.  Statistical outlier tests give the analyst probabilistic evidence that an extreme value 
(potential outlier) does not fit with the distribution of the remainder of the data and is a statistical 
outlier. These tests should only be used to identify data points that require further investigation. 
Tests alone cannot determine whether a statistical outlier should be discarded or corrected within 
a data set; this decision should be based on judgment and scientific reasoning. (See EPA 600/R-
96/084, Gilbert, 1987, for further details on identifying and handling outliers.) 
 
I-2.  Methods.  Five steps are involved in treating extreme values or outliers: 
 

• Identify extreme values that may be potential outliers. 
 
• Apply a statistical test. 
 
• Scientifically review statistical outliers and decide on their disposition. 
 
• Conduct data analyses with and without statistical outliers. 
 
• Document the entire process. 

 
Potential outliers can be identified through graphical representations. Graphs, such as the box- 
and-whisker plot, normal probability plot, and time plot, can be used to identify observations that 
are much larger or smaller than the rest of the data. (Appendix J presents these graphical tools.) 
If potential outliers are identified, the next step is to apply one of the statistical tests described 
below.  
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 I-2.1.  Dixon’s Test.  Dixon’s extreme value test can be used to test for statistical outliers 
when the sample size is less than or equal to 25. This test considers extreme values that are much 
smaller or larger than the rest of the data. Because this test assumes that the data without the sus-
pected outlier are normally distributed, it is necessary to test for normality in the data without the 
suspected outlier before applying Dixon’s test. If the data are not normally distributed, a trans-
formation that normalizes the data should be applied, or a different test should be used. Direc-
tions for the extreme value test are contained in Paragraph I-2.1.1 followed by an example in 
Paragraph I-2.1.2. Dixon’s test should be used when only one outlier is suspected in the data. If 
more than one outlier is suspected, the extreme value test may lead to masking, in which two or 
more outliers close in value obscure one another. Therefore, if the analyst decides to use the ex-
treme value test for multiple outliers, it should be applied to the least extreme value first; other-
wise, Rosner’s test should be used to test for multiple outliers. Rosner’s test is discussed below. 
 
 I-2.1.1.  Directions for the Extreme Value Test (Dixon’s Test).  Let x(1), x(2),...,x(n) represent 
the data ordered from smallest to largest. Check that the data without the suspected outlier are 
normally distributed, using one of the methods in Appendix F.  
 
 I-2.1.1.1.  If normality fails, transform the data or apply a different outlier test.  
 
 I-2.1.1.2.  Case 1: is a potential outlier. Compute the test statistic C , where  )1(x
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 I-2.1.1.3.  If C  exceeds the critical value from Table B-5 of Appendix B for the specified 
significance level α , is an outlier and should be further investigated.  )1(x
 
 I-2.1.1.4.  Case 2: is a potential outlier. Compute the test statistic C , where )(nx
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 I-2.1.1.5.  If C  exceeds the critical value from Table B-5 of Appendix B for the specified 
significance level α, x(n) is an outlier and should be further investigated. 
 
 I-2.1.2.  Example for the Extreme Value Test (Dixon’s Test).  Consider the following sub-
surface background chromium data in order of magnitude from smallest to largest: 3.84, 4.26, 
4.53, 4.60, 5.28, 5.29, 5.74, 5.86 (in mg/kg). Suppose there was an additional sample with a re-
sult of 10 mg/kg. As this additional sample is much larger than the other values, it is suspected 
that this point might be an outlier. The required level of significance for an outlier is 5%. 
 
 I-2.1.2.1.  Testing the data for normality using the Shapiro-Wilk test (without the extreme 
value) indicated that the data were normal. Therefore, the extreme value test may be used to de-
termine if the largest data value is an outlier.  
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 I-2.1.2.2.  Because  (from Table B-5 of Appendix B with  and α = 
0.05), there is evidence that x(n) is an outlier at a 5% significance level and should be further in-
vestigated. 

512.072.0 >=C 9=n

 
 I-2.2.  Discordance Test.  The discordance test can be used to test if one extreme value is 
an outlier. This test considers two cases: i) where the extreme value (potential outlier) is the 
smallest value of the data set; and ii) where the extreme value (potential outlier) is the largest 
value of the data set. The discordance test assumes that the data are normally distributed; there-
fore, it is necessary to perform a test for normality before applying the discordance test. If the 
data are not normally distributed, transform the data, apply a different test, or consult a statisti-
cian. Note that the test assumes that the data without the outlier are normally distributed, so the 
test for normality should be performed without the suspected outlier. Directions and an example 
of the discordance test are contained in Paragraphs I-2.2.1 and I-2.2.2, respectively. 
 
 I-2.2.1.  Directions for the Discordance Test.  Let x(1), x(2),...,x(n) represent the data ordered 
from smallest to largest. Check that the data without the suspect outlier are normally distributed, 
using one of the methods of Appendix F, Paragraph F-11. If normality fails, transform the data or 
apply a different outlier test.  
 
 I-2.2.1.1.  Compute the sample mean, x , and the sample standard deviation, s, without the 
suspected outlier. If the minimum value x(1) is a suspected outlier, compute the test statistic 
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 I-2.2.1.2.  If D exceeds the critical value from Table B-4 of Appendix B, x(1) is an outlier 
and should be further investigated.  
 

 I-2.2.1.3.  If the maximum value is a suspected outlier, compute the test statistic )(nx
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 I-2.2.1.4.  If D exceeds the critical value from Table B-4 of Appendix B, x(1) is an outlier 
and should be further investigated. 
 
 I-2.2.2.  Example for the Discordance Test.  Consider the following subsurface background 
chromium data from smallest to largest: 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, 5.86 (in mg/kg). 
Suppose there was an additional sample with a result of 10 mg/kg. Because this additional sam-
ple is much larger than the other values, it is suspected that this point might be an outlier. The 
required level of significance for an outlier is 5%. 
 
 I-2.2.2.1.  Testing the data for normality using the Shapiro-Wilk test (without the extreme 
value) indicated the data were normal. Therefore, the discordance test may be used to determine 
if the largest data value is an outlier. 
 
 48.5=x  mg/kg and  mg/kg without the suspected outlier. 82.1=s
 
 I-2.2.2.2  Because the maximum value  is a suspected outlier, do the following: )(nx
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 I-2.2.2.3.  Because  (from Table B-4 of Appendix B with  and α = 
0.05), there is evidence that x(1) is an outlier at a 5% significance level and should be further in-
vestigated. 

110.248.2 >=D 9=n

 
 I-2.3.  Rosner’s Test.  Rosner developed a parametric test that can be used to detect up to 
10 outliers for sample sizes of 25 or more. This test assumes that the data are normally distrib-
uted; therefore, a test for normality should be performed before applying it. If the data are not 
normally distributed, transform the data, apply a different test, or consult a statistician. Note that 
the test assumes that the data without the outlier are normally distributed, so the test for normal-
ity may be done without the suspected outlier. Directions for Rosner’s test are contained in Para-
graph I-2.3.2 and an example is contained in Paragraph I-2.3.3. 
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 I-2.3.1.  Caveats.  Rosner’s test is not as easy as the preceding tests to apply. To apply this 
test, first determine an upper limit r0  for the number of outliers (r0 ≤ 10), then order the r0 ex-
treme values from most extreme to least extreme. Rosner’s test statistic is then based on the 
sample mean and sample standard deviation computed without the r = r0  extreme values. If this 
test statistic is greater than the critical value given in Table B-18 of Appendix B, there are r0 out-
liers. Otherwise, the test is performed again with the r = r0 – 1 extreme values. This process is 
repeated until either Rosner’s test statistic is greater than the critical value or r = 0. 
 
 I-2.3.2.  Directions for Rosner’s Test for Outliers.  Let x(1), x(2),...,x(n) represent the ordered 
data points. By inspection, identify the maximum number of possible outliers, r0. Check that the 
data are normally distributed, using one of the methods in Appendix F, Paragraph F-11.  
 
 I-2.3.2.1.  Compute the sample mean, x , and the sample standard deviation, s, for all of the 
data. Label these values )0(x and , respectively. Determine the observation farthest from )0(s

)0(x and label this observation . Delete  from the data and compute the sample mean, la-
beled 

)0(y )0(y
)1(x , and the sample standard deviation, labeled . Then determine the observation far-

thest from 
)1(s

)1(x and label this observation . Delete and compute )1(y )1(y )2(x and . Continue 
this process until  extreme values have been eliminated. 

)2(s
0r

 
 I-2.3.2.2  In summary, after the above process the analyst should have  
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and  is the farthest value from )(iy )(ix . (Note the above formulas for )(ix and assume that the 
data were renumbered after each observation was deleted.)  
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 I-2.3.2.3.  To test if there are r outliers in the data, compute  
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Compare Rr to λr in Table B-18 of Appendix B. If, Rr ≥ λr conclude that there are r outliers. First, 
test if there are r0 outliers (compare 

0r
to 

0r
R λ ). If not, test if there are r0 – 1 outliers (compare 

10−r to 10−rR λ ). If not, test if there are r0 – 2 outliers, and continue until it is determined there are a 
certain number of outliers or no outliers at all. 
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 I-2.3.3.  Example for Rosner’s Test for Outliers.  Consider the following subsurface site 
copper data in order from smallest to largest: 1.99, 2.19, 2.34, 2.42, 2.45, 2.64, 2.70, 2.79, 2.82, 
2.85, 2.86, 2.93, 3.10, 3.19, 3.21, 3.23, 3.25, 3.26, 3.28, 3.43, 3.55, 3.66, 3.71, 3.76, 3.83, 3.91, 
3.92, 3.97, 3.98, 4.48, 5.0, 11.1, 11.6, 12.3, 32.1, 44.2.  
 
 I-2.3.3.1.  By inspection, five potential outliers are suspected. Testing the data for normal-
ity using the Shapiro-Wilk test (without the extreme values) indicated that the data were normal. 
So Rosner’s test for outliers may be used to determine if there are five or fewer outliers.  
 
 I-2.3.3.2.  First the sample mean and sample standard deviation were computed for the en-
tire data set, )0(x  and . Subtraction showed that 44.20 was the farthest data point from )0(s )0(x , 
so = 44.20. Then 44.20 was deleted from the data and the sample mean,)0(y )1(x , and the sample 
standard deviation, , were computed. Subtraction showed that 32.10 was the farthest value 
from 

)1(s
)1(x . This value was then dropped from the data and the process was repeated again on 

12.30 and 11.60 to yield the values below.  
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5.88 
4.79 
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3.74 
3.49 
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8.43 
5.36 
2.51 
2.07 
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)(iy  
44.20 
32.10 
12.30 
11.60 
11.10 

 
 I-2.3.3.3.  To apply Rosner’s test, it is first necessary to test if there are five outliers (r = 5) 
by computing 
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and comparing  to 5R 5λ  in Table B-18 of Appendix B with n = 36 and α = 0.05. Because 

9494.4 55 >= .2=λR , there are five outliers in the data set. 
 
 I-2.3.3.4.  Suppose 94.255 => λR . 
 
 I-2.4.  Walsh’s Test.  Walsh developed a nonparametric test to detect multiple outliers in a 
data set. This test requires a large sample size: n > 220 for a significance level of α = 0.05, and n 
> 60 for a significance level of 10.0=α . However, as the test is nonparametric, it may be used 
whenever the data are not normally distributed. Directions for the Walsh test for large sample 
sizes are provided in Paragraph I-2.4.1, followed by an example in Paragraph I-2.4.2. 
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 I-2.4.1.  Directions for Walsh’s Test for Large Sample Sizes.  Let x(1), x(2),...,x(n) represent 
the data ordered from smallest to largest. If 60≤n , do not apply this test. If , then 22060 ≤< n

10.0=α . If , then 220>n 05.0=α .  
 
 I-2.4.1.1.  Identify the number of possible outliers, r. Note that r can equal 1. 
 
 I-2.4.1.2.  Compute  
 

 [ ]nc 2= , ,  crk += α/12 =b
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where [ ] indicates rounding the value up to the next largest integer (i.e., 3.24 becomes 4).  
 
 I-2.4.1.3.  The r smallest points are outliers (with an α % level of significance) if  
 
 . 0)1( )()1()( <++− + krr xaxax
 
 I-2.4.1.4.  The r largest points are outliers (with an α % level of significance) if 
 
 . 0)1( )1()()1( >++− −+−−+ knrnrn xaxax
 
 I-2.4.1.5.  If both of the inequalities are true, small and large outliers are indicated. 
 
 I-2.4.2.  Example for Walsh’s Test for Large Sample Sizes.  Consider that the following sur-
face soil lead data from Site 2 in order from smallest to largest: 11.7, 13.9, 14.4, 15.1, 17.2, 19.1, 
19.3, 19.5, 19.6, 19.9, 20.8, 21.2, 21.8, 23.4, 24.2, 24.3, 25.8, 26.4, 27.4, 28.1, 29.1, 34.3, 35.3, 
36, 37.9, 39.8, 43.8, 45.4, 51.4, 65.4, 74.4, 78.5, 87, 93.3, 105, 108, 120, 134, 135, 136, 143, 150, 
178, 186, 194, 203, 214, 216, 232, 251, 263, 268, 277, 283, 300, 421, 446, 510, 811, 1260, 5320. 
 
 I-2.4.2.1.  The possible outliers are 811, 1260, 5320. So r = 3. 
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 I-2.4.2.2.  Therefore the largest points, 811, 1260, 5320, are not outliers at 10.0=α . 
 
 I-2.5.  Fourth-Spread Outlier Test.  A graphical qualitative method for identifying outliers 
entails creating box-and-whisker plots. Paragraph J-3 of Appendix J describes how to create such 
a plot. The process of identifying outliers by generating box-and-whisker plots is the same as 
identifying outliers using the “fourth-spread” outlier test (Hoaglin et al. 1983). The fourth-spread 
outlier test can identify one or more outliers from either end of the range of sample results.  
 
 I-2.5.1.  A box-and-whisker plot identifies mild and extreme outliers. A mild outlier is a 
statistical outlier that is any result less than the difference of the 25th percentile and 1.5 times the 
inter-quartile range (IQR), or any result greater than the sum of the 75th percentile and 1.5 × IQR. 
An extreme outlier is a statistical outlier that is any result less than the difference of the 25th per-
centile and 3 × IQR, or any result greater than the sum of the 75th percentile and 3 × IQR. Ex-
treme outliers are more severe than mild outliers and should be considered more influential. 
 
 I-2.5.2.  The advantages of this test are that it does not have any sample size requirements 
and can identify one or more outliers. A disadvantage of the test is that no level of significance is 
placed on the decision to declare a result an outlier. However, it should be noted that, for a nor-
mally distributed variable X with a standard deviation of σ, 1.5 × IQR is approximately 2σ and 
there is slightly less than a 1% chance that points will be greater than X0.75 + 1.5 × IQR or less 
than X0.25 – 1.5 × IQR. Otherwise, the choice of 1.5 times the inter-quartile range is “somewhat 
arbitrary, but experience with many data sets indicates that this definition serves well in identify-
ing values that may require special attention” (Hoaglin et al., 1983). 
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 I-2.6.  Multivariate Outliers.  Multivariate analysis, such as factor analysis and principal 
components analysis, involves the statistical analysis of several variables simultaneously. Out-
liers in multivariate analysis are values that are extreme in relationship to one or more variables. 
As the number of variables increases, identifying potential outliers using graphical representa-
tions becomes more difficult. Special procedures are required to test for multivariate outliers. 
Details of these procedures are beyond the scope of this document, but are contained in statistical 
textbooks on multivariate analysis (see Gnanadesikan, 1997). 
 
I-3.  Retaining or Discarding Outliers.  Once outliers are identified, the project team should 
review outliers and determine, case-by-case, if there is an explanation for each outlier. Further-
more, any suspect data point, whether identified as a statistical outlier or not, should be re-
viewed. Unexpected values, especially those identified as statistical outliers, should not be 
removed from any data evaluations unless a specific reason for the unexpected measurements 
can be determined.  
 
 I-3.1.  If a data point is found to be an outlier, the analyst may: i) correct the data point; ii) 
discard the data point from analysis; or iii) use the data point in all analyses. Removing outliers 
should be based on scientific reasoning in addition to the results of the statistical test. An outlier 
should never be discarded based solely on a statistical test. Instead, the decision should be based 
on some scientific or quality assurance basis. Discarding an outlier from a data set should be 
done with extreme caution, particularly for environmental data sets, which often contain legiti-
mate extreme values.  
 
 I-3.2.  According to EPA 530-SW-89-026, a value may be corrected or dropped only if one 
can determine that an error has occurred. If an error can be identified, the correction should be 
made and the correct value used. Data points containing transcription errors should be corrected 
whether they are outliers or not. A value that is identified as incorrect may be deleted from the 
data set. Valid reasons for removing outliers or unexpected values include, for example, evidence 
they are the result of contaminated sampling equipment, laboratory errors, malfunctioning in-
strumentation, transcription errors, sampling of differing geological strata, or a non-typical sam-
pling location taken for background. If a plausible reason cannot be found for removing an 
unexpected value or a statistical outlier, the result should be treated as a true but extreme value 
and retained in the data.  
 
 I-3.3.  The spatial context of outliers or potential outliers should be considered. If outliers 
occur at different locations for different analytes and tend to be located close to low concentra-
tions, then sporadic high concentrations are simply a feature of the area; there is no reason to 
treat the data differently as a result of their presence. If outliers tend to occur in the same location 
for different analytes and are found close to other locations with elevated concentrations, it may 
be appropriate to consider the elevated locations separately. 
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 I-3.4.  If an outlier is discarded from the data set, all statistical analysis of the data should 
be applied to both the full and truncated data set so that the effect of discarding observations may 
be assessed. If scientific reasoning does not explain the outlier, it should not be discarded from 
the data set. 
 
 I-3.5.  If any data points are found to be statistical outliers, this information should be 
documented along with the analysis of the data set, regardless of whether any data points are dis-
carded. If no data points are discarded, the analyst should document that a process was imple-
mented to identify any statistical outliers but none were found. If any data points are discarded, 
the analyst should document each data point, the statistical test performed, the scientific reason 
for discarding each data point, and the effect on the analysis of deleting the data points. Such in-
formation is critical for effective peer review. 
 
I-4.  Applications.  This Paragraph provides a case study regarding outliers and how conclusions 
are affected by including or excluding outliers. This case study focuses on identifying outliers in 
background data.  
 
 I-4.1.  A background metals study was conducted to determine background concentrations 
that may be compared to site concentrations. Regulators were concerned with identifying outliers 
in the background data and removing them from the background data set, based upon the errone-
ous assumption that unusually high concentrations cannot represent background conditions and 
necessarily represent site-related contamination. All background data (by metal), were evaluated 
for outliers using two outlier tests—the discordance test and fourth-spread test. For this investi-
gation, the regulator required that any result identified as a statistical outlier be removed from the 
background data set, which biased the background sample towards smaller values. This case 
study focuses on the evaluation of antimony in surface soil. 
 
 I-4.2.  Table I-1 presents the 20 samples associated with antimony concentrations from the 
background surface soil. Generally, the concentrations were quite small, ranging from 0.182 to 
0.398 mg/kg. Outlier tests were performed on the highest concentration, 0.398 at sample BACK-
005-005, to see if this concentration could be considered a statistical outlier.  
 
 I-4.3.  First, a box-and-whisker box plot was generated to visualize the data and to perform 
the fourth-spread test. As Figure I-1 presents with the box plot, the highest concentration is a 
mild outlier. 
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Table I-1. 
Background Surface Soil Data for Antimony 

Sample ID Result (mg/kg) Sample ID Result (mg/kg) 
BACK-001-0005  0.235 BACK-0011-0005  0.202 
BACK-002-0005  0.285 BACK-0012-0005  0.27 
BACK-003-0005  0.202 BACK-0013-0005  0.298 
BACK-004-0005  0.22 BACK-0014-0005  0.209 
BACK-005-0005  0.398 BACK-0015-0005  0.182 
BACK-006-0005  0.279 BACK-0016-0005  0.233 
BACK-007-0005  0.215 BACK-0017-0005  0.186 
BACK-008-0005  0.25 BACK-0018-0005  0.267 
BACK-009-0005  0.279 BACK-0019-0005  0.273 

BACK-0010-0005  0.23 BACK-0020-0005  0.28 
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Figure I-1.  Box-and-Whisker Plot for Antimony. 
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 I-4.4.  The discordance test was done to determine if the maximum result might be consid-
ered a statistical outlier. Results of the discordance test show the maximum result is an outlier, as 
seen below. 
 
 I-4.4.1.  Normality Assumption.  The Shapiro-Wilk test was performed on the raw data, 
without the maximum result. The test statistic for this test was 0.9319 and the p value associated 
with this test statistic was 0.1878. Based on 95% level of confidence, because 0.1878 > 0.05, 
there is evidence to suggest the data without the maximum result were normal. Therefore, doing 
the discordance test on the raw data was appropriate. 
 

 I-4.4.2.  Test Statistic.  268.4
0366.0

2418.0398.0
=

−
=

−
=

s
xXD n . 

 
 I-4.4.3.  Critical Value.   2.557 (based on )05.0=α . 
 
 I-4.4.4.  Conclusion.  Because 4.268 > 2.557, there is evidence that the maximum result is 
an outlier. 
 
 I-4.5.  As both outlier tests showed the maximum result is a statistical outlier, the maxi-
mum antimony result for surface soil was removed from the background data set at the request of 
the regulator even though the outlier appeared to be a valid result (i.e., it was not entered incor-
rectly or demonstrated to be the result of a non-complaint sampling or analytical procedure).  
 
 I-4.6.  From a statistical perspective, it was probably inappropriate to remove the maximum 
detected concentration as an outlier for the antimony data set. To illustrate this conjecture, sepa-
rate lists of summary statistics are presented in Table I-2 for all 20 antimony results and for the 
19 antimony results without the maximum concentration.  
 
Table I-2. 
Summary Statistics for Antimony Background Surface Soil Data 

 

n Minimum 
(mg/kg) 

Maximum 
(mg/kg) 

Median
(mg/kg)

Mean 
(mg/kg)

Standard 
Deviation
(mg/kg) 

95% 
UCL 

(mg/kg)

Distri-
bution 

p value for 
Shapiro-Wilk 
test for origi-

nal data 

p value for 
Shapiro-Wilk 
test for log-
transformed 

data 
All Samples 20 0.182 0.398 0.2425 0.25 0.04988 0.270 Log-

normal
0.0369 0.3309 

All but 
Max. 

19 0.182 0.298 0.235 0.242 0.0366 0.256 Normal 0.1878 0.1667 

 
 I-4.7.  The most striking difference between the two data sets is their distribution. When all 
samples were evaluated, there was evidence that the data followed a lognormal distribution, but 
when all samples except the maximum were evaluated, there was evidence that the data followed 
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both a normal and lognormal distribution. (A data point from a lognormal distribution can appear 
as an outlier when it is erroneously assumed that the data set is normally distributed.) However, 
for this particular data set, the removal of the outlier (0.398 mg/kg) did not significantly affect 
decision-making because all of the antimony concentrations were less than the state-specified 
risk-based decision level of 2.7 mg/kg. Furthermore, fortuitously, similar statistical results were 
obtained with and without the outlier. Although the maximum detected concentration was elimi-
nated, the sample median and mean were not seriously affected, and the difference between 
maximum concentrations was less than an order of magnitude. However, under different circum-
stances (e.g., had the risk-based decision limit or the difference between the two highest values 
been larger), the comparisons between the site and background data sets could have been ad-
versely affected (e.g., a “false positive” could have resulted). Data points should never be re-
moved from any data set (background or otherwise) solely on the basis of an outlier test unless 
an independent weight of evidence indicates that the data points are not representative of the 
underlying population of interest. 
 
I-5.  Recommendations.  If the data are normally distributed, Rosner’s test is recommended 
when the sample size is greater than 25 and the extreme value test is recommended when the 
sample size is less than 25. If only one outlier is suspected, the discordance test may be substi-
tuted for either of these tests. If the data are not normally distributed, or if the data cannot be 
transformed so that the transformed data are normally distributed, the analyst should apply a 
nonparametric test, such as the fourth-spread test, or Walsh’s test. A summary of this informa-
tion is contained in Table I-3. Recommendations on selecting a statistical test for outliers are 
listed. 
 
Table I-3. 
Recommendations for Selecting a Statistical Test for Outliers 

Sample Size Test Assumes  
Normality 

Multiple  
Outliers 

25≤n  Extreme Value Test Yes No/Yes 
50≤n  Discordance Test Yes No 
25≥n  Rosner’s Test Yes Yes 
50≥n  Walsh’s Test No Yes 

Any sample size Fourth-Spread Test No Yes 

 


	 I-2.3.3.1.  By inspection, five potential outliers are suspected. Testing the data for normality using the Shapiro-Wilk test (without the extreme values) indicated that the data were normal. So Rosner’s test for outliers may be used to determine if there are five or fewer outliers. 
	Sample Size
	Test

	Extreme Value Test


