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APPENDIX D 
Descriptive Statistics 

 
D-1.  Introduction.  For most environmental sampling, the collected data for some measurement 
variable of interest constitute a small subset of its set of possible values. The data subset fre-
quently consists of contaminant concentrations from the analysis of environmental (e.g., soil and 
groundwater) samples collected from the study area. In a statistical context, this subset is referred 
to as a sample. If it were possible to collect environmental observations from every portion of the 
study area (i.e., to exhaustively sample an entire site), the set of resulting values would constitute 
the population. As this is typically not possible, statistics calculated from the sample are used to 
describe or make inferences about the underlying population. For the environmental applications 
discussed herein, the statistical methods presented are implicitly for a sample, not the entire 
population. For more information on populations, the reader is referred to introductory statistical 
texts readily available in libraries and online. 
 
 D-1.1.  Commonly used descriptive statistics for environmental data include measures of 
central tendency, such as mean, median, or mode; measures of relative standing, such as percen-
tiles; measures of dispersion, such as range, variance, standard deviation, coefficient of variation, 
or interquartile range; measures of distribution symmetry or shape; and measures of association 
between two or more variables, such as correlation. These measures can also be used to test hy-
potheses regarding the populations from which the data were drawn. 
 
 D-1.2.  In general, the sampling design influences how descriptive statistical quantities are 
calculated. The formulas presented in this monograph are for simple random sampling, simple 
random sampling with composite samples, and randomized systematic sampling. If more com-
plex designs are used, such as a stratified design, then the formulas need to be adjusted. All of 
these designs are addressed in Appendix C. 
 
 D-1.3.  In addition, the distribution of a data set may also influence how descriptive statis-
tical quantities are calculated. Most of the discussion in this Appendix will be centered on nor-
mal populations. However, as detailed in Appendix F, it is not uncommon for environmental data 
to follow other distributions. The most commonly encountered alternative is the lognormal dis-
tribution. This Appendix will also present how to calculate the mean and quantiles of the popula-
tion for a lognormally distributed data set. To estimate other parameters, the reader is urged to 
refer to any of the excellent texts available, including those referenced here. 
 
 D-1.4.  The terminology used in presenting general formulas and calculations for this exer-
cise are standard. Out of a total population N, let x1, x2, ... , xn represent the n data points, a sam-
ple set of n measurements. Additional information on calculating descriptive statistics for 
environmental applications can be found in the EPA/600/R-96/084, QA/G-9 and Gilbert (1987). 
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D-2.  Measures of Central Tendency.  Measures of central tendency characterize the center of a 
set of measured data values. The three most common estimates are the mean, median, and mode. 
These are described below, and examples of calculating each of them are presented in Paragraph 
D-2.2 
 
 D-2.1.  Mean.  The mean is the most commonly used measure of central tendency. The 
formula used to calculate the sample mean is a function of the sampling design. The sample 
mean x  (arithmetic average) is the sum of the data points, , divided by the total 
number of data points (n): 
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where  denotes the value of the ith point.  ix
 
 D-2.1.1.  If distribution testing suggests that data are lognormally distributed, then the de-
scriptive statistics are best calculated using the transformed data (for each value ( )ii xLny = ). 
Calculating the sample mean, x , is possible, even for lognormally distributed data. Gilbert 
(1987) reports that x  may be used when the population coefficient of variation is small (i.e., less 
than 1.2). Unfortunately, the sample mean is statistically biased for known lognormal conditions. 
It is highly sensitive to a few large data values, as is typical of lognormal data. There are alterna-
tives for estimating the population mean that are not statistically biased, and these are preferred. 
 
 D-2.1.2.  The preferred method for estimating the population mean of a lognormal popula-
tion is calculated by:  
 
 ( )te n

yΨ=1μ̂  (D-2) 
 
where  
 
 y  = sample mean of the log-transformed data  
  n = number of data points 
  sy = sample standard deviation of the log-transformed data  
 Ψn(t) (with t = sy

2/2) = the following infinite series 
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 D-2.1.3.  This is the minimum variance unbiased estimate of the population mean. Like-
wise, the unbiased estimator of the variance of the mean is: 
 
 ( )[ ]{ [ ]}ttys nn ′Ψ−Ψ= 2
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 D-2.1.4.  The infinite series may be evaluated on a computer or estimated from tables ref-
erenced in Gilbert (1987). This method produces the minimum unbiased variance estimator (sta-
tistically unbiased and smallest sampling error variance) of the mean for a lognormal population. 
 
 D-2.1.5.  Performing this calculation obviously can be laborious. There is a simpler method 
for estimating the mean and variance of a lognormal population that arises in Gilbert and in EPA 
guidance documentation. This method uses the formulas: 
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 D-2.1.6.  However, the approach can produce poor (biased high) estimates of mean and 
variance for small data sets and is not recommended unless n is large (e.g., n > 50). Paragraph D-
2.2 presents an example calculation for the mean of a lognormal population using the three meth-
ods. 
 
 D-2.1.7.  For complex sampling designs, such as stratification, the sample mean is a 
weighted arithmetic average of the sample means of the L strata. Because a stratified sampling 
plan weights the number of samples unequally among areas, the weights for each area are incor-
porated into the calculation of the average. A weighted average is very similar to the arithmetic 
average, where an arithmetic average weights each sample result equally (with a weight of 1/n). 
A weighted arithmetic average is calculated by: 
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where: 
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  = weight for the ith stratum  iw
 ix  = sample mean of the ith stratum 
  L = number of strata  
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 D-2.1.8.  For example, consider a stratified sampling plan that collects a total of n = 20 
samples from a site with L = 2 sub-groups, where 8 samples, x1i i = 1,…8, are collected in sub-
group 1, and 12 samples, x2i i = 1,…12, are collected in subgroup 2. If the average for the site is 
required and the two strata are assumed to be of equal area or volume, then the weights for the 
weighted average are ½ for the sample mean from subgroup 1 and ½ for the sample mean from 
subgroup 2 so that  
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and the overall mean is  
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 D-2.1.9.  Careful examination will show that each observation in subgroup 1 is weighted by 
1/16 in the overall mean and each observation in subgroup 2 is weighted by 1/24 in the overall 
mean. 
 
 D-2.1.10.  The mean is the “center of gravity.” The mean is very sensitive to extreme val-
ues because each measurement, xi, is used to calculate the mean. Note that the sample mean, x , 
is distinguished from the corresponding population parameter, the population mean, μ. The 
population mean could hypothetically be calculated using Equation D-1 if it were possible to ex-
haustively sample the entire population. The number of all possible data points from the popula-
tion, N, would appear in the denominator of Equation D-1. Typically, the number of data points 
in the sample data set,  and the sample mean, Nn << x , is a “best” estimate of μ. As previously 
stated, this section of the document focuses on sample statistics that are ultimately used to esti-
mate the corresponding parameters. 
 
 D-2.2.  Example of Lognormal Mean Calculations.  A group of arsenic measurements in 
soil were found to be lognormally distributed. The sample analytical results (in mg/kg) are: 
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SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 
12.461 13.451 13.056 11.502 10.835 30.06 17.72 17.11 12.02 13.73 
 
 D-2.2.1.  Method 1.  Using the simple (albeit biased) population average method, the sam-
ple mean of these data is: 
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== 1 = 15.19 mg/kg arsenic in soil.  

 
The sample variance s2 = 32.3. Shapiro-Wilk testing (Appendix F) suggests that the lognormal 
distribution cannot be rejected. Also, the sample variance is high. These data would be better 
treated as lognormal. 
 
 D-2.2.2.  Method 2.  To calculate the minimum unbiased variance estimator of the mean, 
we first take the natural logarithm of the data set and calculate the following: 
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Using the minimum unbiased variance estimator, we see that the mean is 15.17 mg/kg. Method 1 
above, which does not account for the lognormality, is biased high slightly. 
 
 D-2.2.3.  Method 3.  Others may choose to use the simpler Gilbert/EPA estimating method 
described above. This alternative also yields a sample mean of about 15.17 mg/kg. This result is 
low relative to the simple averaging method, but in this case is nearly identical to the minimum 
unbiased variance estimator. This is largely attributable to the low value of t in this example.  
 
 D-2.2.4.  Summary.  Ideally, with a computer, the method for minimum unbiased variance 
estimator of the mean for a lognormal population could be used. In cases of large n, it is suitable 
to use the third, and relatively simpler, method. 
 
 D-2.3.  Median.  The sample median ( ) is the second most common measure of central 
tendency. When measurements are ranked from lowest to highest, the median is the middle of 
the data set. Half of the data are less than the sample median, and half of the data are greater than 
the sample median.  

x~

 
 D-2.3.1.  To compute the sample median, list the data from smallest to largest and label 
these points: 
 

)()2()1( ,,, nxxx K  
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So that  is the smallest, )  is the second smallest, and so on, where  is the largest. )1(x 2(x )(nx
 

 D-2.3.2.  The determination of the sample median depends upon whether the sample size n 
is odd or even: 
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 D-2.3.3.  The median is also referred to as the 50th

 percentile, the value greater than or 
equal to 50 percent of the measurements. Unlike the mean, the median is not influenced by ex-
treme values. The median is also more robust than the mean for censored data (when non-
detected results occur). When data are symmetrical, the mean and median of the data are very 
similar. If data are slightly skewed to higher values, the mean tends to be larger then the median 
because the mean is more influenced by these higher values than the median. Likewise, when 
data are skewed to lower values, the mean tends to be lower than the median. 
 
 D-2.4.  Mode.  The third method of measuring the center of the data is the mode. The mode 
is the value of the sample that occurs with the greatest frequency. To find the mode, count the 
number of times each value occurs. As this value may not always exist, or if it does, it may not 
be unique, mode is the least commonly used measure of central tendency; however, it is useful 
for qualitative data. 
 
 D-2.5.  Examples for Calculating the Measures of Central Tendency.  Consider estimating 
the measures of central tendency for the subsurface soil background chromium results (in mg/kg) 
as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
 
 D-2.5.1.  Sample Mean.  The sample mean (in mg/kg) is:  
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(Note that the mean is reported as three significant figures to reflect the minimum number of sig-
nificant figures in the original data set.) 
 
 D-2.5.2.  Sample Median.  The data, from smallest to largest, are: 
 

5.86 5.74, 5.29, 5.28, 4.60, , 4.53 4.26, , 3.84 ,,, )()2()1( =nxxx K .  
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As there are eight points (n is even), the median (in mg/kg) is: 
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 D-2.5.3.  Sample Mode.  In this example, mode does not exist since no value is repeated 
multiple times. 
 
D-3.  Measures of Relative Standing.  Sometimes the analyst is interested in knowing the rela-
tive position of one of several observations in relation to all of the observations. Percentiles or 
quantiles are one such measure of relative standing that may also be useful for summarizing data.  
 

• The percentile is the data value that is greater than or equal to a given percentage of the 
data values.  

 
• The quantile is an alternative name for percentile when speaking in fractions (propor-

tions) rather than in percents. 
 
 D-3.1.  Just as the mean is a measure of location at the center of data, percentiles and quan-
tiles are measures of location at various positions of the data. For a continuous variable X, the 
p100th percentile or p quantile, xp, is the data point that is greater than or equal to 100p% of the 
data points and is less than or equal to (1 – p)100% of the data points. For example, if x is the 
95% percentile (0.95 quantile), then it has the property that 95% (a proportion 0.95 ) of the ob-
servations lie at or below xp and 5% (a proportion 0.05) of the data points lie at or above xp. 
 
 D-3.2.  The percentile and quantile for a discrete variable (i.e., a variable that may assume 
only a finite number of values) is defined somewhat differently than for a continuous variable. 
For a discrete variable X, Xp is the p quantile of X if  
 

P(X < Xp) ≤ p  
 
and  
 

P(X > Xp ) ≤ 1 – p 
 
or equivalently,  
 
 P(X ≤ Xp) ≥ p. 
 
 D-3.3.  To calculate percentiles or quantiles for a set of n sample points (x1, x2, ..., xn), first 
list the data points from smallest to largest (x1, x2, ..., xn). Multiply the sample size, n, by p. Di-
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vide the result into the integer part and the fractional part, i.e., let np = j + g where j is the integer 
part and g is the fraction part. The  percentile, xp, is calculated by:  thp100
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 D-3.4.  One example of a percentile is the median. The median is the 50th percentile be-
cause half the results fall below this value and half of the results fall above this value. A sample 
percentile may fall between a pair of observations. For example, the 75th percentile of a data set 
of 10 observations is not uniquely defined.  
 
 D-3.5.  Important percentiles usually reviewed are the quartiles of the data. The most com-
mon quartiles are 25th, 50th, and 75th percentiles. The 25th and 75th percentiles can be used to es-
timate the dispersion of a data set (see Paragraph D-4). Quartiles are discussed further in 
Paragraph D-4 to explain the dispersion of the data. 
 
 D-3.6.  Also important for environmental data are the 90th, 95th, and 99th percentiles, where 
a decision-maker would like to be sure that 90, 95, or 99% of the contamination levels are below 
a fixed risk level. Directions and examples for calculating the measures of relative standing are 
presented below in Paragraph D-4. 
 
 D-3.7.  Estimating quantiles in lognormal populations arises frequently in environmental 
applications. Of course, a probability plot may be used to estimate the quantiles, after the data 
are transformed and plotted. Alternatively, a mathematical method is recommended in Gilbert 
(1987). Simply, 
 

( )ypp sZyx += expˆ  (D-6) 
 
where  is the value of the cumulative normal distribution for the pth quantile. For the data in 
the preceding example (Paragraph D-2.2), the 99th quantile of the data is 

pZ

 
( ) 1.29301.0326.267.2expˆ 95.0 =×+=x  mg/kg. 

 
D-4.  Calculating the Measures of Relative Standing (Percentiles).  The 95th, 75th, and 25th 
percentiles will be computed for the eight subsurface soil background chromium results (in 
mg/kg), ordered from lowest to highest, as follows: 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, and 
5.86. 
 
 D-4.1.  For the 95th percentile, 95.0=p  and 
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  6.7)95.0)(8( ==np
 
Therefore: 
 
 gjnp +=  
 
  6.076.7 +=
 
So: j = 7 and g = 0.6. 
 
 D-4.2  Since g ≠ 0, x(p) = x(j+1). The 95th percentile of this data set is: 
 
  mg/kg 86.5)8()17(95.0 === + xxx
 
Note that 100% of the data points (8 out of 8 values) rather than 95% of the measurements are 
less than or equal to the 95th percentile. The 95th percentile is being calculated for the set of eight 
measured chromium values and not for the set of all possible values of chromium. The set of 
measured chromium concentrations is a discrete variable (there are only eight possible values for 
chromium). If a larger number of measurements were made, nearly (or precisely) 95% of the 
measurements would be less than or equal to the 95th percentile.  
 
 D-4.3.  For the 75th percentile, 75.0=p  and  
 
 . 6)75.0)(8( ==np
 
Therefore: 
 
 gjnp +=  
 
  0.066 +=
 
So: j = 6 and g = 0. 
 
 D-4.4 The 75th percentile of these data is: 
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Note that 6 out of the 8 measured values (0.75 of the total number of observations) are less than 
or equal to the 75th percentile 5.52 mg/kg. 
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 D-4.5.  For the 25th percentile, 25.0=p  and 
 

2)25.0)(8( ==np   
 
Therefore: 
 

gjnp +=  
 

0.022 +=  
 
So: j = 2 and g = 0.  
 
 D-4.6.  The 25th percentile of these data is: 
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D-5.  Measures of Dispersion. 
 
 D-5.1.  Introduction.  Measures of central tendency are more meaningful if accompanied 
by information on how the data spread out from the center. Measures of dispersion or variability 
in a data set include the sample range, variance, standard deviation, coefficient of variation, and 
the interquartile range. Directions for calculating these measures of dispersion follow, and exam-
ples are presented in Paragraph D-6. 
 
 D-5.1.1.  Range.  This is the difference between the largest and smallest result from the 
data set. 
 
 D-5.1.2.  Variance.  This is a measurement of the dispersion or deviation of results from 
the mean of a data set. 
 
 D-5.1.3.  Standard Deviation.  This is the square root of the sample variance, it has the 
same unit of measure as the original data. 
 
 D-5.1.4.  Coefficient of Variation (CV).  This is sometimes called the relative standard de-
viation (RSD), a unitless measure equal to the standard deviation divided by the mean. 
 
 D-5.1.5.  Interquartile Range.  This is the difference between the 75th and 25th percentiles, 
it measures the central 50% of the results in the data set. 
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 D-5.2.  Sample Range.  The simplest measure of dispersion to compute is the sample range. 
The sample range (R) is the difference between the largest value and the smallest value of the 
sample: 
 

)1()( xxR n −=  (D-7) 
 
where:  
 

)(nx  = largest ordered value  

)1(x  = smallest ordered value 
 
For small samples, the range is easy to interpret and may adequately represent the dispersion of 
the data. For large samples, the range is not very informative because it only considers (and is 
greatly influenced by) extreme values. 
 
 D-5.3.  Sample Variance.  The sample variance measures the dispersion or deviation of re-
sults from the mean of a data set. 
 
 D-5.3.1.  To find the sample variance ( ), compute: 2s
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 D-5.3.2.  If the variance is being manually calculated, a simpler version of this calculation 
is the following: 
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 D-5.3.3.  However, this version should not be used when calculating the variance with a 
computer because too much rounding error is introduced into this calculation. 
 
 D-5.3.4.  A large sample variance implies that there is a large spread among the data, that 
the data are not clustered tightly around the mean. A small sample variance implies that there is 
little spread among the data, and that most of the data are near the mean. Like the mean, the 
sample variance is affected by extreme values and by a large number of non-detected results. 
Note that the sample variance s2 is distinguished from the corresponding population parameter, 
the population variance, σ2. 
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 D-5.4.  Sample Standard Deviation.  The sample standard deviation has the same unit of 
measure as the original data. The sample standard deviation (s) is the square root of the sample 
variance: 
 

2ss =  (D-10) 
 
Frequently, the sample standard deviation will not be an appropriate measure of dispersion 
unless the data are normally distributed.  
 
 D-5.5.  Sample Coefficient of Variation.  The CV or RSD is a unitless measure that allows 
the comparison of dispersion across several sets of data because it is scaled to the mean. The 
sample CV is the sample standard deviation divided by the sample mean: 
 

x
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=CV   (D-11) 

 
The CV is often expressed as a percentage:  
 

%100%RSD
x
s

= .  
 
The CV is often used in environmental applications because variability (expressed as a standard 
deviation) is often proportional to the mean. 
 
 D-5.6.  Sample Interquartile Range (IQR).  When extreme values are present, the interquar-
tile range may be more representative of dispersion in the data than the standard deviation. This 
range is not heavily influenced by extreme values because it measures the spread within the cen-
ter portion of a data set, rather than include the most extreme values as does the range. As a re-
sult, it is useful when the data include a large number of non-detects. Use the directions in 
Paragraph D-6 to compute the 25th and 75th percentiles of the data (x0.25 and x0.75 respectively). 
Then, 
 
  (D-12) 25.075.0IQR xx −=
 
D-6.  Examples for Calculating the Measures of Dispersion.  Consider estimating the meas-
ures of dispersion for subsurface soil chromium results (in mg/kg) as follows: 4.60, 5.29, 4.26, 
5.28, 4.53, 5.74, 5.86, and 3.84. The data are ordered as follows:  
 
 . 5.86 5.74, 5.29, 5.28, 4.60, , 4.53 4.26, , 3.84 ,,, )()2()1( =nxxx K

 
 D-6.1.  Sample Range (R).  The sample range is simply: 
 



EM 1110-1-4014 
31 Jan 08 

 

D-13 

  )1()( xxR n −= 84.386.5 −= 02.2=
 
 D-6.2.  Sample Variance (s2).  Before the variance can be computed, the mean must be 
computed. The mean was computed in Paragraph D-2.2 and is 4.93 mg/kg. Both methods of cal-
culating the variance are illustrated below:  
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 D-6.3.  Sample Standard Deviation (s). 
 
 5255.02 == ss 7249.0=  
 
 D-6.4.  Sample Coefficient of Variation (CV). 
 

 
x
s

=CV
925.4

7249.0
= = 0.1472 

 
 D-6.5.  Sample Interquartile Range (IQR).  The 25th and 75th percentiles of the 
data, and  respectively, were computed in Paragraph D-4. So: 25.0x 75.0x
 
 25.075.0IQR xx −= 395.4515.5 −= 12.1=  
 
Note that the single data set presented above results in a number of different numerical values 
that all summarize dispersion: 
 

Range  IQR  s s2 CV 
2.0 mg/kg 1.1 mg/kg 0.72 mg/kg 0.52 mg2/kg2 0.15 

 
 


